JP2002162423A - Device for current detection of power transmission/ distribution line and for analysis of electrical conditions thereof - Google Patents

Device for current detection of power transmission/ distribution line and for analysis of electrical conditions thereof

Info

Publication number
JP2002162423A
JP2002162423A JP2000360654A JP2000360654A JP2002162423A JP 2002162423 A JP2002162423 A JP 2002162423A JP 2000360654 A JP2000360654 A JP 2000360654A JP 2000360654 A JP2000360654 A JP 2000360654A JP 2002162423 A JP2002162423 A JP 2002162423A
Authority
JP
Japan
Prior art keywords
transmission
phase
current
distribution
distribution line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000360654A
Other languages
Japanese (ja)
Inventor
Kazunori Sugimachi
和則 杉町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimu Electronics Industries Co Inc
Original Assignee
Nishimu Electronics Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimu Electronics Industries Co Inc filed Critical Nishimu Electronics Industries Co Inc
Priority to JP2000360654A priority Critical patent/JP2002162423A/en
Publication of JP2002162423A publication Critical patent/JP2002162423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device for current detection of power transmission/distribution lines and for analysis of the electrical conditions thereof, capable of accurately detecting a transmission/distribution line current of a phase to be detected by each of sensors disposed in a non-contacting manner at positions for surely keeping a safe distance from the respective power transmission/distribution lines of a three-phase three-wire system, capable of accurately detecting a transmission current of each phase even in multi-channel transmission lines in particular, and capable of monitoring the electrical conditions of the transmission/distribution wireways and their change, such as variations (increases, decreases) in transmission/distribution currents, power interruption work, electrical failures (ground faults, short circuits, etc.). SOLUTION: This device is equipped with the plurality of magnetometric sensors disposed in a non-contacting manner at the respective power transmission/distribution lines of a three- phase three-wire system to each generate a detection output that is a function of current flowing through each line and of the distance to the line, a matrix memory for storing a constant matrix previously set as a function of the distance from each sensor to the line of each phase and of the detection characteristic of each sensor, and a constant matrix multiplication means for computing the currents flowing through the lines of the respective phases, by multiplying a detection output matrix of the sensors with the constant matrix.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、3相3線式送配電
線に流れる送配電電流や、短絡、地絡などの電気故障時
の電流を、送配電線に対し非接触状態で検出、監視する
ことのできる送配電線の電流検出および電気状態解析装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects a transmission / distribution current flowing through a three-phase three-wire transmission / distribution line or a current at the time of an electrical failure such as a short circuit or a ground fault in a non-contact state with respect to the transmission / distribution line. The present invention relates to a current detection and electrical state analysis device for a transmission and distribution line that can be monitored.

【0002】[0002]

【従来の技術】前記送配電線に流れる電流を非接触状態
で監視するセンサとしては、図1のように、各相送電線
21、22の送電電圧に応じた誘導電圧のベクトル和を
出力するセンサ4(例えば、棒状コアにコイルを巻回し
たもの)を、それぞれが電線支持体(送電線鉄塔)1の
電気的中心線上に位置するように微調整しながら、その
取付け位置を決定して零相電流や短絡電流を検出するよ
うにしたものがある(実開昭60−41866号公報参
照)。
2. Description of the Related Art As a sensor for monitoring a current flowing in a transmission / distribution line in a non-contact state, as shown in FIG. 1, a vector sum of induced voltages corresponding to transmission voltages of respective phase transmission lines 21 and 22 is output. The sensor 4 (for example, a coil wound around a rod-shaped core) is fine-adjusted so that each is positioned on the electric center line of the electric wire support (power transmission tower) 1, and its mounting position is determined. There is one that detects a zero-phase current or a short-circuit current (see Japanese Utility Model Laid-Open No. 60-41866).

【0003】前記の電気的中心線とは、平行に架設され
た2本の無限長電力線に流れる電流によって発生される
磁界の強さが互いに等しくなるような位置、すなわち通
常の2回線送電系統(図1)においては、前記2本の送
電線からの距離が等しいような点を意味する。また図2
のように、各相の送配電線2から、それぞれの相電圧に
応じて予め決められた安全距離だけ離れた、なるべく近
い位置に前記のようなセンサ4を配置して、各相の電流
や零相電流、短絡電流を検出するようにした装置も知ら
れている(特開平9−329639号公報)。
The above-mentioned electric center line is a position where the strengths of magnetic fields generated by currents flowing through two infinite-length power lines installed in parallel are equal to each other, that is, a normal two-line power transmission system ( In FIG. 1), it means that the distances from the two transmission lines are equal. FIG. 2
As described above, the sensor 4 as described above is arranged at a position as close as possible, away from the transmission and distribution line 2 of each phase by a predetermined safety distance according to each phase voltage, and the current of each phase and An apparatus for detecting a zero-phase current and a short-circuit current is also known (JP-A-9-329639).

【0004】[0004]

【発明が解決しようとする課題】従来の電流検出装置
は、電線支持体の電気的中心線上にセンサ配置している
ため設置位置の微調整が必要となるのみならず、各相毎
の送配電線を流れる電流が監視できないという問題があ
る。また、安全距離を確保しながら、一方ではなるべく
(あるいは、最も)近い位置にセンサを配置し、各相の
送配電線を流れる電流を検出しようとしても、検出対象
の相以外の電線に流れる電流の影響を除くのが困難であ
るため、目的の相の送配電線電流を正確に検出できない
という問題がある。特に、3回線以上の送配電線を架設
した多回線送配電線においては、監視対象の回線以外の
線路の故障の影響を受けて誤動作してしまうことが多い
という問題がある。
In the conventional current detecting device, since the sensor is arranged on the electric center line of the wire support, not only fine adjustment of the installation position is required, but also the transmission and distribution of each phase. There is a problem that the current flowing through the electric wire cannot be monitored. In addition, while securing a safe distance, on the other hand, if a sensor is placed as close as possible (or the closest) to detect the current flowing through the transmission and distribution lines of each phase, the current flowing through the wires other than the detection target phase Since it is difficult to remove the influence of the above, there is a problem that the transmission and distribution line current of the target phase cannot be accurately detected. Particularly, in a multi-line transmission and distribution line having three or more transmission and distribution lines, there is a problem in that a malfunction often occurs due to a failure of a line other than the line to be monitored.

