JP2002161000A - Method for producing gallium nitride single crystal - Google Patents

Method for producing gallium nitride single crystal

Info

Publication number
JP2002161000A
JP2002161000A JP2000396230A JP2000396230A JP2002161000A JP 2002161000 A JP2002161000 A JP 2002161000A JP 2000396230 A JP2000396230 A JP 2000396230A JP 2000396230 A JP2000396230 A JP 2000396230A JP 2002161000 A JP2002161000 A JP 2002161000A
Authority
JP
Japan
Prior art keywords
gan
sapphire substrate
single crystal
gallium nitride
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000396230A
Other languages
Japanese (ja)
Inventor
Toshiaki Sakaida
敏昭 坂井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OTTS KK
Original Assignee
OTTS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OTTS KK filed Critical OTTS KK
Priority to JP2000396230A priority Critical patent/JP2002161000A/en
Publication of JP2002161000A publication Critical patent/JP2002161000A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce defects of a gallium nitride single crystal and to develop a method for reducing a warpage of a single crystal substrate. SOLUTION: The method for producing a gallium nitride single crystal (comprises thickly growing gallium nitride by a hydride vapor phase epitaxy(HVPE) growing method on a sapphire substrate having fine asperities of which the projecting part size is >=30 nm and <=200 nm, and peeling the same from the sapphire substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、青色レーザーダイ
オード等に使用される窒化ガリウム単結晶基板の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a gallium nitride single crystal substrate used for a blue laser diode or the like.

【0002】[0002]

【従来の技術】窒化ガリウム(GaN、以下GaNと記
す。)単結晶はサファイア基板上に塩化物気相成長法
(以下HVPE法と記す。)で横方向成長等の選択成長
法を用いて、GaNの膜を厚く堆積し、その後サファイ
ア基板と厚いGaNとを分離して作成している。又Ga
Nが分解しないように、1.5×10Pa程度の高圧
下の約1500℃の温度でGaNのバルク結晶を育成し
ている。これらの育成方法は、工程が複雑、或いは高価
な設備が必要である。又これらの結晶は結晶の欠陥の程
度を示すエッチピット密度が多く、(10−10)面の
非対称反射のX線ロッキングカーブの半値幅が、400
arcsec程度ある。又直径50mm、厚み300ミ
クロン(μ)の基板の反りが20μ程度あり、基板上に
作成したデバイスの特性、収率が悪い。
2. Description of the Related Art A single crystal of gallium nitride (GaN, hereinafter referred to as GaN) is formed on a sapphire substrate by a selective growth method such as a lateral growth method by a chloride vapor phase growth method (hereinafter, referred to as an HVPE method). A thick GaN film is deposited, and then the sapphire substrate and the thick GaN are separately formed. Also Ga
A GaN bulk crystal is grown at a temperature of about 1500 ° C. under a high pressure of about 1.5 × 10 9 Pa so that N is not decomposed. These growing methods require complicated facilities or expensive equipment. Further, these crystals have a large etch pit density indicating the degree of crystal defects, and the half width of the X-ray rocking curve of the asymmetrical reflection on the (10-10) plane is 400.
arcsec. In addition, a substrate having a diameter of 50 mm and a thickness of 300 microns (μ) has a warpage of about 20 μ, and the characteristics and yield of a device formed on the substrate are poor.

【0003】[0003]

【発明が解決しようとする課題】結晶中の欠陥密度が少
なく、反りの小さいGaN単結晶の開発を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to develop a GaN single crystal having a small defect density in a crystal and a small warpage.

【0004】[0004]

【問題を解決するための手段】上記の問題を解決するた
めに、微細な凹凸を有するサファイア基板上に気相法で
GaNを厚く成長させる方法を採用した。
Means for Solving the Problems In order to solve the above problems, a method of growing GaN thickly on a sapphire substrate having fine irregularities by a vapor phase method is adopted.

