JP2002160902A - Device for generating hydrogen - Google Patents

Device for generating hydrogen

Info

Publication number
JP2002160902A
JP2002160902A JP2000353793A JP2000353793A JP2002160902A JP 2002160902 A JP2002160902 A JP 2002160902A JP 2000353793 A JP2000353793 A JP 2000353793A JP 2000353793 A JP2000353793 A JP 2000353793A JP 2002160902 A JP2002160902 A JP 2002160902A
Authority
JP
Japan
Prior art keywords
gas
temperature
section
unit
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000353793A
Other languages
Japanese (ja)
Other versions
JP3708428B2 (en
Inventor
Akira Maenishi
晃 前西
Tomomichi Asou
智倫 麻生
Takeshi Tomizawa
猛 富澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000353793A priority Critical patent/JP3708428B2/en
Priority to US10/110,541 priority patent/US7135050B2/en
Priority to KR1020027005049A priority patent/KR20020048972A/en
Priority to EP01956854A priority patent/EP1316529A4/en
Priority to PCT/JP2001/006953 priority patent/WO2002016258A1/en
Priority to CNB018025307A priority patent/CN1195670C/en
Publication of JP2002160902A publication Critical patent/JP2002160902A/en
Application granted granted Critical
Publication of JP3708428B2 publication Critical patent/JP3708428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To actualize a stable state of combustion at a burner and an excellent property of exhausted combustion gas concerning ingredients and change in flow rate of produced gas at the start of a hydrogen generating device which comprises a reformer, a converter and a cleaning part and whose structure is the produced gas coming from the cleaning part is supplied to the burner. SOLUTION: A device for generating hydrogen can actualize a stable state of combustion at a burner and an excellent property of the exhausted combustion gas by having a passageway which leads the produced gas emitted from the device tot the burner and a detector which measures temperature at the reformer, estimating the flow rate of inflammable gas in the produced gas by signals from a raw materials supplying part and the temperature detecting part in the reformer and controlling the amount of air supplied from an air supplying part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、天然ガス、LP
G、ガソリン、ナフサ、灯油、メタノール等の炭化水素
系物質を主原料とし、燃料電池等の水素利用機器に供給
するための水素リッチガスを発生させる水素発生装置に
関する。
The present invention relates to natural gas, LP
The present invention relates to a hydrogen generator that uses a hydrocarbon-based substance such as G, gasoline, naphtha, kerosene, or methanol as a main raw material and generates a hydrogen-rich gas to be supplied to a hydrogen utilization device such as a fuel cell.

【0002】[0002]

【従来の技術】以下に、従来の燃料電池用水素発生装置
の起動方法について図6を用いて説明する。
2. Description of the Related Art A method of starting a conventional hydrogen generator for a fuel cell will be described below with reference to FIG.

【0003】1は原料供給部、2は水供給部であり、内
部に改質触媒を充填した改質部3に接続している。原料
供給部1により供給された原料は改質部3から流出して
変成触媒を充填した変成部4に流入し、さらに変成部4
から流出するガスはCO除去触媒を充填した浄化部5に
流入する。そして浄化部5から流出するガスは、生成ガ
スとして三方バルブ6を通り、一方は水素発生装置から
燃料電池7へ、また一方は改質部3近傍に設置したバー
ナ8に導くように流路構成している。バーナ8には9の
燃料供給部と燃焼用空気を供給する空気供給部10を設
置している。バーナ8での燃焼ガスは改質部3に設けら
れた排気口11から排気される。
[0003] Reference numeral 1 denotes a raw material supply unit, and 2 denotes a water supply unit, which is connected to a reforming unit 3 in which a reforming catalyst is filled. The raw material supplied by the raw material supply unit 1 flows out of the reforming unit 3, flows into the conversion unit 4 filled with the shift catalyst, and is further converted.
From the gas flows into the purification section 5 filled with the CO removal catalyst. The gas flowing out of the purification section 5 passes through the three-way valve 6 as a generated gas, and one of the flow paths is configured to lead from the hydrogen generator to the fuel cell 7 and the other to the burner 8 installed near the reforming section 3. are doing. The burner 8 is provided with 9 fuel supply units and an air supply unit 10 for supplying combustion air. The combustion gas in the burner 8 is exhausted from an exhaust port 11 provided in the reforming section 3.

【0004】上記構成において起動時には、三方バルブ
6により浄化部5から送出する生成ガスをバーナ8に供
給する構成とし、空気供給部10から燃焼用空気を供給
した状態で、点火装置(図中省略)で点火動作を行いな
がら、燃料供給部9より燃料を供給しバーナ8に火炎を
形成する。火炎の安定状態を確認した後、原料供給部1
より原料を供給することで、バーナ8では燃料供給部9
から供給された燃料と、原料供給部1から供給された原
料が改質部3、変成部4、浄化部5と通過してきた生成
ガスとが燃焼して改質部3を加熱する。その後、燃料供
給部1からの燃料を減少させて停止することで、原料供
給部1からの原料供給だけで火炎を形成し、改質部3、
変成部4、浄化部5を温度上昇させて最適な温度状態と
することで水素生成器を起動する。
At the time of startup, the three-way valve 6 supplies the generated gas to be sent from the purifying unit 5 to the burner 8 at the time of startup. The ignition device (not shown in the drawing) is supplied while the combustion air is supplied from the air supply unit 10. The fuel is supplied from the fuel supply unit 9 while performing the ignition operation in step (1) to form a flame in the burner 8. After confirming the stable state of the flame, the raw material supply unit 1
By supplying more raw material, the burner 8 has a fuel supply unit 9.
The fuel supplied from the reactor and the raw material supplied from the raw material supply unit 1 combust the generated gas that has passed through the reforming unit 3, the shift unit 4, and the purification unit 5 to heat the reforming unit 3. Thereafter, by reducing the amount of fuel from the fuel supply unit 1 and stopping the operation, a flame is formed only by the supply of the raw material from the raw material supply unit 1, and the reforming unit 3,
The temperature of the shift unit 4 and the purification unit 5 is raised to an optimum temperature state to start the hydrogen generator.