【0005】本発明は、3相3線式送配電線において、
それぞれの送配電線から安全距離を確保した位置に非接
触状態でセンサを配置した場合に、各センサが検出しよ
うとする相の送配電線に流れる電流を正確に検出でき、
特に、多回線送電線においても各相の送電電流を正確に
検出でき、送配電線路の電気的状態やその変化、例えば
送配電電流の変動(増大、減少)や停電作業、電気的故
障(地絡、短絡など)等の監視を可能にするような送配
電線電流検出および電気状態解析装置を提供することを
目的とする。
The present invention relates to a three-phase three-wire transmission and distribution line,
When sensors are placed in a non-contact state at a position that secures a safe distance from each transmission and distribution line, it is possible to accurately detect the current flowing in the transmission and distribution lines of the phase that each sensor is trying to detect,
In particular, even in a multi-line transmission line, the transmission current of each phase can be accurately detected, and the electrical state of the transmission and distribution line and changes thereof, such as fluctuation (increase or decrease) of the transmission and distribution current, power outage work, and electrical failure (ground failure) It is an object of the present invention to provide a transmission / distribution line current detection and electrical state analysis device capable of monitoring a short circuit, a short circuit, etc.).

【0006】[0006]

【課題を解決するための手段】本発明の送配電線電流検
出装置は、3相3線式送配電線の近傍に、前記各送配電
線に対して非接触状態で配置され、各送配電線に流れる
電流および各送配電線までの距離の関数である検出出力
を発生する複数の磁界センサと、前記複数の各センサか
ら各相送配電線までの距離、および前記各センサの検出
特性の関数として予め設定された定数行列を記憶する行
列メモリと、前記センサの検出出力行列に前記定数行列
を乗算して各相送配電線に流れる電流を演算する定数行
列乗算手段とを備えることを特徴とする。
According to the present invention, there is provided a power transmission and distribution line current detecting device which is arranged near a three-phase three-wire transmission and distribution line in a non-contact state with respect to each of the transmission and distribution lines. A plurality of magnetic field sensors that generate a detection output that is a function of the current flowing through the wire and the distance to each transmission and distribution line, the distance from each of the plurality of sensors to each phase transmission and distribution line, and the detection characteristics of each of the sensors. A matrix memory for storing a constant matrix set in advance as a function; and constant matrix multiplying means for multiplying a detection output matrix of the sensor by the constant matrix to calculate a current flowing through each phase transmission and distribution line. And

【0007】また本発明の電気状態解析装置は、前記送
配電線電流検出装置の前記定数行列乗算手段から出力さ
れる各相送配電線の電流信号を供給され、その電流信号
波形に基づいて前記送配電線の電気状態を解析処理する
波形解析処理手段をさらに具備したことを特徴とする。
さらに、零相電流の生成手段や、各相送配電線の電流変
化を示す減算処理電流信号の生成手段を具備することが
できる。
Further, the electric state analysis device of the present invention is provided with a current signal of each phase transmission and distribution line output from the constant matrix multiplying means of the transmission and distribution line current detection device, and based on the current signal waveform, Waveform analysis processing means for analyzing the electrical state of the transmission and distribution lines is further provided.
Further, it can be provided with a means for generating a zero-phase current, and a means for generating a subtraction current signal indicating a current change of each phase transmission and distribution line.

【0008】[0008]

【発明の実施の形態】以下に、本発明の実施例を、図面
を参照して説明する。図3は、本発明にしたがって、磁
気センサ及びフィルター、定数行列乗算部を3相3線式
送電線に適用した一つの実施例を示す回路ブロック図で
ある。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a circuit block diagram showing one embodiment in which a magnetic sensor, a filter, and a constant matrix multiplier are applied to a three-phase three-wire transmission line according to the present invention.

【0009】3相送電線2A、2B、2Cにはそれぞれ
a、b、c相の3相電流が流れている。それぞれの相に
対応する3個の磁気センサ4A、4B、4Cは、棒状コ
アの中央部に適当巻数のコイルを巻回して構成され、例
えば図2に示すように、対応の各送電線2A、2B、2
Cから安全を確保できる距離だけ離れた鉄塔上の適当位
置に配置される。この場合、磁気センサ4の配置位置は
臨界的では無く、安全距離が確保されれば、上下左右に
多少ずれても良い。
[0009] Three-phase currents of a, b, and c phases flow through the three-phase transmission lines 2A, 2B, and 2C, respectively. The three magnetic sensors 4A, 4B, and 4C corresponding to each phase are configured by winding a coil having an appropriate number of turns around the center of a rod-shaped core. For example, as shown in FIG. 2B, 2
It is located at an appropriate position on a steel tower that is separated from C by a distance that can ensure safety. In this case, the position of the magnetic sensor 4 is not critical, and may be slightly shifted up, down, left and right as long as a safe distance is secured.

【0010】磁気センサ4A〜4Cの検出電圧は、それ
ぞれ別個に、対応のフィルター5A〜5Cに入力され
る。これらのフィルターは磁気センサの検出電圧からノ
イズを除去するのに役立つ。ノイズ除去されたフィルタ
出力(磁気センサの検出電圧波形)は定数行列乗算部8
に供給される。定数行列乗算部8では、前記フィルター
5A〜5Cの出力電圧に、定数行列メモリ7から供給さ
れる定数行列を乗算することによって、各相送電線2A
〜2Cに流れている電流Ia〜Icが算出される。定数
行列メモリ7に記憶された定数行列は、後述するよう
に、磁気センサ4A〜4Cと送電線2A〜2Cとの相対
配置(両者間の距離)および各磁気センサの特性(構造
や感度)に応じて決まる定数であり、前もって設定して
記憶しておくことができる。
The detected voltages of the magnetic sensors 4A to 4C are separately input to the corresponding filters 5A to 5C. These filters help remove noise from the detected voltage of the magnetic sensor. The filter output (detected voltage waveform of the magnetic sensor) from which the noise has been removed is used as a constant matrix multiplication unit 8
Supplied to The constant matrix multiplying unit 8 multiplies the output voltages of the filters 5A to 5C by a constant matrix supplied from the constant matrix memory 7 to obtain each phase transmission line 2A.
To 2C are calculated. As described later, the constant matrix stored in the constant matrix memory 7 indicates the relative arrangement (distance between the magnetic sensors 4A to 4C and the transmission lines 2A to 2C) and the characteristics (structure and sensitivity) of each magnetic sensor. It is a constant determined in accordance with it and can be set and stored in advance.