【0005】[0005]

【発明の実施の形態】本発明は、表面がナノレベルで制
御された凹凸を有するサファイア基板上にGaNからな
る層を成長し、欠陥が少なく、反りも少ないGaN単結
晶を安価に製造するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention provides a method for growing a GaN layer on a sapphire substrate having irregularities whose surface is controlled at a nano-level and manufacturing a GaN single crystal with few defects and little warpage at low cost. It is.

【0006】ナノレベルで制御された凹凸は化学的、物
理的手法で作成する。化学的方法としては、サファイア
基板表面をリン酸、ピロリン酸でエッチングするか、ス
プレー法、ゾルゲル法でサファイア基板表面にサファイ
アの結晶格子定数に近い格子定数を持つ材料を付加する
方法がある。又ゾルゲル法で付加した後、リン酸、ピロ
リン酸でエッチングするか、或いは水素でエッチングす
るという組み合わせた方法もある。物理的方法として
は、真空蒸着、イオンプレーティング、スパッター、プ
ラズマ法でサファイアの結晶格子定数に近い格子定数を
持つ材料を表面に付加する方法がある。これらの物理的
方法に、薬液、水素ガス処理を組み合わせても良い。
The unevenness controlled at the nano level is created by a chemical or physical method. As a chemical method, there is a method of etching the sapphire substrate surface with phosphoric acid or pyrophosphoric acid, or adding a material having a lattice constant close to the crystal lattice constant of sapphire to the sapphire substrate surface by a spray method or a sol-gel method. Also, there is a combined method of adding by a sol-gel method and then etching with phosphoric acid or pyrophosphoric acid or etching with hydrogen. As a physical method, there is a method in which a material having a lattice constant close to the crystal lattice constant of sapphire is added to the surface by vacuum deposition, ion plating, sputtering, or a plasma method. A chemical solution and hydrogen gas treatment may be combined with these physical methods.

【0007】GaNが二次元成長するために、付加され
る物はサファイア基板の方位に対して一定の関係がある
方位であることが必要であり、同じ方位であることが好
ましい。このために、サファイアの結晶格子定数に近い
格子定数を持つ材料が最適に利用でき、サファイアと同
じ材料のアルミナ(Al)や、スピネル(MgA
)等が好ましい。
In order for GaN to grow two-dimensionally, it is necessary that the object to be added has an orientation having a certain relationship with the orientation of the sapphire substrate, and preferably has the same orientation. For this reason, a material having a lattice constant close to the crystal lattice constant of sapphire can be optimally used, and alumina (Al 2 O 3 ) or spinel (MgA) of the same material as sapphire can be used.
l 2 O 4 ) and the like are preferable.

【0008】サファイア基板の凸部の平均的大きさ(概
略直径)は3次元表面構造解析顕微鏡で測定し、30n
mから200nmで、特に50nm以上100nm以下
が好ましい。高さは凸部上でのAlGaNの横方向成長
が凹部から成長してきたAlGaNに阻害されない高さ
が好ましく、ほぼ同じ高さが好ましい。高さはAlGa
Nの成長速度、凸部の密度により決まる。大きさが約1
00nmの場合で、高さは3次元表面構造解析顕微鏡で
約50nm程度である。凹凸の存在状態は、凸部がつな
がった状態、粒界で接する状態でも良いが、凸部がひと
つひとつ島状的に分離され、高密度に存在する状態が好
ましい。凸部の密度は、大きさが100nmであれば、
サファイア基板1cm当たり1010以下、大きさが
30nmであれば1cm当たり1011程度以下が好
ましい。
The average size (approximate diameter) of the convex portion of the sapphire substrate is measured with a three-dimensional surface structure analysis microscope, and is 30 n
It is preferably from m to 200 nm, particularly preferably from 50 nm to 100 nm. The height is preferably such that the lateral growth of AlGaN on the convex portion is not hindered by AlGaN grown from the concave portion, and is preferably substantially the same. Height is AlGa
It is determined by the growth rate of N and the density of the projections. About 1 size
In the case of 00 nm, the height is about 50 nm with a three-dimensional surface structure analysis microscope. The unevenness may be present in a state where the protrusions are connected or in contact with each other at a grain boundary. However, it is preferable that the protrusions are separated from each other like an island and exist at a high density. If the size of the convex portion is 100 nm,
It is preferably 10 10 or less per 1 cm 2 of the sapphire substrate, and about 10 11 or less per 1 cm 2 if the size is 30 nm.