【0005】この時、空気の供給量は原料供給部1から
の原料供給量に応じて供給している。しかし、この空気
量の制御方法では、空気量は原料供給量に対応している
ので、実際に燃焼させる生成ガス中の可燃性ガス流量に
充分対応していないので空気量の過不足が生じ、燃焼排
気ガスの特性の悪化や不安定な燃焼状態を引き起こすこ
とがあった。
At this time, the supply amount of air is supplied in accordance with the supply amount of the raw material from the raw material supply unit 1. However, in this method of controlling the amount of air, since the amount of air corresponds to the amount of raw material supplied, the amount of air does not sufficiently correspond to the flow rate of combustible gas in the product gas to be actually burned. The characteristics of the combustion exhaust gas may be deteriorated or an unstable combustion state may be caused.

【0006】[0006]

【発明が解決しようとする課題】上記の問題点につい
て、さらに説明する。
The above problems will be further described.

【0007】生成ガス中のガス成分とガス流量は、各部
触媒の反応状態、つまり各部触媒の温度によって決定さ
れる。例えば、メタンを原料ガスとした場合、改質部で
の改質反応は主に(式1)および(式2)で示される。
The gas components and the gas flow rate in the produced gas are determined by the reaction state of each catalyst, that is, the temperature of each catalyst. For example, when methane is used as a source gas, the reforming reaction in the reforming section is mainly represented by (Equation 1) and (Equation 2).

【0008】(式1) CH4+2H2O→4H2+CO2 (式2) CH4+H2O→3H2+CO 改質触媒の温度が低く改質反応が起こらないときには、
水素発生装置からバーナに送られる生成ガスは、原料と
して供給したメタンである。しかし、改質反応が充分行
われる温度にまで上昇すれば、改質部から送出する改質
ガスは主に、(式1)および(式2)から水素と二酸化
炭素あるいは一酸化炭素となり、その総流量は供給した
メタンの4〜5倍になる。改質触媒の温度が充分上昇す
るまでは、生成ガス成分と流量はそれらの間の値とな
り、またこれに、変成部や浄化部での反応が加わるの
で、生成ガスは各部の温度に応じて様々に変化する。
(Equation 1) CH 4 + 2H 2 O → 4H 2 + CO 2 (Equation 2) CH 4 + H 2 O → 3H 2 + CO When the temperature of the reforming catalyst is low and the reforming reaction does not occur,
The product gas sent from the hydrogen generator to the burner is methane supplied as a raw material. However, if the temperature rises to a temperature at which the reforming reaction is sufficiently performed, the reformed gas delivered from the reforming section mainly becomes hydrogen and carbon dioxide or carbon monoxide from (Equation 1) and (Equation 2). The total flow will be 4-5 times the supplied methane. Until the temperature of the reforming catalyst rises sufficiently, the product gas component and the flow rate will be values between them, and the reaction in the shift section and the purification section will be added to this, so the product gas will depend on the temperature of each section. It changes in various ways.

【0009】このように、各部の温度により生成ガスの
成分と流量が変化することで生成ガス中の可燃ガス流量
が変わるので、原料供給量に応じた空気量では過不足が
生じ、バーナで良好な燃焼状態を常に維持することは難
しかった。特に、改質触媒温度が400゜C近辺では10deg
の温度上昇で反応率が数十%上昇するため改質部から送
出するガス流量は急増し、変成部や浄化部に存在してい
る可燃性ガスを多量にバーナ部へ押し出すことになる。
そのため、原料供給量に対応した空気量ではかなり不足
し、火炎が不安定になりやすく、時には失火する可能性
があった。
As described above, since the flow rate of the combustible gas in the generated gas changes due to the change in the component and the flow rate of the generated gas depending on the temperature of each part, excess or deficiency occurs in the air amount corresponding to the raw material supply amount, and the burner is good. It was difficult to always maintain a good combustion state. Especially, when the temperature of the reforming catalyst is around 400 ° C, 10deg
As the reaction rate rises by several tens of percent due to the temperature rise, the gas flow rate sent from the reforming section sharply increases, and a large amount of combustible gas present in the shift section and the purification section is pushed out to the burner section.
For this reason, the air amount corresponding to the raw material supply amount is considerably insufficient, and the flame tends to be unstable, and sometimes there is a possibility of misfire.

【0010】本発明はそれらの課題を解決するものであ
り、水素発生装置からの生成ガスをバーナで安定に燃焼
させるもので、操作性、利便性に優れる水素発生装置を
提供することを目的としたものである。
The present invention has been made to solve these problems, and an object of the present invention is to provide a hydrogen generator which stably burns a gas produced from the hydrogen generator with a burner and which is excellent in operability and convenience. It was done.