【0011】この場合、前記フィルター5A〜5Cの出
力電圧レベルが定数行列乗算処理をするのに適当な範囲
からずれており、ゲイン調整が必要なときは、ゲイン設
定制御部6から適当なゲイン信号をフィルタ5A〜5C
に供給し、そこから出力される検出電圧のレベルを前記
行列乗算に適した電圧レベルに調節する。このようにフ
ィルターのゲインを調整した場合は、その情報に基づい
て、定数行列乗算部8に供給される定数行列も変更され
ることは当然である。なお、定数行列については後で詳
述するが、図2のように3相3線式送電線が1回線の場
合の定数行列は3×3の行列となる。
In this case, when the output voltage levels of the filters 5A to 5C deviate from an appropriate range for performing a constant matrix multiplication process, when a gain adjustment is necessary, an appropriate gain signal is output from the gain setting control unit 6. To filters 5A to 5C
And the level of the detection voltage output therefrom is adjusted to a voltage level suitable for the matrix multiplication. When the gain of the filter is adjusted as described above, the constant matrix supplied to the constant matrix multiplier 8 is naturally changed based on the information. The constant matrix will be described later in detail, but the constant matrix in the case of one three-phase three-wire transmission line as shown in FIG. 2 is a 3 × 3 matrix.

【0012】行列乗算処理は、行列乗算部8とフィルタ
ー5との間に、図3に点線で示したように、A/D変換
器9を配置し、フィルタリングされ、さらに必要に応じ
てゲイン調節された磁気センサ4A〜4Cの検出電圧の
アナログ波形をディジタル信号に変換し、行列乗算処理
をデジタル・プロセッサーやマイクロコンピュータ等の
ディジタル処理回路で行なってもよい。
In the matrix multiplication process, an A / D converter 9 is arranged between the matrix multiplication unit 8 and the filter 5 as shown by a dotted line in FIG. The analog waveforms of the detected voltages of the magnetic sensors 4A to 4C may be converted into digital signals, and the matrix multiplication may be performed by a digital processing circuit such as a digital processor or a microcomputer.

【0013】次に、図3の実施例の動作を説明する。正
常な送電時に、送電線2の各相電線2A〜2Cに、図6
に示すような3相平衡電流が流れているとしても、その
時に各相の磁気センサ4A〜4Cが検出する誘導電圧
は、図7のように、各相ごとに大きさ(振幅)の異なる
電圧波形になることが多い。さらに送電鉄塔1のアーム
長やアーム間隔によっては、位相も若干ずれる場合があ
る。
Next, the operation of the embodiment shown in FIG. 3 will be described. At the time of normal power transmission, each phase wire 2A to 2C of the power transmission line 2 is
Even when a three-phase balanced current flows as shown in FIG. 7, the induced voltages detected by the magnetic sensors 4A to 4C of the respective phases at that time have different magnitudes (amplitudes) for the respective phases as shown in FIG. Often has a waveform. Further, the phase may be slightly shifted depending on the arm length and the arm interval of the power transmission tower 1.

【0014】これは、図5に示すように、それぞれの磁
気センサが距離的に最も近い相の送電線に流れる電流の
影響だけではなく、それ以外の他の相の送電線に流れる
電流の影響も受けるためである。さらに具体的には、3
相の電線のそれぞれに流れる電流による磁界の合成磁界
が1つの磁気センサによって検出され、しかも各センサ
から各相電線までの距離や、両者の相対的位置関係が互
いに異なるからである。
This is because not only the influence of the current flowing through the transmission line of the phase closest to each magnetic sensor but also the effect of the current flowing through the transmission lines of other phases is shown in FIG. To receive it. More specifically, 3
This is because the combined magnetic field of the magnetic field due to the current flowing through each of the phase wires is detected by one magnetic sensor, and furthermore, the distance from each sensor to each phase wire and the relative positional relationship between them are different from each other.

【0015】このため、各磁気センサ4A〜4Cが各送
電線2A〜2Cに対応して設置されているとは言って
も、各相の送電電流を対応の磁気センサの出力が正確に
代表することはできず、3つの磁気センサの検出電圧を
使用した電気故障検出や故障判定に支障をきたすことに
なる。そこで、あらかじめ設定された磁気センサと各相
送電線との相対配置に基づいて決められる定数行列を、
フィルタリングされた各磁気センサの検出電圧に乗算、
補正すると、図8に示すように各相送電線に流れる電流
が検出される。
For this reason, although the respective magnetic sensors 4A to 4C are installed corresponding to the respective transmission lines 2A to 2C, the output of the corresponding magnetic sensor accurately represents the transmission current of each phase. It is not possible to do so, and it will interfere with the detection of electrical failures and the determination of failures using the detection voltages of the three magnetic sensors. Therefore, a constant matrix determined based on the relative arrangement of the preset magnetic sensor and each phase transmission line,
Multiply the filtered detection voltage of each magnetic sensor,
After the correction, the current flowing through each phase transmission line is detected as shown in FIG.

【0016】このような手法で送電電流が検出されるの
は、以下のような原理による。まず図4に示すように、
無限長の直線状の送電線2が1本だけある場合に、これ
から距離rだけ離れた磁気センサ4が出力する検出電圧
Vは公知のビオ・サバールの法則により、下記の式1で
表わされる。
The transmission current is detected by such a method based on the following principle. First, as shown in FIG.
When there is only one linear transmission line 2 having an infinite length, the detection voltage V output by the magnetic sensor 4 separated by a distance r from the transmission line 2 is expressed by the following equation 1 according to the well-known Bio-Savart law.

【0017】V=k×I/(2πr) 式1 ただし、k:磁気センサの磁界・電圧変換係数 r:送電線と磁気センサとの距離 I:送電線電流である。V = k × I / (2πr) Equation 1 where k: magnetic field / voltage conversion coefficient of the magnetic sensor r: distance between the transmission line and the magnetic sensor I: transmission line current.

【0018】したがって、前記検出電圧Vから送電線電
流Iを求めるには、(2πr/k)を検出電圧Vに乗算
すればよい。
Therefore, to obtain the transmission line current I from the detected voltage V, the detected voltage V may be multiplied by (2πr / k).

【0019】次に同様の直線状無限長の3本の送電線2
A〜2Cがある3相送電系統において、図5に示すよう
な相対位置関係に設置された磁気センサ4Aの検出電圧
Vaは下記の式2で表わされる。
Next, three similar infinitely long power transmission lines 2
In a three-phase power transmission system having A to 2C, a detection voltage Va of the magnetic sensor 4A installed in a relative positional relationship as shown in FIG.

【0020】 Va=k×Ia /(2π・r1 )+k×Ib /(2π・r2 )+k×Ic /( 2π・r) 式2 ただし、Va:磁気センサ4Aの検出電圧 r1 :磁気センサ4Aとa相送電線2Aとの距離 r2 :磁気センサ4Aとb相送電線2Bとの距離 r3 :磁気センサ4Aとc相送電線2Cとの距離 Ia :a相送電線2Aの電流 Ib :b相送電線2Bの電流 Ic :c相送電線2Cの電流 である。それぞれの送電線に対するセンサ4Aの電流係
数すなわちki/2π・ri(ここで、i=1〜3)を
k11、k12、k13とおくと、式2は式3となる。
Va = k × Ia / (2π · r1) + k × Ib / (2π · r2) + k × Ic / (2π · r) where Va: detection voltage of the magnetic sensor 4A, r1: magnetic sensor 4A and r2: Distance between magnetic sensor 4A and b-phase transmission line 2B r3: Distance between magnetic sensor 4A and c-phase transmission line 2C Ia: Current of a-phase transmission line 2A Ib: b-phase transmission Current Ic of electric wire 2B: Current of c-phase transmission line 2C. If the current coefficient of the sensor 4A for each transmission line, that is, ki / 2π · ri (where i = 1 to 3) is set to k11, k12, and k13, Equation 2 becomes Equation 3.

