JP2002164289A - Method and apparatus of detoxicating emission gas from semiconductor thin-film manufacture apparatus - Google Patents

Method and apparatus of detoxicating emission gas from semiconductor thin-film manufacture apparatus

Info

Publication number
JP2002164289A
JP2002164289A JP2000358024A JP2000358024A JP2002164289A JP 2002164289 A JP2002164289 A JP 2002164289A JP 2000358024 A JP2000358024 A JP 2000358024A JP 2000358024 A JP2000358024 A JP 2000358024A JP 2002164289 A JP2002164289 A JP 2002164289A
Authority
JP
Japan
Prior art keywords
fine powder
exhaust gas
coagulant
semiconductor thin
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000358024A
Other languages
Japanese (ja)
Other versions
JP4314739B2 (en
Inventor
Heishiro Goto
平四郎 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000358024A priority Critical patent/JP4314739B2/en
Publication of JP2002164289A publication Critical patent/JP2002164289A/en
Application granted granted Critical
Publication of JP4314739B2 publication Critical patent/JP4314739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Treating Waste Gases (AREA)
  • Treatment Of Sludge (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for making harmless an emission gas, which makes the emission gas of a semiconductor thin film manufacturing apparatus harmless and efficiently removes fine powder in the emission gas to increase the speed of operation of the semiconductor thin-film manufacturing apparatus. SOLUTION: An emission gas 10a from a semiconductor thin film manufacturing apparatus 23 is subjected to thermal oxidation to make it harmless, fine powder contained in the emission gas or generated during the treatment contacts exposure water to be caught in a powder/water mixture bath 8, a mixture solution of fine powder and water in the bath 8 is guided out, a flocculant is injected into the mixture solution for aggregation, the solution is introduced into a powder sedimentation/separation bath 16, a supernatant liquid in the upper part of the bath is re-used as the scattering water, fine powder sedimentation sewage in the lower part of the bath is dewatered and solidified.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、薄膜太陽電池や
薄膜トランジスタなどの半導体薄膜製造装置の排気ガス
無害化処理方法およびこの方法を実施するための無害化
処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detoxifying exhaust gas from a manufacturing apparatus for a semiconductor thin film such as a thin film solar cell or a thin film transistor, and a detoxifying apparatus for performing the method.

【0002】[0002]

【従来の技術】現在、環境保護の立場から、クリーンな
エネルギーの研究開発が進められている。中でも、太陽
電池はその資源(太陽光)が無限であること、無公害で
あることから注目を集めている。
2. Description of the Related Art At present, research and development of clean energy are being promoted from the standpoint of environmental protection. Above all, solar cells are attracting attention because of their infinite resources (solar rays) and no pollution.

【0003】同一基板上に形成された複数の太陽電池素
子が、直列接続されてなる太陽電池(光電変換装置)の
代表例は、薄膜太陽電池である。
A typical example of a solar cell (photoelectric conversion device) in which a plurality of solar cell elements formed on the same substrate are connected in series is a thin film solar cell.

【0004】薄膜太陽電池は、薄型で軽量、製造コスト
の安さ、大面積化が容易であることなどから、今後の太
陽電池の主流となると考えられ、電力供給用以外に、建
物の屋根や窓などにとりつけて利用される業務用,一般
住宅用にも需要が広がってきている。
[0004] Thin-film solar cells are considered to be the mainstream of solar cells in the future because of their thinness, light weight, low manufacturing cost, and easy area enlargement. Demand is expanding for business use and general residential use, which are used for such purposes.

【0005】従来の薄膜太陽電池はガラス基板を用いて
いるものが一般的であった。近年、軽量化、施工性、量
産性においてプラスチックフィルムを用いたフレキシブ
ルタイプの太陽電池の研究開発が進められ実用化されて
いる。さらに、フレキシブルな金属材料に絶縁被覆した
フィルム基板を用いたものも開発されている。このフレ
キシブル性を生かし、ロールツーロール方式やステッピ
ングロール方式の製造方法により大量生産が可能となっ
た。
[0005] Conventional thin-film solar cells generally use a glass substrate. In recent years, research and development of a flexible solar cell using a plastic film has been promoted in terms of weight reduction, workability, and mass productivity, and the solar cell has been put into practical use. Further, a device using a film substrate insulated from a flexible metal material has been developed. Taking advantage of this flexibility, mass production has become possible by roll-to-roll or stepping roll manufacturing methods.

【0006】上記薄膜太陽電池用の薄膜半導体として
は、製造コストの観点から、特にシリコン系の非単結晶
薄膜であるアモルファスシリコン(a-Si)が使用され、プ
ラズマ放電によって薄膜形成がなされる。前記アモルフ
ァスシリコン(a-Si)やアモルファスシリコンゲルマニウ
ム(a-SiGe)等の合金膜を、プラズマ放電によって形成し
た薄膜半導体デバイスは、単結晶シリコンデバイスと比
較して、大面積に、低温で、安価に作成できることか
ら、電力用の大面積薄膜太陽電池以外に、ディスプレイ
用の薄膜トランジスタ(TFT)等への適用も期待されてい
る。
As the thin-film semiconductor for the thin-film solar cell, amorphous silicon (a-Si), which is a silicon-based non-single-crystal thin film, is used from the viewpoint of manufacturing cost, and the thin film is formed by plasma discharge. A thin film semiconductor device in which an alloy film of the amorphous silicon (a-Si) or amorphous silicon germanium (a-SiGe) is formed by plasma discharge has a larger area, lower temperature, and lower cost than a single crystal silicon device. Therefore, application to thin-film transistors (TFTs) for displays, etc., in addition to large-area thin-film solar cells for electric power, is also expected.

【0007】上記プラズマ放電によって形成する薄膜
は、例えば下記のような装置により形成される。図4
は、a-Si 薄膜太陽電池をプラズマ放電によって形成す
る場合の成膜室の概略構造の一例を示し、特開平8−2
50431号公報に記載された構造の一例を示す。図4
(a)、(b)はそれぞれ、成膜室の開放時および封止
時の概略断面図を示す。
The thin film formed by the plasma discharge is formed by, for example, the following apparatus. FIG.
1 shows an example of a schematic structure of a film forming chamber when an a-Si thin film solar cell is formed by plasma discharge.
An example of the structure described in Japanese Patent No. 50431 is shown. FIG.
(A) and (b) are schematic cross-sectional views when the film forming chamber is opened and sealed, respectively.

【0008】図4(a)に示すように、断続的に搬送さ
れてくる可撓性基板110の上下に函状の下部成膜部室
壁体121と上部成膜部室壁体122とを対向配置し、
成膜室の封止時には、下部成膜部室と上部成膜部室から
なる独立した処理空間を構成するようになっている。こ
の例においては、下部成膜部室は電源140に接続され
た高周波電極131を備え、上部成膜部室は、ヒータ1
33を内蔵した接地電極132を備える。
As shown in FIG. 4 (a), a box-shaped lower film-forming section chamber wall 121 and an upper film-forming section chamber wall 122 are opposed to each other above and below a flexible substrate 110 conveyed intermittently. And
When the film formation chamber is sealed, an independent processing space including the lower film formation section chamber and the upper film formation section chamber is configured. In this example, the lower film forming unit chamber includes a high-frequency electrode 131 connected to a power supply 140, and the upper film forming unit room includes a heater 1
A ground electrode 132 having a built-in 33 is provided.

【0009】成膜時には、図4(b)に示すように、上
部成膜部室壁体122が下降し、接地電極132が基板
110を抑えて下部成膜部室壁体121の開口側端面に
取付けられたシール部材150に接触させる。これによ
り、下部成膜部室壁体121と基板110とから、排気
管161に連通する気密に密閉された成膜空間160を
形成する。上記のような成膜室において、高周波電極1
31へ高周波電圧を印加することにより、プラズマを成
膜空間160に発生させ、図示しない導入管から導入さ
れた原料ガスを分解して基板110上に膜を形成するこ
とができる。
At the time of film formation, as shown in FIG. 4B, the upper film-forming section chamber wall 122 is lowered, and the ground electrode 132 is attached to the opening-side end face of the lower film-forming section chamber wall 121 while holding down the substrate 110. The contacted seal member 150 is contacted. As a result, an airtightly sealed film-forming space 160 communicating with the exhaust pipe 161 is formed from the lower film-forming section chamber wall 121 and the substrate 110. In the film forming chamber as described above, the high-frequency electrode 1
By applying a high-frequency voltage to 31, a plasma is generated in the film forming space 160, and a source gas introduced from an introduction pipe (not shown) can be decomposed to form a film on the substrate 110.