【0011】[0011]

【課題を解決するための手段】この課題を解決するため
に本発明は、炭化水素系の原料を供給する原料供給部と
水を供給する水供給部を有し改質触媒を充填した改質部
と、炭化水素系の燃料を供給する燃料供給部と空気を供
給する空気供給部を有し前記改質部を加熱するバーナを
備えた水素発生装置において、前記水素発生装置から送
出される生成ガスを前記バーナに導く流路と、前記改質
部の温度を測定する改質温度検知部を設け、前記原料供
給部からの信号と前記改質温度検知部からの信号により
生成ガス中の可燃性ガス流量の予測を行い、前記空気供
給部からの供給空気量を制御することを特徴とするもの
である。
SUMMARY OF THE INVENTION In order to solve this problem, the present invention relates to a reforming apparatus having a raw material supply section for supplying a hydrocarbon-based raw material and a water supply section for supplying water, the reforming catalyst being filled with a reforming catalyst. And a fuel supply unit for supplying a hydrocarbon-based fuel and an air supply unit for supplying air, and a burner for heating the reforming unit. A flow path for guiding gas to the burner; and a reforming temperature detecting section for measuring a temperature of the reforming section, wherein a flammable gas in the product gas is supplied by a signal from the raw material supply section and a signal from the reforming temperature detecting section. The flow rate of the reactive gas is predicted, and the amount of air supplied from the air supply unit is controlled.

【0012】また、本発明は、前記改質部の下流に設置
した変成触媒を充填した変成部と、前記変成部の温度を
測定する変成温度検知部とを設け、前記原料供給部から
の信号と前記改質温度検知部からの信号と前記変成温度
検知部からの信号とにより生成ガス中の可燃性ガス流量
の予測を行い、前記空気供給部からの供給空気量を制御
することを特徴とするものである。
[0012] The present invention also includes a shift section filled with a shift catalyst, which is provided downstream of the reforming section, and a shift temperature detecting section for measuring the temperature of the shift section, wherein a signal from the raw material supply section is provided. And predicting the flammable gas flow rate in the generated gas by the signal from the reforming temperature detection unit and the signal from the shift temperature detection unit, and controlling the amount of air supplied from the air supply unit. Is what you do.

【0013】また、本発明は、前記変成部の下流に設置
した浄化触媒を充填した浄化部と、前記浄化部の温度を
測定する浄化温度検知部とを設け、前記原料供給部から
の信号と前記改質温度検知部からの信号と前記変成温度
検知部からの信号と前記浄化温度検知部からの信号とに
より生成ガス中の可燃性ガス流量の予測を行い、前記空
気供給部からの供給空気量を制御することを特徴とする
ものである。
[0013] The present invention further comprises a purifying section provided downstream of the shift section and filled with a purifying catalyst, and a purifying temperature detecting section for measuring the temperature of the purifying section. A signal from the reforming temperature detector, a signal from the shift temperature detector, and a signal from the purification temperature detector predict a flow rate of combustible gas in the generated gas, and supply air from the air supply unit. The amount is controlled.

【0014】また、本発明は、前記生成ガス中の可燃性
ガスの予測流量と、前記燃料供給部からの信号による燃
料流量から、前記バーナでの可燃性ガスの総流量を予測
し、前記空気供給部からの供給空気量を制御することを
特徴とするものである。
Further, the present invention predicts a total flow rate of the combustible gas in the burner from a predicted flow rate of the combustible gas in the generated gas and a fuel flow rate based on a signal from the fuel supply unit. It is characterized in that the amount of air supplied from the supply unit is controlled.

【0015】[0015]

【本発明の実施の形態】以下、本発明の実施の形態につ
いて、図面を用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】(実施の形態1)図1は本発明の実施の形
態1における水素発生装置の構成図である。1は原料供
給部、2は水供給部であり、内部に改質触媒を充填した
改質部3に接続している。原料供給部1により供給され
た原料は改質部3から流出して変成触媒を充填した変成
部4に流入し、さらに変成部4から流出するガスはCO
除去触媒を充填した浄化部5に流入する。そして浄化部
5から流出するガスは、生成ガスとして三方バルブ6を
通り、一方は水素発生装置から燃料電池7へ、また一方
は改質部3近傍に設置したバーナ8に導くように流路を
構成している。バーナ8には燃料供給部9と燃焼用空気
を供給する空気供給部10を設置している。バーナ8で
の燃焼ガスは改質部3に設けられた排気口11から排気
される。
(Embodiment 1) FIG. 1 is a configuration diagram of a hydrogen generator according to Embodiment 1 of the present invention. Reference numeral 1 denotes a raw material supply unit, and 2 denotes a water supply unit, which is connected to a reforming unit 3 in which a reforming catalyst is filled. The raw material supplied by the raw material supply unit 1 flows out of the reforming unit 3 and flows into the conversion unit 4 filled with the shift catalyst, and the gas flowing out of the shift unit 4 is CO.
It flows into the purification section 5 filled with the removal catalyst. The gas flowing out of the purification unit 5 passes through the three-way valve 6 as a generated gas. One of the gas flows from the hydrogen generator to the fuel cell 7 and the other flows to a burner 8 installed near the reforming unit 3. Make up. The burner 8 is provided with a fuel supply unit 9 and an air supply unit 10 for supplying combustion air. The combustion gas in the burner 8 is exhausted from an exhaust port 11 provided in the reforming section 3.

【0017】ここで、原料供給部1および燃料供給部9
から供給される原料および燃料は、天然ガス(都市ガ
ス)、LPG等の気体状炭化水素燃料、あるいはガソリ
ン、灯油、メタノール等の液体状炭化水素系燃料であ
る。ただし、液体状燃料を用いるときには燃料の気化部
が必要となるが、改質部3やバーナ8周囲からの伝導熱
や燃焼排気ガス中の顕熱などを利用した気化部を構成す
ることが可能である。
Here, the raw material supply unit 1 and the fuel supply unit 9
Is a gaseous hydrocarbon fuel such as natural gas (city gas) or LPG, or a liquid hydrocarbon fuel such as gasoline, kerosene or methanol. However, when a liquid fuel is used, a fuel vaporization unit is required. However, it is possible to configure a vaporization unit that uses conduction heat from the reforming unit 3 and the burner 8 and sensible heat in the combustion exhaust gas. It is.