【0021】 Va=k11×Ia +k12×Ib +k13×Ic 式3 他の磁気センサ4B、4Cの検出電圧Vb、Vcについ
ても、Vaと同様に考えることができるので、それぞれ
の検出電圧は下記の式のようになる。
Va = k11 × Ia + k12 × Ib + k13 × Ic Equation 3 Since the detection voltages Vb and Vc of the other magnetic sensors 4B and 4C can be considered in the same manner as Va, the respective detection voltages are expressed by the following equations. become that way.

【0022】 Vb=k21×Ia +k22×Ib +k23×Ic Vc=k31×Ia +k32×Ib +k33×Ic これらの式を行列表示すると、図11に示す式4が得ら
れる。式4からIa、Ib、Icを求めるためには、式
4の右辺第1項のkii行列の逆行列を同式の両辺に乗算
し、図12に示す式5のようにすればよいことが分か
る。
Vb = k21 × Ia + k22 × Ib + k23 × Ic Vc = k31 × Ia + k32 × Ib + k33 × Ic When these equations are displayed in a matrix, Equation 4 shown in FIG. 11 is obtained. In order to obtain Ia, Ib, and Ic from Expression 4, it is necessary to multiply both sides of the same expression by the inverse matrix of the kii matrix of the first term on the right side of Expression 4 and obtain Expression 5 shown in FIG. I understand.

【0023】式5の右辺第1項のkiiの逆行列をKiiと
おくと、式5は図13に示す式6になる。式6から分か
るように、磁気センサと送電線との相対配置で決まる定
数行列Kiiを磁気センサの検出電圧の行列Vi に乗算す
ることにより、3相3線の各相送電線の電流を求めるこ
とができる。
If the inverse matrix of kii of the first term on the right side of Equation 5 is Kii, Equation 5 becomes Equation 6 shown in FIG. As can be seen from Equation 6, the current of each of the three-phase three-wire transmission lines is obtained by multiplying the matrix Vi of the detection voltage of the magnetic sensor by the constant matrix Kii determined by the relative arrangement of the magnetic sensor and the transmission line. Can be.

【0024】3相3線式送電線の回線数が4回線に増え
た場合は、式6が式7(図14)になることは、容易に
理解できるであろう。この場合は、送電線の本数に等し
い12の磁気センサを各相の送電線にそれぞれ対応して
配置するので、定数行列が12×12行列となるが、前
述と同じような方法で各相の送電電流を求めることがで
きる。図9に、4回線送電鉄塔1に12個の磁気センサ
ーを設置した様子の概要を示した。
When the number of lines of the three-phase three-wire transmission line is increased to four, it can be easily understood that Equation 6 becomes Equation 7 (FIG. 14). In this case, since the twelve magnetic sensors equal to the number of transmission lines are arranged corresponding to the transmission lines of each phase, the constant matrix becomes a 12 × 12 matrix. The transmission current can be determined. FIG. 9 shows an outline of a state in which twelve magnetic sensors are installed on the four-line power transmission tower 1.

【0025】図10は、本発明を3相1回線送電線の電
気状態解析に適用した場合の他の実施例を示すブロック
図である。この図において、図3と同一の符号は同一ま
たは同等部分を表わす。A/D変換器9をフィルター5
A〜5Cと定数行列乗算部8の間に配置し、この行列乗
算部8より後段をマイクロコンピュータ等のディジタル
回路で構成する。磁気センサ4A〜4Cの各検出電圧
は、前述の実施例と同様に、それぞれの磁気センサ別に
対応する前記フィルター5A〜5Cに入力されてノイズ
除去される。
FIG. 10 is a block diagram showing another embodiment in which the present invention is applied to an electric state analysis of a three-phase one-line transmission line. In this figure, the same reference numerals as those in FIG. 3 represent the same or equivalent parts. A / D converter 9 with filter 5
A to 5C and the constant matrix multiplication unit 8 are arranged, and a stage subsequent to the matrix multiplication unit 8 is constituted by a digital circuit such as a microcomputer. The detected voltages of the magnetic sensors 4A to 4C are input to the filters 5A to 5C corresponding to the respective magnetic sensors and noise is removed, as in the above-described embodiment.

【0026】ノイズを除去されたアナログ検出電圧信号
はA/D変換器9でディジタル信号に変換される。定数
行列乗算部8では、ディジタル化された磁気センサの検
出電圧信号に、定数行列メモリ7から供給される定数行
列が乗算され、各相送電線に流れる電流信号Ia〜Ic
が得られる。この各相送電線電流は、波形解析処理部1
3に入力されるとともに、行列乗算部8の各出力に接続
された加算部10にも入力される。加算部10で3相分
の送電線電流信号が加算されて得られる零相電流信号
は、さらに波形解析処理部13に入力される。
The analog detection voltage signal from which noise has been removed is converted to a digital signal by the A / D converter 9. The constant matrix multiplication unit 8 multiplies the digitized detection signal of the magnetic sensor by the constant matrix supplied from the constant matrix memory 7 and outputs the current signals Ia to Ic flowing through each phase transmission line.
Is obtained. Each phase transmission line current is supplied to the waveform analysis processing unit 1.
3 and also to an adder 10 connected to each output of the matrix multiplier 8. The zero-phase current signal obtained by adding the transmission line current signals for the three phases by the adding unit 10 is further input to the waveform analysis processing unit 13.

【0027】その代わりに、または前記零相電流信号に
加えて、加算部の後段に遅延部と減算部(いずれも図示
せず)を配置し、各相電流の変化分から零相電流の変化
分を演算し、これを波形解析処理部13に入力してもよ
い。
Alternatively, or in addition to the zero-phase current signal, a delay unit and a subtraction unit (both not shown) are arranged at the subsequent stage of the adder, and the change of each phase current is calculated based on the change of the zero-phase current. May be calculated and input to the waveform analysis processing unit 13.