【0009】微細な凹凸を有するサファイア基板上の成
膜はHVPE法、MOCVD法等の気相法で行う。Ga
N層を成長する温度は2次元的成長がしやすい900℃
以上が好ましく、又1150℃以上では、GaNの分解
が激しくなるので、1150℃以下が好ましい。GaN
の成長中にトリメチルガリウム等の原料の供給を制御し
て、膜の成長速度を成膜中に変えてもよい。MOCVD
法で低温バッファ層を積んでから、HVPE法で厚く成
膜しても良い。
Film formation on a sapphire substrate having fine irregularities is performed by a gas phase method such as HVPE or MOCVD. Ga
The temperature for growing the N layer is 900 ° C., which facilitates two-dimensional growth.
When the temperature is 1150 ° C. or higher, the decomposition of GaN becomes severe. Therefore, the temperature is preferably 1150 ° C. or lower. GaN
The growth rate of the film may be changed during the film formation by controlling the supply of a raw material such as trimethylgallium during the growth of the film. MOCVD
After the low-temperature buffer layer is stacked by the HVPE method, a thick film may be formed by the HVPE method.

【0010】サファイア基板上に成長させたGaNを剥
離するには、500から1000℃まで急加熱するか、
プレスで徐々に荷重を掛けることによって行う。
[0010] To remove GaN grown on the sapphire substrate, a rapid heating from 500 to 1000 ° C or
This is done by gradually applying a load with a press.

【0011】微細な凹凸を有するサファイア基板上に成
長させたGaNの結晶性が向上したのは、成長初期のG
aNの大きさが凸部の大きさ以下程度であること、凹部
の空間があるためにGaN成長膜の歪みが小さくなるこ
と、又凸部の側面部の方位がリン酸、高温水素等の処理
によりほぼそろっているために一定の方向に成長しやす
くAlGaNのツイストが小さくなるために、成長膜の
結晶性が向上したものと考えている。
The improvement in the crystallinity of GaN grown on a sapphire substrate having fine irregularities is due to the fact that the GaN grown at the beginning of growth
The size of aN is not more than the size of the convex portion, the distortion of the GaN growth film is reduced due to the space of the concave portion, and the orientation of the side portion of the convex portion is the treatment of phosphoric acid, high temperature hydrogen, etc. It is considered that the crystallinity of the grown film is improved because AlGaN is more likely to grow in a certain direction because of the uniformity, and the twist of AlGaN is reduced.

【0012】[0012]

【実施例1】アルミナ成分の濃度が20%のアルミナゾ
ルに、アルミナのシード成分を加え、攪拌機で混合し、
粘度を10センチポアズにした。アルミナのシード成分
の作成方法は次のように行った。アルミナのポットミル
に高純度のアルミナボールと純水を入れ、3日間回転さ
せた後、液体を1.5万rpmの遠心分離器にかけた。
そしてその上澄み液をアルミナシード成分として用い
た。シードを加えたアルミナゾルをc面の平滑な、直径
50mm、厚さ350ミクロンのサファイア基板上に、
スピンコーターで15秒間、1500rpmの条件で薄
く塗布した。これを加熱炉に入れ70℃で5時間、12
0℃で5時間、250℃で3時間、350℃で5時間、
450℃で5時間、650℃で3時間、750℃で3時
間順次加熱処理し、ついで焼結のために、この基板を1
200℃の温度の加熱炉に3分間保持するように、急速
加熱し、200℃/分で急速冷却した。炉から取りだ
し、110℃に加熱した混酸(硫酸:リン酸=3:1)
中で30分処理し、ついで230℃のリン酸に15分間
浸せき後、純水で良く水洗し乾燥した。凸部の平均的大
きさは約75nmであり、高さは約40nmほぼ6角形
状で島状的であった。
Example 1 An alumina seed component was added to an alumina sol having an alumina component concentration of 20% and mixed with a stirrer.
The viscosity was 10 centipoise. The method of preparing the alumina seed component was as follows. High-purity alumina balls and pure water were placed in an alumina pot mill and rotated for 3 days, and then the liquid was centrifuged at 15,000 rpm.
The supernatant was used as an alumina seed component. The seeded alumina sol was placed on a c-plane smooth, 50 mm diameter, 350 micron thick sapphire substrate,
Thin coating was performed with a spin coater at 1500 rpm for 15 seconds. This was placed in a heating furnace at 70 ° C. for 5 hours for 12 hours.
5 hours at 0 ° C, 3 hours at 250 ° C, 5 hours at 350 ° C,
Heat treatment was performed at 450 ° C. for 5 hours, at 650 ° C. for 3 hours, and at 750 ° C. for 3 hours.
Rapid heating was performed so as to be maintained in a heating furnace at a temperature of 200 ° C. for 3 minutes, and rapid cooling was performed at 200 ° C./min. Mixed acid taken out of the furnace and heated to 110 ° C (sulfuric acid: phosphoric acid = 3: 1)
In water for 30 minutes and then immersed in phosphoric acid at 230 ° C. for 15 minutes, washed well with pure water and dried. The average size of the protrusions was about 75 nm, and the height was about 40 nm, which was almost hexagonal and island-like.