【0018】また、原料供給部1、燃料供給部9および
空気供給部10の流量調整は、ポンプ、ファン等を利用
して、その動作を制御する方法や、ポンプ、ファンなど
の下流側にバルブ等の流量調整器を設置する方法などが
あるが、本説明ではそれらを含めてそれぞれの供給部と
して示している。
The flow rates of the raw material supply unit 1, the fuel supply unit 9, and the air supply unit 10 are adjusted by using a pump, a fan, or the like to control the operation thereof, or a valve is provided downstream of the pump, the fan, or the like. Although there is a method of installing a flow regulator, etc., these are shown as respective supply units in the present description.

【0019】また、図中の矢印は原料物質や反応物質、
燃料物質等の流れの方向を示している。さらに改質部3
には改質触媒の温度を測定する改質温度検知部12を設
置し、検出した温度に応じて空気供給部10により空気
供給量を制御できる構成となっている。ここで、改質温
度検知部12は、熱電対や高温型サーミスタ等を用いる
ことができる。
The arrows in the figure indicate raw materials, reactants,
It shows the direction of flow of fuel material and the like. Further reforming unit 3
Is provided with a reforming temperature detection unit 12 for measuring the temperature of the reforming catalyst, and the air supply amount can be controlled by the air supply unit 10 according to the detected temperature. Here, as the reforming temperature detecting unit 12, a thermocouple, a high-temperature thermistor, or the like can be used.

【0020】上記構成において、水素発生装置の起動を
以下に示す。
In the above configuration, the activation of the hydrogen generator will be described below.

【0021】起動時に浄化部5から送出する生成ガスを
バーナ8に供給する構成とするために、三方バルブ6の
流路をバーナ側とする。空気供給部10から空気を供給
した状態で、点火装置(図中省略)で点火動作を行いな
がら、燃料供給部9より燃料を供給しバーナ8に火炎を
形成する。
In order to supply the generated gas sent from the purifying section 5 to the burner 8 at startup, the flow path of the three-way valve 6 is set to the burner side. In a state where air is supplied from the air supply unit 10, fuel is supplied from the fuel supply unit 9 to form a flame in the burner 8 while performing an ignition operation with an ignition device (omitted in the drawing).

【0022】火炎の安定状態を確認した後、原料供給部
1より原料を供給することで、バーナ8では燃料供給部
9から供給された燃料と、原料供給部1から供給された
原料が改質部3、変成部4、浄化部5と通過してきた生
成ガスとが燃焼して改質部3を加熱する。
After confirming the stable state of the flame, the raw material is supplied from the raw material supply unit 1 so that the fuel supplied from the fuel supply unit 9 and the raw material supplied from the raw material supply unit 1 are reformed in the burner 8. The section 3, the shift section 4, the purification section 5 and the passing product gas burn to burn the reforming section 3.

【0023】その後、燃料供給部1からの燃料を減少さ
せて停止し、原料供給部1からの原料供給によりバーナ
8での火炎を形成することで各部温度を上昇させて最適
な温度状態として、水素発生装置の起動を完了する。
Thereafter, the fuel from the fuel supply unit 1 is reduced and stopped, and the temperature of each unit is increased by forming a flame in the burner 8 by the supply of the raw material from the raw material supply unit 1 to obtain an optimal temperature state. Complete the startup of the hydrogen generator.

【0024】改質反応では、主に(式1)および(式
2)で示した2つの反応により、1モルのメタンに対し
て水素と二酸化炭素が計5モル、あるいは水素と一酸化
炭素が計4モル生成される。
In the reforming reaction, hydrogen and carbon dioxide are used in a total of 5 moles or 1 mole of methane, or hydrogen and carbon monoxide are used for 1 mole of methane mainly by the two reactions shown in (formula 1) and (formula 2). A total of 4 moles are produced.

【0025】また、図2はメタンの改質触媒温度に対す
る反応率であるが、400゜C付近で急激にメタンの反応率
が大きくなり改質反応が急激に進むことが分かる。これ
らのことより、改質触媒の温度によって、改質部3から
送出する改質ガスの成分と流量は大きく変化することが
分かる。水素発生装置から送出する生成ガスは、改質ガ
スによりバーナ8に最も近い浄化部5の出口付近のガス
が押し出されたものであるが、起動時の改質触媒が600
゜Cぐらいまでは、変成部4や浄化部5はあまり昇温し
ていないため変成反応や選択酸化反応が充分行われず、
改質ガスは変成部4や浄化部5をほとんど反応せずに通
過する。
FIG. 2 shows the reaction rate of methane with respect to the temperature of the reforming catalyst. It can be seen that the reaction rate of methane rapidly increases near 400 ° C., and the reforming reaction proceeds rapidly. From these facts, it is understood that the component and the flow rate of the reformed gas sent out from the reforming section 3 greatly change depending on the temperature of the reforming catalyst. The generated gas delivered from the hydrogen generator is a gas in which the gas near the outlet of the purifying unit 5 closest to the burner 8 is pushed out by the reformed gas.
At about ゜ C, the temperature of the metamorphic section 4 and the purification section 5 is not so high, so that the metamorphic reaction and the selective oxidation reaction are not sufficiently performed.
The reformed gas passes through the shift section 4 and the purification section 5 with little reaction.