【0028】また図10では、a〜c相の各相送電電流
は、行列乗算部8の後段に直列に配置された遅延部11
と減算部12に各相別に入力される。この遅延部11で
は、各相の送電電流波形が予定の整数サイクル分遅延さ
れ、遅延電流波形が減算部12に入力される。後段の減
算部12では、行列乗算部8から直接供給される、遅延
前の各相電流波形と、前記のように整数サイクル遅延さ
れた遅延電流波形との差が演算され、送電電流の変化分
を表わす信号、すなわち減算処理電流信号が波形解析処
理部13に入力される。
In FIG. 10, the transmission currents of the phases a to c are transmitted to the delay units 11 arranged in series at the subsequent stage of the matrix multiplication unit 8.
Is input to the subtraction unit 12 for each phase. In the delay unit 11, the transmission current waveform of each phase is delayed by a predetermined integer cycle, and the delayed current waveform is input to the subtraction unit 12. The subtraction unit 12 at the subsequent stage calculates the difference between each phase current waveform before the delay, which is directly supplied from the matrix multiplication unit 8, and the delay current waveform delayed by the integer cycle as described above, and calculates the change in the transmission current. , Ie, a subtraction current signal is input to the waveform analysis processing unit 13.

【0029】さらに図10において、電圧センサ14は
送電線鉄塔の側面に取り付けられて送電電圧に比例した
電圧信号を出力する。具体的には、電圧センサ14は、
各送電線の送電電圧のベクトル和に応じた誘導電圧を発
生する複数の電極体からなる(特開平9−329639
号公報)。前記センサ14の電圧出力波形は、磁気セン
サの出力と同様に、フィルタ5Fでノイズを除去された
後A/D変換器9Fに供給され、ディジタル信号に変換
される。
Further, in FIG. 10, the voltage sensor 14 is attached to the side of the power transmission tower, and outputs a voltage signal proportional to the transmission voltage. Specifically, the voltage sensor 14
It is composed of a plurality of electrode bodies that generate an induced voltage according to the vector sum of the transmission voltage of each transmission line (Japanese Patent Laid-Open No. 9-329639).
No.). Like the output of the magnetic sensor, the voltage output waveform of the sensor 14 is supplied to the A / D converter 9F after noise is removed by the filter 5F, and is converted into a digital signal.

【0030】このディジタル電圧信号はさらに遅延部1
1Fおよび減算部12F、ならびに波形解析処理部13
に各別に入力される。減算部12Fでは、遅延部11F
で遅延されたセンサ出力電圧波形と遅延されない出力電
圧波形との差が演算されて零相電圧波形が得られ、波形
解析処理部13に入力される。遅延部11Fおよび減算
部12Fで零相電圧が得られることは、本出願人の出願
にかかる前記特開平9−329639号公報に開示され
ている。
This digital voltage signal is further supplied to a delay unit 1
1F and subtraction unit 12F, and waveform analysis processing unit 13
Are entered separately. In the subtraction unit 12F, the delay unit 11F
The difference between the sensor output voltage waveform delayed by the above and the output voltage waveform not delayed is calculated to obtain a zero-phase voltage waveform, which is input to the waveform analysis processing unit 13. The fact that a zero-phase voltage is obtained by the delay unit 11F and the subtraction unit 12F is disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 9-329639 filed by the present applicant.

【0031】波形解析処理部13には、相電線の電気的
状態を解析するための処理プログラムが予め内蔵されて
いる。この処理プログラムは、前述のようにして得られ
た各相の電流信号や減算処理電流(図10の減算部12
の出力信号)などを用いて、下記の事項を実施処理する
ためのものである。
The waveform analysis processing unit 13 has a processing program for analyzing the electrical state of the phase electric wire in advance. This processing program includes the current signal of each phase and the subtraction processing current (the subtraction unit 12 in FIG. 10) obtained as described above.
, Etc.) to perform the following processing.

【0032】a.それぞれの電力線の電流や減算処理電
流(減算部12の出力)および/または零相電流、零相
電圧に対して予め閾値や許容範囲を設定しておき、前記
各電流および/または電圧が前記閾値や許容範囲を超え
たときは、当該送電線に異常が発生したと判断すると共
に、各送電線の検出された電流・電圧波形を記録する異
常判定・波形記録。
A. Thresholds and allowable ranges are set in advance for the current of each power line, the subtraction processing current (output of the subtraction unit 12), and / or the zero-sequence current and the zero-sequence voltage. If it exceeds the allowable range, it is determined that an abnormality has occurred in the transmission line, and an abnormality determination / waveform recording for recording the detected current / voltage waveform of each transmission line.

【0033】b.記録された電力線電流や零相電流波形
に基づいて,故障の種別,故障相を判別する。故障種別
の判別は、各相電力線電流(Ia、Ib、Ic)又は電
力線電流の減算処理電流(すなわち電流変化分)が、設
定された短絡動作電流(短絡故障時に流れる最小電流)
を超えた場合には短絡故障とし、電力線電流又は減算処
理電流が短絡動作電流未満で、零相電流が設定された零
相動作電流(1線地絡故障時に流れる最小電流)を超え
た場合には1線地絡と判別する。更に、電力線電流又は
減算処理電流が短絡動作電流を超える相が2相または3
相ある場合には、それぞれ2相短絡及び3相短絡と判別
する。
B. Based on the recorded power line current and zero-phase current waveform, the type of failure and the failure phase are determined. The failure type is determined by determining whether each phase power line current (Ia, Ib, Ic) or the power line current subtraction processing current (that is, the current change) is the set short-circuit operation current (minimum current flowing when a short-circuit fault occurs).
If the power line current or the subtraction processing current is less than the short-circuit operating current and the zero-phase current exceeds the set zero-phase operating current (minimum current flowing when a one-line ground fault occurs), Is determined to be a one-line ground fault. Furthermore, the phase in which the power line current or the subtraction processing current exceeds the short-circuit operation current is two or three.
If there is a phase, it is determined as a two-phase short-circuit and a three-phase short-circuit, respectively.

【0034】c.複数回線がある場合、上述のように判
別された故障発生に基づいて、どの回線が故障している
かを判別する。
C. When there are a plurality of lines, it is determined which line has a failure based on the occurrence of the failure determined as described above.

【0035】d.1線地絡の場合には、記録された零相
電圧波形と零相電流波形との位相を比較することによ
り、故障方向(本発明装置の設置箇所−例えば、鉄塔を
基準にして、どちら側か)を判定する(特開平9-329639
号公報)。また、短絡の場合には、電力線電流又は減算
処理電流の位相角が、あらかじめ設定した角度と同位相
か逆位相かにしたがって故障方向を判定する。
D. In the case of a single-line ground fault, by comparing the phases of the recorded zero-phase voltage waveform and zero-phase current waveform, the direction of failure (where the device of the present invention is installed—for example, with respect to the steel tower, (Japanese Unexamined Patent Publication No. 9-329639)
No.). In the case of a short circuit, the failure direction is determined according to whether the phase angle of the power line current or the subtraction processing current is the same or opposite to the preset angle.

