JP2002161756A - Steam cooling device of gas turbine - Google Patents

Steam cooling device of gas turbine

Info

Publication number
JP2002161756A
JP2002161756A JP2000360800A JP2000360800A JP2002161756A JP 2002161756 A JP2002161756 A JP 2002161756A JP 2000360800 A JP2000360800 A JP 2000360800A JP 2000360800 A JP2000360800 A JP 2000360800A JP 2002161756 A JP2002161756 A JP 2002161756A
Authority
JP
Japan
Prior art keywords
steam
cooling
control valve
pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000360800A
Other languages
Japanese (ja)
Other versions
JP4610722B2 (en
Inventor
Tomoyoshi Tanaka
知佳 田中
Koji Hiramoto
康治 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000360800A priority Critical patent/JP4610722B2/en
Priority to CA002364125A priority patent/CA2364125C/en
Priority to DE60126556T priority patent/DE60126556T2/en
Priority to US09/994,756 priority patent/US6651440B2/en
Priority to EP01127481A priority patent/EP1209325B1/en
Publication of JP2002161756A publication Critical patent/JP2002161756A/en
Application granted granted Critical
Publication of JP4610722B2 publication Critical patent/JP4610722B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PROBLEM TO BE SOLVED: To protect high temperature parts without the use of interlocking function even when the temperature rises at an outlet side of the high temperature parts. SOLUTION: The outlet steam of a medium pressure drum 5 from a steam cooling passage 14 is supplied to a burner 13 as cooling steam, the steam flow induced into the burner 13 by opening a steam flow control valve 15 increases when the after-cooling steam temperature rises at the outlet side of the burner 13 and the burner 13 is protected without the use of interlocking function even when the temperature rises at the outlet side of the burner 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンの燃
焼器等の高温部品に排熱回収ボイラからの蒸気または補
助経路からの流体を導入して温度制御するガスタービン
の蒸気冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam cooling system for a gas turbine for controlling the temperature by introducing steam from an exhaust heat recovery boiler or a fluid from an auxiliary path into a high-temperature component such as a combustor of the gas turbine.

【0002】[0002]

【従来の技術】エネルギー資源の有効利用と経済性の観
点から、発電設備(発電プラント)では様々な高効率化
が図られている。ガスタービンと蒸気タービンを組み合
わせたタービン発電プラント(複合発電プラント)もそ
の一つである。複合発電プラントでは、ガスタービンか
らの高温の排気ガスが排熱回収ボイラに送られ、排熱回
収ボイラ内で過熱ユニットを介して蒸気を発生させ、発
生した蒸気を蒸気タービンに送って蒸気タービンで仕事
をするようになっている。
2. Description of the Related Art From the viewpoints of effective use of energy resources and economic efficiency, various high efficiencies have been achieved in power generation facilities (power generation plants). A turbine power plant (combined power plant) combining a gas turbine and a steam turbine is one of them. In a combined cycle power plant, high-temperature exhaust gas from a gas turbine is sent to an exhaust heat recovery boiler, where steam is generated via a superheating unit in the exhaust heat recovery boiler, and the generated steam is sent to a steam turbine and sent to a steam turbine. I am going to work.

【0003】ガスタービンの燃焼器等の高温部品は空気
により冷却されていたが、近年の燃焼温度の高温化にと
もない蒸気により冷却されるようになってきている。複
合発電プラントにおいても、燃焼器等の高温部品を蒸気
によって冷却するガスタービンを適用し、蒸気タービン
と組み合わせて高効率な発電プラントが計画されてい
る。例えば、排熱回収ボイラからの蒸気(中圧蒸気)を
燃焼器にバイパスさせて冷却蒸気を燃焼器に導き、温度
や圧力等に基づいて冷却蒸気の量を調節して所望量の冷
却蒸気を燃焼器に供給するようにしている。そして、冷
却後の蒸気は蒸気タービン側に回収している。このた
め、効率の良い冷却システムが構築された複合発電プラ
ントとなる。
[0003] High-temperature components such as a combustor of a gas turbine have been cooled by air, but with the recent rise in combustion temperature, they have been cooled by steam. Also in a combined cycle power plant, a gas turbine that cools a high-temperature component such as a combustor with steam is applied, and a highly efficient power plant is planned in combination with a steam turbine. For example, the steam (medium pressure steam) from the exhaust heat recovery boiler is bypassed to the combustor to guide the cooling steam to the combustor. It is supplied to the combustor. Then, the cooled steam is collected on the steam turbine side. For this reason, it becomes a combined cycle power plant in which an efficient cooling system is constructed.

【0004】[0004]

【発明が解決しようとする課題】従来のガスタービンの
蒸気冷却装置は、燃焼器に供給される冷却蒸気の量を調
節することで所望量の冷却蒸気を供給しているので、予
め決められた流量設定通りに冷却蒸気の量を制御するこ
とは可能である。しかし、何らかの異常により、冷却蒸
気の量が設定通りであっても燃焼器の出口温度が上昇し
た場合(計画通りに冷却されない場合)、トリップやラ
ンバック等のインターロック機能により燃焼器を保護す
るようになっている。このため、何らかの異常により燃
焼器の出口温度が上昇した場合には、プラント全体の効
率が低下してしまうのが現状であった。
The conventional steam cooling device for a gas turbine supplies a desired amount of cooling steam by adjusting the amount of cooling steam supplied to the combustor. It is possible to control the amount of cooling steam according to the flow rate setting. However, if the outlet temperature of the combustor rises due to some abnormality even if the amount of cooling steam is as set (when cooling is not performed as planned), the combustor is protected by an interlock function such as trip or runback. It has become. Therefore, when the outlet temperature of the combustor rises due to some abnormality, the efficiency of the entire plant is reduced at present.

【0005】本発明は上記状況に鑑みてなされたもの
で、高温部品の出口側の温度が上昇してもインターロッ
ク機能を用いることなく高温部品を保護することができ
るガスタービンの蒸気冷却装置を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a gas turbine steam cooling device capable of protecting a high-temperature component without using an interlock function even if the temperature at the outlet side of the high-temperature component increases. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明のガスタービンの蒸気冷却装置の構成は、ガス
タービンの排気ガスによって蒸気を発生させる排熱回収
ボイラと、排熱回収ボイラで発生した蒸気により作動す
る蒸気タービンと、排熱回収ボイラからの蒸気を蒸気タ
ービンに導入する蒸気導入路と、蒸気導入路に備えられ
排熱回収ボイラからの蒸気をガスタービンの高温部品の
冷却のためにバイパスする蒸気冷却路と、蒸気冷却路に
設けられ蒸気冷却路に導入される蒸気量を制御する蒸気
量制御弁と、高温部品の後流側における蒸気冷却路に備
えられ高温部品を冷却した後の蒸気温度を検出する冷却
後蒸気温度検出手段と、冷却後蒸気温度検出手段の検出
情報に基づいて蒸気冷却路に流入する蒸気流量を調整す
るために蒸気量制御弁の開閉制御を行うと共に蒸気冷却
路に流入する蒸気流量を所定状態に制御する制御手段と
を備えたことを特徴とする。
To achieve the above object, a steam cooling apparatus for a gas turbine according to the present invention comprises a waste heat recovery boiler for generating steam by exhaust gas from a gas turbine, and a waste heat recovery boiler. A steam turbine operated by the generated steam, a steam introduction passage for introducing steam from the exhaust heat recovery boiler to the steam turbine, and a steam for cooling the high temperature components of the gas turbine provided in the steam introduction passage. A steam cooling path that bypasses the steam cooling path, a steam amount control valve that is provided in the steam cooling path, and controls the amount of steam that is introduced into the steam cooling path, and that is provided in the steam cooling path on the downstream side of the high temperature part to cool the high temperature part. A cooled steam temperature detecting means for detecting the steam temperature after the cooling, and a steam flow rate adjusting means for adjusting a flow rate of the steam flowing into the steam cooling passage based on the detection information of the cooled steam temperature detecting means. Characterized in that a control means for controlling the flow rate of steam flowing into the steam cooling passage with the opening and closing control of the valve to a predetermined state.

【0007】また、上記目的を達成するための本発明の
ガスタービンの蒸気冷却装置の構成は、ガスタービンの
排気ガスによって蒸気を発生させる排熱回収ボイラと、
排熱回収ボイラで発生した蒸気により作動する蒸気ター
ビンと、排熱回収ボイラからの蒸気を蒸気タービンに導
入する蒸気導入路と、蒸気導入路に備えられ排熱回収ボ
イラからの蒸気をガスタービンの高温部品の冷却のため
にバイパスする蒸気冷却路と、排熱回収ボイラで発生す
る蒸気圧力を検出する発生蒸気圧力検出手段と、排熱回
収ボイラで発生する蒸気圧力を調整するために発生蒸気
圧力検出手段の検出情報に基づいて蒸気導入路の蒸気の
流量を制御する発生蒸気圧力制御弁と、蒸気冷却路に設
けられ蒸気冷却路に導入される蒸気量を制御する蒸気量
制御弁と、高温部品の後流側における蒸気冷却路に備え
られ高温部品を冷却した後の蒸気温度を検出する冷却後
蒸気温度検出手段と、ガスタービンの状態に基づいて蒸
気冷却路に流入する蒸気流量を調整するために発生蒸気
圧力検出手段の検出値が設定値になるように発生蒸気圧
力制御弁の開閉制御を行うと共に冷却後蒸気温度検出手
段の検出情報に基づいて蒸気冷却路に流入する蒸気流量
を調整するために発生蒸気圧力制御弁及び蒸気量制御弁
の開閉制御を行う制御手段とを備えたことを特徴とす
る。
In order to achieve the above object, a gas turbine steam cooling apparatus according to the present invention has a configuration in which an exhaust heat recovery boiler for generating steam by exhaust gas from a gas turbine is provided.
A steam turbine operated by the steam generated by the heat recovery steam generator, a steam introduction path for introducing steam from the heat recovery steam generator to the steam turbine, and steam supplied from the heat recovery steam generator provided in the steam introduction path to the gas turbine. A steam cooling path bypassed for cooling high-temperature components, a generated steam pressure detecting means for detecting a steam pressure generated in the exhaust heat recovery boiler, and a generated steam pressure for adjusting the steam pressure generated in the exhaust heat recovery boiler A generated steam pressure control valve that controls the flow rate of steam in the steam introduction path based on the detection information of the detection means; a steam amount control valve that is provided in the steam cooling path and controls the amount of steam introduced into the steam cooling path; A post-cooling steam temperature detecting means provided in the steam cooling passage on the downstream side of the component for detecting a steam temperature after cooling the high-temperature component; and flowing into the steam cooling passage based on a state of the gas turbine. Controls the opening and closing of the generated steam pressure control valve so that the detected value of the generated steam pressure detecting means becomes the set value to adjust the steam flow rate, and flows into the steam cooling path based on the detection information of the cooled steam temperature detecting means. Control means for controlling the opening and closing of the generated steam pressure control valve and the steam amount control valve in order to adjust the steam flow rate to be controlled.