【0026】したがって、原料供給量と改質触媒温度か
ら改質ガスの成分と流量を予測し、その時間変化を把握
しておけば、改質ガスにより押し出される浄化部5出口
近傍のガス成分の予測により、生成ガス中の可燃性ガス
流量を捉えることができる。
Therefore, by predicting the component and flow rate of the reformed gas from the supply amount of the raw material and the temperature of the reforming catalyst, and grasping the change over time, the gas component extruded by the reformed gas in the vicinity of the outlet of the purification unit 5 can be detected. By the prediction, the combustible gas flow rate in the generated gas can be captured.

【0027】例えば、改質触媒温度が400℃の時に原料
としてメタンを1NL/min供給すると、図2よりメタンの
反応率が50%となり、その中で(式1)と(式2)が1
0:1の割合で起こる。(触媒温度に対する(式1)と
(式2)の起こる比率は図示せず。) したがって改質
ガスは、反応していないメタン0.5NL/min、(式1)と
(式2)より水素1.95NL/min、(式1)より二酸化炭素
0.45NL/min、(式2)より一酸化炭素0.05NL/minで構成
されたガスが400℃の温度状態となっていると見なすこ
とができる。同様にして、改質触媒温度に応じた改質ガ
スの総流量と各成分流量とを算出し、その時間変化を捉
えることができる。ここで、改質部3出口からバーナ8
までの流路容積はわかるため、400℃の改質触媒からの
改質ガスが、その後に生じた改質ガスによって押される
ようにして変成部4や浄化部5を通過し、バーナ8に到
達する時間がわかる。よって、この改質ガスがバーナ8
に到達する時に、改質ガス中の可燃性ガス流量(メタン
0.5NL/min、水素1.95NL/min、一酸化炭素0.05NL/min)
がわかるため、各成分に対する理論空気量を計算するこ
とができ(理論空気量:4.76NL/min(対メタン)、4.64
NL/min(対水素)、0.12NL/min(対一酸化炭素))、最
適な空気量を空気供給部10より供給することができ
る。
For example, if methane is supplied at a rate of 1 NL / min as a raw material when the temperature of the reforming catalyst is 400 ° C., the reaction rate of methane becomes 50% from FIG. 2, and (Formula 1) and (Formula 2) are 1
Occurs at a ratio of 0: 1. (The ratio at which (Equation 1) and (Equation 2) occur with respect to the catalyst temperature is not shown.) Therefore, the reformed gas is unreacted methane 0.5 NL / min. NL / min, carbon dioxide from (Equation 1)
It can be considered that the gas composed of 0.45 NL / min and 0.05 NL / min of carbon monoxide is in a temperature state of 400 ° C. from (Equation 2). Similarly, it is possible to calculate the total flow rate of the reformed gas and the flow rates of each component according to the reforming catalyst temperature, and to grasp the change over time. Here, the burner 8
Since the volume of the flow path up to 400 ° C. is known, the reformed gas from the reforming catalyst at 400 ° C. is pushed by the reformed gas generated thereafter, passes through the shift section 4 and the purification section 5 and reaches the burner 8. I know when to do it. Therefore, this reformed gas is supplied to the burner 8
When the flammable gas flow in the reformed gas (methane
0.5NL / min, hydrogen 1.95NL / min, carbon monoxide 0.05NL / min)
Can be calculated, the theoretical air amount for each component can be calculated (theoretical air amount: 4.76NL / min (vs. methane), 4.64
NL / min (relative to hydrogen), 0.12 NL / min (relative to carbon monoxide), and an optimal amount of air can be supplied from the air supply unit 10.

【0028】よって、原料供給部1と改質温度検知部1
2からの信号により、バーナ8への適量な空気量を決定
して空気供給部10から供給することが可能となり、生
成ガスの流量や成分が変化する条件でも安定した燃焼状
態と良好な燃焼排気ガス特性を実現することができる。
Therefore, the raw material supply unit 1 and the reforming temperature detecting unit 1
2, it is possible to determine an appropriate amount of air to the burner 8 and to supply the air from the air supply unit 10, so that a stable combustion state and good combustion exhaust can be obtained even under conditions in which the flow rate and components of the generated gas change. Gas characteristics can be realized.

【0029】図3は白金族系の変成触媒に、CO:10
%、CO2:10%、H2:80%の標準ガスを供給した
ときの触媒温度に対する反応性を示したものである。触
媒の温度に応じてシフト反応や逆シフト反応、メタン化
反応が生じ、COやCH4の量が決定されるのがわか
る。
FIG. 3 shows that a platinum group-based shift catalyst has CO: 10
%, CO 2 : 10%, H 2 : 80% shows the reactivity to the catalyst temperature when a standard gas is supplied. It can be seen that a shift reaction, a reverse shift reaction, and a methanation reaction occur depending on the temperature of the catalyst, and the amounts of CO and CH 4 are determined.

【0030】このような変成触媒の反応状態を把握する
ため、変成部4に変成温度検知部13を設置して変成部
4の触媒温度を測定し、原料流量と改質触媒温度による
改質ガスの流量と成分から、変成部4出口での変成ガス
の流量と成分を予測することができる。この変成ガスを
水素発生装置からの生成ガスと見なせば、改質ガスを生
成ガスと見なすより、より正確に生成ガス中の可燃性ガ
ス流量を予測することができる。
In order to grasp the reaction state of the shift catalyst, a shift temperature detecting unit 13 is installed in the shift unit 4 to measure the catalyst temperature of the shift unit 4, and the reformed gas is determined by the flow rate of the raw material and the reforming catalyst temperature. From the flow rate and the component of the gas, the flow rate and the component of the metamorphic gas at the outlet of the metamorphic unit 4 can be predicted. If the transformed gas is regarded as the product gas from the hydrogen generator, the flow rate of the combustible gas in the product gas can be more accurately predicted than if the reformed gas is regarded as the product gas.