【0036】e.電圧センサによる検出出力の低下や、
電力線電流の変化に基づいて、故障回線が遮断されたこ
とを判定する。また、回線が複数ある合は、この遮断検
出により故障回線を検出することもできる(特開平9-32
9639号公報)。
E. If the detection output by the voltage sensor decreases,
Based on the change in the power line current, it is determined that the failed line has been interrupted. If there are a plurality of lines, a faulty line can be detected by detecting the interruption (see Japanese Patent Application Laid-Open No. 9-32-9).
No. 9639).

【0037】f.前記a〜eの処理で得られた判別結果
をディジタルデ−タやon/off信号に変換し、関連
デ−タを伝送したり、リレーを動作させたりする。
F. The discrimination result obtained in the above processes a to e is converted into digital data or an on / off signal, and related data is transmitted or a relay is operated.

【0038】上記のような処理プログラムにしたがっ
て、各相送電電流および零相電流の増減監視、回線遮断
の検出、電気的故障発生時の故障種別、故障相、故障回
線、故障方向等が解析、識別され、その結果をディジタ
ルデータやON/OFFデータとして出力する。これら
のデータは、波形解析処理部13にパソコンなど(図示
せず)を直接接続し、これによって電流波形や解析結果
の表示を行なったり、衛星通信や携帯話等を含む既知の
データ伝送装置を介して電気所等に伝送し、遠隔地から
の監視に使用したりすることもできる。また本実施例の
装置を故障区間検出装置や、それに類する装置に組み込
み、送配電線の電気的故障の区間判定や方向判定等のデ
ータとしても使用することができる。
According to the processing program as described above, the increase / decrease monitoring of the transmission current and the zero-phase current of each phase, the detection of line break, the failure type, the failure phase, the failure line, the failure direction and the like when an electrical failure occurs are analyzed. It is identified and the result is output as digital data or ON / OFF data. These data are directly connected to a personal computer or the like (not shown) to the waveform analysis processing unit 13 to display a current waveform or an analysis result, or to transmit a known data transmission device including satellite communication, mobile phone talk, and the like. It can also be transmitted to an electric station or the like, and used for monitoring from a remote location. Further, the device of this embodiment can be incorporated in a fault section detection device or a similar device, and used as data for determining a section or a direction of an electrical fault in a transmission and distribution line.

【0039】なお一般的に、前記第2の実施例をn回線
送電線に適用する場合は、図10のセンサ4A〜4C、
フィルター5A〜5C、遅延部11、および減算部12
をそれぞれ3n組に増加し、また加算部10や電圧セン
サ14、フィルタ5F、遅延部11F、減算部12Fな
どをn組設けることで対応可能となることは、当業者に
は容易に理解できるであろう。
Generally, when the second embodiment is applied to an n-line transmission line, the sensors 4A to 4C shown in FIG.
Filters 5A to 5C, delay unit 11, and subtraction unit 12
Can be easily understood by those skilled in the art that can be dealt with by increasing n to 3n sets and providing n sets of the adder 10, the voltage sensor 14, the filter 5F, the delay 11F, the subtractor 12F, and the like. There will be.

【0040】[0040]

【発明の効果】以上に説明したように、本発明によれ
ば、磁気センサの取付け調整も不要となり、取付け作業
の効率が向上するという効果が期待される。また本発明
によれば、3相3線式送配電線の各相電線毎に、それら
から安全距離を確保した位置(鉄塔などの送配電線支持
体)に非接触状態で磁気センサを配置し、それらの検出
電圧をフィルタリングしてノイズを除去し、整形された
検出電圧に定数行列を行列演算するようにしたので、検
出対象の各相電線に流れる相電流を他の相電流の影響を
受けることなく正確に検出できるようになる。
As described above, according to the present invention, there is no need to adjust the mounting of the magnetic sensor, and the effect of improving the efficiency of the mounting operation is expected. Further, according to the present invention, a magnetic sensor is arranged in a non-contact state at a position (a transmission and distribution line support such as a tower) where a safe distance is secured from each of the three-phase three-wire transmission and distribution lines. Since the detected voltages are filtered to remove noise and a constant matrix is calculated for the shaped detected voltages, the phase current flowing in each phase wire to be detected is affected by other phase currents. It can be detected accurately without any problem.

【0041】このため、2回線以上の多回線送電線でも
正確な零相電流や短絡電流を検出することができ、波形
解析処理によって、送配電線路の送配電電流の増減(変
化)状況や電気的故障時の故障電流の大きさや故障種
別、故障相、故障回線等の監視が可能なる。さらに、従
来公知の故障区間検出器などの装置に、本発明の送配電
線電流検出装置を組み込めば、故障区間や故障方向判定
等の処理が可能となる。
Therefore, accurate zero-phase current and short-circuit current can be detected even in a multi-line transmission line of two or more lines, and the waveform analysis processing can be used to increase or decrease (change) the transmission / distribution current of the transmission / distribution line and to determine the electric current. It is possible to monitor the magnitude of a fault current, a fault type, a fault phase, a fault line, and the like at the time of a mechanical fault. Furthermore, if the transmission / distribution line current detection device of the present invention is incorporated into a conventionally known device such as a fault section detector, processing such as fault section and fault direction determination becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の送配電線電流検知用の非接触センサ配置
の一例を示す側面図である。
FIG. 1 is a side view showing an example of a conventional arrangement of a non-contact sensor for detecting current in a transmission and distribution line.

【図2】従来の送配電線電流検知用の非接触センサ配置
の他の例を示す側面図である。
FIG. 2 is a side view showing another example of a conventional arrangement of a non-contact sensor for current detection of transmission and distribution lines.

【図3】本発明を3相3線式送電線に適用した一つの実
施例を示す回路ブロック図である。
FIG. 3 is a circuit block diagram showing one embodiment in which the present invention is applied to a three-phase three-wire transmission line.

【図4】本発明のセンサによる送配電線電流の検出原理
を説明するための概念図である。
FIG. 4 is a conceptual diagram for explaining a principle of detecting transmission / distribution line current by the sensor of the present invention.

【図5】本発明を3相3線式送電線に適用した場合の各
送電線電流の検出原理を説明するための概念図である。
FIG. 5 is a conceptual diagram for explaining a principle of detecting each transmission line current when the present invention is applied to a three-phase three-wire transmission line.

【図6】3相3線式送電線の各送電線に流れる正常時の
3相平衡電流を示す波形図である。
FIG. 6 is a waveform diagram showing a normal three-phase balanced current flowing through each transmission line of the three-phase three-wire transmission line.