【0008】そして、中圧ドラムから中圧蒸気タービン
への蒸気導入路から分岐されて蒸気冷却路が設けられ、
蒸気冷却路の分岐部の後流側の蒸気導入路に中圧ドラム
圧力制御弁を設けて発生蒸気圧力制御弁とし、制御手段
には、冷却後蒸気温度検出手段の検出情報に基づいて蒸
気導入路の流量を規制して蒸気冷却路の流量を確保する
ように中圧ドラム圧力制御弁の開閉制御を行なう機能が
備えられていることを特徴とする。
[0008] A steam cooling path is provided by branching from a steam introduction path from the medium pressure drum to the medium pressure steam turbine,
An intermediate-pressure drum pressure control valve is provided in the steam introduction path on the downstream side of the branch of the steam cooling path to provide a generated steam pressure control valve, and the control means introduces steam based on the detection information of the post-cooling steam temperature detection means. It is characterized in that a function is provided for controlling the opening and closing of the medium pressure drum pressure control valve so as to regulate the flow rate of the passage and secure the flow rate of the steam cooling passage.

【0009】また、高圧ドラムからの蒸気が導入される
補助蒸気導入路が蒸気冷却路につなげられ、補助蒸気導
入路に補助蒸気圧力制御弁を設けて発生蒸気圧力制御弁
とし、制御手段には、冷却後蒸気温度検出手段の検出情
報に基づいて補助蒸気導入路の流量を制御して蒸気冷却
路の流量を確保するように補助蒸気圧力制御弁の開閉制
御を行なう機能が備えられていることを特徴とする。
Further, an auxiliary steam introduction passage for introducing steam from the high pressure drum is connected to a steam cooling passage, and an auxiliary steam pressure control valve is provided in the auxiliary steam introduction passage to serve as a generated steam pressure control valve. A function of controlling the flow rate of the auxiliary steam introduction path based on the detection information of the post-cooling steam temperature detection means and controlling the opening and closing of the auxiliary steam pressure control valve so as to secure the flow rate of the steam cooling path. It is characterized by.

【0010】また、中圧ドラムから中圧蒸気タービンへ
の蒸気導入路から分岐されて蒸気冷却路が設けられ、高
圧ドラムからの蒸気が導入される補助蒸気導入路が蒸気
冷却路につなげられ、蒸気冷却路の分岐部の後流側の蒸
気導入路に中圧ドラム圧力制御弁を設けて発生蒸気圧力
制御弁とすると共に、補助蒸気導入路に補助蒸気圧力制
御弁を設けて発生蒸気圧力制御弁とし、制御手段には、
冷却後蒸気温度検出手段の検出情報に基づいて蒸気導入
路の流量を規制して蒸気冷却路の流量を確保するように
中圧ドラム圧力制御弁の開閉制御を行なうと共に冷却後
蒸気温度検出手段の検出情報に基づいて補助蒸気導入路
の流量を制御して蒸気冷却路の流量を確保するように補
助蒸気圧力制御弁の開閉制御を行なう機能が備えられて
いることを特徴とする。
In addition, a steam cooling passage is provided branching from a steam introduction passage from the medium pressure drum to the medium pressure steam turbine, and an auxiliary steam introduction passage through which steam from the high pressure drum is introduced is connected to the steam cooling passage. A medium-pressure drum pressure control valve is provided in the steam introduction path on the downstream side of the branch of the steam cooling path to provide a generated steam pressure control valve, and an auxiliary steam pressure control valve is provided in the auxiliary steam introduction path to control generated steam pressure. Valve and the control means
The opening and closing of the medium pressure drum pressure control valve is controlled so as to secure the flow rate of the steam cooling path by regulating the flow rate of the steam introduction path based on the detection information of the post-cooling steam temperature detection means, and A function is provided to control the opening and closing of the auxiliary steam pressure control valve so as to control the flow rate of the auxiliary steam introduction path based on the detection information and secure the flow rate of the steam cooling path.

【0011】また、制御手段には、冷却後蒸気温度検出
手段により蒸気温度が上限値を越えたことが検出された
ときに蒸気流量制御弁を全開に制御する機能が備えられ
ていることを特徴とする。
The control means has a function of controlling the steam flow control valve to fully open when the steam temperature after cooling detects that the steam temperature exceeds the upper limit. And

【0012】[0012]

【発明の実施の形態】図1には本発明の第1実施形態例
に係るガスタービンの蒸気冷却装置を備えた複合発電プ
ラントの冷却系統を表す概略系統を示してある。
FIG. 1 is a schematic diagram showing a cooling system of a combined cycle power plant having a gas turbine steam cooling apparatus according to a first embodiment of the present invention.

【0013】図に示すように、ガスタービン1からの排
気ガスが排熱回収ボイラ2に送られるようになってお
り、排熱回収ボイラ2には、高圧ドラム3、高圧過熱器
4及び中圧ドラム5、中圧過熱器6、再熱器7が備えら
れている。高圧ドラム3で発生した蒸気は高圧蒸気導入
路8により高圧過熱器4を経て高圧蒸気タービン9に送
られる。中圧ドラム5の蒸気は中圧蒸気導入路10によ
り中圧過熱器6及び再熱器7を順次経て中圧蒸気タービ
ン11へ送られる。
As shown in FIG. 1, exhaust gas from a gas turbine 1 is sent to an exhaust heat recovery boiler 2, which includes a high pressure drum 3, a high pressure superheater 4, and a medium pressure A drum 5, a medium pressure superheater 6, and a reheater 7 are provided. The steam generated by the high-pressure drum 3 is sent to a high-pressure steam turbine 9 via a high-pressure superheater 4 by a high-pressure steam introduction path 8. The steam of the intermediate-pressure drum 5 is sent to an intermediate-pressure steam turbine 11 via an intermediate-pressure superheater 6 and a reheater 7 in order through an intermediate-pressure steam introduction path 10.

【0014】高圧蒸気タービン9の出口蒸気は再熱器7
の入口側の中圧蒸気導入路10に合流し、再熱器7を通
過した蒸気は中圧蒸気タービン11へ送られる。中圧過
熱器6と再熱器7の間における中圧蒸気導入路10には
中圧ドラム圧力制御弁12が設けられ、中圧ドラム圧力
制御弁12の開閉制御により中圧ドラム5の蒸気圧力が
所定状態に調整される。尚、図中の符号で20は復水器
である。
The outlet steam of the high-pressure steam turbine 9 is supplied to the reheater 7
The steam that has merged with the intermediate-pressure steam introduction path 10 on the inlet side of the steam generator and passed through the reheater 7 is sent to the medium-pressure steam turbine 11. A medium pressure drum pressure control valve 12 is provided in a medium pressure steam introduction passage 10 between the medium pressure superheater 6 and the reheater 7, and the steam pressure of the medium pressure drum 5 is controlled by opening / closing control of the medium pressure drum pressure control valve 12. Is adjusted to a predetermined state. Incidentally, reference numeral 20 in the drawing denotes a condenser.

【0015】中圧過熱器6と中圧ドラム圧力制御弁12
の間における中圧蒸気導入路10からは蒸気冷却路14
が分岐して設けられ、蒸気冷却路14はガスタービン1
の高温部品である燃焼器13を経て再熱器7の下流側の
中圧蒸気導入路10に合流している。つまり、燃焼器1
3には、蒸気冷却路14から中圧ドラム5の出口蒸気
(例えば300 ℃) が冷却蒸気となって供給され、冷却に
使用された蒸気(例えば560 ℃〜600 ℃) は再熱器7の
出口蒸気と合流して中圧蒸気タービン11に導かれる。
燃焼器13の出口側の蒸気冷却路14には蒸気量制御弁
としての制御弁15が設けられ、中圧ドラム圧力制御弁
12及び制御弁15の開閉により燃焼器13に導かれる
蒸気量が調節される。尚、制御弁15は燃焼器13の入
口側の蒸気冷却路14に設けられることもある。燃焼器
13と制御弁15の間における蒸気冷却路14には冷却
後蒸気温度検出手段としての出口温度検出手段T2が設け
られ、出口温度検出手段T2の検出情報に基づいて中圧ド
ラム圧力制御弁12及び制御弁15が開閉制御される
(制御手段)。
Medium pressure superheater 6 and medium pressure drum pressure control valve 12
Between the medium pressure steam introduction passage 10 and the steam cooling passage 14
Are provided in a branched manner, and the steam cooling path 14
Through the combustor 13, which is a high-temperature component, and joins the medium-pressure steam introduction passage 10 on the downstream side of the reheater 7. That is, the combustor 1
3, the outlet steam (for example, 300 ° C.) of the intermediate pressure drum 5 is supplied as cooling steam from the steam cooling passage 14, and the steam (for example, 560 ° C. to 600 ° C.) used for cooling is supplied to the reheater 7. It merges with the outlet steam and is guided to the medium-pressure steam turbine 11.
A control valve 15 as a steam amount control valve is provided in the steam cooling passage 14 on the outlet side of the combustor 13, and the amount of steam guided to the combustor 13 is adjusted by opening and closing the medium pressure drum pressure control valve 12 and the control valve 15. Is done. The control valve 15 may be provided in the steam cooling passage 14 on the inlet side of the combustor 13. An outlet temperature detecting means T2 is provided in the steam cooling passage 14 between the combustor 13 and the control valve 15 as a post-cooling steam temperature detecting means. The opening and closing of the control valve 12 and the control valve 15 is controlled (control means).

【0016】中圧ドラム圧力制御弁12及び制御弁15
は、冷却蒸気の圧力や温度、中圧ドラム5の圧力等に基
づいて開閉制御され、所定量の蒸気が蒸気冷却路14に
供給されるようになっている。即ち、蒸気冷却路14か
ら中圧ドラム5の出口蒸気(例えば300 ℃) が冷却蒸気
となって燃焼器13に供給され、燃焼器13の冷却が行
われる。燃焼器13に導かれる蒸気量は中圧ドラム圧力
制御弁12及び制御弁15により調節され、所望量の蒸
気が燃焼器13に供給される。燃焼器13を冷却した後
の蒸気は中圧蒸気タービン11にに回収されるようにな
っている。このため、効率の良い冷却システムが構築さ
れた複合発電プラントとなる。
Medium pressure drum pressure control valve 12 and control valve 15
The opening and closing of the steam are controlled based on the pressure and temperature of the cooling steam, the pressure of the medium pressure drum 5 and the like, so that a predetermined amount of steam is supplied to the steam cooling passage 14. That is, the outlet steam (for example, 300 ° C.) of the intermediate pressure drum 5 is supplied from the steam cooling passage 14 to the combustor 13 as cooling steam, and the combustor 13 is cooled. The amount of steam guided to the combustor 13 is adjusted by the medium pressure drum pressure control valve 12 and the control valve 15, and a desired amount of steam is supplied to the combustor 13. The steam after cooling the combustor 13 is collected by the medium-pressure steam turbine 11. For this reason, it becomes a combined cycle power plant in which an efficient cooling system is constructed.