【0031】よって、原料供給部1と改質温度検知部1
2からの信号による改質ガスの予測と、変成温度検知部
13からの信号により、バーナ8への適量な空気量をよ
り正確に決定して空気供給部10から供給することが可
能となる。
Therefore, the raw material supply unit 1 and the reforming temperature detection unit 1
Based on the prediction of the reformed gas based on the signal from the second unit 2 and the signal from the shift temperature detecting unit 13, it is possible to more accurately determine an appropriate amount of air to the burner 8 and supply the appropriate amount of air from the air supply unit 10.

【0032】図4は白金族系のCO除去触媒に、CO:
1%、CO2:19%、H2:80%の標準ガスを供給し
たときの触媒温度に対する反応性を示したものである。
触媒の温度に応じて、酸化反応や逆シフト反応によりC
Oの量が決定されているのがわかる。
FIG. 4 shows a platinum group CO removal catalyst containing CO:
It shows the reactivity with respect to the catalyst temperature when a standard gas of 1%, CO 2 : 19% and H 2 : 80% is supplied.
Depending on the temperature of the catalyst, the oxidation reaction or reverse shift reaction
It can be seen that the amount of O is determined.

【0033】このようなCO除去触媒の反応状態を把握
するため、浄化部5に浄化温度検知部14を設置して浄
化部5の触媒温度測定を行い、原料流量と改質触媒温
度、さらに変成触媒温度による変成ガスの流量と成分か
ら、浄化部5出口での生成ガスの流量と成分を予測する
ことができる。よって、生成ガス中の可燃性ガス流量を
正確に予測することができる。
In order to grasp the reaction state of such a CO removal catalyst, a purification temperature detecting section 14 is installed in the purification section 5 and the catalyst temperature of the purification section 5 is measured. From the flow rate and the component of the transformed gas depending on the catalyst temperature, the flow rate and the component of the generated gas at the outlet of the purification unit 5 can be predicted. Therefore, the flow rate of the combustible gas in the generated gas can be accurately predicted.

【0034】したがって、原料供給部1と改質温度検知
部12からの信号と変成温度検知部13からの信号によ
る変成ガスの流量と成分の予測と、浄化温度検知部14
からの信号により、生成ガス中の可燃性ガス流量の把握
により、空気供給部10からバーナ8へ最適な空気量の
供給を実現することができる。
Therefore, the prediction of the flow rate and components of the transformed gas based on the signals from the raw material supply section 1 and the reforming temperature detecting section 12 and the signal from the transforming temperature detecting section 13 and the purification temperature detecting section 14
Based on the signal from, the flow rate of the flammable gas in the generated gas is grasped, and the supply of the optimum amount of air from the air supply unit 10 to the burner 8 can be realized.

【0035】(実施の形態2)図5は本発明の実施の形
態2における水素発生装置の構成図であり、図1に示し
た実施の形態1の水素発生装置に燃料供給部9からの信
号により燃料流量を把握して生成ガス中の可燃性ガス流
量の予測と合わせることで、バーナ8への可燃性ガスの
総流量を予測する構成としている。
(Embodiment 2) FIG. 5 is a configuration diagram of a hydrogen generator according to Embodiment 2 of the present invention. The hydrogen generator of Embodiment 1 shown in FIG. Thus, the total flow rate of the flammable gas to the burner 8 is predicted by comprehending the fuel flow rate with the prediction of the flammable gas flow rate in the generated gas.

【0036】この構成により、原料供給だけでは改質部
3の温度が充分昇温しない時など、燃料供給部9から燃
料を供給してバーナ8での燃焼量を増やす場合には、燃
料供給部9からの信号により燃料流量を把握して生成ガ
ス中の可燃性ガス流量の予測と合わせることで、バーナ
8への可燃性ガスの総流量を予測し、適量な空気を空気
供給部10から供給するようにすれば、バーナ8での燃
焼の安定状態と良好な燃焼排気ガス特性を実現すること
ができる。
With this configuration, when fuel is supplied from the fuel supply unit 9 and the amount of combustion in the burner 8 is increased, for example, when the temperature of the reforming unit 3 does not sufficiently rise only by supplying the raw material, the fuel supply unit The flow rate of the combustible gas to the burner 8 is predicted by grasping the fuel flow rate from the signal from the fuel gas 9 and predicting the flow rate of the combustible gas in the generated gas, and an appropriate amount of air is supplied from the air supply unit 10. By doing so, a stable state of combustion in the burner 8 and good combustion exhaust gas characteristics can be realized.

【0037】なお、各部の温度検知部は、一箇所でなく
て複数箇所設置して、より触媒の温度状態を細かく把握
し、生成ガス状態を予測するようにしても良い。
The temperature detecting section of each section may be provided not at one place but at a plurality of places to more precisely grasp the temperature state of the catalyst and predict the state of the generated gas.

【0038】また、本発明を上記説明では、水素発生装
置の起動時に関して説明したが、通常の運転時におい
て、燃料電池の出力を変化させる時などの水素発生量を
変化させる場合など、各部触媒温度が変化する時にも適
用することができる。
In the above description, the present invention has been described with respect to the start-up of the hydrogen generator. However, during normal operation, when the amount of hydrogen generation is changed, for example, when the output of the fuel cell is changed, etc. It can also be applied when the temperature changes.