【0010】ところで、上記原料ガスとしては、半導体
薄膜の種類によって異なるが、概ね、下記のようなガス
の混合ガスが使用される。
As the source gas, a mixed gas of the following gases is generally used, though it depends on the type of the semiconductor thin film.

【0011】即ち、SiH4 ,GeH4 ,PH4 ,PH3 ,
26 などで、これらのガスに水素が希釈ガスとして
混合される。上記半導体混合ガスは、通常数%が、膜形
成に寄与するのみで、残余の排気ガスは、半導体製造装
置外に排出される。
That is, SiH 4 , GeH 4 , PH 4 , PH 3 ,
Hydrogen is mixed with these gases as a diluent gas with B 2 H 6 or the like. Usually, only a few percent of the semiconductor mixed gas contributes to film formation, and the remaining exhaust gas is exhausted outside the semiconductor manufacturing apparatus.

【0012】上記SiH4 ,GeH4 ,PH4 ,PH3 ,B
26 等は、大気中に0.8%以上含まれると着火・爆
発する危険なガスであり、また、0.1〜5ppm含ま
れた雰囲気に15分間、人体が曝されると、悪影響が発
生するといわれる程、猛毒なガスである。従って、半導
体薄膜製造装置から排出される半導体混合ガスは、無害
化処理して大気に放出される。
The above SiH 4 , GeH 4 , PH 4 , PH 3 , B
2 H 6 is a dangerous gas that ignites and explodes when contained in the atmosphere at 0.8% or more, and is harmful if the human body is exposed to an atmosphere containing 0.1 to 5 ppm for 15 minutes. It is a very poisonous gas that is said to generate gas. Therefore, the semiconductor mixed gas discharged from the semiconductor thin film manufacturing apparatus is detoxified and released to the atmosphere.

【0013】無害化処理方法としては、種々の方法があ
るが、比較的装置がコンパクトで、かつ半導体薄膜製造
プロセスと無害化処理プロセスとがオンラインで連続処
理可能な方法として、半導体薄膜製造装置からの排気ガ
スを熱酸化により無害化処理し、排気ガス中に含有する
もしくは前記無害化処理時に生成する微粉末を、散水と
接触させて、微粉末混合貯水槽内に捕集した後、前記微
粉末混合貯水槽内上方の上澄み液を、前記散水として再
利用する排気ガス無害化処理方法が知られている。
Although there are various methods of detoxifying treatment, the semiconductor thin-film manufacturing apparatus is used as a method in which the apparatus is relatively compact and the semiconductor thin-film manufacturing process and the detoxification processing can be continuously processed online. The exhaust gas is detoxified by thermal oxidation, and the fine powder contained in the exhaust gas or generated during the detoxification process is brought into contact with water spray and collected in a fine powder mixed water storage tank. There is known an exhaust gas detoxification treatment method in which a supernatant liquid in a powder mixing tank is reused as the water spray.

【0014】図3は、上記従来の排気ガス無害化処理方
法を実施するための処理装置の一例を示す概略構成図で
ある。
FIG. 3 is a schematic configuration diagram showing an example of a processing apparatus for performing the above-described conventional exhaust gas detoxification processing method.

【0015】図3において、半導体薄膜製造装置23か
ら排出された未使用残分の水素主成分の半導体排気ガス
10aは、N2ガス希釈装置3により希釈され、排気ガ
ス系統末端に用意された吸気排出ファン2により吸引さ
れて、第一段の入口散水捕集装置6へ送り込まれる。こ
こで、排気ガスは散水を受けて温度を低下させ、配管途
中で生成した混入生成微粉末を水中に混合し、微粉末混
合貯水槽8へ微粉末を落下させる。
In FIG. 3, a semiconductor exhaust gas 10a mainly composed of unused hydrogen and discharged from an apparatus 23 for manufacturing a semiconductor thin film is diluted by an N 2 gas diluting apparatus 3, and is supplied to an intake gas prepared at an end of an exhaust gas system. It is sucked by the discharge fan 2 and sent to the first-stage inlet sprinkling / collecting device 6. Here, the exhaust gas is sprinkled with water to lower the temperature, the mixed fine powder generated in the middle of the pipe is mixed with water, and the fine powder is dropped into the fine powder mixing tank 8.

【0016】前記一次処理後の排気ガスは、無毒化・無
公害化するための電熱高温度処理を行なう加熱室1へ吸
引される。この際、吸引排気ガスは、屋外の外気取り入
れ口5から空気供給ブロア5aにより導入された空気と
希釈混合されて、前記加熱室1に導入される。加熱室1
における約700℃の高温度下で、排気ガス10中の水素
ガスは、完全に燃焼し、排気ガスは加熱酸化されて酸化
微粉末を生成し、第2段の出口散水捕集装置7に吸引さ
れる。
The exhaust gas after the primary treatment is sucked into a heating chamber 1 for performing an electrothermal high-temperature treatment for detoxification and detoxification. At this time, the suction exhaust gas is diluted and mixed with the air introduced from the outdoor air intake port 5 by the air supply blower 5a, and is introduced into the heating chamber 1. Heating room 1
At a high temperature of about 700 ° C., the hydrogen gas in the exhaust gas 10 is completely combusted, and the exhaust gas is heated and oxidized to produce oxidized fine powder, which is sucked into the second-stage outlet sprinkling collector 7. Is done.

【0017】出口散水捕集装置7においても、排気ガス
は散水を受けて温度を低下させ、生成した微粉末を水中
に混合し、微粉末混合貯水槽8へ微粉末を落下させる。
出口散水捕集装置7において水洗浄された排気ガスは、
無毒・無公害の排出ガスとなって、排気ガス出口10b
から屋外に排出される。
Also at the outlet sprinkling / collecting device 7, the exhaust gas is sprayed with water to lower the temperature, the generated fine powder is mixed with water, and the fine powder is dropped into the fine powder mixing tank 8.
The exhaust gas washed with water in the outlet sprinkler / collector 7 is
Becomes non-toxic and non-polluting exhaust gas, exhaust gas outlet 10b
It is discharged outside from.

【0018】ところで、上記散水用の水としては、微粉
末混合貯水槽8内上方の上澄み液が利用される。蒸発な
どで不足する水は、液面計11の計測値に基づき、外部
の水供給装置4から補給される。また、微粉末混合貯水
槽8内の上澄み液には、できる限り微粉末が混入しない
ようにする必要がある。そのために、微粉末混合貯水槽
8の貯水量の30倍以上の水量を貯水可能で、かつ比較
的清浄な上澄み液を確保可能とするための沈殿排水貯槽
9を設け、微粉末混合貯水槽8の水を、この沈殿排水貯
槽9に循環して、微粉末混合貯水槽8内の微粉末混合濃
度を低く維持するようにしている。
As the water for sprinkling, the supernatant liquid in the fine powder mixed water storage tank 8 is used. Insufficient water due to evaporation or the like is supplied from an external water supply device 4 based on the value measured by the liquid level gauge 11. Further, it is necessary to prevent the fine powder from being mixed into the supernatant liquid in the fine powder mixed water storage tank 8 as much as possible. For this purpose, a sedimentation drainage storage tank 9 is provided, which is capable of storing a water amount 30 times or more the amount of water stored in the fine powder mixing storage tank 8 and capable of securing a relatively clean supernatant liquid. Is circulated to the sedimentation drainage storage tank 9 to keep the concentration of the fine powder mixed in the fine powder mixed storage tank 8 low.

【0019】[0019]

【発明が解決しようとする課題】ところで、前記従来の
排気ガス無害化処理方法においては、下記のような問題
があった。上記のように、微粉末混合貯水槽内の上澄み
液にはできる限り微粉末が混入しないようにしてはいる
ものの、長期運転に伴い、散水部,水循環・排水管路
系,開閉弁,貯水槽等に微粉末の付着・堆積が進行し、
その除去作業が必要となる。従来の微粉末の沈殿除去方
式は、自然落下に委ねた方式であるために、前記除去作
業を比較的頻繁に行なう必要があり、メンテナンス間隔
の増大が望まれていた。
However, the conventional exhaust gas detoxification processing method has the following problems. As described above, although the fine powder is prevented from being mixed into the supernatant liquid in the fine powder mixed water storage tank as much as possible, along with long-term operation, water sprinkling part, water circulation / drainage pipe system, on-off valve, water storage tank Etc., the adhesion and deposition of fine powder progresses,
The removal operation is required. Since the conventional method of removing precipitates of fine powder is a method that is left to natural fall, it is necessary to perform the removal operation relatively frequently, and it has been desired to increase a maintenance interval.

