JP2002161785A - Air/fuel ratio control device for internal combustion engine - Google Patents

Air/fuel ratio control device for internal combustion engine

Info

Publication number
JP2002161785A
JP2002161785A JP2000365226A JP2000365226A JP2002161785A JP 2002161785 A JP2002161785 A JP 2002161785A JP 2000365226 A JP2000365226 A JP 2000365226A JP 2000365226 A JP2000365226 A JP 2000365226A JP 2002161785 A JP2002161785 A JP 2002161785A
Authority
JP
Japan
Prior art keywords
amount
air
exhaust gas
fuel ratio
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000365226A
Other languages
Japanese (ja)
Inventor
Koji Takahashi
浩二 高橋
Shigeo Okuma
重男 大隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP2000365226A priority Critical patent/JP2002161785A/en
Priority to US09/987,641 priority patent/US20020062640A1/en
Publication of JP2002161785A publication Critical patent/JP2002161785A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/36Control for minimising NOx emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the accuracy in estimation of a stored oxygen amount at exhaust reflux from degrading resulting in lowering the accuracy of air/fuel ratio control in an air/fuel ratio control device for an internal combustion engine for estimating the oxygen amount stored in a catalyst from an intake air amount and air/fuel ratio to control the air/fuel ratio based on the estimation value. SOLUTION: The intake air amount is corrected to the value including a refluxed exhaust fraction by multiplying the intake air amount (a new air intake amount) detected with an air flow meter by a correction coefficient set according to an exhaust reflux rate. The oxygen amount stored in the catalyst is estimated from the corrected intake air amount and and air/fuel ratio deviation Δλ, and then the feedback correction coefficient of air/fuel ratio is set so that the stored oxygen amount becomes a target value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の空燃比
制御装置に関し、詳しくは、触媒の貯蔵酸素量に基づい
て燃焼混合気の空燃比を制御する構成の空燃比制御装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control device for an internal combustion engine, and more particularly to an air-fuel ratio control device configured to control the air-fuel ratio of a combustion mixture based on the stored oxygen amount of a catalyst.

【0002】[0002]

【従来の技術】従来から、触媒の上流側に設けられる酸
素センサで検出される空燃比(酸素濃度)と吸入空気量
とから、前記触媒における貯蔵酸素量を推定し、該貯蔵
酸素量が目標値になるように、燃焼混合気の空燃比(燃
料噴射量)を補正する構成の空燃比制御装置が知られて
いる(特開平6−249028号公報,特開平10−1
84425号公報等参照)。
2. Description of the Related Art Conventionally, the amount of oxygen stored in a catalyst has been estimated from the air-fuel ratio (oxygen concentration) detected by an oxygen sensor provided upstream of the catalyst and the amount of intake air. There is known an air-fuel ratio control device configured to correct the air-fuel ratio (fuel injection amount) of a combustion air-fuel mixture to a value (Japanese Patent Laid-Open Nos. 6-249028 and 10-1).
No. 84425, etc.).

【0003】[0003]

【発明が解決しようとする課題】ところで、上記貯蔵酸
素量の推定においては、排気ガス量を直接測定する代わ
りに、該排気ガス量に略一致すると考えられる吸入空気
量の検出値を用いていた。しかし、排気の一部を吸気系
に還流させる排気還流装置を備える機関では、排気還流
が行われるときには、エアフローメータで検出される新
気に還流排気が加わって排気系に流れることになるた
め、エアフローメータで検出される吸入空気量と実際の
排気ガス量とにずれが生じて、貯蔵酸素量に推定誤差が
生じ、空燃比制御精度が悪化することがあった。
In the above estimation of the stored oxygen amount, instead of directly measuring the exhaust gas amount, a detected value of the intake air amount considered to be substantially equal to the exhaust gas amount is used. . However, in an engine equipped with an exhaust gas recirculation device that recirculates part of exhaust gas to the intake system, when exhaust gas recirculation is performed, recirculated exhaust gas is added to fresh air detected by an air flow meter and flows to the exhaust system. A difference may occur between the intake air amount detected by the air flow meter and the actual exhaust gas amount, causing an estimation error in the stored oxygen amount and deteriorating the air-fuel ratio control accuracy.

【0004】本発明は上記問題点に鑑みなされたもので
あり、排気還流が行われる状態であっても吸入空気量か
ら貯蔵酸素量を精度良く推定でき、以って、空燃比制御
精度を維持できる内燃機関の空燃比制御装置を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and can accurately estimate a stored oxygen amount from an intake air amount even in a state in which exhaust gas recirculation is performed, thereby maintaining air-fuel ratio control accuracy. It is an object of the present invention to provide an air-fuel ratio control device for an internal combustion engine that can be used.