【0013】このナノメーターレベルの凹凸のあるサフ
ァイア基板を横型のHVPE装置内部の基板ホルダに設
置し、水素ガスを流しながら、基板表面温度を1150
℃に5分間保持し基板表面のクリーニングを行なった。
This sapphire substrate having irregularities at the nanometer level is set on a substrate holder inside a horizontal HVPE apparatus, and the substrate surface temperature is set to 1150 while flowing hydrogen gas.
The substrate surface was cleaned by holding at 5 ° C. for 5 minutes.

【0014】ついで、基板表面温度を1030℃まで降
下させ、この状態で主キャリアーガスとして窒素ガスを
18リットル/分、水素ガスを2リットル/分、アンモ
ニアを2リットル/分流しながら、塩化水素を0.2リ
ットル/分流し3時間分保持した。ガリウム金属と塩化
水素の反応は850℃でおこない、塩化水素は8倍の水
素で希釈した。厚さ300μのGaNが得られた。
Then, the substrate surface temperature is lowered to 1030 ° C., and in this state, hydrogen chloride is supplied while flowing 18 l / min of nitrogen gas, 2 l / min of hydrogen gas, and 2 l / min of ammonia as the main carrier gas. The flow rate was 0.2 liter / min, and was maintained for 3 hours. The reaction between gallium metal and hydrogen chloride was performed at 850 ° C., and the hydrogen chloride was diluted with hydrogen eight times. GaN having a thickness of 300 μ was obtained.

【0015】成長したGaN付きサファイア基板を、5
00℃まで2分で急加熱すると界面で剥離した。剥離面
は目視観察では、平滑だった。
The grown sapphire substrate with GaN is
When rapidly heated to 00 ° C. for 2 minutes, peeling occurred at the interface. The peeled surface was smooth by visual observation.

【0016】剥離したGaN基板の欠陥の度合い、すな
わち結晶性の評価を行うために、GaN層の(10−1
0)面の非対称反射のX線ロッキングカーブの半値幅を
測定した。半値幅は、250arcsecであった。表
面形状装置で基板の中央部の反り高さを測り5μであっ
た。
In order to evaluate the degree of defect of the peeled GaN substrate, that is, the crystallinity, (10-1)
0) The half width of the X-ray rocking curve of the asymmetric reflection on the plane was measured. The half width was 250 arcsec. The warpage height at the center of the substrate was measured with a surface profiler and found to be 5 μm.

【0017】[0017]

【実施例2】実施例1のシードを入れたアルミナゾルに
硝酸を添加し、ゾルの粘度を20センチポアズにした。
これを実施例1において述べたものと同等の方法で、サ
ファイア基板上に凸部を作製した。凸部が一部つながっ
た状態で、平均的大きさは約200nmであり、高さは
約60nmであった。
Example 2 Nitric acid was added to the seeded alumina sol of Example 1 to adjust the viscosity of the sol to 20 centipoise.
A projection was formed on a sapphire substrate in the same manner as described in Example 1. The average size was about 200 nm and the height was about 60 nm with the projections partially connected.