【0039】[0039]

【発明の効果】以上のように本発明は、起動時の水素発
生装置からの送出する生成ガスをバーナに供給する構成
において、原料の供給量と改質部温度とにより改質ガス
成分と流量の時間変化を把握することで、生成ガス中の
可燃性ガス流量を予測し、適量の空気量を供給すること
で、燃焼の安定状態と良好な燃焼排気ガス特性を実現す
るものである。
As described above, according to the present invention, in the configuration in which the generated gas delivered from the hydrogen generator at the time of startup is supplied to the burner, the reformed gas component and the flow rate are determined by the supply amount of the raw material and the temperature of the reforming section. By grasping the time change of the fuel gas, the flow rate of the combustible gas in the produced gas is predicted, and by supplying an appropriate amount of air, a stable combustion state and good combustion exhaust gas characteristics are realized.

【0040】さらに、変成部や浄化部の温度測定により
変成部での反応や浄化部での反応をも考慮することで、
より精度良く生成ガス中の可燃性ガス流量を予測し、最
適な空気量を供給するものである。
Furthermore, by taking into account the reaction in the metamorphic section and the reaction in the purifying section by measuring the temperature in the metamorphic section and the purifying section,
The purpose is to more accurately predict the flow rate of the combustible gas in the produced gas and to supply the optimum amount of air.

【0041】また、燃料を供給した場合にも、燃料供給
量と生成ガス中の可燃性ガス流量の予測により、バーナ
での可燃性ガスの総流量を把握することで空気量を制御
し、燃焼の安定状態と良好な燃焼排気ガス特性を実現す
るものである。
In addition, even when fuel is supplied, the amount of air is controlled by grasping the total flow rate of combustible gas in the burner by predicting the fuel supply amount and the flow rate of combustible gas in the generated gas, thereby controlling the combustion. And a good combustion exhaust gas characteristic.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における水素発生装置の
構成図
FIG. 1 is a configuration diagram of a hydrogen generator according to Embodiment 1 of the present invention.

【図2】改質触媒によるメタンの改質反応率を示すグラ
FIG. 2 is a graph showing a conversion rate of methane by a reforming catalyst.

【図3】変成触媒による反応性を示すグラフFIG. 3 is a graph showing reactivity by a shift catalyst.

【図4】CO浄化触媒による反応性を示すグラフFIG. 4 is a graph showing the reactivity of a CO purification catalyst.

【図5】本発明の実施の形態2における水素発生装置の
構成図
FIG. 5 is a configuration diagram of a hydrogen generator according to Embodiment 2 of the present invention.

【図6】従来の水素発生装置の構成図FIG. 6 is a configuration diagram of a conventional hydrogen generator.

【符号の説明】[Explanation of symbols]

1 原料供給部 2 水供給部 3 改質部 4 変成部 5 浄化部 6 三方バルブ 7 燃料電池 8 バーナ 9 燃料供給部 10 空気供給部 11 排気口 12 改質温度検知部 13 変成温度検知部 14 浄化温度検知部 DESCRIPTION OF SYMBOLS 1 Raw material supply part 2 Water supply part 3 Reforming part 4 Transformation part 5 Purification part 6 Three-way valve 7 Fuel cell 8 Burner 9 Fuel supply part 10 Air supply part 11 Exhaust port 12 Reformation temperature detection part 13 Transformation temperature detection part 14 Purification Temperature detector

フロントページの続き (72)発明者 富澤 猛 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4G040 EA02 EA03 EA06 EB12 EB31 EB32 EB43 4G140 EA02 EA03 EA06 EB12 EB31 EB32 EB43 5H027 AA02 BA01 BA17 KK42 MM12 MM13 Continued on the front page (72) Inventor Takeshi Tomizawa 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F-term (reference) 4G040 EA02 EA03 EA06 EB12 EB31 EB32 EB43 4G140 EA02 EA03 EA06 EB12 EB31 EB32 EB02 5H01A KK42 MM12 MM13