【0005】[0005]

【課題を解決するための手段】そのため請求項1記載の
発明では、機関の吸入空気量と排気中の酸素濃度とに基
づき、排気管に介装される触媒の貯蔵酸素量を推定し、
該推定した貯蔵酸素量に基づいて燃焼混合気の空燃比を
制御する内燃機関の空燃比制御装置において、前記貯蔵
酸素量の推定に用いる吸入空気量を、排気還流率に応じ
て補正する構成とした。
According to the present invention, the amount of oxygen stored in a catalyst disposed in an exhaust pipe is estimated based on the amount of intake air of an engine and the concentration of oxygen in exhaust gas.
An air-fuel ratio control device for an internal combustion engine that controls an air-fuel ratio of a combustion air-fuel mixture based on the estimated stored oxygen amount, wherein an intake air amount used for estimating the stored oxygen amount is corrected according to an exhaust gas recirculation rate. did.

【0006】かかる構成によると、排気還流が行われる
ときに、吸入空気量と排気ガス量との間にずれが生じる
から、排気還流率に応じて前記ずれを補償する補正を吸
入空気量に対して施し、該補正された吸入空気量に基づ
いて貯蔵酸素量を推定させる。請求項2記載の発明で
は、新気吸気量の検出値を、排気還流率が高いときほど
より大きく増大補正する構成とした。
According to this configuration, when the exhaust gas recirculation is performed, a difference occurs between the intake air amount and the exhaust gas amount. Therefore, a correction for compensating the difference according to the exhaust gas recirculation rate is made with respect to the intake air amount. And the stored oxygen amount is estimated based on the corrected intake air amount. According to the second aspect of the present invention, the detected value of the fresh air intake amount is corrected to increase more as the exhaust gas recirculation rate increases.

【0007】かかる構成によると、エアフローメータで
検出される新気吸気量には、還流排気分が含まれないの
で、排気還流率が高いほど(還流排気量が多いほど)、
前記新気吸気量の検出値をより大きく増大補正する。請
求項3記載の発明では、排気還流率に応じて設定した補
正係数によって前記吸入空気量を補正設定する構成とし
た。
With this configuration, the amount of fresh air intake detected by the air flow meter does not include the amount of recirculated exhaust gas. Therefore, the higher the exhaust gas recirculation rate (the larger the amount of recirculated exhaust gas),
The detected value of the fresh air intake amount is increased and corrected to be larger. According to the third aspect of the invention, the intake air amount is corrected and set by a correction coefficient set according to the exhaust gas recirculation rate.

【0008】かかる構成によると、そのときの排気還流
率に基づく演算やテーブルからの検索によって補正係数
を設定し、該補正係数によって吸入空気量の検出値を補
正し、該補正後の吸入空気量を用いて貯蔵酸素量を推定
させる。請求項4記載の発明では、排気管に介装される
触媒の貯蔵酸素量を推定し、該推定した貯蔵酸素量に基
づいて燃焼混合気の空燃比を制御する内燃機関の空燃比
制御装置において、機関の新気吸気量と排気還流率とか
ら排気ガス量を推定し、前記推定した排気ガス量と排気
中の酸素濃度とに基づき、前記貯蔵酸素量を推定する構
成とした。
According to this configuration, the correction coefficient is set by calculation based on the exhaust gas recirculation rate at that time or by searching from a table, and the detected value of the intake air amount is corrected by the correction coefficient. Is used to estimate the amount of stored oxygen. According to a fourth aspect of the present invention, there is provided an air-fuel ratio control device for an internal combustion engine for estimating a stored oxygen amount of a catalyst interposed in an exhaust pipe and controlling an air-fuel ratio of a combustion mixture based on the estimated stored oxygen amount. The exhaust gas amount is estimated from the fresh air intake amount of the engine and the exhaust gas recirculation rate, and the stored oxygen amount is estimated based on the estimated exhaust gas amount and the oxygen concentration in the exhaust gas.

【0009】かかる構成によると、新気吸気量と還流排
気との加算結果が排気ガス量になるので、新気吸気量と
排気還流率とから排気ガス量を推定し、該推定値に基づ
いて貯蔵酸素量を推定する。
According to this configuration, since the addition result of the fresh air intake amount and the recirculation exhaust gas is the exhaust gas amount, the exhaust gas amount is estimated from the fresh air intake amount and the exhaust gas recirculation rate, and based on the estimated value. Estimate the amount of stored oxygen.

【0010】[0010]

【発明の効果】請求項1記載の発明によると、吸入空気
量を排気還流率に応じて補正することで、排気還流時で
あっても吸入空気量を排気ガス相当量としてから触媒の
貯蔵酸素量を推定させることができ、貯蔵酸素量の推定
精度を維持できるという効果がある。
According to the first aspect of the present invention, by correcting the intake air amount according to the exhaust gas recirculation rate, the intake air amount is made equivalent to the exhaust gas even during the exhaust gas recirculation, so that the stored oxygen of the catalyst is reduced. The amount can be estimated, and the effect of maintaining the estimation accuracy of the stored oxygen amount can be maintained.