【図7】図3の各相センサによって検出される各相電圧
波形の1例を示す波形図である。
FIG. 7 is a waveform chart showing an example of each phase voltage waveform detected by each phase sensor of FIG. 3;

【図8】図7の波形を補正して得られる各相電圧の検出
電圧波形の1例を示す波形図である。
8 is a waveform diagram showing an example of a detected voltage waveform of each phase voltage obtained by correcting the waveform of FIG.

【図9】本発明を3相4回線送電線に適用した場合の各
センサーの1例を示す側面図である。
FIG. 9 is a side view showing an example of each sensor when the present invention is applied to a three-phase four-line transmission line.

【図10】本発明を3相1回線送電線に適用した他の実
施例を示す回路ブロック図である。
FIG. 10 is a circuit block diagram showing another embodiment in which the present invention is applied to a three-phase one-circuit transmission line.

【図11】式4の行列表示を示す図である。FIG. 11 is a diagram showing a matrix display of Expression 4.

【図12】式5の行列表示を示す図である。FIG. 12 is a diagram showing a matrix display of Expression 5.

【図13】式6の行列表示を示す図である。FIG. 13 is a diagram showing a matrix display of Expression 6.

【図14】式7の行列表示を示す図である。FIG. 14 is a diagram showing a matrix display of Expression 7.

【符号の説明】[Explanation of symbols]

2…送(配)電線、 4、4A〜C…磁気センサ、 5
A〜C、5F…フィルター、 6…ゲイン設定/制御
部、 7…定数行列メモリ、 8…定数行列演算部、
9、9F…A/D変換器、 10…加算部、 11、1
1F…遅延部、12、12F…減算部、 13…波形解
析処理部、 14…電圧センサ
2 ... transmission (distribution) wire, 4, 4A-C ... magnetic sensor, 5
A to C, 5F: filter, 6: gain setting / control unit, 7: constant matrix memory, 8: constant matrix operation unit,
9, 9F: A / D converter, 10: Adder, 11, 1
1F: delay section, 12, 12F: subtraction section, 13: waveform analysis processing section, 14: voltage sensor

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02H 3/353 G01R 15/02 Z Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H02H 3/353 G01R 15/02 Z

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】3相3線式送配電線の近傍に、前記各送配
電線に対して非接触状態で配置され、各送配電線に流れ
る電流および各送配電線までの距離の関数である検出出
力を発生する複数の磁界センサと、 前記複数の各センサから各相送配電線までの距離、およ
び前記各センサの検出特性の関数として予め設定された
定数行列を記憶する行列メモリと、 前記センサの検出出力行列に前記定数行列を乗算して各
相送配電線に流れる電流を演算する定数行列乗算手段と
を備えることを特徴とする送配電線の電流検出装置。
1. A three-phase three-wire transmission / distribution line, which is disposed in a non-contact state with respect to each of said transmission / distribution lines, and is a function of a current flowing through each of said transmission / distribution lines and a distance to each of said transmission / distribution lines. A plurality of magnetic field sensors that generate a certain detection output, a distance from each of the plurality of sensors to each phase transmission and distribution line, and a matrix memory that stores a constant matrix preset as a function of the detection characteristics of each of the sensors. And a constant matrix multiplying means for multiplying a detection output matrix of the sensor by the constant matrix to calculate a current flowing through each phase transmission and distribution line.
【請求項2】前記各センサの検出出力を、前記定数行列
を乗算するのに適当なレベル範囲の値に調整するゲイン
設定制御手段をさらに具備し、ゲイン設定制御手段は、
前記各センサの検出出力を調整するときは、前記調整に
相応して前記定数行列をも調整することを特徴とする請
求項1の送配電線の電流検出装置。
2. The apparatus according to claim 1, further comprising: gain setting control means for adjusting a detection output of each of the sensors to a value within a level range suitable for multiplying the constant matrix.
2. The current detection device for transmission and distribution lines according to claim 1, wherein when adjusting the detection output of each of the sensors, the constant matrix is also adjusted in accordance with the adjustment.
【請求項3】前記センサの検出出力に含まれるノイズを
除去するフィルター手段をさらに具備したことを特徴と
する請求項1または2の送配電線の電流検出装置。
3. The current detecting device for a transmission / distribution line according to claim 1, further comprising filter means for removing noise included in a detection output of said sensor.
【請求項4】前記各センサの検出出力のレベル調整は、
前記フィルタ手段のゲイン調整によって行なわれること
を特徴とする請求項3の送配電線の電流検出装置。
4. The method of adjusting the level of the detection output of each of the sensors,
4. The current detecting device for a transmission / distribution line according to claim 3, wherein the gain is adjusted by adjusting a gain of said filter means.
【請求項5】請求項1ないし4のいずれかの送配電線電
流検出装置の前記定数行列乗算手段から出力される各相
送配電線の電流信号を供給され、その電流信号波形に基
づいて前記送配電線の電気状態を解析処理する波形解析
処理手段をさらに具備したことを特徴とする送配電線の
電気状態解析装置。
5. A current signal of each phase transmission and distribution line output from the constant matrix multiplying means of the transmission and distribution line current detecting device according to any one of claims 1 to 4, and based on the current signal waveform, An electric state analysis device for transmission and distribution lines, further comprising a waveform analysis processing unit for analyzing and processing electric states of transmission and distribution lines.
【請求項6】前記定数行列乗算手段から出力される各相
送配電線の電流信号を加算し、これによって得られる零
相電流信号を前記波形解析処理手段に供給する加算器を
さらに具備したことを特徴とする請求項5の送配電線の
電気状態解析装置。
6. An adder for adding current signals of each phase transmission and distribution line output from said constant matrix multiplying means and supplying a zero-phase current signal obtained by said addition to said waveform analysis processing means. The electrical condition analysis apparatus for transmission and distribution lines according to claim 5, characterized in that:
【請求項7】前記定数行列乗算手段から出力される各相
送配電線の電流信号を供給され、各電流信号を予定サイ
クル分遅延させる遅延部と、前記各相送配電線の電流信
号と前記の遅延された各電流信号との差を演算し、その
結果を前記波形解析処理手段に供給する減算器とをさら
に具備したことを特徴とする請求項5または6の送配電
線の電気状態解析装置。
7. A delay section which is supplied with a current signal of each phase transmission and distribution line output from said constant matrix multiplying means, and delays each current signal by a predetermined cycle. 7. An electric state analysis of a transmission and distribution line according to claim 5, further comprising a subtracter for calculating a difference between each of the delayed current signals and supplying the result to the waveform analysis processing means. apparatus.
【請求項8】前記3相3線式送配電線の送電電圧を検出
する電圧センサと、前記検出電圧信号を予定時間遅延さ
せる第2の遅延部と、前記の遅延された電圧信号および
遅延されない前記検出電圧信号を減算処理して零相電圧
を求める第2の減算部とをさらに具備し、前記零相電圧
が前記波形解析処理手段に供給されることを特徴とする
請求項5ないし7のいずれかの送配電線の電気状態解析
装置。
8. A voltage sensor for detecting a transmission voltage of the three-phase three-wire transmission and distribution line, a second delay unit for delaying the detected voltage signal for a predetermined time, and the delayed voltage signal and the non-delayed voltage signal. 8. The apparatus according to claim 5, further comprising a second subtraction unit for subtracting the detected voltage signal to obtain a zero-phase voltage, wherein the zero-phase voltage is supplied to the waveform analysis processing unit. An electrical condition analyzer for any of the transmission and distribution lines.
JP2000360654A 2000-11-28 2000-11-28 Device for current detection of power transmission/ distribution line and for analysis of electrical conditions thereof Pending JP2002162423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000360654A JP2002162423A (en) 2000-11-28 2000-11-28 Device for current detection of power transmission/ distribution line and for analysis of electrical conditions thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000360654A JP2002162423A (en) 2000-11-28 2000-11-28 Device for current detection of power transmission/ distribution line and for analysis of electrical conditions thereof