【0017】また、中圧ドラム圧力制御弁12及び制御
弁15が所定の状態に制御されて冷却蒸気の量が計画通
り供給されている時に、何らかの異常により、燃焼器1
3の出口側の温度が上昇したことが出口温度検出手段T2
で検出された場合、温度上昇に応じて中圧ドラム圧力制
御弁12及び制御弁15が制御されて冷却蒸気量が増加
される。つまり、出口温度検出手段T2で検出された温度
に応じて中圧ドラム圧力制御弁12が閉側に制御されて
蒸気冷却路14に供給される冷却蒸気の量が増加され、
制御弁15が開側に制御されて蒸気冷却路14を流通す
る冷却蒸気の量が増加される。中圧ドラム圧力制御弁1
2及び制御弁15の開閉制御は、温度上昇の度合いに応
じて開閉量を増したり、中圧ドラム圧力制御弁12を強
制的に全閉状態にしたり、制御弁15を強制的に全開状
態にすることが実施される。
When the medium pressure drum pressure control valve 12 and the control valve 15 are controlled to predetermined states and the amount of cooling steam is supplied as planned, the combustor 1
The rise in the temperature at the outlet side of the outlet 3 indicates that the outlet temperature detecting means T2
Is detected, the medium pressure drum pressure control valve 12 and the control valve 15 are controlled in accordance with the temperature rise, and the cooling steam amount is increased. That is, the medium pressure drum pressure control valve 12 is controlled to the closed side in accordance with the temperature detected by the outlet temperature detection means T2, and the amount of the cooling steam supplied to the steam cooling path 14 is increased.
The control valve 15 is controlled to open to increase the amount of cooling steam flowing through the steam cooling passage 14. Medium pressure drum pressure control valve 1
2 and the opening and closing control of the control valve 15 include increasing the opening and closing amount in accordance with the degree of temperature rise, forcing the medium pressure drum pressure control valve 12 to the fully closed state, and forcibly setting the control valve 15 to the fully open state. Is implemented.

【0018】これにより、何らかの異常により燃焼器1
3に供給される冷却蒸気の温度が上昇して損傷等の虞が
生じた場合に、燃焼器13に送られる冷却蒸気の流量を
増加して燃焼器13を保護することが可能になる。従っ
て、燃焼器13の出口側の温度が上昇してもインターロ
ック機能を用いることなく燃焼器13を保護することが
できる蒸気冷却装置となる。
As a result, the combustor 1
When the temperature of the cooling steam supplied to the fuel cell 3 rises and there is a risk of damage or the like, the flow rate of the cooling steam sent to the combustor 13 can be increased to protect the combustor 13. Therefore, even if the temperature on the outlet side of the combustor 13 rises, the steam cooling device can protect the combustor 13 without using the interlock function.

【0019】本発明の第2実施形態例を図2乃至図5に
基づいて説明する。図2には本発明の第2実施形態例に
係るガスタービンの蒸気冷却装置を備えた複合発電プラ
ントの概略構成、図3、図4には発生蒸気圧力制御弁の
制御ブロック、図5には蒸気量制御弁の制御ブロックを
示してある。
A second embodiment of the present invention will be described with reference to FIGS. FIG. 2 is a schematic configuration of a combined cycle power plant including a gas turbine steam cooling device according to a second embodiment of the present invention. FIGS. 3 and 4 show control blocks of a generated steam pressure control valve. 2 shows a control block of a steam amount control valve.

【0020】図2に示すように、ガスタービン101か
らの排気ガスが排熱回収ボイラ102に送られるように
なっており、排熱回収ボイラ102には、高圧ドラム1
03及び第1高圧過熱器104、第2高圧過熱器105
が備えられていると共に、中圧ドラム106、中圧過熱
器107及び再熱器108が備えられている。高圧ドラ
ム103で発生した蒸気は第1高圧過熱器104、第2
高圧過熱器105を経て高圧側蒸気導入路109から高
圧蒸気タービン110に送られる。高圧蒸気タービン1
10の排気蒸気は再熱器108を経て蒸気導入路111
から中圧蒸気タービン112に送られる。そして、中圧
蒸気タービン112の排気蒸気は低圧蒸気タービン11
3に送られ、復水器114で復水されて排熱回収ボイラ
102側に回収される。一方、中圧ドラム106の蒸気
は蒸気導入路としての中圧側蒸気導入路115から中圧
過熱器107及び再熱器108を順次経て中圧蒸気ター
ビン112に送られる。
As shown in FIG. 2, the exhaust gas from the gas turbine 101 is sent to an exhaust heat recovery boiler 102, and the exhaust heat recovery boiler 102
03, the first high-pressure superheater 104, and the second high-pressure superheater 105
And a medium-pressure drum 106, a medium-pressure superheater 107, and a reheater 108. The steam generated in the high-pressure drum 103 is supplied to the first high-pressure superheater 104,
The high-pressure superheater 105 sends the high-pressure steam to the high-pressure steam turbine 110 from the high-pressure side steam introduction passage 109. High pressure steam turbine 1
The exhaust steam of 10 passes through a reheater 108 and passes through a steam introduction path 111.
From the steam turbine 112. The exhaust steam of the medium-pressure steam turbine 112 is supplied to the low-pressure steam turbine 11
3 and is condensed by the condenser 114 and collected by the exhaust heat recovery boiler 102. On the other hand, the steam of the intermediate-pressure drum 106 is sent to the intermediate-pressure steam turbine 112 from the intermediate-pressure side steam introduction passage 115 serving as a steam introduction passage, sequentially through the intermediate-pressure superheater 107 and the reheater 108.

【0021】中圧側蒸気導入路115から分岐して蒸気
冷却路としての蒸気流路116が設けられ、蒸気流路1
16はガスタービン101の高温部品である燃焼器11
7を経てバイパスし、中圧蒸気タービン112の入口側
における蒸気導入路111に合流している。燃焼器11
7の出口側における蒸気流路116には蒸気量制御弁2
01が設けられ、蒸気量制御弁201の開閉により蒸気
流路116の蒸気量が調整される。尚、蒸気量制御弁2
01は燃焼器117の入口側における蒸気流路116に
設けられることもある。また、第2高圧過熱器105の
後流側の高圧側蒸気導入路109から分岐して高圧蒸気
流路118が設けられ、高圧蒸気流路118はガスター
ビン101の前側における蒸気流路116に合流してい
る。高圧蒸気流路118には中圧給水ポンプからの給水
が導入される補助流体流路119が合流している。
A steam passage 116 is provided as a steam cooling passage branching from the medium pressure side steam introduction passage 115.
16 is a combustor 11 which is a high-temperature component of the gas turbine 101.
7 and joins the steam introduction passage 111 on the inlet side of the intermediate-pressure steam turbine 112. Combustor 11
7 has a steam flow control valve 2 in the steam flow passage 116 on the outlet side.
01 is provided, and the amount of steam in the steam flow passage 116 is adjusted by opening and closing the steam amount control valve 201. The steam control valve 2
01 may be provided in the steam flow path 116 on the inlet side of the combustor 117. Further, a high-pressure steam flow path 118 is provided which branches off from the high-pressure side steam introduction path 109 on the downstream side of the second high-pressure superheater 105. are doing. An auxiliary fluid channel 119 into which water supplied from a medium pressure water pump is introduced merges with the high pressure steam channel 118.

【0022】蒸気流路116の分岐部の後流側における
中圧側蒸気導入路115には第1流量制御弁120が設
けられ、第1流量制御弁120の開閉により中圧側蒸気
導入路115を流通する蒸気量が調整される。また、補
助流体流路119の合流部の前流側における高圧蒸気流
路118には第2流量制御弁121が設けられ、第2流
量制御弁121の開閉により高圧蒸気流路118から蒸
気流路116に導入される高圧蒸気の流量が調整され
る。即ち、蒸気流路116の蒸気の温度が調整される。
更に、補助流体流路119には補助流体圧力制御弁とし
ての第3流量制御弁122が設けられ、第3流量制御弁
122の開閉により高圧蒸気流路118に適宜量の中圧
給水が導入されて高圧蒸気流路118内の蒸気が減温さ
れ、蒸気流路116に導入される高圧蒸気の温度が所定
温度に制御される。
A first flow control valve 120 is provided in the intermediate pressure steam introduction passage 115 on the downstream side of the branch portion of the steam flow passage 116, and the first flow control valve 120 is opened and closed to flow through the medium pressure side steam introduction passage 115. The amount of steam generated is adjusted. Further, a second flow control valve 121 is provided in the high-pressure steam flow path 118 on the upstream side of the junction of the auxiliary fluid flow path 119, and the high-pressure steam flow path 118 is opened and closed by opening and closing the second flow control valve 121. The flow rate of the high-pressure steam introduced into 116 is adjusted. That is, the temperature of the steam in the steam channel 116 is adjusted.
Further, a third flow control valve 122 as an auxiliary fluid pressure control valve is provided in the auxiliary fluid flow passage 119, and an appropriate amount of medium-pressure feed water is introduced into the high-pressure steam flow passage 118 by opening and closing the third flow control valve 122. As a result, the temperature of the steam in the high-pressure steam flow path 118 is reduced, and the temperature of the high-pressure steam introduced into the steam flow path 116 is controlled to a predetermined temperature.

【0023】高圧蒸気流路118の合流部とガスタービ
ン101との間における蒸気流路116には温度検出手
段T1が設けられ、温度検出手段T1によりガスタービン1
01に導入される蒸気の温度が検出される。蒸気流路1
16の燃焼器117の入口側と出口側の蒸気圧力差を検
出する差圧検出手段P1が設けられ、差圧検出手段P1によ
り燃焼器117を流通する蒸気の差圧、即ち、流量が検
出される。また、補助流体流路119の合流部の後流側
における高圧蒸気流路118には補助蒸気温度検出手段
としての第2温度検出手段T3が設けられ、第2温度検出
手段T3により高圧蒸気流路118の蒸気温度が検出され
る。尚、図中の符号で、P2は蒸気流路116の燃焼器1
17の入口側の蒸気圧力を検出する入口圧力検出手段、
P3は蒸気流路116の燃焼器117の出口側の蒸気圧力
を検出する出口圧力検出手段、T2は蒸気流路116の燃
焼器117の出口側の蒸気温度を検出する冷却後蒸気温
度検出手段としての出口温度検出手段である。また、燃
焼器117の入口側には燃焼器117の車室圧を検出す
る車室圧検出手段P4が設けられている。
The steam passage 116 between the gas turbine 101 and the junction of the high-pressure steam passage 118 is provided with a temperature detecting means T1.
The temperature of the steam introduced at 01 is detected. Steam channel 1
A differential pressure detecting means P1 for detecting a steam pressure difference between an inlet side and an outlet side of the 16 combustors 117 is provided, and a differential pressure of steam flowing through the combustor 117, that is, a flow rate is detected by the differential pressure detecting means P1. You. Further, a second temperature detecting means T3 as auxiliary steam temperature detecting means is provided in the high-pressure steam flow path 118 on the downstream side of the junction of the auxiliary fluid flow path 119, and the second temperature detecting means T3 controls the high-pressure steam flow path. A steam temperature at 118 is detected. In the figure, P2 is the combustor 1 of the steam flow path 116.
An inlet pressure detecting means for detecting a steam pressure on the inlet side of 17;
P3 is an outlet pressure detecting means for detecting the steam pressure on the outlet side of the combustor 117 in the steam passage 116, and T2 is a post-cooling steam temperature detecting means for detecting the steam temperature on the outlet side of the combustor 117 in the steam passage 116. Outlet temperature detecting means. Further, on the inlet side of the combustor 117, a vehicle interior pressure detecting means P4 for detecting the vehicle interior pressure of the combustor 117 is provided.