【0011】請求項2記載の発明によると、排気還流率
の増大に応じて還流排気量が増え、該還流排気量が新気
吸気量に加わって排気ガス量になることに対応して、貯
蔵酸素量の推定に用いる吸入空気量を補正することがで
きるという効果がある。請求項3記載の発明によると、
排気還流率に応じた補正係数によって還流排気分を含む
値に吸入空気量を補正することができるという効果があ
る。
According to the second aspect of the present invention, the amount of recirculated exhaust gas increases in accordance with the increase in the recirculation ratio of exhaust gas, and the amount of recirculated exhaust gas becomes equal to the amount of exhaust gas in addition to the amount of fresh air intake. There is an effect that the intake air amount used for estimating the oxygen amount can be corrected. According to the invention described in claim 3,
There is an effect that the intake air amount can be corrected to a value including the recirculated exhaust gas by a correction coefficient according to the exhaust gas recirculation rate.

【0012】請求項4記載の発明によると、新気吸気量
と排気還流によって吸気系に戻される排気との加算結果
が排気ガス量になることに対応して、新気吸気量の検出
値から精度良く排気ガス量が推定でき、以って、貯蔵酸
素量の推定精度を維持できるという効果がある。
According to the fourth aspect of the present invention, in response to the addition of the fresh air intake amount and the exhaust gas returned to the intake system by the exhaust gas recirculation being the exhaust gas amount, the detected value of the fresh air intake amount is determined. There is an effect that the exhaust gas amount can be estimated with high accuracy, and thus the estimation accuracy of the stored oxygen amount can be maintained.

【0013】[0013]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。図1は実施の形態における内燃機関のシステム構
成図である。この図1において、車両に搭載される内燃
機関1の各気筒の燃焼室には、エアクリーナ2,吸気通
路3,モータで開閉駆動される電子制御式スロットル弁
4を介して空気が吸入される。
Embodiments of the present invention will be described below. FIG. 1 is a system configuration diagram of an internal combustion engine according to the embodiment. In FIG. 1, air is drawn into a combustion chamber of each cylinder of an internal combustion engine 1 mounted on a vehicle via an air cleaner 2, an intake passage 3, and an electronically controlled throttle valve 4 driven to open and close by a motor.

【0014】各気筒の燃焼室内に燃料(ガソリン)を直
接噴射する電磁式の燃料噴射弁5が設けられており、該
燃料噴射弁5から噴射される燃料と前記吸入される空気
とによって燃焼室内に混合気が形成される。燃料噴射弁
5は、コントロールユニット20から出力される噴射パ
ルス信号によりソレノイドに通電されて開弁し、所定圧
力に調圧された燃料を噴射する。
An electromagnetic fuel injection valve 5 for directly injecting fuel (gasoline) into the combustion chamber of each cylinder is provided, and the fuel injected from the fuel injection valve 5 and the sucked air are used in the combustion chamber. A mixture is formed. The fuel injection valve 5 is energized by a solenoid in response to an injection pulse signal output from the control unit 20, opens the valve, and injects fuel adjusted to a predetermined pressure.

【0015】燃焼室内に形成される混合気は、点火栓6
により着火燃焼する。尚、内燃機関1を上記の直接筒内
噴射式ガソリン機関に限定するものではなく、吸気ポー
トに燃料を噴射する構成の内燃機関であっても良い。機
関1からの排気は排気通路7より排出され、該排気通路
7には排気浄化用の触媒8が介装されている。
The air-fuel mixture formed in the combustion chamber is
Ignition combustion. The internal combustion engine 1 is not limited to the direct in-cylinder gasoline engine described above, but may be an internal combustion engine configured to inject fuel into an intake port. Exhaust gas from the engine 1 is exhausted from an exhaust passage 7, and an exhaust purification catalyst 8 is interposed in the exhaust passage 7.

【0016】前記触媒8は、酸素貯蔵能力を有する三元
触媒であって、排気中の有害3成分である一酸化炭素C
O及び炭化水素HCを酸化すると共に、酸化窒素NOx
を還元して、無害な二酸化炭素、水蒸気及び窒素に変換
させるものである。そして、該三元触媒8による浄化性
能は、排気空燃比が理論空燃比であるときに最も高く、
排気空燃比がリーンで酸素量が過剰であると、酸化作用
は活発になるが還元作用が不活発となり、逆に、排気空
燃比がリッチで酸素量が少ないと、酸化作用は不活発に
なるが還元作用が活発となる。
The catalyst 8 is a three-way catalyst having an oxygen storage capacity, and comprises carbon monoxide C, which is a harmful three component in exhaust gas.
Oxidates O and hydrocarbons HC, and produces NOx
Is converted to harmless carbon dioxide, water vapor and nitrogen. The purification performance of the three-way catalyst 8 is highest when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio,
When the exhaust air-fuel ratio is lean and the amount of oxygen is excessive, the oxidizing action becomes active but the reducing action becomes inactive. Conversely, when the exhaust air-fuel ratio is rich and the amount of oxygen is small, the oxidizing action becomes inactive However, the reduction action becomes active.