【0020】特に、散水に対する微粉末混合割合が多く
なると、排気ガスからの微粉末除去効率が低下し、排出
ガス中の微粉末の含有率が増大し、フィルタで吸着して
はいるものの、除去しきれないものもあって大気を汚染
する問題が生ずる。また排出ガス中の微粉末の含有率が
増大すると、排気ガス系統の流体抵抗が増大してガス滞
留が生じ、半導体薄膜製造装置の停止を余儀なくされる
問題が生ずる。
In particular, when the mixing ratio of the fine powder to the water spray increases, the efficiency of removing the fine powder from the exhaust gas decreases, and the content of the fine powder in the exhaust gas increases. Some things cannot be done, causing a problem of polluting the air. In addition, when the content ratio of the fine powder in the exhaust gas increases, the fluid resistance of the exhaust gas system increases, causing gas stagnation, which causes a problem that the semiconductor thin film manufacturing apparatus must be stopped.

【0021】さらに、前記微粉末除去作業時において
は、半導体薄膜製造装置は停止せざるを得ず、その分、
装置の稼働率が低下する。
Further, during the fine powder removing operation, the semiconductor thin film manufacturing apparatus has to be stopped.
The operation rate of the device decreases.

【0022】この発明は、上記の点に鑑みてなされたも
ので、本発明の課題は、半導体薄膜製造装置の排気ガス
を無害化し、かつ排気ガス中の微粉末の効率的な除去を
行って、半導体薄膜製造装置の稼働率の向上を図った排
気ガス無害化処理方法および装置を提供することにあ
る。
The present invention has been made in view of the above points, and an object of the present invention is to detoxify an exhaust gas of a semiconductor thin film manufacturing apparatus and to efficiently remove fine powder in the exhaust gas. It is another object of the present invention to provide an exhaust gas detoxification processing method and apparatus for improving the operation rate of a semiconductor thin film manufacturing apparatus.

【0023】[0023]

【課題を解決するための手段】前述の課題を達成するた
め、この発明は、半導体薄膜製造装置からの排気ガスを
熱酸化により無害化処理し、排気ガス中に含有するもし
くは前記無害化処理時に生成する微粉末を、散水と接触
させて、微粉末混合貯水槽内に捕集した後、前記微粉末
混合貯水槽の微粉末と水との混合液を導出し、この混合
液に凝集剤を注入して凝集処理した後、微粉末沈殿分離
槽に導入し、この微粉末沈殿分離槽内上方の上澄み液を
前記散水として再利用し、下方の微粉末沈殿汚泥を脱水
処理して固形化することとする(請求項1の発明)。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides a method for detoxifying exhaust gas from a semiconductor thin film manufacturing apparatus by thermal oxidation, so that the exhaust gas is contained in the exhaust gas or used in the detoxification processing. The fine powder to be generated is brought into contact with water sprinkling, and collected in the fine powder mixing tank, then a mixed liquid of fine powder and water in the fine powder mixing tank is derived, and a coagulant is added to the mixed liquid. After injecting and coagulating, the mixture is introduced into a fine powder sedimentation separation tank, and the upper supernatant liquid in the fine powder sedimentation separation tank is reused as the water sprinkler, and the lower fine powder sedimentation sludge is dehydrated and solidified. (The invention of claim 1).

【0024】上記請求項1の発明によれば、微粉末混合
水を微粉末混合貯水槽に滞留させずに、直ちに導出して
凝集処理し、かつ脱水固形化するので、従来方式に比較
して微粉末の堆積が僅小となり、前記微粉末除去に関す
るメンテナンス間隔が大幅に増大し、半導体薄膜製造装
置の稼動率が向上する。
According to the first aspect of the present invention, the fine powder mixed water is immediately led out without being retained in the fine powder mixed water storage tank, subjected to the coagulation treatment, and solidified by dehydration. The accumulation of fine powder becomes very small, the maintenance interval for removing the fine powder is greatly increased, and the operation rate of the semiconductor thin film manufacturing apparatus is improved.

【0025】上記請求項1の発明の実施態様としては、
下記請求項2ないし5の発明が好適である。即ち、前記
請求項1に記載の処理方法において、前記凝集処理にお
ける凝集剤注入前に、前記混合液のpH値を弱アルカリ
性の所定値に調整する(請求項2の発明)。これによ
り、凝集効率が向上する。
According to an embodiment of the first aspect of the present invention,
The following inventions 2 to 5 are preferable. That is, in the treatment method according to the first aspect, before the coagulant is injected in the coagulation treatment, the pH value of the mixed solution is adjusted to a predetermined value of weak alkalinity (the invention of the second aspect). Thereby, the aggregation efficiency is improved.

【0026】また、前記請求項2の実施態様として、前
記pH調整は、凝集処理後の混合液のpH値をpHセン
サにより計測し、この計測値に基づいて、前記混合液へ
の消石灰の流入量を制御することにより行なうのが好適
である(請求項3の発明)。
According to an embodiment of the present invention, in the pH adjustment, the pH value of the mixed solution after the coagulation treatment is measured by a pH sensor, and based on the measured value, the inflow of slaked lime into the mixed solution is performed. It is preferable to carry out by controlling the amount (the invention of claim 3).

【0027】さらに、請求項1に記載の処理方法におい
て、前記微粉末沈殿分離槽内に設けた位置光センサによ
り、微粉末沈殿層と上澄み液との界面を検出し、この検
出値が所定の位置範囲となるように、前記混合液への凝
集剤の注入量を制御する(請求項4の発明)。これによ
り、凝集剤が合理的に注入できる。
Further, in the processing method according to claim 1, an interface between the fine powder sedimentation layer and the supernatant is detected by a position light sensor provided in the fine powder sedimentation separation tank, and the detected value is a predetermined value. The injection amount of the coagulant into the mixture is controlled so as to be within the position range (the invention of claim 4). This allows the coagulant to be reasonably injected.

【0028】さらにまた、請求項1に記載の処理方法に
おいて、前記脱水処理は、プレスベルト方式の脱水処理
とする(請求項5の発明)。この方式によれば、簡便な
脱水が可能で、またプロセスの連続性の観点からも好ま
しい。
Further, in the processing method according to the first aspect, the dehydration processing is a dehydration processing of a press belt system (the invention of the fifth aspect). According to this method, simple dehydration is possible, and it is preferable from the viewpoint of process continuity.

【0029】前記請求項1に記載の排気ガス無害化処理
方法を実施するための処理装置としては、下記請求項6
の発明が好適である。即ち、半導体薄膜製造装置からの
排気ガスを熱酸化により無害化処理する加熱室と、この
加熱室の排気ガス流前後に設けた入口散水捕集装置およ
び出口散水捕集装置と、微粉末混合貯水槽とを有する半
導体排ガス除害装置と、前記微粉末混合貯水槽内の微粉
末と水との混合液を導出し、この混合液に凝集剤注入器
から凝集剤を注入して凝集処理する凝集剤注入処理装置
と、前記凝集処理された混合液を導入して凝集微粉末を
沈殿させる微粉末沈殿分離槽と、この槽内上方の上澄み
液を散水として再利用するために微粉末沈殿分離槽内に
設けた散水液分離回収器と、微粉末沈殿分離槽内下方の
微粉末沈殿汚泥を脱水処理して固形化する微粉末脱水固
形化装置とを有する除害微粉末廃棄処理装置とを備える
ものとする。
A processing apparatus for performing the exhaust gas detoxification processing method according to the first aspect of the present invention is as follows:
Is preferred. That is, a heating chamber for detoxifying the exhaust gas from the semiconductor thin film manufacturing apparatus by thermal oxidation, an inlet sprinkling collector and an outlet sprinkling collector provided before and after the exhaust gas flow in the heating chamber, A semiconductor exhaust gas abatement system having a tank and a mixed liquid of fine powder and water in the fine powder mixed water storage tank, and coagulating the mixed liquid by injecting a coagulant from a coagulant injector into the coagulant. An agent injection treatment device, a fine powder sedimentation separation tank for introducing the mixed liquid subjected to the coagulation treatment and sedimenting the coagulated fine powder, and a fine powder sedimentation separation tank for reusing the supernatant liquid in the tank as water spray. And a fine powder dewatering and solidifying device that has a fine powder dewatering and solidifying device that dewaters and solidifies the fine powder sediment sludge in the lower part of the fine powder sedimentation separation tank provided in the tank. Shall be.

【0030】前記請求項6の発明の実施態様としては、
下記請求項7ないし12の発明が好ましい。即ち、前記
凝集効率向上のために、請求項6に記載の処理装置にお
いて、前記凝集剤注入処理装置は、凝集処理における凝
集剤注入前に、前記混合液のpH値を弱アルカリ性の所
定値に調整するための消石灰注入器を備えるものとする
(請求項7の発明)。
As an embodiment of the invention of claim 6,
The following claims 7 to 12 are preferred. That is, in order to improve the coagulation efficiency, in the processing apparatus according to claim 6, the coagulant injection processing apparatus, before the coagulant injection in the coagulation treatment, the pH value of the mixed solution to a predetermined value of weak alkalinity A slaked lime injector for adjustment is provided (the invention of claim 7).