【0024】温度検出手段T1、差圧検出手段P1及び第2
温度検出手段T3、入口圧力検出手段P2、出口圧力検出手
段P3、出口温度検出手段T2及び車室圧検出手段P4の検出
情報は制御手段125に入力される。また、制御手段1
25にはガスタービン1の出力MWが入力される。制御手
段125からは、第1流量制御弁120、第2流量制御
弁121、第3流量制御弁122及び蒸気量制御弁20
1に開閉指令が出力される。
The temperature detecting means T1, the differential pressure detecting means P1 and the second
The detection information of the temperature detecting means T3, the inlet pressure detecting means P2, the outlet pressure detecting means P3, the outlet temperature detecting means T2, and the vehicle compartment pressure detecting means P4 are input to the control means 125. Control means 1
The output MW of the gas turbine 1 is input to 25. From the control means 125, the first flow control valve 120, the second flow control valve 121, the third flow control valve 122, and the steam flow control valve 20
1, an open / close command is output.

【0025】差圧検出手段P1の検出情報に応じて(差圧
に応じて)第1流量制御弁120を開閉させることによ
り、中圧蒸気タービン112側への蒸気の流通が規制さ
れて燃焼器117を流通する蒸気流量が適正に制御され
る。また、差圧検出手段P1及び温度検出手段T1の検出情
報に応じて第2流量制御弁121を開閉させると共に、
第2温度検出手段T3の検出情報に応じて第3流量制御弁
122を開閉させることにより、燃焼器117を流通す
る蒸気量が適正流量を保った状態で適正に制御される。
また、車室圧検出手段P4の検出情報に応じて蒸気量制御
弁201を開閉させることにより、燃焼器117を流通
する蒸気流量が適正に制御される。
By opening and closing the first flow control valve 120 according to the detection information of the differential pressure detecting means P1 (according to the differential pressure), the flow of steam to the intermediate pressure steam turbine 112 side is regulated and the combustor The flow rate of steam flowing through 117 is appropriately controlled. In addition, while opening and closing the second flow control valve 121 according to the detection information of the differential pressure detecting means P1 and the temperature detecting means T1,
By opening and closing the third flow control valve 122 according to the detection information of the second temperature detecting means T3, the amount of steam flowing through the combustor 117 is appropriately controlled while maintaining the appropriate flow rate.
Further, by opening and closing the steam amount control valve 201 according to the detection information of the vehicle interior pressure detecting means P4, the flow rate of steam flowing through the combustor 117 is appropriately controlled.

【0026】この時、燃焼器117を流通する蒸気量が
適正を保っているにも拘らず何らかの異常により蒸気温
度が上昇した場合(燃焼器117が計画通り冷却されな
い場合)、出口温度検出手段T2の検出情報に応じて、第
1流量制御弁120、第2流量制御弁121、第3流量
制御弁122及び蒸気量制御弁201が開閉され、蒸気
流路116の蒸気量が増やされて燃焼器117を流通す
る蒸気温度の過上昇が防止される。
At this time, if the steam temperature rises due to some abnormality even though the amount of steam flowing through the combustor 117 is maintained at an appropriate level (when the combustor 117 is not cooled as planned), the outlet temperature detecting means T2 , The first flow control valve 120, the second flow control valve 121, the third flow control valve 122, and the steam amount control valve 201 are opened and closed, the steam amount in the steam flow passage 116 is increased, and the combustor Excessive rise in the temperature of the steam flowing through 117 is prevented.

【0027】つまり、制御手段125では、燃焼器11
7の必要冷却蒸気量が演算されると共に必要冷却蒸気量
に見合った差圧が演算され、差圧検出手段P1の検出値が
演算された差圧となるように第1流量制御弁120に開
閉指令を出力する。これにより、燃焼器117には必要
冷却蒸気量が供給される。また、制御手段125では、
ガスタービン101の必要蒸気温度が演算されると共に
温度検出手段T1の検出値が演算された温度となるように
第2流量制御弁121に開閉指令を出力する。このと
き、制御手段125では、蒸気流路116に導入される
蒸気温度(第2温度検出手段T3の検出情報及び温度検出
手段T1の検出情報)に基づいて第3流量制御弁122に
開閉指令が出力され、中圧給水の量が適宜制御されて高
圧蒸気流路118の蒸気温度が所定温度に減温される。
また、制御手段125では、燃焼器117の車室圧に応
じて蒸気量制御弁201に開閉指令を出力する。
That is, in the control means 125, the combustor 11
7 and the differential pressure corresponding to the required amount of cooling steam is calculated, and the first flow control valve 120 is opened and closed so that the detected value of the differential pressure detecting means P1 becomes the calculated differential pressure. Output command. As a result, the required amount of cooling steam is supplied to the combustor 117. In the control means 125,
The required steam temperature of the gas turbine 101 is calculated, and an opening / closing command is output to the second flow control valve 121 so that the detection value of the temperature detecting means T1 becomes the calculated temperature. At this time, the control unit 125 issues an open / close command to the third flow control valve 122 based on the steam temperature (detection information of the second temperature detection unit T3 and detection information of the temperature detection unit T1) introduced into the steam flow passage 116. The steam temperature in the high-pressure steam flow channel 118 is reduced to a predetermined temperature by appropriately outputting the output of the medium-pressure supply water.
Further, the control means 125 outputs an opening / closing command to the steam amount control valve 201 according to the cabin pressure of the combustor 117.

【0028】温度制御により燃焼器117を流通する蒸
気流量が増減すると、差圧検出手段P1の検出情報により
第1流量制御弁120が開閉制御され、規定の蒸気流量
が確保されているが、負荷変動等により中圧蒸気の発生
遅れ等が生じ、蒸気流路116を流通する蒸気の絶対流
量が不足した場合は、温度制御に優先して、差圧検出手
段P1の検出値が演算された差圧となるように第2流量制
御弁121が開閉制御され、高圧蒸気を導入することで
蒸気流量を確保する(バックアップ制御)。即ち、第2
流量制御弁121には差圧制御においても開閉指令が出
力され、温度制御による開度指令と、差圧制御による開
度指令の高い値を選択して第2流量制御弁121の開度
として制御されるようになっている。
When the flow rate of steam flowing through the combustor 117 increases or decreases due to temperature control, the first flow control valve 120 is controlled to open and close based on the detection information of the differential pressure detecting means P1, and a specified steam flow rate is secured. When the generation of the medium-pressure steam is delayed due to fluctuations or the like, and the absolute flow rate of the steam flowing through the steam flow path 116 becomes insufficient, the detected value of the differential pressure detection means P1 is calculated in priority to the temperature control. The opening and closing of the second flow control valve 121 is controlled so that the pressure becomes high, and the steam flow is secured by introducing high-pressure steam (backup control). That is, the second
An opening / closing command is also output to the flow control valve 121 in the differential pressure control, and an opening command by the temperature control and a high value of the opening command by the differential pressure control are selected and controlled as the opening of the second flow control valve 121. It is supposed to be.

【0029】上述した蒸気制御装置では、温度の低い中
圧ドラム106側の発生蒸気と、温度の高い高圧ドラム
103の発生蒸気とを混合し、混合した蒸気流量及び蒸
気温度を適切に制御して燃焼器117に導入している。
また、混合を最適に行うため、中圧側蒸気導入路115
に設けられた第1流量制御弁120の開閉により蒸気流
量が制御され、高圧蒸気流路118に設けられた第2流
量制御弁121の開閉により高圧蒸気流量を調整して蒸
気温度が制御されている。また、中圧蒸気が不足した場
合には、バックアップ制御により第2流量制御弁121
を開閉して高圧蒸気を流量確保のために導入するように
している。更に、燃焼器117の車室圧に応じて蒸気量
制御弁201を開閉して蒸気流路116を流通する蒸気
の流量が制御されている。このため、燃焼器117に導
かれる蒸気流量を適切に制御することが可能になる。
In the above-described steam control device, the steam generated on the medium-pressure drum 106 side having a low temperature and the steam generated on the high-pressure drum 103 having a high temperature are mixed, and the mixed steam flow rate and steam temperature are appropriately controlled. It is introduced into the combustor 117.
Further, in order to perform the mixing optimally, the medium pressure side steam introduction passage 115
The steam flow rate is controlled by opening and closing a first flow control valve 120 provided in the tank, and the steam temperature is controlled by adjusting the high pressure steam flow by opening and closing a second flow control valve 121 provided in the high-pressure steam flow path 118. I have. When the medium pressure steam is insufficient, the second flow control valve 121 is controlled by the backup control.
Is opened and closed to introduce high-pressure steam to secure the flow rate. Further, the flow rate of the steam flowing through the steam flow passage 116 is controlled by opening and closing the steam amount control valve 201 according to the cabin pressure of the combustor 117. For this reason, it becomes possible to appropriately control the flow rate of steam guided to the combustor 117.

【0030】図3乃至図5に基づいて第1流量制御弁1
20、第2流量制御弁121及び蒸気量制御弁201の
制御状況を詳細に説明する。図3には第1流量制御弁1
20の制御ブロック構成、図4には第2流量制御弁12
1の制御ブロック構成、図5には蒸気量制御弁201の
制御ブロック構成を示してある。
The first flow control valve 1 will be described with reference to FIGS.
20, the control status of the second flow rate control valve 121 and the steam amount control valve 201 will be described in detail. FIG. 3 shows the first flow control valve 1
FIG. 4 shows the second flow control valve 12.
1 shows a control block configuration, and FIG. 5 shows a control block configuration of the steam amount control valve 201.