【0018】ついで、実施例1において述べたものと同
等の方法でGaN層を300μ積んだ。
Then, 300 μm of a GaN layer was stacked in the same manner as described in the first embodiment.

【0019】成長したGaN付きサファイア基板を、5
00℃まで2分で急加熱すると界面で剥離した。剥離面
は目視観察では、平滑だった。
The grown sapphire substrate with GaN is
When rapidly heated to 00 ° C. for 2 minutes, peeling occurred at the interface. The peeled surface was smooth by visual observation.

【0020】剥離したGaN層の(10−10)面の非
対称反射のX線ロッキングカーブの半値幅を測定した。
半値幅は、400arcsecであった。表面形状装置
で基板の中央部の反り高さを測り15μであった。
The half width of the X-ray rocking curve of the asymmetrical reflection on the (10-10) plane of the peeled GaN layer was measured.
The half width was 400 arcsec. The warpage height at the center of the substrate was measured with a surface profiler and found to be 15 μm.

【0021】[0021]

【実施例3】実施例1のシードを入れたアルミナゾルに
硝酸を添加し、ゾルの粘度を5センチポアズにした。焼
結温度を1200℃から1150℃に変更した以外は、
実施例1において述べたものと同等の方法で、サファイ
ア基板上に凸部を作製した。凸部の平均的大きさは約3
0nmで粒界で接する状態であった。
Example 3 Nitric acid was added to the seeded alumina sol of Example 1 to adjust the viscosity of the sol to 5 centipoise. Except that the sintering temperature was changed from 1200 ° C to 1150 ° C,
Protrusions were formed on a sapphire substrate in the same manner as described in Example 1. The average size of the protrusions is about 3
At 0 nm, it was in contact with the grain boundary.

【0022】ついで、実施例1において述べたものと同
等の方法でGaNを作成した。すなわち、このナノメー
ターレベルの凹凸のあるサファイア基板を横型のHVP
E装置内部に設置し、水素でクリーニング、GaN層を
300μ積んだ。
Next, GaN was prepared by the same method as that described in the first embodiment. That is, the sapphire substrate having the nanometer-level unevenness is formed by a horizontal HVP.
E was set inside the apparatus, cleaned with hydrogen, and a 300 μm GaN layer was stacked.

【0023】成長したGaN付きサファイア基板を、5
00℃まで2分で急加熱すると界面で剥離した。剥離面
は目視観察では、平滑だった。
The grown sapphire substrate with GaN was
When rapidly heated to 00 ° C. for 2 minutes, peeling occurred at the interface. The peeled surface was smooth by visual observation.

【0024】剥離したGaN層の(10−10)面の非
対称反射のX線ロッキングカーブの半値幅を測定した。
半値幅は、400arcsecであった。表面形状装置
で基板の中央部の反り高さを測り15μであった。
The half width of the X-ray rocking curve of the asymmetric reflection on the (10-10) plane of the peeled GaN layer was measured.
The half width was 400 arcsec. The warpage height at the center of the substrate was measured with a surface profiler and found to be 15 μm.

【0025】[0025]

【比較例1】平滑なサファイア基板を横型のHVPE装
置内部に設置し、水素ガスでクリーニングし、ついで、
実施例1において述べたものと同等の方法でGaNを3
00μ積んだ。
[Comparative Example 1] A smooth sapphire substrate was placed inside a horizontal HVPE apparatus, and was cleaned with hydrogen gas.
In the same manner as described in the first embodiment,
00μ was piled up.

【0026】成長したGaN付きサファイア基板は不透
明であった。これを500℃まで2分で急加熱するとク
ラックの入った、平坦でない状態で一部界面で剥離し
た。
The grown sapphire substrate with GaN was opaque. When this was rapidly heated to 500 ° C. for 2 minutes, it was partially cracked and peeled off at the interface in an uneven state.