【0031】また、凝集剤および消石灰の混合効率向上
のために、請求項7に記載の処理装置において、前記凝
集剤注入処理装置は、消石灰混合用および凝集剤混合用
のミキサーを備えるものとする(請求項8の発明)。
Further, in order to improve the mixing efficiency of the flocculant and slaked lime, the processing apparatus according to claim 7 is provided with a mixer for slaked lime mixing and a flocculant mixing mixer. (Invention of claim 8).

【0032】さらに、上質の散水を得るために、請求項
6に記載の処理装置において、前記散水液分離回収器に
よって回収された上澄み液を、前記入口散水捕集装置お
よび出口散水捕集装置に還流して散水として再利用する
ために設けた散水液還流ラインを備えるものとする(請
求項9の発明)。
Further, in order to obtain high quality watering, in the processing apparatus according to claim 6, the supernatant liquid collected by the watering liquid separating and collecting device is fed to the inlet watering and collecting apparatus and the outlet watering and collecting apparatus. A sprinkling liquid recirculation line provided to recirculate and reuse the sprinkling water is provided (the invention of claim 9).

【0033】また、前記請求項6に記載の処理装置にお
いて、前記微粉末混合貯水槽は、その内部下方に、微粉
末と水とを攪拌混合する攪拌ポンプを備えるものとする
(請求項10の発明)。これにより、微粉末混合貯水槽
への微粉末の滞留を少なくし、かつ、連続的に略均等な
微粉末混合液を導出することができ、後処理の凝集処理
が合理的に実施できる。
Further, in the processing apparatus according to the sixth aspect, the fine powder mixing tank is provided with a stirring pump below the inside thereof for stirring and mixing the fine powder and water. invention). Thereby, the stagnation of the fine powder in the fine-powder mixing tank can be reduced, and a substantially uniform fine-powder mixed liquid can be continuously drawn out, so that the post-treatment coagulation treatment can be rationally performed.

【0034】さらに、前記請求項7に記載の処理装置に
おいて、前記凝集剤注入器,消石灰注入器ならびに微粉
末沈殿分離槽は、凝集剤,消石灰ならびに微粉末沈殿汚
泥および上澄み液を導出可能とするために、窒素ガスに
よりそれぞれ所定の圧力に加圧する加圧装置を備えるも
のとする(請求項11の発明)。これにより、前記各導
出が簡便で、かつ制御性も向上する。
Further, in the processing apparatus according to claim 7, the coagulant injector, slaked lime injector and the fine powder sedimentation separation tank enable the coagulant, slaked lime, fine powder settled sludge and supernatant liquid to be discharged. For this purpose, a pressurizing device for pressurizing each with a predetermined pressure by nitrogen gas is provided (the invention of claim 11). Thereby, each derivation is simple and controllability is improved.

【0035】さらにまた、請求項11に記載の処理装置
において、前記入口散水捕集装置,出口散水捕集装置,
微粉末沈殿分離槽,凝集剤注入器および消石灰注入器に
設けた各圧力センサの圧力検出値を入力し、この圧力検
出値に基づき、前記加圧装置の起動停止および圧力調整
制御を行い、さらに、異常圧力を検出した際にアラーム
を出力するプロセスコントローラを備えるものとする
(請求項12の発明)。これにより、後述するように、
前記各圧力検出値に基づき、計画的に加圧制御ができ
る。また、異常に対しても即応でき、必要に応じた装置
の停止措置も可能となる。
Further, in the treatment apparatus according to claim 11, the water sprinkling and catching device at the inlet, the water sprinkling and catching device at the outlet,
The pressure detection value of each pressure sensor provided in the fine powder sedimentation separation tank, the coagulant injector and the slaked lime injector is input, and based on the pressure detection value, the start and stop of the pressurizing device and the pressure adjustment control are performed. And a process controller that outputs an alarm when an abnormal pressure is detected (the invention of claim 12). Thereby, as described later,
Based on each of the detected pressure values, pressurization control can be performed systematically. In addition, it is possible to immediately respond to abnormalities, and to take measures to stop the device as necessary.

【0036】[0036]

【発明の実施の形態】図1は、この発明の排気ガス無害
化処理装置の実施例の概念的構成図を示し、図2は、凝
集剤注入処理装置およびその周辺機器の詳細構成図を示
す。なお、図1において、図3における構成部材と同一
機能を有する構成部材については、同一番号を付して、
詳細な説明は省略する。さらに、図1においては、図3
における構成部材の一部を省略して図示している。
FIG. 1 is a conceptual block diagram of an exhaust gas detoxification processing apparatus according to an embodiment of the present invention, and FIG. 2 is a detailed configuration diagram of a coagulant injection processing apparatus and its peripheral devices. . In FIG. 1, components having the same functions as those in FIG.
Detailed description is omitted. Further, in FIG. 1, FIG.
In the figure, some of the components are omitted.

【0037】この発明の実施例につき、図1および図2
により以下に述べる。図1において、半導体薄膜製造装
置23からの排気ガス10aは、N2ガスで希釈されて9
7%以上がN2ガスで、この中に水素が2〜3%、水素を除
く半導体ガスが1%以下の組成状態で、入口散水捕集装
置6を通過しながら散水で冷却され、半導体薄膜製造装
置23のラインへの逆火防止を行なうとともに、生成微
粉末が洗浄除去される。散水洗浄された排気ガス10
は、微粉末混合貯水槽8の液面上の気相部分を通過しな
がら、図3に示した空気供給ブロア5aにより導入され
た空気と希釈混合されて、加熱室1に導入される。加熱
室1において、電気ヒータ1aにより約700℃に加熱さ
れ、熱酸化により猛毒な半導体ガスは、完全に無害化さ
れ、酸化物微粉末を生成する。
FIGS. 1 and 2 show an embodiment of the present invention.
Will be described below. In FIG. 1, an exhaust gas 10a from a semiconductor thin film manufacturing apparatus 23 is diluted with N 2 gas and
7% or more of N 2 gas, in which 2 to 3% of hydrogen and 1% or less of semiconductor gas excluding hydrogen, is cooled by sprinkling while passing through the inlet sprinkling / collecting device 6 to form a semiconductor thin film. The flashback of the line of the manufacturing apparatus 23 is prevented, and the generated fine powder is washed and removed. Exhaust gas 10 washed with water
Is diluted and mixed with the air introduced by the air supply blower 5 a shown in FIG. 3 while passing through the gas phase on the liquid surface of the fine powder mixing tank 8, and is introduced into the heating chamber 1. In the heating chamber 1, the semiconductor gas which is heated to about 700 ° C. by the electric heater 1a and is highly toxic by the thermal oxidation is completely rendered harmless to produce oxide fine powder.

【0038】熱酸化で消費しないで残った多量の空気と
生成した酸化物微粉末との粉塵混合ガス10cは、同様
に、微粉末混合貯水槽8の気相部分を通過しながら、出
口散水捕集装置7内を通過しながら、散水で再度冷却さ
れ、かつ洗浄され、生成した酸化物微粉末は、微粉末混
合貯水槽8へ混合落下し、当該貯水槽内で混合液8aと
なる。無害化された排気ガス10bは、屋外へ放出され
る。
The dust mixed gas 10c of a large amount of air remaining without being consumed by the thermal oxidation and the generated oxide fine powder is similarly discharged through the gaseous phase portion of the fine powder mixed water tank 8 while being sprayed at the outlet. While passing through the collector 7, it is cooled again by watering and washed, and the generated oxide fine powder is mixed and dropped into the fine powder mixing water tank 8, and becomes the mixed liquid 8 a in the water tank. The detoxified exhaust gas 10b is released outside.

【0039】一方、微粉末混合貯水槽8内には微粉末が
混入した白色の混合液が一定の水位で貯液され、また、
入口側攪拌ポンプ12a,出口側攪拌ポンプ12bによ
り攪拌されて、微粉末混合貯水槽8の底部や側壁部に微
粉末が沈殿することなく、微粉末がほぼ均一に浮遊する
状態となる。
On the other hand, a white mixed liquid containing fine powder is stored at a fixed water level in the fine powder mixed storage tank 8.
The powder is stirred by the inlet-side stirring pump 12a and the outlet-side stirring pump 12b, so that the fine powder floats substantially uniformly without the fine powder settling on the bottom and side walls of the fine powder mixing and storage tank 8.