【0017】但し、前記三元触媒8は酸素を貯蔵する能
力(酸素ストレージ効果)を有するため、排気空燃比が
一時的にリッチになったときには、それまでに貯蔵され
ていた酸素を使用し、逆に、排気空燃比が一時的にリー
ンになったときには、余分な酸素を貯蔵することで、排
気浄化性能を維持できるようになっている。従って、空
燃比が理論空燃比からリーン側にずれたときに酸化窒素
NOxを還元でき、かつ、空燃比が理論空燃比からリッ
チ側にずれたときに一酸化炭素CO及び炭化水素HCを
酸化できるようにするためには、三元触媒8に貯蔵され
る酸素の量(貯蔵酸素量)を、貯蔵できる最大量の半分
程度に維持し、余分な酸素を貯蔵し、かつ、酸化処理に
必要な酸素を脱離して供給できる状態にしておくことが
要求される。
However, since the three-way catalyst 8 has the ability to store oxygen (oxygen storage effect), when the exhaust air-fuel ratio becomes temporarily rich, the previously stored oxygen is used. Conversely, when the exhaust air-fuel ratio temporarily becomes lean, excess oxygen is stored to maintain exhaust purification performance. Therefore, when the air-fuel ratio deviates from the stoichiometric air-fuel ratio to the lean side, nitrogen oxide NOx can be reduced, and when the air-fuel ratio deviates from the stoichiometric air-fuel ratio to the rich side, carbon monoxide CO and hydrocarbon HC can be oxidized. In order to achieve this, the amount of oxygen stored in the three-way catalyst 8 (storage oxygen amount) is maintained at about half the maximum amount that can be stored, excess oxygen is stored, and the amount of oxygen required for the oxidation treatment is maintained. It is required that oxygen be desorbed and supplied.

【0018】そこで、前記コントロールユニット20
は、目標空燃比を理論空燃比とする運転領域において、
三元触媒8における貯蔵酸素量を推定し、該推定される
貯蔵酸素量が目標量(最大貯蔵酸素量の半分程度)より
も少ないときには、空燃比をリーン化させて貯蔵酸素量
を増大させ、逆に、推定される貯蔵酸素量が目標量より
も多いときには、空燃比をリッチ化させて余分な酸素を
脱離させ貯蔵酸素量を減少させるように、前記燃料噴射
弁5による燃料噴射量をフィードバック制御するように
なっている。
Therefore, the control unit 20
Is in the operating range where the target air-fuel ratio is the stoichiometric air-fuel ratio,
The stored oxygen amount in the three-way catalyst 8 is estimated, and when the estimated stored oxygen amount is smaller than the target amount (about half of the maximum stored oxygen amount), the air-fuel ratio is made lean to increase the stored oxygen amount, Conversely, when the estimated stored oxygen amount is larger than the target amount, the fuel injection amount by the fuel injection valve 5 is increased so that the air-fuel ratio is enriched to remove excess oxygen and reduce the stored oxygen amount. Feedback control is performed.

【0019】また、機関1の排気の一部を吸気側に還流
させる排気還流(EGR)装置が設けられている。前記
排気還流装置は、排気マニホールド16と吸気コレクタ
部17とを接続する排気還流通路18と、該排気還流通
路18の途中に介装される電制EGRコントロールバル
ブ19とから構成され、前記電制EGRコントロールバ
ルブ19が開制御されると、バルブ19の前後差圧によ
って排気の一部が吸気コレクタ部17に還流される構成
となっている。
An exhaust gas recirculation (EGR) device for recirculating a part of the exhaust gas of the engine 1 to the intake side is provided. The exhaust gas recirculation device includes an exhaust gas recirculation passage 18 that connects the exhaust manifold 16 and the intake collector unit 17, and an electronically controlled EGR control valve 19 interposed in the exhaust gas recirculation passage 18. When the EGR control valve 19 is controlled to open, a part of the exhaust gas is recirculated to the intake collector 17 due to the differential pressure across the valve 19.

【0020】前記コントロールユニット20は、CP
U,ROM,RAM,A/D変換器及び入出力インター
フェイス等を含んで構成されるマイコンを備え、各種セ
ンサからの入力信号を受け、これらに基づいて演算処理
して、電子制御式スロットル弁4の開度,燃料噴射弁5
による噴射量・噴射時期,点火栓6による点火時期を制
御すると共に、電制EGRコントロールバルブ19の制
御を介して排気還流率を制御する。
The control unit 20 includes a CP
A microcomputer including U, ROM, RAM, A / D converter, input / output interface, etc., receives input signals from various sensors, performs arithmetic processing based on these signals, and controls the electronically controlled throttle valve 4. Opening, fuel injection valve 5
And the ignition timing of the ignition plug 6, and the exhaust gas recirculation rate is controlled through the control of the electronically controlled EGR control valve 19.