Publications (1)

Publication Number Publication Date
JP2002162423A true JP2002162423A (en) 2002-06-07

Family

ID=18832215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000360654A Pending JP2002162423A (en) 2000-11-28 2000-11-28 Device for current detection of power transmission/ distribution line and for analysis of electrical conditions thereof

Country Status (1)

Country Link
JP (1) JP2002162423A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321206A (en) * 2004-05-06 2005-11-17 Mitsubishi Electric Corp Current detection device
JP2007529629A (en) * 2004-03-17 2007-10-25 ケネコツト・ユタ・コツパー・コーポレーシヨン Electrolytic cell current monitoring
JP2008058035A (en) * 2006-08-29 2008-03-13 Toyota Industries Corp Current measuring apparatus and current measuring method
WO2013011859A1 (en) * 2011-07-21 2013-01-24 アルプス・グリーンデバイス株式会社 Current sensor
CN103134975A (en) * 2013-02-04 2013-06-05 昆山尼赛拉电子器材有限公司 Simple multi-channel current tester
JP5265065B1 (en) * 2012-11-26 2013-08-14 三菱電機株式会社 Current detector
CN103269055A (en) * 2013-06-05 2013-08-28 上海电机学院 Relay protection device and method
JP5615463B1 (en) * 2013-11-15 2014-10-29 三菱電機株式会社 Voltage detection apparatus and voltage detection method
JP2016515707A (en) * 2013-04-04 2016-05-30 レティグリード カンパニー,リミテッド Interference correction type single detection current sensor for multiple busbars
CN109900970A (en) * 2019-04-02 2019-06-18 中国原子能科学研究院 A kind of multi channel detector capacitor automatic measurement system
CN109975605A (en) * 2019-04-02 2019-07-05 中国原子能科学研究院 A kind of multi channel detector leakage current automatic measurement system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007529629A (en) * 2004-03-17 2007-10-25 ケネコツト・ユタ・コツパー・コーポレーシヨン Electrolytic cell current monitoring
JP2005321206A (en) * 2004-05-06 2005-11-17 Mitsubishi Electric Corp Current detection device
JP2008058035A (en) * 2006-08-29 2008-03-13 Toyota Industries Corp Current measuring apparatus and current measuring method
WO2013011859A1 (en) * 2011-07-21 2013-01-24 アルプス・グリーンデバイス株式会社 Current sensor
JPWO2013011859A1 (en) * 2011-07-21 2015-02-23 アルプス・グリーンデバイス株式会社 Current sensor
JP5265065B1 (en) * 2012-11-26 2013-08-14 三菱電機株式会社 Current detector
US9599641B2 (en) 2012-11-26 2017-03-21 Mitsubishi Electric Corporation Current detection device
WO2014080526A1 (en) * 2012-11-26 2014-05-30 三菱電機株式会社 Electric current detection device
CN104769443A (en) * 2012-11-26 2015-07-08 三菱电机株式会社 Electric current detection device
CN103134975B (en) * 2013-02-04 2016-03-30 昆山尼赛拉电子器材有限公司 Simple multi-channel current tester
CN103134975A (en) * 2013-02-04 2013-06-05 昆山尼赛拉电子器材有限公司 Simple multi-channel current tester
JP2016515707A (en) * 2013-04-04 2016-05-30 レティグリード カンパニー,リミテッド Interference correction type single detection current sensor for multiple busbars
CN103269055A (en) * 2013-06-05 2013-08-28 上海电机学院 Relay protection device and method
JP5615463B1 (en) * 2013-11-15 2014-10-29 三菱電機株式会社 Voltage detection apparatus and voltage detection method
CN109900970A (en) * 2019-04-02 2019-06-18 中国原子能科学研究院 A kind of multi channel detector capacitor automatic measurement system
CN109975605A (en) * 2019-04-02 2019-07-05 中国原子能科学研究院 A kind of multi channel detector leakage current automatic measurement system

Similar Documents

Publication Publication Date Title
US8823307B2 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
US9379556B2 (en) Systems and methods for energy harvesting and current and voltage measurements
US4281386A (en) Systems for detecting faults in electric power systems
US20060125486A1 (en) System and method of locating ground fault in electrical power distribution system
JP2617269B2 (en) Device for measuring current in overhead high-voltage lines
JP5618910B2 (en) Insulation deterioration monitoring system
JP2002162423A (en) Device for current detection of power transmission/ distribution line and for analysis of electrical conditions thereof
KR101515478B1 (en) Method for detecting arc by magnetic sensor and arc protection switching board using the same method
JP4692012B2 (en) Converter control device
JP5418219B2 (en) High voltage insulation monitoring device
JP3550125B2 (en) Transmission line fault monitoring device
JP2002311061A (en) Processor for electric power
US20010013771A1 (en) Phase failure monitoring
JP6567230B1 (en) Arc ground fault detection method
JP3260982B2 (en) Harmonic measurement analysis system
US10310017B2 (en) Detection of generator stator inter-circuit faults
JP5444014B2 (en) Insulation monitoring device
JPH0670665B2 (en) Non-contact electric field magnetic field sensor
JP4527346B2 (en) Insulation state monitoring method and device
JP3891434B2 (en) Judgment method of electric quantity change factor
JP3767748B2 (en) Transmission line current detector
JP3274607B2 (en) Transmission line failure monitoring method and device
JP4470809B2 (en) Electronic energy meter
JPH0336920A (en) Ground protector for electrical rotary machine
JP3274616B2 (en) Transmission line fault voltage detection method and device