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】炭化水素系の原料を供給する原料供給部と
水を供給する水供給部を有し改質触媒を充填した改質部
と、炭化水素系の燃料を供給する燃料供給部と空気を供
給する空気供給部を有し前記改質部を加熱するバーナを
備えた水素発生装置において、前記水素発生装置から送
出される生成ガスを前記バーナに導く流路と、前記改質
部の温度を測定する改質温度検知部を設け、前記原料供
給部からの信号と前記改質温度検知部からの信号により
生成ガス中の可燃性ガス流量の予測を行い、前記空気供
給部からの供給空気量を制御することを特徴とする水素
発生装置。
1. A reforming section having a raw material supply section for supplying a hydrocarbon-based raw material and a water supply section for supplying water, and a reforming section filled with a reforming catalyst; a fuel supply section for supplying a hydrocarbon-based fuel; In a hydrogen generator including an air supply unit that supplies air and a burner that heats the reforming unit, a flow path that guides a product gas delivered from the hydrogen generator to the burner; Providing a reforming temperature detector for measuring the temperature, predicting the flammable gas flow rate in the generated gas based on the signal from the raw material supply unit and the signal from the reforming temperature detector, and supplying the gas from the air supply unit A hydrogen generator characterized by controlling the amount of air.
【請求項2】前記改質部の下流に設置した変成触媒を充
填した変成部と、前記変成部の温度を測定する変成温度
検知部とを設け、前記原料供給部からの信号と前記改質
温度検知部からの信号と前記変成温度検知部からの信号
とにより生成ガス中の可燃性ガス流量の予測を行い、前
記空気供給部からの供給空気量を制御することを特徴と
する請求項1記載の水素発生装置。
2. A shift unit filled with a shift catalyst installed downstream of the reforming unit, and a shift temperature detecting unit for measuring a temperature of the shift unit, wherein a signal from the raw material supply unit and the shift temperature 2. The method according to claim 1, wherein a flow rate of the flammable gas in the generated gas is predicted based on a signal from a temperature detection unit and a signal from the shift temperature detection unit, and an amount of air supplied from the air supply unit is controlled. The hydrogen generator as described in the above.
【請求項3】前記変成部の下流に設置した浄化触媒を充
填した浄化部と、前記浄化部の温度を測定する浄化温度
検知部とを設け、前記原料供給部からの信号と前記改質
温度検知部からの信号と前記変成温度検知部からの信号
と前記浄化温度検知部からの信号とにより生成ガス中の
可燃性ガス流量の予測を行い、前記空気供給部からの供
給空気量を制御することを特徴とする請求項2記載の水
素発生装置。
3. A purifying section, which is provided downstream of the shift section and is filled with a purifying catalyst, and a purifying temperature detecting section for measuring a temperature of the purifying section, wherein a signal from the raw material supply section and the reforming temperature are provided. A signal from the detection unit, a signal from the shift temperature detection unit, and a signal from the purification temperature detection unit predict a combustible gas flow rate in the generated gas, and control a supply air amount from the air supply unit. 3. The hydrogen generator according to claim 2, wherein:
【請求項4】前記生成ガス中の可燃性ガスの予測流量
と、前記燃料供給部からの信号による燃料流量から、前
記バーナでの可燃性ガスの総流量を予測し、前記空気供
給部からの供給空気量を制御することを特徴とする請求
項1から3記載の水素発生装置。
4. A total flow rate of combustible gas in the burner is predicted from a predicted flow rate of combustible gas in the generated gas and a fuel flow rate based on a signal from the fuel supply section, 4. The hydrogen generator according to claim 1, wherein the amount of supplied air is controlled.
JP2000353793A 2000-08-25 2000-11-21 Hydrogen generator Expired - Lifetime JP3708428B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000353793A JP3708428B2 (en) 2000-11-21 2000-11-21 Hydrogen generator
US10/110,541 US7135050B2 (en) 2000-08-25 2001-08-10 Hydrogen generator
KR1020027005049A KR20020048972A (en) 2000-08-25 2001-08-10 Hydrogen generator
EP01956854A EP1316529A4 (en) 2000-08-25 2001-08-10 Hydrogen generator
PCT/JP2001/006953 WO2002016258A1 (en) 2000-08-25 2001-08-10 Hydrogen generator
CNB018025307A CN1195670C (en) 2000-08-25 2001-08-10 Hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000353793A JP3708428B2 (en) 2000-11-21 2000-11-21 Hydrogen generator

Publications (2)

Publication Number Publication Date
JP2002160902A true JP2002160902A (en) 2002-06-04
JP3708428B2 JP3708428B2 (en) 2005-10-19

Family

ID=18826495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000353793A Expired - Lifetime JP3708428B2 (en) 2000-08-25 2000-11-21 Hydrogen generator

Country Status (1)

Country Link
JP (1) JP3708428B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002090249A1 (en) * 2001-05-07 2002-11-14 Matsushita Electric Industrial Co., Ltd. Hydrogen formation apparatus
JP2005047791A (en) * 2003-04-24 2005-02-24 Matsushita Electric Ind Co Ltd Hydrogen generator and fuel cell system having the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5135209B2 (en) * 2006-04-11 2013-02-06 パナソニック株式会社 HYDROGEN GENERATOR, FUEL CELL SYSTEM HAVING THE SAME, AND METHOD FOR OPERATING THE SAME

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002090249A1 (en) * 2001-05-07 2002-11-14 Matsushita Electric Industrial Co., Ltd. Hydrogen formation apparatus
JP2005047791A (en) * 2003-04-24 2005-02-24 Matsushita Electric Ind Co Ltd Hydrogen generator and fuel cell system having the same
JP4500092B2 (en) * 2003-04-24 2010-07-14 パナソニック株式会社 HYDROGEN GENERATOR, ITS OPERATION METHOD, AND FUEL CELL SYSTEM INCLUDING THE SAME

Also Published As

Publication number Publication date
JP3708428B2 (en) 2005-10-19

Similar Documents

Publication Publication Date Title
CN101379646B (en) Fuel cell system
JP5164441B2 (en) Starting method of fuel cell system
US7135050B2 (en) Hydrogen generator
WO2007111124A1 (en) Method of shutdown of reforming apparatus
EP2441730B1 (en) Method for operation of a hydrogen generation apparatus
WO2001048851A1 (en) Power generation device and operation method therefor
WO2009096221A1 (en) Indirect internally reforming solid oxide fuel cell and a method of stopping same
CN101981740B (en) Fuel cell system and method of load following operation of the same
JP5078698B2 (en) Load following operation method of fuel cell system
JP6535885B2 (en) HYDROGEN GENERATION DEVICE, ITS OPERATION METHOD, AND FUEL CELL SYSTEM
JP4902165B2 (en) Fuel cell reformer and fuel cell system comprising the fuel cell reformer
JP2015144092A (en) Fuel battery device
JP3708428B2 (en) Hydrogen generator
JP3856423B2 (en) Starting method of hydrogen generator
JP2006027965A (en) Hydrogen generator and fuel cell power generation system
JP4945878B2 (en) Hydrogen generator
JP2002179404A (en) Operation control system for fuel reformer
JP2006044977A (en) Hydrogen production apparatus
JP5309799B2 (en) Reformer and fuel cell system
JP2009078938A (en) Desulfurizer and method for operating the same, and fuel cell system
JP3415086B2 (en) Hydrogen generator
JP2001354401A (en) Method of starting-up hydrogen generating device
JP2003277007A (en) Device for generating hydrogen
JP5406107B2 (en) Operation method of hydrogen generator
JP2004175630A (en) Hydrogen production apparatus and starting method and operation method for the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050520

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050803

R151 Written notification of patent or utility model registration

Ref document number: 3708428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

EXPY Cancellation because of completion of term