【0021】前記排気還流率の制御においては、機関負
荷及び機関回転速度などの運転条件から目標の排気還流
率を設定し、バルブ19を駆動するステップモータや電
磁コイルなどのアクチュエータに対して前記目標排気還
流率に対応するEGR制御信号を出力する。前記各種セ
ンサとして、機関1のクランク角を検出するクランク角
センサ21、カム軸から気筒判別信号を取り出すカムセ
ンサ22が設けられており、前記クランク角センサ21
からの信号に基づき機関の回転速度Neが算出される。
In the control of the exhaust gas recirculation rate, a target exhaust gas recirculation rate is set based on operating conditions such as an engine load and an engine rotation speed, and the target is controlled by an actuator such as a step motor or an electromagnetic coil for driving the valve 19. An EGR control signal corresponding to the exhaust gas recirculation rate is output. As the various sensors, a crank angle sensor 21 for detecting a crank angle of the engine 1 and a cam sensor 22 for extracting a cylinder discrimination signal from a cam shaft are provided.
The engine speed Ne is calculated based on the signal from the engine.

【0022】この他、吸気通路3のスロットル弁4上流
側で吸入空気量Qを検出するエアフローメータ23、ア
クセルペダルの踏込み量(アクセル開度)APSを検出
するアクセルセンサ24、スロットル弁4の開度TVO
を検出するスロットルセンサ25、機関1の冷却水温T
wを検出する水温センサ26、排気中の酸素濃度を広域
に検出する酸素センサ27、車速VSPを検出する車速
センサ28などが設けられている。
In addition, an air flow meter 23 for detecting an intake air amount Q upstream of the throttle valve 4 in the intake passage 3, an accelerator sensor 24 for detecting an accelerator pedal depression amount (accelerator opening) APS, and opening of the throttle valve 4 Degree TVO
Sensor 25 for detecting the temperature of the engine, the cooling water temperature T of the engine 1
A water temperature sensor 26 for detecting w, an oxygen sensor 27 for detecting oxygen concentration in exhaust gas over a wide area, a vehicle speed sensor 28 for detecting a vehicle speed VSP, and the like are provided.

【0023】ここで、前記コントロールユニット20に
よる貯蔵酸素量に基づく空燃比制御の様子を、図2のブ
ロック図に従って説明する。図2のブロック図におい
て、補正係数設定部101では、そのときの排気還流率
(EGR率)に基づいて、エアフローメータ23で検出
される吸入空気量Qを補正するための補正係数を設定す
る。
Here, how the control unit 20 controls the air-fuel ratio based on the stored oxygen amount will be described with reference to the block diagram of FIG. In the block diagram of FIG. 2, a correction coefficient setting unit 101 sets a correction coefficient for correcting the intake air amount Q detected by the air flow meter 23 based on the exhaust gas recirculation rate (EGR rate) at that time.

【0024】前記補正係数は、排気還流率が0であると
き、即ち、排気還流の停止状態で1.0に設定され、排気
還流率が高くなるほどより大きな値に設定される。尚、
前記補正係数の設定は、排気還流率に対応する補正係数
を予め記憶したテーブルからの検索、又は、排気還流率
を変数とする演算によって行われる。前記エアフローメ
ータ23は、機関の新気吸気量を検出するが、排気還流
が行われるときには、機関に新気と共に還流された排気
が流入し、排気ガス量は、新気量と還流排気量とを加算
した量となる。
The correction coefficient is set to 1.0 when the exhaust gas recirculation rate is 0, that is, when the exhaust gas recirculation is stopped, and is set to a larger value as the exhaust gas recirculation rate increases. still,
The setting of the correction coefficient is performed by searching a correction coefficient corresponding to the exhaust gas recirculation rate from a table stored in advance, or by performing an operation using the exhaust gas recirculation rate as a variable. The air flow meter 23 detects the fresh air intake amount of the engine, but when the exhaust gas recirculation is performed, the exhaust gas recirculated together with the fresh air flows into the engine, and the exhaust gas amount becomes the fresh air amount and the recirculated exhaust amount. Is added.