【0040】この混合液8aは、微粉末混合貯水槽8の
底部に接続された定流量ポンプ13により吸引されて、
次工程の凝集剤注入処理装置14へ注入される。当該処
理装置14では、混合液中の微粉末を凝集し易くするた
めに、まず、酸性から弱アルカリ性に中和処理するが必
要がある。
This mixed liquid 8a is sucked by a constant flow pump 13 connected to the bottom of the fine powder mixed water tank 8,
The coagulant is injected into the coagulant injection processor 14 in the next step. In the processing apparatus 14, in order to easily agglomerate the fine powder in the mixed solution, it is necessary to first neutralize the mixture from acidic to weakly alkaline.

【0041】そのために、消石灰注入器18により、混
合液中に消石灰を注入して、pH値を調整する。この消
石灰注入器18には、圧力センサP2が設けられ、図示
しない加圧装置により、所定の窒素ガス圧力がかけら
れ、消石灰を圧送する。この圧力は、プロセスコントロ
ーラ20により制御される。
For this purpose, slaked lime is injected into the mixture by the slaked lime injector 18 to adjust the pH value. The slaked lime injector 18, the pressure sensor P 2 is provided, by an unillustrated pressurizing apparatus, a predetermined nitrogen gas pressure is applied, for pumping slaked lime. This pressure is controlled by the process controller 20.

【0042】前記pH値調整は、最終段階の微粉末固形
化物を産業廃棄物として専門業者へ引き取って貰うとき
にも、pH値5.5〜6.5を確保する点でも必要である。
消石灰の注入量は、凝集剤注入処理装置14の出口に設
けたpHセンサ18aの出力に基づき、消石灰注入制御
装置18bにより制御される。
The above-mentioned pH value adjustment is necessary also in terms of ensuring the pH value of 5.5 to 6.5, even when the finely solidified powder in the final stage is collected as industrial waste by a specialist.
The injection amount of slaked lime is controlled by the slaked lime injection control device 18b based on the output of the pH sensor 18a provided at the outlet of the coagulant injection processing device 14.

【0043】凝集剤注入処理装置14およびその周辺機
器の詳細を図2に示す。図2において、凝集剤注入処理
装置14内には、消石灰混合ミキサー34aと高分子凝
集剤ミキサー34bとが、上下2段に別々に設けられて
いる。両ミキサーとも、ミキサーケース27内で、円筒
の表面にらせん状の溝を設けた回転子26a,26b
が、一定の回転数で回転しており、まず、混合液8aと
消石灰とが混合され、弱アルカリ性となった消石灰混練
中和液24が、高分子凝集剤ミキサー34bに送られ
る。
FIG. 2 shows details of the coagulant injection processing device 14 and its peripheral devices. In FIG. 2, a slaked lime mixing mixer 34a and a polymer flocculant mixer 34b are separately provided in the upper and lower stages in the flocculant injecting and treating apparatus 14. In both mixers, rotors 26a, 26b having spiral grooves formed in the surface of a cylinder in a mixer case 27.
However, the mixture 8a and slaked lime are mixed first, and the weakly alkaline slaked lime kneading neutralized liquid 24 that has become weakly alkaline is sent to the polymer flocculant mixer 34b.

【0044】凝集剤ミキサー34bの入口25aには、
凝集剤注入器19から、高分子凝集剤が、凝集剤制御装
置19bを経て前記中和液24に混入され、凝集剤ミキ
サー34b内で高分子凝集剤混練液25となり、最終p
H値をpHセンサ18aで計測されて、微粉末沈殿分離
槽16へ送られる。
At the inlet 25a of the flocculant mixer 34b,
From the coagulant injector 19, the polymer coagulant is mixed into the neutralizing liquid 24 via the coagulant control device 19b, and becomes the polymer coagulant kneading liquid 25 in the coagulant mixer 34b.
The H value is measured by the pH sensor 18a and sent to the fine powder sedimentation separation tank 16.

【0045】なお、図1に示す凝集剤注入器19には、
圧力センサP3が設けられ、図示しない加圧装置によ
り、所定の窒素ガス圧力がかけられ、凝集剤を圧送す
る。この圧力は、プロセスコントローラ20により制御
される。また、凝集剤としては、市販品のJIS‐K‐147
無機高分子凝集剤(PAC)・塩基性ポリ塩化アルミニュ
ウムが使用される。
The coagulant injector 19 shown in FIG.
Is provided a pressure sensor P 3, by an unillustrated pressurizing apparatus, a predetermined nitrogen gas pressure is applied, for pumping a flocculant. This pressure is controlled by the process controller 20. As a coagulant, commercially available JIS-K-147
Inorganic polymer flocculant (PAC) and basic polyaluminum chloride are used.

【0046】微粉末沈殿分離槽16内では、白い綿状の
固まりとなったSiO2を主とする微粉末は、凝集して
重くなり底部へ順次沈殿し淀み、透明な上澄み液が槽中
程より上部を占めて、2層の液相状態に完全に分離した
状態となる。
In the fine powder sedimentation / separation tank 16, the fine powder mainly composed of SiO 2 , which has become a white flocculent mass, agglomerates and becomes heavier, precipitates sequentially at the bottom, and stagnates. It occupies the upper part and becomes a state completely separated into two liquid phases.

【0047】微粉末沈殿分離槽16内中央部には、混合
液が分離して透明になった水を散水液として再使用する
ために、散水液分離回収器15を設けてあり、この回収
器15には、50μmの濾紙フィルタを内張りして、液の
みを透過させて微粉末が散水液中に混入しないようにす
る。
In the center of the fine powder sedimentation / separation tank 16, a sprinkling liquid separator / collector 15 is provided in order to reuse the water separated from the mixture and becoming transparent as a sprinkling liquid. In No. 15, a filter paper filter of 50 μm is lined to allow only the liquid to permeate so that the fine powder does not mix into the sprinkling liquid.

【0048】微粉末沈殿分離槽16には、圧力センサP
4が設けられ、図示しない加圧装置により、プロセスコ
ントローラ20の信号をうけて、所定の窒素ガス圧力が
かけられる。この圧力により、回収水15aは、散水液
分離回収器15から、散水液還流ライン15bを経由し
て、入口散水捕集装置6および出口散水捕集装置7に還
流圧送され、散水として再利用される。また、散水液還
流ライン15bには、冷却器22aが設けられ、回収水
15aは、適切な水温、例えば25℃に冷却される。な
お、蒸発した水分は、水位計11の信号により適宜補給
することにより、常時、清浄な散水が確保できる。22
bは流量調節用の固定絞りである。
The fine powder sedimentation separation tank 16 has a pressure sensor P
4 is provided, and a predetermined nitrogen gas pressure is applied by a pressurizing device (not shown) in response to a signal from the process controller 20. Due to this pressure, the recovered water 15a is refluxed from the sprinkled liquid separator / collector 15 to the inlet sprinkler collector 6 and the outlet sprinkler collector 7 via the sprinkled liquid reflux line 15b, and is reused as water sprinkle. You. A cooler 22a is provided in the sprinkling liquid reflux line 15b, and the recovered water 15a is cooled to an appropriate water temperature, for example, 25 ° C. The evaporated water can be constantly replenished by a signal from the water level meter 11 to ensure clean watering. 22
b is a fixed throttle for adjusting the flow rate.

【0049】また、微粉末沈殿分離槽16内には、高分
子凝集剤の注入必要量を検出するために、白液の凝集物
層と透明水液層との界面水位を、位置光スイッチ29で
監視する。白く濁った凝集物層が、所定レベルよりも上
昇した場合には、凝集作用が不足で凝集剤供給不足と判
断し、凝集剤注入量を高分子凝集剤制御装置19bによ
り、適切に調節する制御を行なう。
Further, in the fine powder sedimentation / separation tank 16, the interface water level between the white liquor aggregate layer and the transparent aqueous liquid layer is determined by the position light switch 29 in order to detect the required amount of the polymer flocculant to be injected. To monitor. When the white cloudy aggregate layer rises above a predetermined level, it is determined that the coagulation action is insufficient and the coagulant supply is insufficient, and the polymer coagulant injection amount is appropriately adjusted by the polymer coagulant control device 19b. Perform

【0050】次に、微粉末沈殿分離槽16内から内圧に
よって押し出された沈殿汚泥16aは、微粉末脱水固形
化装置17の受け口17aに送出される。この微粉末脱
水固形化装置17は、プレスベルト方式による脱水装置
であり、布製の脱水ベルト17bが、ローラ17cによ
り、金属底板17dとの間を、張力をかけられながら回
転して、沈殿汚泥16aを狭い隙間でプレスして脱水す
る。脱水された水分は、ベルト17bの外側へ絞りださ
れ、沈殿汚泥16aは、連続帯び状の固形物21となっ
て専用廃棄物容器21aへ順次自動的に収納され、微粉
末廃棄処理プロセスを完成させる。
Next, the settled sludge 16 a pushed out from the inside of the fine powder sedimentation separation tank 16 by the internal pressure is sent out to the receiving port 17 a of the fine powder dewatering and solidifying device 17. The fine powder dewatering and solidifying device 17 is a dewatering device of a press belt type, and a dewatering belt 17b made of cloth is rotated by a roller 17c between a metal bottom plate 17d while being tensioned, and the sludge 16a is settled. Is pressed in a narrow gap to dewater. The dehydrated water is squeezed out of the belt 17b, and the settled sludge 16a is automatically and sequentially stored in the exclusive waste container 21a as a continuous solid 21 to complete the fine powder disposal process. Let it.