【0027】一部界面で剥離したGaN層の(10−1
0)面の非対称反射のX線ロッキングカーブの半値幅を
測定した。半値幅は、1500arcsecであった。
(10-1) of the GaN layer peeled off at a part of the interface
0) The half width of the X-ray rocking curve of the asymmetric reflection on the plane was measured. The half width was 1500 arcsec.

【0028】[0028]

【発明の効果】従来のような複雑な工程でなく、シンプ
ルな工程でGaN基板を製造することができる。又基板
の欠陥も少なく、サファイア基板とGaN基板の剥離が
容易である。コスト、性能の2点で産業上の価値が大き
い。
According to the present invention, a GaN substrate can be manufactured by a simple process, not by a complicated process as in the prior art. Further, the substrate has few defects, and the sapphire substrate and the GaN substrate can be easily separated. It has great industrial value in terms of cost and performance.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】凸部の大きさが30ナノメーター以上、2
00ナノメーター以下の微細な凹凸を有するサファイア
基板上に、塩化物気相成長法により窒化ガリウムを成膜
することを特徴とする窒化ガリウム単結晶の製造方法。
1. The method according to claim 1, wherein the size of the projection is 30 nanometers or more.
A method for producing a gallium nitride single crystal, comprising forming a gallium nitride film on a sapphire substrate having fine irregularities of not more than 00 nanometers by a chloride vapor phase epitaxy method.
JP2000396230A 2000-11-22 2000-11-22 Method for producing gallium nitride single crystal Pending JP2002161000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000396230A JP2002161000A (en) 2000-11-22 2000-11-22 Method for producing gallium nitride single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000396230A JP2002161000A (en) 2000-11-22 2000-11-22 Method for producing gallium nitride single crystal

Publications (1)

Publication Number Publication Date
JP2002161000A true JP2002161000A (en) 2002-06-04

Family

ID=18861558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000396230A Pending JP2002161000A (en) 2000-11-22 2000-11-22 Method for producing gallium nitride single crystal

Country Status (1)

Country Link
JP (1) JP2002161000A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051718A1 (en) * 2002-11-29 2004-06-17 Sumitomo Chemical Company, Limited 3-5 group compound semiconductor and method for preparation thereof
JP2006191074A (en) * 2005-01-07 2006-07-20 Samsung Corning Co Ltd Method for manufacturing epitaxial wafer
JP2011032113A (en) * 2009-07-30 2011-02-17 Shin Etsu Handotai Co Ltd Method for manufacturing self-support nitride semiconductor substrate
JP2013256441A (en) * 2012-06-04 2013-12-26 Soraa Inc Process for large-scale ammonothermal manufacturing of semipolar gallium nitride boules
US9269876B2 (en) 2012-03-06 2016-02-23 Soraa, Inc. Light emitting diodes with low refractive index material layers to reduce light guiding effects
US9761763B2 (en) 2012-12-21 2017-09-12 Soraa, Inc. Dense-luminescent-materials-coated violet LEDs
US10036099B2 (en) 2008-08-07 2018-07-31 Slt Technologies, Inc. Process for large-scale ammonothermal manufacturing of gallium nitride boules
CN115012039A (en) * 2022-06-16 2022-09-06 国镓芯科(深圳)半导体科技有限公司 Method for preparing high-quality monocrystal GaN by hydride vapor phase epitaxy method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7659190B2 (en) 2002-11-29 2010-02-09 Sumitomo Chemical Company, Limited Method for producing a Group III-V compound semiconductor
GB2410836A (en) * 2002-11-29 2005-08-10 Sumitomo Chemical Co 3-5 group compound semiconductor and method for preparation thereof
GB2410836B (en) * 2002-11-29 2006-06-07 Sumitomo Chemical Co 3-5 group compound semiconductor and method for producing the same
WO2004051718A1 (en) * 2002-11-29 2004-06-17 Sumitomo Chemical Company, Limited 3-5 group compound semiconductor and method for preparation thereof
US8475588B2 (en) 2005-01-07 2013-07-02 Samsung Corning Precision Materials Co., Ltd. Wafer structure and epitaxial growth method for growing the same
JP2006191074A (en) * 2005-01-07 2006-07-20 Samsung Corning Co Ltd Method for manufacturing epitaxial wafer
US10036099B2 (en) 2008-08-07 2018-07-31 Slt Technologies, Inc. Process for large-scale ammonothermal manufacturing of gallium nitride boules
JP2011032113A (en) * 2009-07-30 2011-02-17 Shin Etsu Handotai Co Ltd Method for manufacturing self-support nitride semiconductor substrate
US9269876B2 (en) 2012-03-06 2016-02-23 Soraa, Inc. Light emitting diodes with low refractive index material layers to reduce light guiding effects
JP2013256441A (en) * 2012-06-04 2013-12-26 Soraa Inc Process for large-scale ammonothermal manufacturing of semipolar gallium nitride boules
US10145026B2 (en) 2012-06-04 2018-12-04 Slt Technologies, Inc. Process for large-scale ammonothermal manufacturing of semipolar gallium nitride boules
US10604865B2 (en) 2012-06-04 2020-03-31 Slt Technologies, Inc. Process for large-scale ammonothermal manufacturing of semipolar gallium nitride boules
US9761763B2 (en) 2012-12-21 2017-09-12 Soraa, Inc. Dense-luminescent-materials-coated violet LEDs
CN115012039A (en) * 2022-06-16 2022-09-06 国镓芯科(深圳)半导体科技有限公司 Method for preparing high-quality monocrystal GaN by hydride vapor phase epitaxy method