【0031】図3に示すように、制御手段125の演算
手段141には、温度検出手段T1、入口圧力検出手段P
2、出口圧力検出手段P3及び出口温度検出手段T2の検出
情報が入力される。また、変換演算手段142にはガス
タービン101の出力MWが入力され、変換演算手段14
2では出力MWが、要求されるバックアップ用蒸気流量と
して変換されて加算手段151に入力される。一方、出
口温度検出手段T2の検出情報に基づいて温度に応じたバ
イアスが関数手段150で演算されて加味され、温度に
応じて加味されたバイアス値が加算手段151でガスタ
ービン101の出力MWに加算される。ガスタービン10
1の出力MWとバイアス値とが加算された情報が変換演算
手段142に入力され、変換演算手段142でバイアス
値が加算された出力MWが、要求される冷却蒸気流量とし
て変換されて演算手段141に入力される。
As shown in FIG. 3, the calculating means 141 of the control means 125 includes a temperature detecting means T1 and an inlet pressure detecting means P
2. The detection information of the outlet pressure detecting means P3 and the outlet temperature detecting means T2 is input. Further, the output MW of the gas turbine 101 is input to the conversion operation means 142, and the conversion operation means 14
In 2, the output MW is converted as a required backup steam flow rate and input to the adding means 151. On the other hand, a bias corresponding to the temperature is calculated and added by the function unit 150 based on the detection information of the outlet temperature detecting unit T2, and the added bias value is added to the output MW of the gas turbine 101 by the adding unit 151. Is added. Gas turbine 10
The information obtained by adding the output MW of 1 and the bias value is input to the conversion operation means 142, and the output MW to which the bias value has been added by the conversion operation means 142 is converted as the required cooling steam flow rate, and the operation means 141 Is input to

【0032】具体的に要求される冷却蒸気流量は、出口
温度検出手段T2で検出される蒸気温度が高くになるにし
たがって多くなるようにバイアス値が設定されている。
即ち、出口温度検出手段T2で検出される蒸気温度が高く
になるにしたがって第1流量制御弁120が閉側に作動
されて蒸気流路116に送られる蒸気量が多くなるよう
に制御される。演算手段141では入力情報を差圧相当
値に変換して加算手段143に出力し、加算手段143
には差圧検出手段P1の検出情報が入力される。加算手段
143では、演算手段141からの差圧相当値の情報と
差圧検出手段P1の検出情報との差を求め、PI演算手段1
44では求められた差分を0側情報の開度指令として、
0側情報を選択手段152に送る。選択手段152には
全閉指令(最小開度、例えば3%乃至5%の開度)が指
令手段153から1側情報として送られている。
The bias value is set so that the specifically required cooling steam flow rate increases as the steam temperature detected by the outlet temperature detecting means T2 increases.
That is, as the steam temperature detected by the outlet temperature detecting means T2 becomes higher, the first flow control valve 120 is operated to close and the amount of steam sent to the steam flow passage 116 is controlled to increase. The calculating means 141 converts the input information into a differential pressure equivalent value and outputs it to the adding means 143.
Is input with the detection information of the differential pressure detecting means P1. The adding means 143 obtains the difference between the information on the differential pressure equivalent value from the calculating means 141 and the detection information of the differential pressure detecting means P1, and
At 44, the obtained difference is used as an opening command of the 0-side information.
The 0 side information is sent to the selection means 152. A full closing command (minimum opening, for example, an opening of 3% to 5%) is sent from the commanding unit 153 to the selection unit 152 as one-side information.

【0033】選択手段152は通常はオフにされ、比較
手段154からの指令があった際にオンになる。即ち、
選択手段152は、オンになることで0側情報から1側
情報に出力指令が切り換えられるようになっており、オ
フの場合、0側情報の開度指令(ガスタービン101の
出力MW及び蒸気流路116の状況に応じた開度指令)が
第1流量制御弁120に出力され、オンの場合、1側情
報の開度指令(全閉指令)が第1流量制御弁120に出
力される。比較手段154には出口温度検出手段T2の検
出情報が入力され、比較手段154の結果が選択手段1
52に送られる。比較手段154で出口温度検出手段T2
の検出情報が所定値(上限値)を越えているとされた場
合、比較手段154から選択手段152にオン信号が出
され、選択手段152が1側情報の開度指令に切り換え
られる。
The selecting means 152 is normally turned off, and turned on when a command is issued from the comparing means 154. That is,
The selection means 152 switches the output command from the 0-side information to the 1-side information by turning on. When the selection means 152 is off, the opening command of the 0-side information (output MW of the gas turbine 101 and steam flow) An opening command according to the condition of the path 116) is output to the first flow control valve 120, and when it is on, an opening command (full closing command) of the one-side information is output to the first flow control valve 120. The detection information of the outlet temperature detecting means T2 is input to the comparing means 154, and the result of the comparing means 154 is
52. The outlet temperature detecting means T2 is provided by the comparing means 154.
If the detected information exceeds the predetermined value (upper limit), an ON signal is output from the comparing means 154 to the selecting means 152, and the selecting means 152 is switched to the opening degree command of the one-side information.

【0034】従って、第1流量制御弁120は、ガスタ
ービン101の出力MW及び蒸気流路116の状況の検出
情報に基づいて蒸気流路116の蒸気量が所定流量とな
るように開閉が制御されると共に、出口温度検出手段T2
で検出される蒸気温度に応じて、燃焼器117の出口側
の温度が高くなった際には温度上昇分蒸気流路116の
蒸気量が増加するように閉側に制御される。更に、第1
流量制御弁120は、出口温度検出手段T2の検出情報が
所定値(上限値)を越えた場合には全閉指令(最小開度
指令)により全閉状態とされ、中圧ドラム106からの
蒸気が蒸気流路116に全量送られる。
Therefore, the opening and closing of the first flow control valve 120 is controlled based on the output MW of the gas turbine 101 and the detection information of the state of the steam flow passage 116 so that the steam flow in the steam flow passage 116 becomes a predetermined flow rate. And outlet temperature detecting means T2
When the temperature on the outlet side of the combustor 117 increases in accordance with the steam temperature detected in the step (b), the temperature is controlled to the closed side so that the steam amount in the steam flow passage 116 increases by the temperature rise. Furthermore, the first
When the information detected by the outlet temperature detecting means T2 exceeds a predetermined value (upper limit), the flow control valve 120 is fully closed by a fully closed command (minimum opening command). Is sent to the steam flow path 116 in its entirety.

【0035】図4に示すように、制御装置125の演算
手段141には、温度検出手段T1、入口圧力検出手段P
2、出口圧力検出手段P3及び出口温度検出手段T2の検出
情報が入力される。また、第2変換演算手段145には
ガスタービン101の出力MWが入力され、第2変換演算
手段145では出力MWが、要求されるバックアップ用蒸
気流量として変換されて加算手段162に入力される。
一方、出口温度検出手段T2の検出情報に基づいて温度に
応じたバイアスが関数手段161で演算されて加味さ
れ、温度に応じて加味されたバイアス値が加算手段16
2でガスタービン101の出力MWに加算される。ガスタ
ービン101の出力MWとバイアス値とが加算された情報
が演算手段141に入力され、第2変換演算手段145
でバイアス値が加算された出力MWが、要求される冷却蒸
気流量として変換されて演算手段141に入力される。
As shown in FIG. 4, the calculating means 141 of the control device 125 includes a temperature detecting means T1 and an inlet pressure detecting means P.
2. The detection information of the outlet pressure detecting means P3 and the outlet temperature detecting means T2 is input. Further, the output MW of the gas turbine 101 is input to the second conversion calculating means 145, and the output MW is converted into a required backup steam flow rate and input to the adding means 162 in the second conversion calculating means 145.
On the other hand, a bias corresponding to the temperature is calculated and added by the function means 161 based on the detection information of the outlet temperature detecting means T2, and the added bias value is added to the adding means 16 according to the temperature.
In step 2, it is added to the output MW of the gas turbine 101. Information obtained by adding the output MW of the gas turbine 101 and the bias value is input to the calculating means 141, and the second conversion calculating means 145
The output MW to which the bias value has been added is converted as the required cooling steam flow rate and input to the calculating means 141.

【0036】そして、演算手段141では入力情報が差
圧相当値に変換され加算手段143に出力され、加算手
段143には差圧検出手段P1の検出情報が入力される。
加算手段143では、演算手段141からの差圧相当値
の情報と差圧検出手段P1の検出情報との差を求め、PI演
算手段144では求められた差分を開度指令として演算
する。
The input information is converted into a differential pressure equivalent value by the calculating means 141 and output to the adding means 143. The detecting information of the differential pressure detecting means P1 is input to the adding means 143.
The adding means 143 calculates the difference between the information of the differential pressure equivalent value from the calculating means 141 and the detection information of the differential pressure detecting means P1, and the PI calculating means 144 calculates the obtained difference as an opening degree command.

【0037】具体的に要求される冷却蒸気流量は、出口
温度検出手段T2で検出される蒸気温度が高くになるにし
たがって多くなるようにバイアス値が設定されている。
即ち、出口温度検出手段T2で検出される蒸気温度が高く
になるにしたがって第2流量制御弁121が開側に作動
されて高圧蒸気流路118から蒸気流路116に送られ
る蒸気量が多くなるように制御される。
The bias value is set so that the specifically required cooling steam flow rate increases as the steam temperature detected by the outlet temperature detecting means T2 increases.
That is, as the steam temperature detected by the outlet temperature detecting means T2 increases, the second flow control valve 121 is operated to the open side, and the amount of steam sent from the high-pressure steam flow path 118 to the steam flow path 116 increases. Is controlled as follows.

【0038】従って、第2流量制御弁121は、ガスタ
ービン101の出力MW及び蒸気流路116の状況の検出
情報に基づいて蒸気流路116の蒸気量が所定流量とな
るように開閉が制御されると共に、出口温度検出手段T2
で検出される蒸気温度に応じて、燃焼器117の出口側
の温度が高くなった際には温度上昇分蒸気流路116の
蒸気量が増加するように開側に制御される。
Accordingly, the opening and closing of the second flow control valve 121 is controlled based on the output MW of the gas turbine 101 and the detection information of the state of the steam flow passage 116 so that the steam flow in the steam flow passage 116 becomes a predetermined flow rate. And outlet temperature detecting means T2
When the temperature on the outlet side of the combustor 117 increases in accordance with the steam temperature detected in the step (1), the steam flow in the steam flow path 116 is controlled to be open so that the amount of steam in the steam flow path 116 increases.

【0039】図5に示すように、制御装置125の加算
手段210には指令手段211からの指令情報と車室圧
検出手段P4の検出情報が入力される。加算手段210か
らの情報は加算手段212で出口圧力検出手段P3の検出
情報が加算される。これらの情報に基づいてPI演算手段
213では蒸気量制御弁201の開度指令が演算され
る。PI演算手段213では求められた開度指令を0側情
報として、0側情報を選択手段214に送る。選択手段
152には全開指令が指令手段215から1側情報とし
て送られている。
As shown in FIG. 5, command information from the command means 211 and detection information from the vehicle compartment pressure detecting means P4 are input to the adding means 210 of the control device 125. The information from the adding means 210 is added to the information detected by the outlet pressure detecting means P3 by the adding means 212. Based on these information, the PI calculation means 213 calculates an opening command for the steam amount control valve 201. The PI calculation means 213 sends the obtained opening degree command as 0-side information and sends the 0-side information to the selection means 214. The fully open command is sent to the selection means 152 from the command means 215 as one-side information.

【0040】選択手段215は通常はオフにされ、比較
手段216からの指令があった際にオンになる。即ち、
選択手段215は、オンになることで0側情報から1側
情報に出力指令が切り換えられるようになっており、オ
フの場合、0側情報の開度指令(車室圧力及び燃焼器1
17の出口側圧力に応じた開度指令)が蒸気量制御弁2
01に出力され、オンの場合、1側情報の開度指令(全
開指令)が蒸気量制御弁201にに出力される。比較手
段216には出口温度検出手段T2の検出情報が入力さ
れ、比較手段216の結果が選択手段214に送られ
る。比較手段216で出口温度検出手段T2の検出情報が
所定値(上限値)を越えているとされた場合、比較手段
216から選択手段215にオン信号が出され、選択手
段214が1側情報の開度指令に切り換えられる。
The selection means 215 is normally turned off, and turned on when a command is issued from the comparison means 216. That is,
The selection means 215 switches the output command from the 0-side information to the 1-side information when turned on. When the selection means 215 is off, the opening command of the 0-side information (vehicle compartment pressure and combustor 1
The opening degree command according to the outlet side pressure of No. 17) is transmitted to the steam amount control valve 2.
01, and when it is on, an opening command (full opening command) of the one-side information is output to the steam amount control valve 201. The detection information of the outlet temperature detection means T2 is input to the comparison means 216, and the result of the comparison means 216 is sent to the selection means 214. If the comparing unit 216 determines that the detection information of the outlet temperature detecting unit T2 exceeds a predetermined value (upper limit), an ON signal is output from the comparing unit 216 to the selecting unit 215, and the selecting unit 214 outputs the one-side information. It is switched to the opening command.