【0051】微粉末脱水固形化装置17への沈殿汚泥1
6aの送出量は、最大固形化処理能力に設定しておき、
プロセスコントローラの信号により流量調節し、微粉末
沈殿分離槽16内の位置光センサ29によって、白濁凝
集が検知されなくなったら、微粉末脱水固形化装置17
の稼動を停止する。
Settled sludge 1 in the fine powder dewatering and solidifying device 17
6a is set at the maximum solidification processing capacity,
The flow rate is adjusted by the signal of the process controller, and when the white light agglomeration is no longer detected by the position optical sensor 29 in the fine powder sedimentation / separation tank 16, the fine powder dewatering / solidifying device 17
Stop the operation of.

【0052】次に、上記一連の処理における圧力制御に
関して、以下に補足して述べる。
Next, the pressure control in the above series of processing will be supplementarily described below.

【0053】前述のように、プロセスコントローラ20
に、入口散水捕集装置6,出口散水捕集装置7,微粉末
沈殿分離槽16,凝集剤注入器19および消石灰注入器
18に設けた各圧力センサP5,P6,P4,P3,P2
圧力検出値を入力する。前記P5,P6の差圧(P1=P5
−P6)を基準として、この差圧が所定値となるよう
に、図3における排出ファン2の運転を行なう。排出フ
ァン2の回転は、インバータによって制御される。
5,P6が異常圧力を検出した際には、アラームを出力
する。
As described above, the process controller 20
In addition, each of the pressure sensors P 5 , P 6 , P 4 , P 3 provided in the inlet sprinkling / collecting device 6, the outlet sprinkling / collecting device 7, the fine powder sedimentation / separation tank 16, the coagulant injector 19 and the slaked lime injector 18 inputs the pressure detection value of P 2. Wherein P 5, the differential pressure P 6 (P 1 = P 5
-P 6 ), the discharge fan 2 in FIG. 3 is operated such that the differential pressure becomes a predetermined value. The rotation of the discharge fan 2 is controlled by an inverter.
When P 5, P 6 detects an abnormal pressure outputs an alarm.

【0054】P5,P6,P4,P3,P2の圧力検出値に
基づき、プロセスコントローラ20は、計画値を発信
し、前記加圧装置の圧力調整制御を行い、さらに、異常
圧力を検出した際には、アラームを出力する。
Based on the detected pressure values of P 5 , P 6 , P 4 , P 3 , and P 2 , the process controller 20 transmits a plan value, performs pressure adjustment control of the pressurizing device, and further performs abnormal pressure control. When is detected, an alarm is output.

【0055】上記実施例によれば、微粉末混合水を微粉
末混合貯水槽8に滞留させずに、直ちに導出して凝集処
理しかつ脱水固形化するので、従来方式に比較して微粉
末の堆積が僅小となり、微粉末除去に関するメンテナン
ス間隔が大幅に増大する。また、半導体薄膜製造プロセ
ス,無害化処理プロセスおよび微粉末固形化処理プロセ
スをオンラインで連続して行なうことが可能となる。
According to the above embodiment, the fine powder mixed water is immediately collected without being retained in the fine powder mixed water storage tank 8 and subjected to agglomeration treatment and dehydration solidification. Deposition is small and maintenance intervals for fine powder removal are greatly increased. Further, the semiconductor thin film manufacturing process, the detoxification process, and the fine powder solidification process can be continuously performed online.

【0056】[0056]

【発明の効果】上記のとおり、この発明によれば、半導
体薄膜製造装置の排気ガス無害化処理方法として、半導
体薄膜製造装置からの排気ガスを熱酸化により無害化処
理し、排気ガス中に含有するもしくは前記無害化処理時
に生成する微粉末を、散水と接触させて、微粉末混合貯
水槽内に捕集した後、前記微粉末混合貯水槽の微粉末と
水との混合液を導出し、この混合液に凝集剤を注入して
凝集処理した後、微粉末沈殿分離槽に導入し、この微粉
末沈殿分離槽内上方の上澄み液を前記散水として再利用
し、下方の微粉末沈殿汚泥を脱水処理して固形化するこ
とにより、また、前記排気ガス無害化処理方法を実施す
るための処理装置として、半導体薄膜製造装置からの排
気ガスを熱酸化により無害化処理する加熱室と、この加
熱室の排気ガス流前後に設けた入口散水捕集装置および
出口散水捕集装置と、微粉末混合貯水槽とを有する半導
体排ガス除害装置と、前記微粉末混合貯水槽内の微粉末
と水との混合液を導出し、この混合液に凝集剤注入器か
ら凝集剤を注入して凝集処理する凝集剤注入処理装置
と、前記凝集処理された混合液を導入して凝集微粉末を
沈殿させる微粉末沈殿分離槽と、この槽内上方の上澄み
液を散水として再利用するために微粉末沈殿分離槽内に
設けた散水液分離回収器と、微粉末沈殿分離槽内下方の
微粉末沈殿汚泥を脱水処理して固形化する微粉末脱水固
形化装置とを有する除害微粉末廃棄処理装置とを備える
ものとすることにより、半導体薄膜製造装置の排気ガス
を無害化し、かつ排気ガス中の微粉末の効率的な除去を
行って微粉末除去に関するメンテナンス間隔を大幅に増
大し、半導体薄膜製造装置の稼働率の向上を図ることが
できる。
As described above, according to the present invention, as a method for detoxifying an exhaust gas from a semiconductor thin film manufacturing apparatus, the exhaust gas from the semiconductor thin film manufacturing apparatus is detoxified by thermal oxidation and contained in the exhaust gas. Or the fine powder generated during the detoxification process is brought into contact with water spray and collected in a fine powder mixing reservoir, and then a liquid mixture of the fine powder and water in the fine powder mixing reservoir is derived, After the coagulant is injected into this mixed solution to perform coagulation treatment, the mixture is introduced into a fine powder sedimentation separation tank, and the upper supernatant liquid in the fine powder sedimentation separation tank is reused as the water spray, and the lower fine powder sediment sludge is removed. A heating chamber for detoxifying the exhaust gas from the semiconductor thin-film manufacturing apparatus by thermal oxidation, as a processing apparatus for performing the exhaust gas detoxification processing method by dehydrating and solidifying; Chamber exhaust gas flow Inlet sprinkling / collecting device and outlet sprinkling / collecting device provided later, a semiconductor exhaust gas abatement device having a fine powder mixed water tank, and a mixed liquid of fine powder and water in the fine powder mixed water tank are derived. A coagulant injection treatment device for injecting a coagulant into the mixture from a coagulant injector to perform coagulation treatment, and a fine powder sedimentation separation tank that introduces the coagulated mixture to precipitate coagulated fine powder, A sprinkled liquid separator / collector installed in the fine powder sedimentation / separation tank to reuse the upper supernatant liquid in this tank as water sprinkle, and a fine powder sediment sludge in the lower part of the fine powder sedimentation / separation tank are dehydrated and solidified. And a detoxifying fine powder disposal treatment device having a fine powder dewatering and solidifying device that makes the exhaust gas of the semiconductor thin film manufacturing device harmless and efficiently removes the fine powder in the exhaust gas. Go to maintenance on fine powder removal The spacing greatly increased, it is possible to improve the operating rate of the semiconductor thin film manufacturing device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の排気ガス無害化処理装置の実施例の
概念的構成図
FIG. 1 is a conceptual configuration diagram of an embodiment of an exhaust gas detoxification processing apparatus of the present invention.

【図2】この発明に関わる凝集剤注入処理装置およびそ
の周辺機器の詳細構成図
FIG. 2 is a detailed configuration diagram of a coagulant injection processing apparatus and peripheral devices according to the present invention.

【図3】従来の排気ガス無害化処理装置の一例の概略構
成図
FIG. 3 is a schematic configuration diagram of an example of a conventional exhaust gas detoxification processing apparatus.

【図4】薄膜太陽電池用の成膜室の概略構造の一例を示
す図
FIG. 4 is a diagram showing an example of a schematic structure of a film forming chamber for a thin film solar cell.