【0025】従って、排気還流が行われる状態では、エ
アフローメータ23で検出された新気量が排気ガス量を
示すものとして貯蔵酸素量を推定させると、実際の排気
ガス量よりも少ない量に基づいて酸素量を判定し、これ
に基づいて貯蔵酸素量を推定することになり、貯蔵酸素
量の推定精度が低下することになってしまう。そこで、
実際の排気ガス量に応じて貯蔵酸素量を推定させるべ
く、吸入空気量の検出値を還流排気分だけ増大補正し、
補正後の吸入空気量が実際の排気ガス量を正しく示すよ
うにした上で、貯蔵酸素量の推定演算に用いる構成とし
てある。
Therefore, in the state where exhaust gas recirculation is performed, if the amount of stored oxygen is estimated based on the amount of fresh air detected by the air flow meter 23 indicating the amount of exhaust gas, the amount of stored oxygen is estimated based on an amount smaller than the actual amount of exhaust gas. Therefore, the stored oxygen amount is estimated based on the determined oxygen amount, and the estimation accuracy of the stored oxygen amount is reduced. Therefore,
In order to estimate the stored oxygen amount according to the actual exhaust gas amount, the detected value of the intake air amount is increased and corrected by the amount of the recirculated exhaust gas,
After the corrected intake air amount correctly indicates the actual exhaust gas amount, the configuration is used for estimating the stored oxygen amount.

【0026】換言すれば、前記補正係数による補正後の
値は、還流排気分を含む排気ガス量に相当することにな
る。前記補正係数設定部101で設定された補正係数
は、エアフローメータ23で検出された吸入空気量Qに
乗算され、該乗算補正後の吸入空気量Q(排気ガス量)
のデータに、理論空燃比(空気過剰率λ=1)と酸素セ
ンサ27で検出される空燃比との偏差Δλが乗算され
る。
In other words, the value corrected by the correction coefficient corresponds to the amount of exhaust gas including the recirculated exhaust gas. The correction coefficient set by the correction coefficient setting unit 101 is multiplied by the intake air amount Q detected by the air flow meter 23, and the intake air amount Q (exhaust gas amount) after the multiplication correction.
Is multiplied by the deviation Δλ between the stoichiometric air-fuel ratio (excess air ratio λ = 1) and the air-fuel ratio detected by the oxygen sensor 27.

【0027】前記空燃比偏差Δλは、燃焼混合気の空燃
比が理論空燃比よりもリーンであれば正の値となり、リ
ッチであれば負の値になり、燃焼混合気の空燃比が理論
空燃比よりもリーンであれば、触媒8における貯蔵酸素
量が増大変化し、燃焼混合気の空燃比が理論空燃比より
もリッチであれば、触媒8における貯蔵酸素量が減少変
化することに対応する。
The air-fuel ratio deviation Δλ has a positive value if the air-fuel ratio of the combustion mixture is leaner than the stoichiometric air-fuel ratio, and has a negative value if the air-fuel ratio is rich. If the fuel ratio is leaner, the stored oxygen amount in the catalyst 8 increases and changes. If the air-fuel ratio of the combustion mixture is richer than the stoichiometric air-fuel ratio, the stored oxygen amount in the catalyst 8 decreases and changes. .

【0028】前記吸入空気量Qと空燃比偏差Δλとの乗
算結果には定数Kが乗算され、その結果が、積分器10
2で逐次積分され、触媒8における貯蔵酸素量が求めら
れる。ここで、上記貯蔵酸素量の推定に用いた吸入空気
量Qは、排気還流時には還流排気分を含む値に補正され
るから、排気還流時であっても、実際の排気ガス量に応
じて貯蔵酸素量を求めることができる。
The result of multiplication of the intake air amount Q and the air-fuel ratio deviation Δλ is multiplied by a constant K.
2, the stored oxygen amount in the catalyst 8 is obtained. Here, since the intake air amount Q used for estimating the stored oxygen amount is corrected to a value including the recirculated exhaust gas at the time of exhaust gas recirculation, the stored air amount Q is stored in accordance with the actual exhaust gas amount even at the time of exhaust gas recirculation. The amount of oxygen can be determined.

【0029】次いで、前記積分器102から出力される
貯蔵酸素量の推定値と最大貯蔵酸素量の半分程度の値で
ある目標値との偏差が演算される。そして、前記貯蔵酸
素量の偏差のデータが入力されるフィードバック補正係
数設定部103では、貯蔵酸素量の推定値を目標値に一
致させるべく、空燃比のフィードバック補正係数を演算
する。
Next, a deviation between the estimated value of the stored oxygen amount output from the integrator 102 and a target value which is about half of the maximum stored oxygen amount is calculated. Then, the feedback correction coefficient setting unit 103 to which the data on the deviation of the stored oxygen amount is input calculates a feedback correction coefficient of the air-fuel ratio so that the estimated value of the stored oxygen amount matches the target value.

【0030】即ち、貯蔵酸素量が目標量よりも少ないと
きには、空燃比をリーン化させて貯蔵酸素量を増大さ
せ、逆に、貯蔵酸素量が目標量よりも多いときには、空
燃比をリッチ化させて余分な酸素を脱離させ貯蔵酸素量
を減少させるように、フィードバック補正係数を設定す
る。噴射量演算部104では、前記フィードバック補正
係数を用いて基本燃料噴射量を補正して最終的な燃料噴
射量を演算し、該燃料噴射量に相当する噴射パルス信号
を燃料噴射弁5に出力する。
That is, when the stored oxygen amount is smaller than the target amount, the air-fuel ratio is made lean to increase the stored oxygen amount. Conversely, when the stored oxygen amount is larger than the target amount, the air-fuel ratio is made rich. The feedback correction coefficient is set so that excess oxygen is desorbed to reduce the amount of stored oxygen. The injection amount calculation unit 104 corrects the basic fuel injection amount using the feedback correction coefficient to calculate a final fuel injection amount, and outputs an injection pulse signal corresponding to the fuel injection amount to the fuel injection valve 5. .

【0031】尚、上記ではエアフローメータ23によっ
て吸入空気量Qを検出させる構成としたが、吸気圧力に
基づいて吸入空気量を検出する構成において排気還流時
に吸入空気量と排気ガス量とに誤差が生じる場合や、ス
ロットル開度及び機関回転速度から吸入空気量を推定す
る構成において、排気還流率に応じた補正を吸入空気量
に対して施せば、排気還流時であっても貯蔵酸素量の推
定精度を維持することができる。
In the above description, the intake air amount Q is detected by the air flow meter 23. However, in the configuration in which the intake air amount is detected based on the intake pressure, there is an error between the intake air amount and the exhaust gas amount during exhaust gas recirculation. If this occurs, or in a configuration in which the intake air amount is estimated from the throttle opening and the engine speed, a correction according to the exhaust gas recirculation rate is made to the intake air amount, so that the stored oxygen amount can be estimated even during exhaust gas recirculation. Accuracy can be maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態における内燃機関のシステム構成
図。
FIG. 1 is a system configuration diagram of an internal combustion engine according to an embodiment.

【図2】実施の形態における空燃比制御を示すブロック
図。
FIG. 2 is a block diagram showing air-fuel ratio control in the embodiment.

【符号の説明】[Explanation of symbols]

1…内燃機関 4…スロットル弁 5…燃料噴射弁 6…点火栓 8…触媒 18…排気還流通路 19…電制EGRコントロールバルブ 20…コントロールユニット 21…クランク角センサ 23…エアフローメータ 27…酸素センサ 101…補正係数設定部 102…積分器 103…フィードバック補正係数設定部 104…噴射量演算部 DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 4 ... Throttle valve 5 ... Fuel injection valve 6 ... Spark plug 8 ... Catalyst 18 ... Exhaust recirculation passage 19 ... Electric control EGR control valve 20 ... Control unit 21 ... Crank angle sensor 23 ... Air flow meter 27 ... Oxygen sensor 101 ... Correction coefficient setting unit 102 ... Integrator 103 ... Feedback correction coefficient setting unit 104 ... Injection amount calculation unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 45/00 358 F02D 45/00 366F 366 368F 368 F02M 25/07 550R F02M 25/07 550 550F B01D 53/36 103B Fターム(参考) 3G062 AA03 BA02 BA04 BA05 BA06 BA08 EA11 EA12 FA04 FA12 GA01 GA04 GA06 GA08 GA17 GA25 3G084 BA05 BA09 BA13 DA04 DA25 EA04 EA08 EA11 EB11 FA07 FA20 FA29 FA37 3G091 AA02 AA11 AA17 AA23 AA24 AB03 BA14 BA15 BA19 CA13 CB02 CB07 DA01 DA02 DB06 DB07 DB10 DB13 DC01 EA01 EA05 EA07 EA16 EA21 EA34 EA39 FB10 FB11 FB12 HA36 HB03 HB05 3G301 HA01 HA04 HA13 LA03 LC03 MA01 MA11 NA08 NB02 NB05 ND01 PA01Z PD02A PD02Z PD15Z PE08Z 4D048 AA06 AA13 AA18 AB01 AB02 AB03 AB05 CC27 CC38 DA01 DA02 DA20 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 45/00358 F02D 45/00 366F 366 368F 368 F02M 25/07 550R F02M 25/07 550 550F B01D 53 / 36 103B F-term (reference) 3G062 AA03 BA02 BA04 BA05 BA06 BA08 EA11 EA12 FA04 FA12 GA01 GA04 GA06 GA08 GA17 GA25 3G084 BA05 BA09 BA13 DA04 DA25 EA04 EA08 EA11 EB11 FA07 FA20 FA29 FA37 3G091 AA13 A19 A23 A19 AA23A19 A23A23 CB07 DA01 DA02 DB06 DB07 DB10 DB13 DC01 EA01 EA05 EA07 EA16 EA21 EA34 EA39 FB10 FB11 FB12 HA36 HB03 HB05 3G301 HA01 HA04 HA13 LA03 LC03 MA01 MA11 NA08 DANBAB NB05 ND01 PA01Z PD02A PD02ZPD15A18 AB08 AB08 A08Z08 DA20

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】機関の吸入空気量と排気中の酸素濃度とに
基づき、排気管に介装される触媒の貯蔵酸素量を推定
し、該推定した貯蔵酸素量に基づいて燃焼混合気の空燃
比を制御する内燃機関の空燃比制御装置において、 前記貯蔵酸素量の推定に用いる吸入空気量を、排気還流
率に応じて補正することを特徴とする内燃機関の空燃比
制御装置。
An estimated amount of oxygen stored in a catalyst interposed in an exhaust pipe is estimated based on an intake air amount of an engine and an oxygen concentration in exhaust gas. An air-fuel ratio control device for an internal combustion engine for controlling a fuel ratio, wherein an intake air amount used for estimating the stored oxygen amount is corrected according to an exhaust gas recirculation rate.
【請求項2】新気吸気量の検出値を、排気還流率が高い
ときほどより大きく増大補正することを特徴とする請求
項1記載の内燃機関の空燃比制御装置。
2. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein the detected value of the fresh air intake amount is corrected to increase more as the exhaust gas recirculation rate is higher.
【請求項3】排気還流率に応じて設定した補正係数によ
って前記吸入空気量を補正設定することを特徴とする請
求項1又は2記載の内燃機関の空燃比制御装置。
3. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein the intake air amount is corrected and set by a correction coefficient set according to an exhaust gas recirculation rate.
【請求項4】排気管に介装される触媒の貯蔵酸素量を推
定し、該推定した貯蔵酸素量に基づいて燃焼混合気の空
燃比を制御する内燃機関の空燃比制御装置において、 機関の新気吸気量と排気還流率とから排気ガス量を推定
し、前記推定した排気ガス量と排気中の酸素濃度とに基
づき、前記貯蔵酸素量を推定することを特徴とする内燃
機関の空燃比制御装置。
4. An air-fuel ratio control device for an internal combustion engine for estimating a stored oxygen amount of a catalyst disposed in an exhaust pipe and controlling an air-fuel ratio of a combustion air-fuel mixture based on the estimated stored oxygen amount. Estimating an exhaust gas amount from a fresh air intake amount and an exhaust gas recirculation rate, and estimating the stored oxygen amount based on the estimated exhaust gas amount and an oxygen concentration in the exhaust gas. Control device.
JP2000365226A 2000-11-30 2000-11-30 Air/fuel ratio control device for internal combustion engine Pending JP2002161785A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000365226A JP2002161785A (en) 2000-11-30 2000-11-30 Air/fuel ratio control device for internal combustion engine
US09/987,641 US20020062640A1 (en) 2000-11-30 2001-11-15 Device and method for controlling air-fuel ratio of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000365226A JP2002161785A (en) 2000-11-30 2000-11-30 Air/fuel ratio control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2002161785A true JP2002161785A (en) 2002-06-07

Family

ID=18836038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000365226A Pending JP2002161785A (en) 2000-11-30 2000-11-30 Air/fuel ratio control device for internal combustion engine

Country Status (2)

Country Link
US (1) US20020062640A1 (en)
JP (1) JP2002161785A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7360261B2 (en) * 2019-07-03 2023-10-12 株式会社Subaru engine system

Also Published As

Publication number Publication date
US20020062640A1 (en) 2002-05-30

Similar Documents

Publication Publication Date Title
JP3902399B2 (en) Air-fuel ratio control device for internal combustion engine
JP5001183B2 (en) Air-fuel ratio control device for internal combustion engine
JP4065784B2 (en) Control device for internal combustion engine
JP4232524B2 (en) Engine control device
JP2002227692A (en) Air fuel ratio controller for engine
JP2861377B2 (en) Air-fuel ratio feedback control method for multi-fuel internal combustion engine
JP2004108183A (en) Air-fuel ratio control device for internal combustion engine
JP2002180876A (en) Air-fuel ratio controller for internal combustion engine
JP3939026B2 (en) Three-way catalyst oxygen storage control device
JP2002161785A (en) Air/fuel ratio control device for internal combustion engine
JP2000303880A (en) Oxygen storage quantity control device for catalytic converter rhodium
JP3376172B2 (en) Air-fuel ratio control device for internal combustion engine
JPH07151000A (en) Control device for air-fuel ratio of internal combustion engine
JP2002364427A (en) Air-fuel ratio controller for engine
JP2003148235A (en) Air-fuel ratio detecting device for engine
JP3998784B2 (en) EGR rate estimation device for engine
JPH09287494A (en) Controller for internal combustion engine having electronically controlled throttle
JP5331931B2 (en) Air-fuel ratio control device for internal combustion engine
WO2023223504A1 (en) Device and method for controlling oxygen storage amount in three-way catalyst
JP4064092B2 (en) Engine air-fuel ratio control device
JP4072412B2 (en) Air-fuel ratio control device for internal combustion engine
JP3998949B2 (en) Engine air-fuel ratio control device
JP3161248B2 (en) Air-fuel ratio control device for internal combustion engine with EGR device
JP3916416B2 (en) Control device for internal combustion engine
JP2002364423A (en) Air-fuel ratio controller for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061106