【0041】従って、燃焼器117の出口側の温度が上
昇して出口温度検出手段T2で検出される蒸気温度が所定
値(上限値)を越えた場合には、蒸気量制御弁201が
全開となって冷却用蒸気が増量される。これにより、所
定量に冷却蒸気量が制御されているにも拘らず冷却蒸気
温度が上昇して所定値(上限値)を越えた場合も、冷却
蒸気量が増量されるようになっている。
Therefore, when the temperature at the outlet side of the combustor 117 rises and the steam temperature detected by the outlet temperature detecting means T2 exceeds a predetermined value (upper limit value), the steam amount control valve 201 is fully opened. As a result, the amount of cooling steam is increased. Accordingly, even when the cooling steam amount is controlled to a predetermined amount and the cooling steam temperature rises and exceeds a predetermined value (upper limit value), the cooling steam amount is increased.

【0042】このため、燃焼器117の出口側の温度が
高くなった際には、出口温度検出手段T2で検出される蒸
気温度が高くになるにしたがって冷却用蒸気が増量され
ると共に、出口温度検出手段T2の検出情報が所定値(上
限値)を越えた場合には、中圧ドラム106からの蒸気
が蒸気流路116に全量送られると共に蒸気量制御弁2
01が全開となって冷却用蒸気が増量される。これによ
り、所定量に冷却蒸気量が制御されているにも拘らず冷
却蒸気温度が上昇しても、燃焼器117が保護されるよ
うになっている。
For this reason, when the temperature of the outlet side of the combustor 117 increases, the amount of cooling steam increases as the steam temperature detected by the outlet temperature detecting means T2 increases, and the outlet temperature increases. When the detection information of the detection means T2 exceeds a predetermined value (upper limit value), the entire amount of steam from the intermediate pressure drum 106 is sent to the steam flow passage 116 and the steam amount control valve 2
01 is fully opened, and the amount of cooling steam is increased. Thus, the combustor 117 is protected even if the cooling steam temperature rises despite the fact that the cooling steam amount is controlled to a predetermined amount.

【0043】従って、何らかの異常により燃焼器117
に供給される冷却蒸気の温度が上昇して損傷等の虞が生
じた場合に、燃焼器117に送られる冷却蒸気の流量を
増加して燃焼器117を保護することが可能になる。従
って、燃焼器117の出口側の温度が上昇してもインタ
ーロック機能を用いることなく燃焼器117を保護する
ことができる蒸気冷却装置となる。
Therefore, the combustor 117 may be damaged due to some abnormality.
When the temperature of the cooling steam supplied to the fuel cell rises and there is a risk of damage or the like, the flow rate of the cooling steam sent to the combustor 117 can be increased to protect the combustor 117. Therefore, even if the temperature on the outlet side of the combustor 117 rises, the steam cooling device can protect the combustor 117 without using the interlock function.

【0044】燃焼器117の出口側の温度が高くなった
際における第1流量制御弁120及び第2流量制御弁1
21の開閉制御は、例えば、第1流量制御弁120の閉
動作により中圧ドラム106からの蒸気を蒸気流路11
6に送り、第1流量制御弁120を全閉状態にしても燃
焼器117の出口側の温度が高い場合に第2流量制御弁
121を開動作させて高圧蒸気流路118側からの蒸気
量を増量するようになっている。そして、燃焼器117
の出口側の温度が所定値(上限値)を越えた場合に蒸気
量制御弁201を全開にして冷却用蒸気を増量する。
尚、第1流量制御弁120及び第2流量制御弁121の
開閉制御の状況は、設備の能力等により適宜設定され、
所定流量の確保と所定温度の確保が両立できるように他
の制御弁との開閉と組み合わせて実施される。また、蒸
気量制御弁201の開閉制御は、燃焼器117の出口側
の温度が所定値(上限値)を越える前に上昇した温度に
応じて適宜開閉し、所定値(上限値)を越えたときに全
開にするようにしてもよい。
When the temperature at the outlet side of the combustor 117 becomes high, the first flow control valve 120 and the second flow control valve 1
The opening and closing control of the steam generator 21 is performed by, for example, closing the first flow control valve 120 so that the steam from the medium pressure drum 106 is
6 and when the temperature at the outlet side of the combustor 117 is high even when the first flow control valve 120 is fully closed, the second flow control valve 121 is opened and the amount of steam from the high-pressure steam flow path 118 is opened. Is to be increased. And the combustor 117
When the temperature on the outlet side exceeds a predetermined value (upper limit value), the steam control valve 201 is fully opened to increase the amount of cooling steam.
Note that the state of the opening and closing control of the first flow control valve 120 and the second flow control valve 121 is appropriately set according to the capacity of the equipment and the like.
It is implemented in combination with opening and closing with another control valve so that the securing of the predetermined flow rate and the securing of the predetermined temperature are compatible. In addition, the opening / closing control of the steam amount control valve 201 is performed by appropriately opening / closing the outlet-side temperature of the combustor 117 before the temperature exceeds a predetermined value (upper limit value) and exceeding the predetermined value (upper limit value). Sometimes it may be fully opened.

【0045】[0045]

【発明の効果】本発明のガスタービンの蒸気冷却装置
は、ガスタービンの排気ガスによって蒸気を発生させる
排熱回収ボイラと、排熱回収ボイラで発生した蒸気によ
り作動する蒸気タービンと、排熱回収ボイラからの蒸気
を蒸気タービンに導入する蒸気導入路と、蒸気導入路に
備えられ排熱回収ボイラからの蒸気をガスタービンの高
温部品の冷却のためにバイパスする蒸気冷却路と、蒸気
冷却路に設けられ蒸気冷却路に導入される蒸気量を制御
する蒸気量制御弁と、高温部品の後流側における蒸気冷
却路に備えられ高温部品を冷却した後の蒸気温度を検出
する冷却後蒸気温度検出手段と、冷却後蒸気温度検出手
段の検出情報に基づいて蒸気冷却路に流入する蒸気流量
を調整するために蒸気量制御弁の開閉制御を行うと共に
蒸気冷却路に流入する蒸気流量を所定状態に制御する制
御手段とを備えたので、冷却後蒸気温度が高くなった際
には高温部品に導かれる蒸気流量を増量するように蒸気
量制御弁を制御することで冷却蒸気量が増量して高温部
品の保護が可能になる。この結果、高温部品の出口側の
温度が上昇してもインターロック機能を用いることなく
高温部品が保護され、高温部品の破損等を防止すること
ができる。
According to the present invention, there is provided a steam cooling apparatus for a gas turbine, comprising: an exhaust heat recovery boiler for generating steam by exhaust gas from a gas turbine; a steam turbine operated by steam generated by the exhaust heat recovery boiler; A steam introduction passage for introducing steam from the boiler into the steam turbine, a steam cooling passage provided in the steam introduction passage for bypassing steam from the exhaust heat recovery boiler for cooling high-temperature components of the gas turbine, and a steam cooling passage. A steam amount control valve provided to control the amount of steam introduced into the steam cooling passage; and a post-cooling steam temperature detection provided in the steam cooling passage on the downstream side of the high-temperature component and detecting the steam temperature after cooling the high-temperature component. Means for controlling the opening and closing of a steam amount control valve to adjust the flow rate of steam flowing into the steam cooling passage based on the detection information of the steam temperature detecting means after cooling, and flowing into the steam cooling passage. Control means for controlling the steam flow rate to a predetermined state, so that when the steam temperature increases after cooling, the cooling steam is controlled by controlling the steam flow control valve so as to increase the steam flow rate guided to the high-temperature parts. Increased volume allows protection of hot parts. As a result, even if the temperature on the outlet side of the high-temperature component rises, the high-temperature component is protected without using the interlock function, and breakage of the high-temperature component can be prevented.

【0046】また、本発明のガスタービンの蒸気冷却装
置は、ガスタービンの排気ガスによって蒸気を発生させ
る排熱回収ボイラと、排熱回収ボイラで発生した蒸気に
より作動する蒸気タービンと、排熱回収ボイラからの蒸
気を蒸気タービンに導入する蒸気導入路と、蒸気導入路
に備えられ排熱回収ボイラからの蒸気をガスタービンの
高温部品の冷却のためにバイパスする蒸気冷却路と、排
熱回収ボイラで発生する蒸気圧力を検出する発生蒸気圧
力検出手段と、排熱回収ボイラで発生する蒸気圧力を調
整するために発生蒸気圧力検出手段の検出情報に基づい
て蒸気導入路の蒸気の流量を制御する発生蒸気圧力制御
弁と、蒸気冷却路に設けられ蒸気冷却路に導入される蒸
気量を制御する蒸気量制御弁と、高温部品の後流側にお
ける蒸気冷却路に備えられ高温部品を冷却した後の蒸気
温度を検出する冷却後蒸気温度検出手段と、ガスタービ
ンの状態に基づいて蒸気冷却路に流入する蒸気流量を調
整するために発生蒸気圧力検出手段の検出値が設定値に
なるように発生蒸気圧力制御弁の開閉制御を行うと共に
冷却後蒸気温度検出手段の検出情報に基づいて蒸気冷却
路に流入する蒸気流量を調整するために発生蒸気圧力制
御弁及び蒸気量制御弁の開閉制御を行う制御手段とを備
えたので、冷却後蒸気温度が高くなった際には高温部品
に導かれる蒸気流量を増量するように発生蒸気圧力制御
弁及び蒸気量制御弁を制御することで冷却蒸気量を増量
して高温部品の保護が可能になる。この結果、高温部品
の出口側の温度が上昇してもインターロック機能を用い
ることなく高温部品が保護され、高温部品の破損等を防
止することができる。
Further, the steam cooling apparatus for a gas turbine according to the present invention includes an exhaust heat recovery boiler for generating steam by exhaust gas of the gas turbine, a steam turbine operated by the steam generated by the exhaust heat recovery boiler, and an exhaust heat recovery. A steam introduction passage for introducing steam from the boiler into the steam turbine, a steam cooling passage provided in the steam introduction passage for bypassing steam from the exhaust heat recovery boiler for cooling high-temperature components of the gas turbine, and a heat recovery steam generator Means for detecting steam pressure generated in the steam generator, and controlling the flow rate of steam in the steam introduction path based on the detection information of the generated steam pressure detecting means for adjusting the steam pressure generated in the exhaust heat recovery boiler. The generated steam pressure control valve, the steam amount control valve provided in the steam cooling passage and controlling the amount of steam introduced into the steam cooling passage, and the steam cooling passage on the downstream side of the high-temperature component are provided. The detected value of the post-cooling steam temperature detecting means for detecting the steam temperature after cooling the high-temperature parts, and the detected steam pressure detecting means for adjusting the steam flow rate flowing into the steam cooling passage based on the state of the gas turbine. To control the opening and closing of the generated steam pressure control valve so as to reach the set value, and to adjust the flow rate of the steam flowing into the steam cooling passage based on the detection information of the after-cooling steam temperature detecting means, and the generated steam pressure control valve and the steam. Control means for controlling the opening and closing of the quantity control valve, so that when the steam temperature increases after cooling, the generated steam pressure control valve and the steam quantity control valve are so increased as to increase the steam flow guided to the high-temperature parts. By controlling, it becomes possible to increase the amount of cooling steam to protect high-temperature components. As a result, even if the temperature on the outlet side of the high-temperature component rises, the high-temperature component is protected without using the interlock function, and breakage of the high-temperature component can be prevented.