【符号の説明】[Explanation of symbols]

1:加熱室、6:入口散水捕集装置、7:出口散水捕集
装置、8:微粉末混合貯水槽、8a:混合液、10,1
0a:排気ガス、11:水位計、12a,12b:攪拌
ポンプ、13:定流量ポンプ、14:凝集剤注入処理装
置、15:散水液分離回収器、15a:回収水、15
b:散水液還流ライン、16:微粉末沈殿分離槽、16
a:微粉末沈殿汚泥,17:微粉末脱水固形化装置、1
8:消石灰注入器、18a:pHセンサ、19:凝集剤
注入器、20:プロセスコントローラ、22:冷却器、
23:半導体薄膜製造装置、29:位置光センサ、3
0:半導体排ガス除害装置、34a,34b:ミキサ
ー、40:除害微粉末廃棄処理装置。
1: heating chamber, 6: inlet sprinkler / collector, 7: outlet sprinkler / collector, 8: fine powder mixed water storage tank, 8a: mixed liquid, 10,1
0a: Exhaust gas, 11: Water level meter, 12a, 12b: Stirring pump, 13: Constant flow pump, 14: Flocculant injection treatment device, 15: Spray liquid separation and recovery device, 15a: Recovered water, 15
b: sprinkling liquid reflux line, 16: fine powder sedimentation separation tank, 16
a: Fine powder sedimentation sludge, 17: Fine powder dewatering and solidifying device, 1
8: slaked lime injector, 18a: pH sensor, 19: flocculant injector, 20: process controller, 22: cooler,
23: semiconductor thin film manufacturing apparatus, 29: position optical sensor, 3
0: semiconductor exhaust gas abatement equipment, 34a, 34b: mixer, 40: abatement fine powder disposal equipment.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 16/44 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C23C 16/44

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 半導体薄膜製造装置からの排気ガスを熱
酸化により無害化処理し、排気ガス中に含有するもしく
は前記無害化処理時に生成する微粉末を、散水と接触さ
せて、微粉末混合貯水槽内に捕集した後、前記微粉末混
合貯水槽の微粉末と水との混合液を導出し、この混合液
に凝集剤を注入して凝集処理した後、微粉末沈殿分離槽
に導入し、この微粉末沈殿分離槽内上方の上澄み液を前
記散水として再利用し、下方の微粉末沈殿汚泥を脱水処
理して固形化することを特徴とする半導体薄膜製造装置
の排気ガス無害化処理方法。
An exhaust gas from a semiconductor thin film manufacturing apparatus is detoxified by thermal oxidation, and fine powder contained in the exhaust gas or generated at the time of the detoxification treatment is brought into contact with water spray to mix and store fine powder. After being collected in the tank, a mixed liquid of the fine powder and water in the fine powder mixed water storage tank is derived, and a coagulant is injected into the mixed liquid to perform a coagulation treatment. Exhaust gas detoxification method for a semiconductor thin film manufacturing apparatus, wherein the upper supernatant liquid in the fine powder sedimentation separation tank is reused as the water sprinkling, and the lower fine powder sediment sludge is dehydrated and solidified. .
【請求項2】 請求項1に記載の処理方法において、前
記凝集処理における凝集剤注入前に、前記混合液のpH
値を弱アルカリ性の所定値に調整することを特徴とする
半導体薄膜製造装置の排気ガス無害化処理方法。
2. The processing method according to claim 1, wherein the pH of the mixed solution is adjusted before the coagulant is injected in the coagulation process.
A method for detoxifying exhaust gas in a semiconductor thin film manufacturing apparatus, wherein the value is adjusted to a predetermined value of weak alkalinity.
【請求項3】 請求項2に記載の処理方法において、前
記pH調整は、凝集処理後の混合液のpH値をpHセン
サにより計測し、この計測値に基づいて、前記混合液へ
の消石灰の流入量を制御することにより行なうことを特
徴とする半導体薄膜製造装置の排気ガス無害化処理方
法。
3. The treatment method according to claim 2, wherein the pH adjustment is performed by measuring a pH value of the mixed solution after the coagulation treatment by a pH sensor, and based on the measured value, adding slaked lime to the mixed solution. An exhaust gas detoxification method for a semiconductor thin film manufacturing apparatus, characterized in that the method is performed by controlling an inflow amount.
【請求項4】 請求項1に記載の処理方法において、前
記微粉末沈殿分離槽内に設けた位置光センサにより、微
粉末沈殿層と上澄み液との界面を検出し、この検出値が
所定の位置範囲となるように、前記混合液への凝集剤の
注入量を制御することを特徴とする半導体薄膜製造装置
の排気ガス無害化処理方法。
4. The processing method according to claim 1, wherein an interface between the fine powder sedimentation layer and the supernatant is detected by a position optical sensor provided in the fine powder sedimentation separation tank, and the detected value is a predetermined value. An exhaust gas detoxification method for a semiconductor thin film manufacturing apparatus, comprising controlling an injection amount of a coagulant into the mixed liquid so as to be within a position range.
【請求項5】 請求項1に記載の処理方法において、前
記脱水処理は、プレスベルト方式の脱水処理とすること
を特徴とする半導体薄膜製造装置の排気ガス無害化処理
方法。
5. The exhaust gas detoxification method for a semiconductor thin-film manufacturing apparatus according to claim 1, wherein the dehydration treatment is a press belt type dehydration treatment.
【請求項6】 請求項1に記載の排気ガス無害化処理方
法を実施するための処理装置であって、 半導体薄膜製造装置からの排気ガスを熱酸化により無害
化処理する加熱室と、この加熱室の排気ガス流前後に設
けた入口散水捕集装置および出口散水捕集装置と、微粉
末混合貯水槽とを有する半導体排ガス除害装置と、 前記微粉末混合貯水槽内の微粉末と水との混合液を導出
し、この混合液に凝集剤注入器から凝集剤を注入して凝
集処理する凝集剤注入処理装置と、前記凝集処理された
混合液を導入して凝集微粉末を沈殿させる微粉末沈殿分
離槽と、この槽内上方の上澄み液を散水として再利用す
るために微粉末沈殿分離槽内に設けた散水液分離回収器
と、微粉末沈殿分離槽内下方の微粉末沈殿汚泥を脱水処
理して固形化する微粉末脱水固形化装置とを有する除害
微粉末廃棄処理装置と、を備えることを特徴とする半導
体薄膜製造装置の排気ガス無害化処理装置。
6. A processing apparatus for performing the exhaust gas detoxification processing method according to claim 1, wherein a heating chamber for detoxifying the exhaust gas from the semiconductor thin film manufacturing apparatus by thermal oxidation, and a heating chamber for heating the exhaust gas. An inlet sprinkler collector and an outlet sprinkler collector provided before and after the exhaust gas flow in the chamber, and a semiconductor exhaust gas abatement device having a fine powder mixing reservoir, and fine powder and water in the fine powder mixing reservoir. And a coagulant injection treatment apparatus for injecting a coagulant into the mixed liquid from a coagulant injector to perform coagulation treatment, and a fine coagulant for introducing the coagulated mixture to precipitate coagulated fine powder. A powder sedimentation separation tank, a sprinkled liquid separation and recovery device provided in the fine powder sedimentation separation tank for reusing the upper supernatant liquid in the tank as water sprinkling, and a fine powder sediment sludge below the fine powder sedimentation separation tank. Fine powder dewatering solidification equipment that solidifies by dehydration treatment Exhaust gas detoxification apparatus for a semiconductor thin film manufacturing apparatus characterized by comprising a, and abatement fine powder waste processing apparatus having and.
【請求項7】 請求項6に記載の処理装置において、前
記凝集剤注入処理装置は、凝集処理における凝集剤注入
前に、前記混合液のpH値を弱アルカリ性の所定値に調
整するための消石灰注入器を備えることを特徴とする半
導体薄膜製造装置の排気ガス無害化処理装置。
7. The slaked lime according to claim 6, wherein the coagulant injection processing device adjusts the pH value of the mixed solution to a predetermined value of weak alkali before the coagulant injection in the coagulation process. An exhaust gas detoxification treatment apparatus for a semiconductor thin film manufacturing apparatus, comprising an injector.
【請求項8】 請求項7に記載の処理装置において、前
記凝集剤注入処理装置は、消石灰混合用および凝集剤混
合用のミキサーを備えることを特徴とする半導体薄膜製
造装置の排気ガス無害化処理装置。
8. The processing apparatus according to claim 7, wherein the coagulant injection processing apparatus includes a mixer for mixing slaked lime and a coagulant mixing apparatus. apparatus.
【請求項9】 請求項6に記載の処理装置において、前
記散水液分離回収器によって回収された上澄み液を、前
記入口散水捕集装置および出口散水捕集装置に還流して
散水として再利用するために設けた散水液還流ラインを
備えることを特徴とする半導体薄膜製造装置の排気ガス
無害化処理装置。
9. The processing apparatus according to claim 6, wherein the supernatant liquid collected by the sprinkled liquid separating / recovering device is returned to the inlet sprinkling / collecting device and the outlet sprinkling / collecting device to be reused as water sprinkling. Exhaust gas harmless treatment apparatus for a semiconductor thin film manufacturing apparatus, characterized by comprising a sprinkling liquid reflux line provided therefor.
【請求項10】 請求項6に記載の処理装置において、
前記微粉末混合貯水槽は、その内部下方に、微粉末と水
とを攪拌混合する攪拌ポンプを備えることを特徴とする
半導体薄膜製造装置の排気ガス無害化処理装置。
10. The processing apparatus according to claim 6, wherein
An exhaust gas detoxification treatment apparatus for a semiconductor thin film manufacturing apparatus, characterized in that the fine powder mixing tank is provided with a stirring pump below the inside thereof for stirring and mixing the fine powder and water.
【請求項11】 請求項7に記載の処理装置において、
前記凝集剤注入器,消石灰注入器ならびに微粉末沈殿分
離槽は、凝集剤,消石灰ならびに微粉末沈殿汚泥および
上澄み液を導出可能とするために、窒素ガスによりそれ
ぞれ所定の圧力に加圧する加圧装置を備えることを特徴
とする半導体薄膜製造装置の排気ガス無害化処理装置。
11. The processing apparatus according to claim 7, wherein
The above-mentioned coagulant injector, slaked lime injector and fine powder sedimentation / separation tank are pressurized devices each pressurized to a predetermined pressure with nitrogen gas so that the coagulant, slaked lime, fine powder settled sludge and supernatant liquid can be discharged. An exhaust gas detoxification processing apparatus for a semiconductor thin film manufacturing apparatus, comprising:
【請求項12】 請求項11に記載の処理装置におい
て、前記入口散水捕集装置,出口散水捕集装置,微粉末
沈殿分離槽,凝集剤注入器および消石灰注入器に設けた
各圧力センサの圧力検出値を入力し、この圧力検出値に
基づき、前記加圧装置の起動停止および圧力調整制御を
行い、さらに、異常圧力を検出した際にアラームを出力
するプロセスコントローラを備えることを特徴とする半
導体薄膜製造装置の排気ガス無害化処理装置。
12. The processing apparatus according to claim 11, wherein the pressure of each pressure sensor provided in the inlet sprinkling collector, the outlet sprinkling collector, the fine powder sedimentation separation tank, the coagulant injector and the slaked lime injector. A semiconductor device, comprising: a process controller that inputs a detection value, performs start / stop and pressure adjustment control of the pressurizing device based on the pressure detection value, and further outputs an alarm when an abnormal pressure is detected. Exhaust gas detoxification equipment for thin film manufacturing equipment.
JP2000358024A 2000-11-24 2000-11-24 Exhaust gas detoxification method and apparatus for semiconductor thin film manufacturing apparatus Expired - Fee Related JP4314739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000358024A JP4314739B2 (en) 2000-11-24 2000-11-24 Exhaust gas detoxification method and apparatus for semiconductor thin film manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000358024A JP4314739B2 (en) 2000-11-24 2000-11-24 Exhaust gas detoxification method and apparatus for semiconductor thin film manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2002164289A true JP2002164289A (en) 2002-06-07
JP4314739B2 JP4314739B2 (en) 2009-08-19