Similar Documents

Publication Publication Date Title
JP4581490B2 (en) III-V group nitride semiconductor free-standing substrate manufacturing method and III-V group nitride semiconductor manufacturing method
JP4117156B2 (en) Method for manufacturing group III nitride semiconductor substrate
JP4537484B2 (en) Growth method using nanostructure adaptive layer and HVPE for producing high quality compound semiconductor material
JP3886341B2 (en) Method for manufacturing gallium nitride crystal substrate and gallium nitride crystal substrate
TW533607B (en) Semiconductor substrate made of group III nitride, and process for manufacture thereof
KR20100040299A (en) Methods for producing improved epitaxial materials
JP2011119761A (en) Iii-v group nitride semiconductor substrate
JP5665463B2 (en) Group III nitride semiconductor device manufacturing substrate and group III nitride semiconductor free-standing substrate or group III nitride semiconductor device manufacturing method
JP2022552024A (en) Gallium nitride single crystal based on ScAlMgO4 substrate and manufacturing method thereof
JP6298057B2 (en) Pretreatment method for base substrate, and manufacturing method of laminate using base substrate subjected to pretreatment
JPH11233391A (en) Crystalline substrate, semiconductor device using the same and manufacture of the semiconductor device
JP2004111848A (en) Sapphire substrate, epitaxial substrate using it, and its manufacturing method
JP5446945B2 (en) Nitride semiconductor single crystal and method for manufacturing nitride semiconductor substrate
JP2002161000A (en) Method for producing gallium nitride single crystal
CN111593408B (en) Oversized self-supporting gallium nitride single crystal and preparation method thereof
JP2006062931A (en) Sapphire substrate and its heat treatment method, and method of crystal growth
CN102326228B (en) III-nitride semiconductor growth substrate, III-nitride semiconductor epitaxial substrate, III-nitride semiconductor element, III-nitride semiconductor freestanding substrate, and method for fabricating these
Yeom et al. Growth behavior of GaN epilayers on Si (111) grown by GaN nanowires assisted epitaxial lateral overgrowth
KR20150052246A (en) Epitaxial wafer and method for producing same
US10329687B2 (en) Method for producing Group III nitride semiconductor including growing Group III nitride semiconductor through flux method
WO2017164036A1 (en) Method for producing group iii nitride laminate
JP3564645B2 (en) Gallium nitride based semiconductor crystal growth method
JP7011278B2 (en) Nitride semiconductor manufacturing method
JP4236122B2 (en) Manufacturing method of semiconductor substrate
JP7326759B2 (en) GaN single crystal manufacturing method