【0047】また、中圧ドラムから中圧蒸気タービンへ
の蒸気導入路から分岐されて蒸気冷却路が設けられ、蒸
気冷却路の分岐部の後流側の蒸気導入路に中圧ドラム圧
力制御弁を設けて発生蒸気圧力制御弁とし、制御手段に
は、冷却後蒸気温度検出手段の検出情報に基づいて蒸気
導入路の流量を規制して蒸気冷却路の流量を確保するよ
うに中圧ドラム圧力制御弁の開閉制御を行なう機能が備
えられているので、中圧ドラムからの蒸気を蒸気冷却路
に送ることができる。
Further, a steam cooling passage is provided branching from a steam introduction passage from the intermediate pressure drum to the medium pressure steam turbine, and a medium pressure drum pressure control valve is provided in a steam introduction passage downstream of the branch portion of the steam cooling passage. The generated steam pressure control valve is provided, and the control means controls the medium pressure drum pressure so as to secure the flow rate of the steam cooling path by regulating the flow rate of the steam introduction path based on the detection information of the cooled steam temperature detecting means. Since a function of controlling the opening and closing of the control valve is provided, the steam from the medium pressure drum can be sent to the steam cooling path.

【0048】また、高圧ドラムからの蒸気が導入される
補助蒸気導入路が蒸気冷却路につなげられ、補助蒸気導
入路に補助蒸気圧力制御弁を設けて発生蒸気圧力制御弁
とし、制御手段には、冷却後蒸気温度検出手段の検出情
報に基づいて補助蒸気導入路の流量を制御して蒸気冷却
路の流量を確保するように補助蒸気圧力制御弁の開閉制
御を行なう機能が備えられているので、高圧ドラムから
の蒸気を蒸気冷却路に送ることができる。
An auxiliary steam introduction passage through which steam from the high-pressure drum is introduced is connected to a steam cooling passage, and an auxiliary steam pressure control valve is provided in the auxiliary steam introduction passage to serve as a generated steam pressure control valve. And a function of controlling the opening and closing of the auxiliary steam pressure control valve so as to control the flow rate of the auxiliary steam introduction path based on the detection information of the post-cooling steam temperature detection means and to secure the flow rate of the steam cooling path. The steam from the high pressure drum can be sent to a steam cooling passage.

【0049】また、中圧ドラムから中圧蒸気タービンへ
の蒸気導入路から分岐されて蒸気冷却路が設けられ、高
圧ドラムからの蒸気が導入される補助蒸気導入路が蒸気
冷却路につなげられ、蒸気冷却路の分岐部の後流側の蒸
気導入路に中圧ドラム圧力制御弁を設けて発生蒸気圧力
制御弁とすると共に、補助蒸気導入路に補助蒸気圧力制
御弁を設けて発生蒸気圧力制御弁とし、制御手段には、
冷却後蒸気温度検出手段の検出情報に基づいて蒸気導入
路の流量を規制して蒸気冷却路の流量を確保するように
中圧ドラム圧力制御弁の開閉制御を行なうと共に冷却後
蒸気温度検出手段の検出情報に基づいて補助蒸気導入路
の流量を制御して蒸気冷却路の流量を確保するように補
助蒸気圧力制御弁の開閉制御を行なう機能が備えられて
いるので、中圧ドラムからの蒸気及び高圧ドラムからの
蒸気及び補助蒸気を蒸気冷却路に送ることができる。
A steam cooling passage is provided branching from a steam introduction passage from the medium pressure drum to the medium pressure steam turbine, and an auxiliary steam introduction passage through which steam from the high pressure drum is introduced is connected to the steam cooling passage. A medium-pressure drum pressure control valve is provided in the steam introduction path on the downstream side of the branch of the steam cooling path to provide a generated steam pressure control valve, and an auxiliary steam pressure control valve is provided in the auxiliary steam introduction path to control generated steam pressure. Valve and the control means
The opening and closing of the medium pressure drum pressure control valve is controlled so as to secure the flow rate of the steam cooling path by regulating the flow rate of the steam introduction path based on the detection information of the post-cooling steam temperature detection means, and A function is provided to control the opening and closing of the auxiliary steam pressure control valve so as to secure the flow rate of the steam cooling path by controlling the flow rate of the auxiliary steam introduction path based on the detection information. Steam from the high pressure drum and auxiliary steam can be sent to a steam cooling path.

【0050】また、制御手段には、冷却後蒸気温度検出
手段により蒸気温度が上限値を越えたことが検出された
ときに蒸気流量制御弁を全開に制御する機能が備えられ
ているので、蒸気温度が上限値を越えたときには最大量
を蒸気冷却路に通すことができる。
Further, the control means has a function of controlling the steam flow control valve to fully open when the steam temperature after cooling detects that the steam temperature has exceeded the upper limit value. When the temperature exceeds the upper limit, a maximum amount can be passed through the steam cooling path.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態例に係るガスタービンの
蒸気冷却装置を備えた複合発電プラントの冷却系統を表
す概略系統図。
FIG. 1 is a schematic system diagram showing a cooling system of a combined cycle power plant including a gas turbine steam cooling device according to a first embodiment of the present invention.

【図2】本発明の第2実施形態例に係るガスタービンの
蒸気冷却装置を備えた複合発電プラントの概略構成図。
FIG. 2 is a schematic configuration diagram of a combined cycle power plant including a gas turbine steam cooling device according to a second embodiment of the present invention.

【図3】発生蒸気圧力制御弁の制御ブロック図。FIG. 3 is a control block diagram of a generated steam pressure control valve.

【図4】発生蒸気圧力制御弁の制御ブロック図。FIG. 4 is a control block diagram of a generated steam pressure control valve.

【図5】蒸気量制御弁の制御ブロック図。FIG. 5 is a control block diagram of a steam amount control valve.

【符号の説明】[Explanation of symbols]

1,101 ガスタービン 2,102 排熱回収ボイラ 3,103 高圧ドラム 4 高圧過熱器 5,106 中圧ドラム 6,107 中圧過熱器 7,108 再熱器 8,109 高圧蒸気導入路 9,110 高圧蒸気タービン 10,115 中圧蒸気導入路 11,112 中圧蒸気タービン 12 中圧ドラム圧力制御弁 13,117 燃焼器 14,蒸気冷却路 15 蒸気流量制御弁 20,114 復水器 116 蒸気流路 118 高圧蒸気流路 119 補助流体流路 120 第1流量制御弁 121 第2流量制御弁 122 第3流量制御弁 125 制御手段 141 演算手段 142 変換演算器 143,151、162,210,212 加算手段 144,213 PI演算手段 145 第2変換演算手段 150,161 関数手段 152,214 選択手段 153,215 指令手段 154,216 比較手段 DESCRIPTION OF SYMBOLS 1,101 Gas turbine 2,102 Exhaust heat recovery boiler 3,103 High pressure drum 4 High pressure superheater 5,106 Medium pressure drum 6,107 Medium pressure superheater 7,108 Reheater 8,109 High pressure steam introduction path 9,110 High-pressure steam turbine 10, 115 Medium-pressure steam introduction path 11, 112 Medium-pressure steam turbine 12 Medium-pressure drum pressure control valve 13, 117 Combustor 14, Steam cooling path 15 Steam flow control valve 20, 114 Condenser 116 Steam flow path 118 High-pressure steam flow path 119 Auxiliary fluid flow path 120 First flow control valve 121 Second flow control valve 122 Third flow control valve 125 Control means 141 Calculation means 142 Conversion calculator 143, 151, 162, 210, 212 Addition means 144 , 213 PI operation means 145 Second conversion operation means 150, 161 Function means 152, 214 Selection means 153 , 215 Command means 154, 216 Comparison means

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービンの排気ガスによって蒸気を
発生させる排熱回収ボイラと、排熱回収ボイラで発生し
た蒸気により作動する蒸気タービンと、排熱回収ボイラ
からの蒸気を蒸気タービンに導入する蒸気導入路と、蒸
気導入路に備えられ排熱回収ボイラからの蒸気をガスタ
ービンの高温部品の冷却のためにバイパスする蒸気冷却
路と、蒸気冷却路に設けられ蒸気冷却路に導入される蒸
気量を制御する蒸気量制御弁と、高温部品の後流側にお
ける蒸気冷却路に備えられ高温部品を冷却した後の蒸気
温度を検出する冷却後蒸気温度検出手段と、冷却後蒸気
温度検出手段の検出情報に基づいて蒸気冷却路に流入す
る蒸気流量を調整するために蒸気量制御弁の開閉制御を
行うと共に蒸気冷却路に流入する蒸気流量を所定状態に
制御する制御手段とを備えたことを特徴とするガスター
ビンの蒸気冷却装置。
An exhaust heat recovery boiler that generates steam by exhaust gas of a gas turbine, a steam turbine that operates by using the steam generated by the exhaust heat recovery boiler, and a steam that introduces steam from the exhaust heat recovery boiler into the steam turbine An introduction path, a steam cooling path provided in the steam introduction path to bypass the steam from the exhaust heat recovery boiler for cooling high-temperature components of the gas turbine, and an amount of steam provided in the steam cooling path and introduced into the steam cooling path A steam amount control valve for controlling the temperature of the steam, a steam temperature detecting means provided in a steam cooling passage on the downstream side of the hot component to detect the steam temperature after cooling the hot component, and a steam temperature detecting device after the cooling Control means for controlling the opening and closing of the steam amount control valve to adjust the steam flow rate flowing into the steam cooling path based on the information and controlling the steam flow rate flowing into the steam cooling path to a predetermined state; and A steam cooling device for a gas turbine, comprising:
【請求項2】 ガスタービンの排気ガスによって蒸気を
発生させる排熱回収ボイラと、排熱回収ボイラで発生し
た蒸気により作動する蒸気タービンと、排熱回収ボイラ
からの蒸気を蒸気タービンに導入する蒸気導入路と、蒸
気導入路に備えられ排熱回収ボイラからの蒸気をガスタ
ービンの高温部品の冷却のためにバイパスする蒸気冷却
路と、排熱回収ボイラで発生する蒸気圧力を検出する発
生蒸気圧力検出手段と、排熱回収ボイラで発生する蒸気
圧力を調整するために発生蒸気圧力検出手段の検出情報
に基づいて蒸気導入路の蒸気の流量を制御する発生蒸気
圧力制御弁と、蒸気冷却路に設けられ蒸気冷却路に導入
される蒸気量を制御する蒸気量制御弁と、高温部品の後
流側における蒸気冷却路に備えられ高温部品を冷却した
後の蒸気温度を検出する冷却後蒸気温度検出手段と、ガ
スタービンの状態に基づいて蒸気冷却路に流入する蒸気
流量を調整するために発生蒸気圧力検出手段の検出値が
設定値になるように発生蒸気圧力制御弁の開閉制御を行
うと共に冷却後蒸気温度検出手段の検出情報に基づいて
蒸気冷却路に流入する蒸気流量を調整するために発生蒸
気圧力制御弁及び蒸気量制御弁の開閉制御を行う制御手
段とを備えたことを特徴とするガスタービンの蒸気冷却
装置。
2. An exhaust heat recovery boiler that generates steam by exhaust gas of a gas turbine, a steam turbine that operates by using the steam generated by the exhaust heat recovery boiler, and a steam that introduces steam from the exhaust heat recovery boiler into the steam turbine. An introduction path, a steam cooling path provided in the steam introduction path to bypass steam from the exhaust heat recovery boiler for cooling high-temperature components of the gas turbine, and a generated steam pressure for detecting a steam pressure generated in the exhaust heat recovery boiler. Detecting means, a generated steam pressure control valve for controlling the flow rate of steam in the steam introduction path based on the detected information of the generated steam pressure detecting means to adjust the steam pressure generated in the exhaust heat recovery boiler, and a steam cooling path. A steam amount control valve that controls the amount of steam introduced into the steam cooling passage, and detects the steam temperature after cooling the high temperature component provided in the steam cooling passage on the downstream side of the high temperature component And a steam pressure control valve for controlling the generated steam pressure so that the detected value of the generated steam pressure detecting means becomes a set value in order to adjust the flow rate of steam flowing into the steam cooling passage based on the state of the gas turbine. Control means for performing opening / closing control and opening / closing control of a generated steam pressure control valve and a steam amount control valve for adjusting the flow rate of steam flowing into the steam cooling path based on the detection information of the cooled steam temperature detecting means. A steam cooling device for a gas turbine.
【請求項3】 請求項2において、中圧ドラムから中圧
蒸気タービンへの蒸気導入路から分岐されて蒸気冷却路
が設けられ、蒸気冷却路の分岐部の後流側の蒸気導入路
に中圧ドラム圧力制御弁を設けて発生蒸気圧力制御弁と
し、制御手段には、冷却後蒸気温度検出手段の検出情報
に基づいて蒸気導入路の流量を規制して蒸気冷却路の流
量を確保するように中圧ドラム圧力制御弁の開閉制御を
行なう機能が備えられていることを特徴とするガスター
ビンの蒸気冷却装置。
3. A steam cooling passage branched from a steam introduction passage from an intermediate-pressure drum to an intermediate-pressure steam turbine is provided in the steam introduction passage on a downstream side of a branch portion of the steam cooling passage. A pressure drum pressure control valve is provided as a generated steam pressure control valve, and the control means regulates the flow rate of the steam introduction path based on the detection information of the post-cooling steam temperature detection means to secure the flow rate of the steam cooling path. A steam turbine cooling device for a gas turbine, further comprising a function of controlling opening and closing of a medium pressure drum pressure control valve.
【請求項4】 請求項2において、高圧ドラムからの蒸
気が導入される補助蒸気導入路が蒸気冷却路につなげら
れ、補助蒸気導入路に補助蒸気圧力制御弁を設けて発生
蒸気圧力制御弁とし、制御手段には、冷却後蒸気温度検
出手段の検出情報に基づいて補助蒸気導入路の流量を制
御して蒸気冷却路の流量を確保するように補助蒸気圧力
制御弁の開閉制御を行なう機能が備えられていることを
特徴とするガスタービンの蒸気冷却装置。
4. The generated steam pressure control valve according to claim 2, wherein the auxiliary steam introduction passage into which the steam from the high pressure drum is introduced is connected to the steam cooling passage, and the auxiliary steam introduction passage is provided with an auxiliary steam pressure control valve. The control means has a function of controlling the flow rate of the auxiliary steam introduction path based on the detection information of the post-cooling steam temperature detection means and controlling the opening and closing of the auxiliary steam pressure control valve so as to secure the flow rate of the steam cooling path. A steam cooling device for a gas turbine, which is provided.
【請求項5】 請求項2において、中圧ドラムから中圧
蒸気タービンへの蒸気導入路から分岐されて蒸気冷却路
が設けられ、高圧ドラムからの蒸気が導入される補助蒸
気導入路が蒸気冷却路につなげられ、蒸気冷却路の分岐
部の後流側の蒸気導入路に中圧ドラム圧力制御弁を設け
て発生蒸気圧力制御弁とすると共に、補助蒸気導入路に
補助蒸気圧力制御弁を設けて発生蒸気圧力制御弁とし、
制御手段には、冷却後蒸気温度検出手段の検出情報に基
づいて蒸気導入路の流量を規制して蒸気冷却路の流量を
確保するように中圧ドラム圧力制御弁の開閉制御を行な
うと共に冷却後蒸気温度検出手段の検出情報に基づいて
補助蒸気導入路の流量を制御して蒸気冷却路の流量を確
保するように補助蒸気圧力制御弁の開閉制御を行なう機
能が備えられていることを特徴とするガスタービンの蒸
気冷却装置。
5. The steam turbine according to claim 2, further comprising a steam cooling passage branched from a steam introduction passage from the medium pressure drum to the medium pressure steam turbine, and an auxiliary steam introduction passage through which steam from the high pressure drum is introduced. A medium pressure drum pressure control valve is provided in the steam introduction path on the downstream side of the branch of the steam cooling path to form a generated steam pressure control valve, and an auxiliary steam pressure control valve is provided in the auxiliary steam introduction path. Generated steam pressure control valve,
The control means controls the opening and closing of the medium pressure drum pressure control valve so as to regulate the flow rate of the steam introduction path based on the detection information of the after-cooling steam temperature detection means and to secure the flow rate of the steam cooling path, A function of controlling the opening and closing of the auxiliary steam pressure control valve so as to control the flow rate of the auxiliary steam introduction path based on the detection information of the steam temperature detecting means and secure the flow rate of the steam cooling path. Gas turbine steam cooling system.
【請求項6】 請求項2乃至請求項5のいずれか1項に
おいて、制御手段には、冷却後蒸気温度検出手段により
蒸気温度が上限値を越えたことが検出されたときに蒸気
流量制御弁を全開に制御する機能が備えられていること
を特徴とするガスタービンの蒸気冷却装置。
6. The steam flow control valve according to claim 2, wherein the control means includes a steam flow control valve when the steam temperature after cooling detects that the steam temperature exceeds an upper limit value. A steam cooling device for a gas turbine, wherein the steam cooling device is provided with a function of fully controlling the gas turbine.
JP2000360800A 2000-11-28 2000-11-28 Gas turbine steam cooling system Expired - Lifetime JP4610722B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000360800A JP4610722B2 (en) 2000-11-28 2000-11-28 Gas turbine steam cooling system
CA002364125A CA2364125C (en) 2000-11-28 2001-11-27 Steam cooling apparatus for gas turbine
DE60126556T DE60126556T2 (en) 2000-11-28 2001-11-28 Steam cooling device for a gas turbine
US09/994,756 US6651440B2 (en) 2000-11-28 2001-11-28 Steam cooling apparatus for gas turbine
EP01127481A EP1209325B1 (en) 2000-11-28 2001-11-28 Steam cooling apparatus for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000360800A JP4610722B2 (en) 2000-11-28 2000-11-28 Gas turbine steam cooling system

Publications (2)

Publication Number Publication Date
JP2002161756A true JP2002161756A (en) 2002-06-07
JP4610722B2 JP4610722B2 (en) 2011-01-12

Family

ID=18832338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000360800A Expired - Lifetime JP4610722B2 (en) 2000-11-28 2000-11-28 Gas turbine steam cooling system

Country Status (1)

Country Link
JP (1) JP4610722B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013144948A (en) * 2012-01-13 2013-07-25 Mitsubishi Heavy Ind Ltd Combined cycle power generation plant, and control method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693879A (en) * 1992-09-11 1994-04-05 Hitachi Ltd Combined plant and operation thereof
JPH10131721A (en) * 1996-10-31 1998-05-19 Mitsubishi Heavy Ind Ltd Gas turbine steam system
JPH10131719A (en) * 1996-10-29 1998-05-19 Mitsubishi Heavy Ind Ltd Steam cooling gas turbine system
JPH10339172A (en) * 1997-06-04 1998-12-22 Hitachi Ltd Hydrogen combustion turbine plant
JPH11241604A (en) * 1998-02-25 1999-09-07 Mitsubishi Heavy Ind Ltd Gas turbine combined plant, its operation method and gas turbine high temperature section steem cooling system
JP2000161014A (en) * 1998-11-20 2000-06-13 Hitachi Ltd Combined power generator facility

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693879A (en) * 1992-09-11 1994-04-05 Hitachi Ltd Combined plant and operation thereof
JPH10131719A (en) * 1996-10-29 1998-05-19 Mitsubishi Heavy Ind Ltd Steam cooling gas turbine system
JPH10131721A (en) * 1996-10-31 1998-05-19 Mitsubishi Heavy Ind Ltd Gas turbine steam system
JPH10339172A (en) * 1997-06-04 1998-12-22 Hitachi Ltd Hydrogen combustion turbine plant
JPH11241604A (en) * 1998-02-25 1999-09-07 Mitsubishi Heavy Ind Ltd Gas turbine combined plant, its operation method and gas turbine high temperature section steem cooling system
JP2000161014A (en) * 1998-11-20 2000-06-13 Hitachi Ltd Combined power generator facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013144948A (en) * 2012-01-13 2013-07-25 Mitsubishi Heavy Ind Ltd Combined cycle power generation plant, and control method thereof

Also Published As

Publication number Publication date
JP4610722B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP7308042B2 (en) Thermal storage device, power plant, and operation control method during fast cutback
JP2000161014A5 (en)
JP2000161014A (en) Combined power generator facility
JP2009062985A (en) Method for operating combined-cycle power plant and combined-cycle power plant for executing the method
JP4698860B2 (en) Turbine steam control device
JP2001349207A (en) Combined cycle power generation plant
CA2262722C (en) Gas turbine combined plant, method of operating the same, and steam-cooling system for gas turbine hot section
JP3774487B2 (en) Combined cycle power plant
CA2364125C (en) Steam cooling apparatus for gas turbine
US10041379B2 (en) Method for operating a combined cycle power plant and combined cycle power plant for conducting said method
JP2002161756A (en) Steam cooling device of gas turbine
JP2013064372A (en) Low pressure turbine bypass control device, and power plant
JP4598943B2 (en) Gas turbine steam cooling system
JP3518252B2 (en) Closed steam cooled gas turbine combined plant and gas turbine combined plant
JPH048802A (en) Steam turbine for power generation
JP3790146B2 (en) Combined cycle power plant and operation method thereof
JPH10131721A (en) Gas turbine steam system
JPH1193618A (en) Steam pressure control method for gas turbine steam cooling system
JP2024009646A (en) Control device, control method and control progra mfor steam power generation plant
JP2001132412A (en) Steam cooling device for gas turbine
JP2523493B2 (en) Turbin bypass system
JPH08121112A (en) Single-shaft combined-cycle power generating equipment
JP2004027938A (en) Multishaft type combined cycle plant and method for controlling the same
JPH07293808A (en) Control device for feedwater heater
JPH03281905A (en) Reheating type combined cycle power generating plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4610722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term