Family

ID=18829999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000358024A Expired - Fee Related JP4314739B2 (en) 2000-11-24 2000-11-24 Exhaust gas detoxification method and apparatus for semiconductor thin film manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4314739B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101512986B1 (en) * 2014-09-05 2015-04-20 한국중부발전(주) Rovingness wet process impinger of thermal power plant
KR101514239B1 (en) * 2014-09-05 2015-05-04 (주)동양공조 Coal dust collecting method of thermal power plant

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328429A (en) * 1986-07-21 1988-02-06 Takenaka Komuten Co Ltd Treatment of waste water containing fluorine and hydrogen peroxide and exhaust gas and its facility
JPH02229525A (en) * 1989-03-02 1990-09-12 Babcock Hitachi Kk Controlling device for drainage amount of cooling tower in desulfurization equipment
JPH07275650A (en) * 1994-04-12 1995-10-24 Mitsubishi Heavy Ind Ltd Exhaust gas desulfurization method
JPH0947750A (en) * 1995-08-10 1997-02-18 Ricoh Co Ltd Water treatment system
WO1998029181A1 (en) * 1996-12-31 1998-07-09 Atmi Ecosys Corporation Effluent gas stream treatment system for oxidation treatment of semiconductor manufacturing effluent gases
JPH11137958A (en) * 1997-09-08 1999-05-25 Mitsubishi Heavy Ind Ltd Treatment of stack gas desulfurization waste water
JP2000317262A (en) * 1999-05-17 2000-11-21 Mitsubishi Heavy Ind Ltd Treatment of flue gas desulfurized waste water

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328429A (en) * 1986-07-21 1988-02-06 Takenaka Komuten Co Ltd Treatment of waste water containing fluorine and hydrogen peroxide and exhaust gas and its facility
JPH02229525A (en) * 1989-03-02 1990-09-12 Babcock Hitachi Kk Controlling device for drainage amount of cooling tower in desulfurization equipment
JPH07275650A (en) * 1994-04-12 1995-10-24 Mitsubishi Heavy Ind Ltd Exhaust gas desulfurization method
JPH0947750A (en) * 1995-08-10 1997-02-18 Ricoh Co Ltd Water treatment system
WO1998029181A1 (en) * 1996-12-31 1998-07-09 Atmi Ecosys Corporation Effluent gas stream treatment system for oxidation treatment of semiconductor manufacturing effluent gases
JPH11137958A (en) * 1997-09-08 1999-05-25 Mitsubishi Heavy Ind Ltd Treatment of stack gas desulfurization waste water
JP2000317262A (en) * 1999-05-17 2000-11-21 Mitsubishi Heavy Ind Ltd Treatment of flue gas desulfurized waste water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101512986B1 (en) * 2014-09-05 2015-04-20 한국중부발전(주) Rovingness wet process impinger of thermal power plant
KR101514239B1 (en) * 2014-09-05 2015-05-04 (주)동양공조 Coal dust collecting method of thermal power plant

Also Published As

Publication number Publication date
JP4314739B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
CN103787541B (en) Heat-engine plant wet desulfurization wastewater recoverying and utilizing method and device thereof
CN208327647U (en) A kind of sewage disposal system of advanced treating fluoride waste
CN106039975A (en) Calcium-based wet desulfurization process
CN104649335B (en) Ferrous chloride crystal and the method and device of hydrochloric acid is reclaimed from hydrochloric acid pickling waste liquor
CN109092043A (en) boiler flue gas desulfurization device
CN106277486A (en) The process recovery method of a kind of steel industry hydrochloric acid pickling waste liquor and system thereof
CN203212397U (en) System for treating fluoride-containing waste water in solar cell production
CN113277663A (en) Desulfurization wastewater zero-discharge treatment process
JP2002164289A (en) Method and apparatus of detoxicating emission gas from semiconductor thin-film manufacture apparatus
CN206089294U (en) Steel industry hydrochloric acid pickling liquid waste's processing recovery system
CN106277474A (en) The process recovery method of a kind of steel industry sulfuric acid pickling waste liquid and system thereof
TWI232206B (en) Method of removing calcium from water containing calcium hydrogen carbonate in high concentration
CN209974509U (en) Thin-film solar cell production wastewater treatment system
CN107281925A (en) The processing system and its processing method of a kind of sulphur-containing exhaust gas
CN218485612U (en) Tail gas treatment system used in production process of silicon-based electronic product
CN106495356A (en) The processing method and system of steel industry nitric hydrofluoric acid mixed acid pickle liquor
CN217103333U (en) Desulfurization waste water zero release processing system
CN206616052U (en) A kind of processing equipment of ITO etching waste liquids
CN206494740U (en) Compound desulfurization wastewater treatment system
CN207079100U (en) A kind of combined treatment process system of waste water containing various heavy
CN114479957A (en) Method and system for desulfurizing and dechlorinating blast furnace gas
CN212387915U (en) Zero discharge system of flue gas water coprocessing desulfurization waste water
CN211770865U (en) Spraying wastewater treatment system
CN204917979U (en) Industrialization preparation oxidation graphene powder's equipment
CN209974510U (en) Sulfur-containing urea wastewater treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081008

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081016

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081016

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees