JP3415086B2 - Hydrogen generator - Google Patents

Hydrogen generator

Info

Publication number
JP3415086B2
JP3415086B2 JP37385699A JP37385699A JP3415086B2 JP 3415086 B2 JP3415086 B2 JP 3415086B2 JP 37385699 A JP37385699 A JP 37385699A JP 37385699 A JP37385699 A JP 37385699A JP 3415086 B2 JP3415086 B2 JP 3415086B2
Authority
JP
Japan
Prior art keywords
section
temperature
gas
reforming
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP37385699A
Other languages
Japanese (ja)
Other versions
JP2001180906A (en
Inventor
邦弘 鵜飼
猛 富澤
清 田口
敏之 庄野
浩一郎 北河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP37385699A priority Critical patent/JP3415086B2/en
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to CNB008043825A priority patent/CN1178322C/en
Priority to KR10-2001-7010129A priority patent/KR100399993B1/en
Priority to EP00987776A priority patent/EP1162679A4/en
Priority to KR10-2003-7009473A priority patent/KR100427165B1/en
Priority to US09/914,376 priority patent/US6797420B2/en
Priority to PCT/JP2000/009363 priority patent/WO2001048851A1/en
Priority to CNB2004100422902A priority patent/CN1280933C/en
Publication of JP2001180906A publication Critical patent/JP2001180906A/en
Application granted granted Critical
Publication of JP3415086B2 publication Critical patent/JP3415086B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素系の燃料
を水で改質する水素生成装置に関する。
TECHNICAL FIELD The present invention relates to a hydrogen generator for reforming a hydrocarbon fuel with water.

【0002】[0002]

【従来の技術】水素の生成方法のひとつに、水蒸気改質
法がある。天然ガス、LPG等の炭化水素成分、メタノ
ール等のアルコール、あるいはナフサ成分等の有機化合
物原料と水とを改質触媒を設けた改質部で水蒸気改質反
応させ、水素を発生させる方法である。この水蒸気改質
反応では一酸化炭素が副成分として生成するため、水と
一酸化炭素をシフト反応させる変成部を併用する。ま
た、高分子電解質型燃料電池用の水素供給方法として水
蒸気改質法を用いる場合、一酸化炭素をさらに除去する
ため、変成部の後段にさらに、一酸化炭素酸化法あるい
はメタン化法等を用いた浄化部を設ける。
2. Description of the Related Art One of the methods for producing hydrogen is the steam reforming method. It is a method of producing hydrogen by causing a steam reforming reaction of a hydrocarbon component such as natural gas and LPG, an alcohol such as methanol, or an organic compound raw material such as a naphtha component and water in a reforming section provided with a reforming catalyst. . In this steam reforming reaction, carbon monoxide is produced as an accessory component, so a shift conversion section for shifting the reaction between water and carbon monoxide is also used. In addition, when using the steam reforming method as a hydrogen supply method for a polymer electrolyte fuel cell, in order to further remove carbon monoxide, a carbon monoxide oxidation method or a methanation method is further used after the shift conversion section. There will be a purification unit.

【0003】上記の改質部、変成部および浄化部にはそ
れぞれの反応に対応した触媒を設ける。それぞれの触媒
で反応温度が相違するため、安定した水素供給を行うた
めには、触媒を反応温度まで加熱する必要がある。反応
温度は、原料の流れの上流に位置する改質部が最も高
く、変成部、浄化部の順で温度が低下する。従って、従
来の水蒸気改質法を用いた水素生成装置では、改質部か
らの熱、例えば、改質後ガスの保有する熱、あるいは改
質部に設けた加熱部の余剰熱で、変成部および浄化部を
順次加熱する構成が用いられることが多い。
A catalyst corresponding to each reaction is provided in the reforming section, shift conversion section and purification section. Since the respective catalysts have different reaction temperatures, it is necessary to heat the catalysts to the reaction temperature in order to stably supply hydrogen. The reaction temperature is highest in the reforming section located upstream of the raw material flow, and the temperature decreases in the order of the shift conversion section and the purification section. Therefore, in the hydrogen generator using the conventional steam reforming method, the heat from the reforming unit, for example, the heat held by the reformed gas or the surplus heat of the heating unit provided in the reforming unit, is used. In addition, a configuration in which the purifying section is sequentially heated is often used.

【0004】[0004]

【発明が解決しようとする課題】改質部、変成部、浄化
部の各反応部温度が適切でない場合、水素生成が効果的
に進行しない。例えば、水蒸気改質法では、原料中の炭
素原子が反応し二酸化炭素となる当量よりも酸素が不足
しないように水を供給する。原料と水が反応するために
は、少なくとも水が水蒸気の状態で存在することが必要
となる。しかし、改質部が低温の場合、水を供給しても
反応は進行せず装置内に滞留する。また、改質部を高温
にした後原料および水を供給した場合、加熱過程で熱に
より触媒体が劣化し反応性が低下する可能性が有る。そ
こで、適切な温度で原料および水を供給する必要があ
る。
If the temperature of each reaction section of the reforming section, the shift conversion section and the purification section is not appropriate, hydrogen generation does not proceed effectively. For example, in the steam reforming method, water is supplied so that oxygen does not become less than the equivalent amount of carbon atoms in the raw material to react with each other to form carbon dioxide. In order for the raw material to react with water, it is necessary that at least water exists in the state of steam. However, when the temperature of the reforming section is low, the reaction does not proceed even when water is supplied and the reaction stays in the apparatus. Further, when the raw material and water are supplied after the reforming section is heated to a high temperature, the catalyst may deteriorate due to heat during the heating process and the reactivity may decrease. Therefore, it is necessary to supply the raw material and water at an appropriate temperature.

【0005】また、改質部より下流のガスは、変成部触
媒の耐熱温度よりも高い温度となる。耐熱温度以上のガ
スを供給した場合、触媒が劣化し特性が低下するため、
改質部から変成部に至るまでに冷却する必要がある。ま
た、浄化部で一酸化炭素濃度を十分に低減し、水素を供
給することが、水素生成装置の目的である。しかし、毎
回の装置起動時に一酸化炭素濃度を測定し、水素供給開
始の判断を行うことは煩雑であるため、正常運転状態で
あることを検知するための簡便で正確な方法が望まれて
いる。
Further, the temperature of the gas downstream of the reforming section becomes higher than the heat resistant temperature of the shift section catalyst. If a gas with a temperature higher than the heat-resistant temperature is supplied, the catalyst will deteriorate and the characteristics will deteriorate.
It is necessary to cool from the reforming section to the shift conversion section. Further, it is the purpose of the hydrogen generator to sufficiently reduce the carbon monoxide concentration in the purifying unit and supply hydrogen. However, since it is complicated to measure the carbon monoxide concentration at each device start-up and determine the start of hydrogen supply, a simple and accurate method for detecting the normal operation state is desired. .

【0006】[0006]

【課題を解決するための手段】上述の課題を解決するた
め本発明の水素生成装置は、原料供給部と、水供給部
と、空気供給部と、前記原料と水とを反応させる改質触
媒体を具備した改質部と、前記改質触媒体を加熱する加
熱部と、一酸化炭素と水とを反応させる変成触媒体を具
備した変成部と、一酸化炭素を酸化する浄化触媒体を具
備した浄化部と、前記浄化部を通過した生成ガスを排出
する生成ガス排出部と、前記原料供給部と前記改質部と
前記変成部と前記浄化部と前記生成ガス排出部とを連通
するガス通気経路とを構成要素とし、前記変成部と前記
浄化部とを連通する前記ガス通気経路に前記空気供給部
より空気を供給する水素生成装置において、前記改質部
と前記変成部とを連通する前記ガス通気経路に第一温度
検出部を設け、前記加熱部の動作を開始したのち、前記
第一温度検出部の温度が予め定めた下限値に到達した
時、前記改質部に原料と水との供給を開始するととも
に、浄化部と生成ガス排出部とを連通するガス通気経路
に第三温度検出部を配置し、前記第三温度検出部の温度
に下限値を定め、前記第三温度検出部の温度が下限値以
上の時、正常運転状態と判断すること特徴とする。
In order to solve the above-mentioned problems, the hydrogen generator of the present invention comprises a raw material supply section, a water supply section, an air supply section, and a reforming catalyst for reacting the raw material with water. A reforming section provided with a medium; a heating section for heating the reforming catalyst body; a shift section having a shift catalyst body for reacting carbon monoxide with water; and a purification catalyst body for oxidizing carbon monoxide. The purifying unit provided, the generated gas discharging unit that discharges the generated gas that has passed through the purifying unit, the raw material supply unit, the reforming unit, the shift conversion unit, the purifying unit, and the generated gas discharging unit are in communication. In a hydrogen generator that supplies air from the air supply unit to the gas ventilation path that connects the shift conversion section and the purification section with a gas ventilation path as a constituent element, the reforming section and the shift conversion section communicate with each other. A first temperature detection unit is provided in the gas ventilation path, After starting the operation of the thermal unit, when the temperature of the first temperature detection unit reaches the predetermined lower limit value, when starting the supply of the raw material and water to the reformer together
And a gas ventilation path that connects the purification unit and the generated gas discharge unit.
The third temperature detector is arranged in the
The lower limit value is set in the
The above is characterized in that it is judged to be in a normal operation state .

【0007】このとき、第一温度検出部の下限値は、1
00℃以上400℃以下であることが望ましい。これ
は、この温度よりも高温にすると、炭素の析出が発生す
ることによる。
At this time, the lower limit of the first temperature detector is 1
It is desirable that the temperature is from 00 ° C to 400 ° C. This is because when the temperature is higher than this temperature, carbon precipitation occurs.

【0008】また、改質部と変成部とを連通するガス通
気経路に水注入口と、前記水注入口と前記変成部との間
のガス通気経路に第二温度検出部とを設け、前記
度検出部の温度に上限値を定め、前記第温度検出部の
温度が前記上限値を越さないように、前記ガス通気経路
に水を供給することを特徴とする。
[0008] In addition, a water inlet is provided in a gas passage that connects the reforming section and the shift section, and the water inlet is provided between the water inlet and the shift section.
Of a second temperature detector provided in the gas vent passage defines an upper limit to the temperature of the second temperature <br/> degree detecting unit, so that the temperature of the second temperature detecting section is not scooped the upper limit value In addition, water is supplied to the gas ventilation path.

【0009】このとき、第温度検出部の温度の上限値
は、500℃以下250℃以上であることが望ましい。
これは、この温度より低いと、下流側に水が溜まり、触
媒を劣化させるためである。
At this time, it is desirable that the upper limit of the temperature of the second temperature detecting portion is 500 ° C. or less and 250 ° C. or more.
This is because if the temperature is lower than this temperature, water will be accumulated on the downstream side to deteriorate the catalyst.

【0010】[0010]

【0011】このとき、第三検出部温度の下限値は、1
00℃以上500℃以下であることが望ましい。
At this time, the lower limit of the temperature of the third detector is 1
It is desirable that the temperature is from 00 ° C to 500 ° C.

【0012】また、正常運転状態であることを示す表示
手段、または、正常運転時に開通する生成ガス排出経路
を生成ガス排出部に設けたことを特徴とする。
Further, it is characterized in that display means for indicating a normal operation state or a generated gas discharge path which is opened during a normal operation is provided in the generated gas discharge part.

【0013】[0013]

【発明の実施の形態】本発明は、従来の水素生成装置の
課題を解決するもので、改質部、変成部、浄化部からの
ガス温度をもとに、原料、水および空気の供給を制御
し、各反応部における触媒体を効果的に動作させ、水素
の安定供給に対応できる水素装置を提供するものであ
る。以下、本発明実施形態について図面とともに説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention solves the problems of the conventional hydrogen generator, and supplies the raw materials, water and air based on the gas temperatures from the reforming section, shift conversion section and purification section. It is intended to provide a hydrogen device that can control and effectively operate the catalyst body in each reaction part and can stably supply hydrogen. Embodiments of the present invention will be described below with reference to the drawings.

【0014】(実施形態1)図1は、本発明の水素発生
装置の要部の縦断面を示した図である。図1において、
1は水蒸気改質反応の改質触媒部1aを設けた改質部で
ある。改質触媒部1aには、白金属系貴金属を調製して
作成した触媒を用いた。2は、改質部の加熱部で、本構
成では火炎バーナーを加熱手段とした。3は、変成触媒
体3aを納めた変成部である。変成触媒体3aには、少
なくとも銅を成分として含む触媒を用いた。4は一酸化
炭素の浄化部で、浄化触媒として白金属系酸化触媒4a
を設ける構成とした。5は水蒸気改質反応のための炭化
水素を主成分とする原料供給部、6は水供給部である7
は、改質部1、変成部2および浄化部3で構成するガス
通気経路で、改質部1、変成部2、浄化部3の順でガス
を流し浄化部3に出口を有する。また、8は空気供給部
で、変成部2と浄化部3との間のガス通気経路7に空気
を供給する。9は改質部1後のガス温度を検出する第一
温度検出部で、改質部1と変成部3との間のガス通気経
路7に設けた。
(Embodiment 1) FIG. 1 is a diagram showing a vertical cross section of a main part of a hydrogen generator of the present invention. In FIG.
Reference numeral 1 is a reforming section provided with a reforming catalyst section 1a for steam reforming reaction. For the reforming catalyst section 1a, a catalyst prepared by preparing a white metal-based noble metal was used. Reference numeral 2 is a heating section of the reforming section, and in this configuration, a flame burner is used as the heating means. Reference numeral 3 denotes a shift conversion unit in which the shift conversion catalyst body 3a is housed. A catalyst containing at least copper as a component was used for the shift catalyst body 3a. Reference numeral 4 is a carbon monoxide purification unit, which is a white metal based oxidation catalyst 4a as a purification catalyst.
Is provided. Reference numeral 5 is a raw material supply section containing hydrocarbon as a main component for the steam reforming reaction, and 6 is a water supply section.
Is a gas ventilation path composed of the reforming section 1, the shift conversion section 2 and the purification section 3, and has a gas flow in the order of the reforming section 1, the shift conversion section 2 and the purification section 3, and has an outlet in the purification section 3. Further, 8 is an air supply unit that supplies air to the gas ventilation path 7 between the shift conversion unit 2 and the purification unit 3. Reference numeral 9 denotes a first temperature detection unit that detects the gas temperature after the reforming unit 1, and is provided in the gas ventilation path 7 between the reforming unit 1 and the shift conversion unit 3.

【0015】次に本実施形態の水素発生装置において、
水素供給時の装置動作について説明する。加熱部2を作
動させ、改質部1の改質触媒体1aを加熱する。原料で
ある炭化水素成分を原料供給部5から、水を水供給部6
から改質触媒部2aに供給し、水蒸気改質反応を進行さ
せる。9の第一温度検出部で改質部2後のガス温度を測
定し、その温度に下限値を設け、測定温度が下限値を超
すことにより改質部2への原料および水の供給を開始す
る。改質部後のガスは、ガス通気経路7を通して変成部
3に通気する。変成部3後のガスは、ガス通気経路7よ
り浄化部4に通気する。浄化部4後のガスは、ガス通気
経路7より外部に供給する。この時、空気供給部8より
変成部3と浄化部4の間のガス通気経路7から変成部後
のガスに空気を供給する。
Next, in the hydrogen generator of this embodiment,
The operation of the apparatus when supplying hydrogen will be described. The heating unit 2 is operated to heat the reforming catalyst body 1a of the reforming unit 1. The raw material hydrocarbon component is supplied from the raw material supply unit 5, and the water is supplied to the water supply unit 6
Is supplied to the reforming catalyst section 2a from which the steam reforming reaction proceeds. The gas temperature after the reforming section 2 is measured by the first temperature detecting section 9 and a lower limit value is set for the temperature, and when the measured temperature exceeds the lower limit value, the supply of the raw material and water to the reforming section 2 is started. To do. The gas after the reforming section is vented to the shift conversion section 3 through the gas vent path 7. The gas after the metamorphic section 3 is vented to the purifying section 4 through the gas vent path 7. The gas after the purification unit 4 is supplied to the outside through the gas ventilation path 7. At this time, air is supplied from the air supply unit 8 to the gas after the conversion unit from the gas ventilation path 7 between the conversion unit 3 and the purification unit 4.

【0016】本水素生成装置の目的は、水素を安定して
発生させることである。そのためには、改質部、変成
部、浄化部の各反応部を適切な温度で動作させることが
必要となる。特に改質部は、水素生成の基本反応を進め
る部分であり、原料および水の供給量、温度制御が重要
となる。そこで、原料中の炭素原子が反応し二酸化炭素
となる当量よりも酸素が不足しないように水を供給す
る。
The purpose of this hydrogen generator is to stably generate hydrogen. For that purpose, it is necessary to operate each reaction section of the reforming section, the shift conversion section, and the purification section at an appropriate temperature. Particularly, the reforming section is a section that promotes the basic reaction of hydrogen generation, and it is important to control the supply amount of raw materials and water and the temperature. Therefore, water is supplied so that oxygen does not become less than the equivalent amount of carbon atoms in the raw material to react to form carbon dioxide.

【0017】また、原料と水が反応するためには、少な
くとも水が水蒸気の状態で存在することが必要となる。
しかし、装置起動直後で改質部が低温の場合、水を供給
しても十分に水蒸気として存在しないため反応は進行せ
ず、かつ装置内に水が滞留する事態となる。仮に水が大
量に滞留した場合、ガス通気経路を閉塞させる可能性も
ある。そこで、本発明では、改質部後のガス温度を測定
し、その温度に基づき原料および水を供給する。この構
成により、水を十分に蒸発させ改質部の反応を効果的に
行うものである。
Further, in order for the raw material and water to react with each other, it is necessary that at least water exists in the state of steam.
However, when the reforming section is at a low temperature immediately after the start of the apparatus, the reaction does not proceed because water does not sufficiently exist as steam even when water is supplied, and water remains in the apparatus. If a large amount of water is retained, the gas ventilation path may be blocked. Therefore, in the present invention, the gas temperature after the reforming section is measured, and the raw material and water are supplied based on the temperature. With this configuration, water is sufficiently evaporated and the reaction in the reforming section is effectively performed.

【0018】次に、本実施形態における、水素発生装置
の一動作例を示す。まず、装置起動時の動作を示す。加
熱部を作動し改質部の加熱を開始した。加熱部により改
質部改質触媒体を加熱することで、改質触媒体内のガス
体が体積膨張し、加熱されたガス体がガス通気経路へと
流れ込む。第一温度検出部では、改質部改質触媒部後の
このガス体温度を測定する。本実施の形態では、第一温
度検出部で改質部1後のガス温度測定値をもとに、その
温度が100℃を超すことにより改質部1への原料およ
び水の供給を開始した。
Next, an operation example of the hydrogen generator in the present embodiment will be shown. First, the operation at the time of starting the device will be described. The heating section was activated to start heating the reforming section. By heating the reforming part reforming catalyst body by the heating part, the gas body in the reforming catalyst body expands in volume, and the heated gas body flows into the gas ventilation path. The first temperature detecting section measures the temperature of the gas body after the reforming section and the reforming catalyst section. In the present embodiment, based on the gas temperature measurement value after the reforming unit 1 in the first temperature detecting unit, the temperature exceeds 100 ° C., so that the supply of the raw material and water to the reforming unit 1 is started. .

【0019】原料である炭化水素成分としてメタンガス
を用い、メタンガス1モルに対して2モル以上の水を付
加して、改質部1の改質触媒部1aに供給した。本形態
では第一温度検出部温度が100℃を超す値の場合、改
質触媒部温度も100℃以上となり、供給した水が十分
に蒸発できることは確認した。なお定常運転時は、第一
温度測定部温度が約700℃となるように加熱部2の加
熱熱量を制御し、水蒸気改質反応を進行させた。
Methane gas was used as a hydrocarbon component as a raw material, and 2 mol or more of water was added to 1 mol of methane gas and the water was supplied to the reforming catalyst section 1a of the reforming section 1. In the present embodiment, when the temperature of the first temperature detection part exceeds 100 ° C., the temperature of the reforming catalyst part also becomes 100 ° C. or higher, and it was confirmed that the supplied water can be sufficiently evaporated. During the steady operation, the heating calorie of the heating unit 2 was controlled so that the temperature of the first temperature measuring unit was about 700 ° C., and the steam reforming reaction was allowed to proceed.

【0020】なお、原料と水を供給する前に、窒素ガス
などの不活性ガス等を改質部に供給し改質部の加熱を開
始することで、改質部触媒体温度をより正確に把握する
ことができる。また、水供給の前に原料供給を開始し、
加熱により原料を気化させるガス体とすることで、窒素
ガス等の代用もできる。しかし、原料のみを改質部に送
った場合、改質部温度により炭素析出が生じるため、な
るべく速やかに水も供給する必要がある。
By supplying an inert gas such as nitrogen gas to the reforming section and starting heating of the reforming section before supplying the raw material and water, the temperature of the reforming section catalyst can be more accurately measured. You can figure it out. Also, start the raw material supply before the water supply,
By using a gas that vaporizes the raw material by heating, nitrogen gas or the like can be substituted. However, when only the raw materials are sent to the reforming section, carbon precipitation occurs due to the temperature of the reforming section, so that it is necessary to supply water as soon as possible.

【0021】また、改質部後のガス温度を測定し、原料
および水の供給開始の判断基準としたが、直接改質部改
質触媒部の温度を測定し、その温度を判断基準としても
よい。本実施例では、第一温度検出部温度100℃を基
準としたが、装置構成、原料種、原料と水の供給割合等
の運転条件の違いにより、その温度にも違いがでること
はいうまでもない。また、酸素を含む気体として空気を
供給したが、酸素を含む気体であれば空気に限られるも
のではない。また、加熱部として火炎バーナーを用いた
が、改質触媒を加熱できる構成であれば、これに限るも
のではない。
Further, the gas temperature after the reforming section was measured and used as the criterion for starting the supply of the raw material and water, but the temperature of the reforming catalyst section for the reforming section was directly measured and the temperature was also used as the criterion. Good. In the present embodiment, the first temperature detection unit temperature is 100 ° C. as a reference, but it goes without saying that the temperature may also differ due to differences in operating conditions such as the device configuration, raw material species, and raw material / water supply ratio. Nor. Although air is supplied as a gas containing oxygen, the gas is not limited to air as long as it is a gas containing oxygen. Although the flame burner is used as the heating unit, the present invention is not limited to this as long as the reforming catalyst can be heated.

【0022】(実施形態2)図2に、本発明での第二の
実施形態を示した。図1に示した実施形態1と、ほぼ同
一構成であり、実施の形態1とほぼ同様の動作を行う。
同一の部分の説明は省略し、相違点のみを説明する。相
違点は、水供給部6より改質部1および変成部3の間の
ガス通気経路7に水の供給経路6aを設けるとともに、
水の供給経路後のガス通気経路7に第二温度検出部を設
けた点である。
(Second Embodiment) FIG. 2 shows a second embodiment of the present invention. The configuration is almost the same as that of the first embodiment shown in FIG. 1, and an operation similar to that of the first embodiment is performed.
Descriptions of the same parts will be omitted, and only the differences will be described. The difference is that the water supply path 6a is provided between the water supply section 6 and the gas ventilation path 7 between the reforming section 1 and the shift conversion section 3, and
The second temperature detecting unit is provided in the gas ventilation path 7 after the water supply path.

【0023】次に、本実施の形態の動作について示す。
実施形態1とほぼ同じ動作をする。相違点は、第二温度
検出部温度に上限値を設け、上限値を超さないように水
供給部6より改質部1および変成部3の間のガス通気経
路7に水を供給する点である。
Next, the operation of this embodiment will be described.
The operation is almost the same as that of the first embodiment. The difference is that an upper limit value is set for the second temperature detection unit temperature, and water is supplied from the water supply unit 6 to the gas ventilation path 7 between the reforming unit 1 and the shift conversion unit 3 so as not to exceed the upper limit value. Is.

【0024】水素生成装置は一般的に、原料流れ上流に
位置する改質部の温度が最も高く、変成部、浄化部の順
で各反応部温度は低下する。そこで、改質部からの熱、
例えば、改質後ガスの保有する熱、あるいは改質部に設
けた加熱部の余剰熱で、変成部および浄化部を順次加熱
する。しかし、各反応部の最適反応温度が相違するた
め、最終的には各反応部の触媒反応に適した温度に制御
する必要がある。本実施の形態では、変成部に入るガス
温度を制御する構成を示すもので、改質部後のガスに水
を供給しガス温度を制御する。水を直接供給しその蒸発
潜熱、顕熱により冷却することで、空冷でガス温度を冷
却する場合と比較して、冷却に必要な装置構成が小さく
できるメリットがある。また、改質後ガスに水を添加す
ることになるため、一酸化炭素と水の変成反応の反応性
をより向上させることができる。
In the hydrogen generator, the temperature of the reforming section located upstream of the raw material flow is generally highest, and the temperature of each reaction section is lowered in the order of the shift conversion section and the purification section. Therefore, heat from the reforming section,
For example, the shift section and the purification section are sequentially heated by the heat possessed by the reformed gas or the surplus heat of the heating section provided in the reforming section. However, since the optimum reaction temperature of each reaction part is different, it is necessary to finally control the temperature suitable for the catalytic reaction of each reaction part. In the present embodiment, a configuration is shown in which the gas temperature entering the shift conversion section is controlled, and water is supplied to the gas after the reforming section to control the gas temperature. By directly supplying water and cooling it by the latent heat of evaporation or sensible heat, there is an advantage that the device configuration required for cooling can be made smaller than in the case of cooling the gas temperature by air cooling. Further, since water is added to the reformed gas, the reactivity of the carbon monoxide / water conversion reaction can be further improved.

【0025】次に、本実施の形態における、水素発生装
置の一動作例を示す。変成部触媒体として、銅と亜鉛を
主成分とする触媒を用いた。この触媒の耐熱温度は30
0℃であることから、第二温度検出部温度の上限値を3
00℃とした。水を改質部後ガスに直接供給するため、
空冷による温度調節構成と比較して、温度調整の応答性
が格段に向上させることができた。また、温度制御構成
に必要な容積も約1/10とすることができた。
Next, an operation example of the hydrogen generator in the present embodiment will be shown. A catalyst containing copper and zinc as main components was used as the metamorphic catalyst. The heat resistant temperature of this catalyst is 30
Since it is 0 ° C., the upper limit of the second temperature detection unit temperature is set to 3
It was set to 00 ° C. Since water is directly supplied to the gas after the reforming section,
The responsiveness of temperature control could be improved significantly compared to the temperature control configuration by air cooling. Also, the volume required for the temperature control configuration could be reduced to about 1/10.

【0026】なお、鉄とクロムを主成分とする触媒体な
らば、500℃が上限となる。触媒体の種類および耐熱
性等の特性によりこの上限値は決める必要がある。ま
た、第二温度検出部は、改質部後ガスの温度を測定した
が、変成部変成触媒の温度を直接測定し、その温度をも
とに水を供給してもよい。
In the case of a catalyst body containing iron and chromium as main components, the upper limit is 500 ° C. It is necessary to determine this upper limit value depending on the type of catalyst and heat resistance. Further, the second temperature detection unit measures the temperature of the gas after the reforming unit, but may directly measure the temperature of the shift conversion catalyst and supply water based on the temperature.

【0027】(実施形態3)図3に、本発明での第三の
実施形態を示した。図1に示す実施の形態1とほぼ同一
構成であり、実施の形態1とほぼ同様の動作を行う。同
一の部分の説明は省略し相違点のみを説明する。相違点
は、浄化部4後のガス通気経路7に第三温度検出部11
を設けた点である。
(Third Embodiment) FIG. 3 shows a third embodiment of the present invention. The configuration is almost the same as that of the first embodiment shown in FIG. 1, and an operation similar to that of the first embodiment is performed. Description of the same parts will be omitted, and only the differences will be described. The difference is that the third temperature detection unit 11 is provided in the gas ventilation path 7 after the purification unit 4.
That is the point.

【0028】次に、本実施の形態の動作について示す。
装置起動時は実施の形態1と同じ動作をする。相違点
は、第三温度検出部温度に下限値を設け、第三温度検出
部温度が下限値を超したことで、装置から水素供給を開
始することを判断するものである。
Next, the operation of this embodiment will be described.
When the device is activated, the same operation as in the first embodiment is performed. The difference is that a lower limit value is set for the third temperature detection unit temperature, and when the third temperature detection unit temperature exceeds the lower limit value, it is determined to start hydrogen supply from the device.

【0029】本発明の水素生成装置を、燃料電池、特に
固体高分子型燃料電池に水素を供給する装置として用い
る場合、水素中の一酸化炭素を低減して供給する必要が
ある。水素中の一酸化炭素の濃度は、赤外線を用いた分
析機器等で測定することができる。しかし、分析機器に
より一酸化炭素濃度を測定し、装置の起動状態を判断す
ることは、コストの上昇、および装置の大型化等の観点
から好ましいものではない。
When the hydrogen generator of the present invention is used as a device for supplying hydrogen to a fuel cell, particularly a polymer electrolyte fuel cell, it is necessary to reduce and supply carbon monoxide in hydrogen. The concentration of carbon monoxide in hydrogen can be measured with an analytical instrument or the like using infrared rays. However, it is not preferable to measure the carbon monoxide concentration with an analytical instrument and judge the starting state of the device from the viewpoint of cost increase and size increase of the device.

【0030】本発明では、浄化部下流のガス温度を測定
するとともに下限値を設け、その温度が下限値を超すこ
とで、供給すべき水素ガス中の一酸化炭素濃度が所定値
以下に下がった、いわゆる正常運転状態であり、外部機
器に水素の供給が可能である構成を提供するものであ
る。そして、この正常運転状態であることを示す表示手
段、または、正常運転時に開通する生成ガス排出経路を
生成ガス排出部に設けることで、水素ガスの被供給機器
との燃料の連結を安全に制御することができる。
In the present invention, the gas temperature downstream of the purifying unit is measured and a lower limit value is set, and the temperature exceeds the lower limit value, whereby the carbon monoxide concentration in the hydrogen gas to be supplied falls below a predetermined value. In the so-called normal operation state, hydrogen is supplied to an external device. Then, by providing a display means indicating the normal operation state or a generated gas discharge path which is opened during the normal operation in the generated gas discharge part, the fuel connection with the hydrogen gas supply target device can be safely controlled. can do.

【0031】基本的に浄化部を効果的に動作させた場
合、一酸化炭素は低減できる。その浄化部の触媒体の一
酸化炭素の浄化性は、温度依存性がある。そこで、一酸
化炭素の低減状況を、浄化部下流のガス温度から判断す
るものである。浄化部の触媒として白金属系触媒を用い
た場合、その触媒の一酸化炭素酸化特性は、入口の一酸
化炭素濃度に依存し、一酸化炭素濃度が高い場合、反応
性は低下する。また、一酸化炭素および水素の酸化時に
発生する熱量は、基本的にどれだけ酸素と反応したかに
よって決まる。入口の一酸化炭素濃度が高い場合反応性
が低下するため、発熱量は少なくなり、浄化部後のガス
温度はあまり上昇しない。
Basically, when the purifying section is operated effectively, carbon monoxide can be reduced. The carbon monoxide purification performance of the catalyst body of the purification unit depends on temperature. Therefore, the state of carbon monoxide reduction is judged from the gas temperature downstream of the purification unit. When a white metal-based catalyst is used as the catalyst of the purification unit, the carbon monoxide oxidation characteristics of the catalyst depend on the inlet carbon monoxide concentration, and the reactivity decreases when the carbon monoxide concentration is high. Further, the amount of heat generated during the oxidation of carbon monoxide and hydrogen is basically determined by how much it reacts with oxygen. When the carbon monoxide concentration at the inlet is high, the reactivity decreases, so the amount of heat generated decreases and the gas temperature after the purification section does not rise so much.

【0032】次に、変成部での変成反応が進行し、入口
の一酸化炭素濃度が低くなった場合、反応性が向上する
ため、浄化部後のガス温度は上昇する。その温度上昇割
合は、浄化部に供給する空気量が一定の場合ほぼ一定と
なるため、そのガス温度を測定することで、一酸化炭素
の減少量は想定できる。従って、浄化部後のガス温度に
下限値を設け、その温度を基に装置の運転状態が正常か
否かを判断することができる。
Next, when the shift reaction in the shift conversion section progresses and the carbon monoxide concentration at the inlet becomes low, the reactivity is improved, and the gas temperature after the purification section rises. Since the rate of temperature increase is almost constant when the amount of air supplied to the purification unit is constant, the amount of decrease in carbon monoxide can be estimated by measuring the gas temperature. Therefore, it is possible to set a lower limit value for the gas temperature after the purifying unit and determine whether the operating state of the device is normal based on the lower limit value.

【0033】次に、本実施の形態における、水素発生装
置の一動作例を示す。浄化部の浄化触媒には、白金触媒
を用いた。本実施の形態の装置構成では、第三温度測定
部温度が100℃以上となった場合、浄化部後ガス中の
一酸化炭素濃度は、20ppm以下に安定的に低減でき
た。従って、100℃を下限値として水素生成装置の起
動状態を判断することが可能といえる。なお、浄化部後
ガスの温度は、使用する触媒種、触媒の使用条件、装置
構成で基本的に相違するため、条件に見合って決める必
要がある。
Next, an operation example of the hydrogen generator in the present embodiment will be shown. A platinum catalyst was used as the purification catalyst in the purification section. In the device configuration of the present embodiment, when the temperature of the third temperature measuring unit was 100 ° C. or higher, the carbon monoxide concentration in the gas after the purification unit could be stably reduced to 20 ppm or less. Therefore, it can be said that the starting state of the hydrogen generator can be determined with 100 ° C. as the lower limit value. The temperature of the gas after the purifying section basically differs depending on the type of catalyst used, the usage conditions of the catalyst, and the apparatus configuration, and therefore it must be determined in accordance with the conditions.

【0034】また、浄化部触媒に酸化性を有する触媒だ
けでなく、少なくとも一酸化炭素をメタン化する触媒性
を示す触媒体、例えば、ルテニウム触媒を浄化部に設け
ることでも同様の効果は得られた。また本実施の形態で
は、原料の炭化水素成分としてメタンを用いたが、天然
ガス、LPG等の炭化水素成分、メタノール等のアルコ
ール、あるいはナフサ成分等一般に水蒸気改質の原料と
して用いられているものも、使用することができる。
The same effect can be obtained by providing not only a catalyst having an oxidizing property but also a catalytic body having a catalytic property for methanating at least carbon monoxide, for example, a ruthenium catalyst, in the purifying part in the purifying part. It was Although methane is used as the hydrocarbon component of the raw material in the present embodiment, it is generally used as a raw material for steam reforming such as natural gas, hydrocarbon component such as LPG, alcohol such as methanol, or naphtha component. Can also be used.

【0035】[0035]

【発明の効果】以上のように本発明の構成により、改質
部の反応を効果的に進行させ、かつ装置内に水が滞留す
る事態を防止することができた。また、冷却に必要な装
置構成を小さくできるとともに、一酸化炭素と水の変成
反応の反応性をより向上させることができた。
As described above, according to the configuration of the present invention, the reaction in the reforming section can be effectively advanced, and the situation in which water stays in the apparatus can be prevented. In addition, the device configuration required for cooling can be reduced, and the reactivity of the carbon monoxide / water conversion reaction can be further improved.

【0036】さらに、起動時の改質部の反応性確保、定
常時の変成部の動作性向上、および水素生成装置の起動
状態判断を、比較的単純な構成で行うができた。
Further, it was possible to secure the reactivity of the reforming section at startup, improve the operability of the shift section at steady state, and determine the startup state of the hydrogen generator with a relatively simple structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態における水素生成装置
の要部の縦断面をしめした図
FIG. 1 is a view showing a vertical cross section of a main part of a hydrogen generator according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態における水素生成装置
の要部の縦断面をしめした図
FIG. 2 is a vertical cross-sectional view of the essential parts of a hydrogen generator according to a second embodiment of the present invention.

【図3】本発明の第3の実施形態における水素生成装置
のの縦断面をしめした図
FIG. 3 is a longitudinal sectional view of a hydrogen generator according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 改質部 1a 改質触媒部 2 加熱部 3 変成部 3a 変成触媒体 4 浄化部 4a 浄化触媒体 5 原料供給部 6 水供給部 7 ガス通気経路 8 空気供給部 9 第一温度測定部 10 第二温度測定部 11 第三温度測定部 1 reformer 1a Reforming catalyst section 2 heating section 3 metamorphosis department 3a Metamorphic catalyst 4 Purification Department 4a Purification catalyst body 5 Raw material supply department 6 Water supply section 7 gas ventilation paths 8 Air supply section 9 First temperature measuring unit 10 Second temperature measuring unit 11 Third temperature measuring unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田口 清 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 庄野 敏之 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 北河 浩一郎 大阪府大阪市城東区今福西6丁目2番61 号 松下精工株式会社内 (56)参考文献 特開 平11−149931(JP,A) 特開 平10−64570(JP,A) 特許137281(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C01B 3/38 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kiyoshi Taguchi Kiyoshi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Toshiyuki Shono 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (72) Inventor Koichiro Kitagawa No. 6-2 61, Imafuku Nishi, Joto-ku, Osaka City, Osaka Prefecture Matsushita Seiko Co., Ltd. (56) Reference JP-A-11-149931 (JP, A) JP-A-10-64570 ( JP, A) Patent 137281 (JP, B2) (58) Fields investigated (Int.Cl. 7 , DB name) C01B 3/38

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原料供給部と、水供給部と、空気供給部
と、前記原料と水とを反応させる改質触媒体を具備した
改質部と、前記改質触媒体を加熱する加熱部と、一酸化
炭素と水とを反応させる変成触媒体を具備した変成部
と、一酸化炭素を酸化する浄化触媒体を具備した浄化部
と、前記浄化部を通過した生成ガスを排出する生成ガス
排出部と、前記原料供給部と前記改質部と前記変成部と
前記浄化部と前記生成ガス排出部とを連通するガス通気
経路とを構成要素とし、前記変成部と前記浄化部とを連
通する前記ガス通気経路に前記空気供給部より空気を供
給する水素生成装置において、前記改質部と前記変成部
とを連通する前記ガス通気経路に第一温度検出部を設
け、前記加熱部の動作を開始したのち、前記第一温度検
出部の温度が予め定めた下限値に到達した時、前記改質
部に原料と水との供給を開始するとともに、浄化部と生
成ガス排出部とを連通するガス通気経路に第三温度検出
部を配置し、前記第三温度検出部の温度に下限値を定
め、前記第三温度検出部の温度が下限値以上の時、正常
運転状態と判断すること特徴とする水素生成装置。
1. A raw material supply section, a water supply section, an air supply section, a reforming section having a reforming catalyst body for reacting the raw material with water, and a heating section for heating the reforming catalyst body. A shift conversion section including a shift catalyst body for reacting carbon monoxide and water; a purification section including a purification catalyst body that oxidizes carbon monoxide; and a generated gas that discharges the generated gas that has passed through the purification section. A discharge part, a gas supply path that connects the raw material supply part, the reforming part, the shift conversion part, the purification part, and the generated gas discharge part are components, and the shift conversion part and the purification part are communicated with each other. In the hydrogen generator that supplies air from the air supply unit to the gas ventilation path, a first temperature detection unit is provided in the gas ventilation path that connects the reforming unit and the shift conversion unit, and the operation of the heating unit is performed. After starting, the temperature of the first temperature detection unit is predetermined When the lower limit value is reached, supply of raw material and water to the reforming section is started , and the purification section and raw
Third temperature detection in the gas vent passage that communicates with the product gas outlet
Section, and set the lower limit for the temperature of the third temperature detection section.
Therefore, when the temperature of the third temperature detection unit is above the lower limit value, normal
A hydrogen generator characterized by being judged to be in an operating state .
【請求項2】 第一温度検出部の下限値は、100℃以
上400℃以下であることを特徴とする請求項1記載の
水素生成装置。
2. The hydrogen generator according to claim 1, wherein the lower limit value of the first temperature detection unit is 100 ° C. or higher and 400 ° C. or lower.
【請求項3】 改質部と変成部とを連通するガス通気経
路に水注入口と、前記水注入口と前記変成部との間のガ
ス通気経路に第二温度検出部とを設け、前記温度検
出部の温度に上限値を定め、前記第温度検出部の温度
が前記上限値を越さないように、前記ガス通気経路に水
を供給することを特徴とする請求項1または2記載の水
素生成装置。
3. A water inlet in a gas vent passage communicating between the reforming section and the shift section, and a gas between the water inlet and the shift section.
A second temperature detector provided in the scan vent passage defines an upper limit to the temperature of the second temperature detector, so that the temperature of the second temperature detecting section is not scooped the upper limit value, the gas vent passage The hydrogen generator according to claim 1, wherein water is supplied to the hydrogen generator.
【請求項4】 第温度検出部の温度の上限値は、50
0℃以下250℃以上であることを特徴とする請求項3
記載の水素生成装置。
4. The upper limit of the temperature of the second temperature detector is 50.
4. The temperature is 0 ° C. or lower and 250 ° C. or higher.
The hydrogen generator described.
【請求項5】 第三検出部温度の下限値は、100℃以
上500℃以下であることを特徴とする請求項記載の
水素生成装置。
5. The hydrogen generator according to claim 1 , wherein the lower limit of the temperature of the third detector is 100 ° C. or higher and 500 ° C. or lower.
【請求項6】 正常運転状態であることを示す表示手
段、または、正常運転時に開通する生成ガス排出経路を
生成ガス排出部に設けたことを特徴とする請求項また
記載の水素生成装置。
Display means indicating that wherein a normal operating state or, claim 1 also <br/> 5, characterized in that a product gas discharge path to open during normal operation to generate gas discharge portion, The hydrogen generator described.
JP37385699A 1999-12-28 1999-12-28 Hydrogen generator Expired - Lifetime JP3415086B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP37385699A JP3415086B2 (en) 1999-12-28 1999-12-28 Hydrogen generator
KR10-2001-7010129A KR100399993B1 (en) 1999-12-28 2000-12-27 Power generation device
EP00987776A EP1162679A4 (en) 1999-12-28 2000-12-27 Power generation device and operation method therefor
KR10-2003-7009473A KR100427165B1 (en) 1999-12-28 2000-12-27 Hydrogen generator
CNB008043825A CN1178322C (en) 1999-12-28 2000-12-27 Power generation device and operation method therefor
US09/914,376 US6797420B2 (en) 1999-12-28 2000-12-27 Power generation device and operation method therefor
PCT/JP2000/009363 WO2001048851A1 (en) 1999-12-28 2000-12-27 Power generation device and operation method therefor
CNB2004100422902A CN1280933C (en) 1999-12-28 2000-12-27 Power generation device and operation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37385699A JP3415086B2 (en) 1999-12-28 1999-12-28 Hydrogen generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003004477A Division JP4945878B2 (en) 2003-01-10 2003-01-10 Hydrogen generator

Publications (2)

Publication Number Publication Date
JP2001180906A JP2001180906A (en) 2001-07-03
JP3415086B2 true JP3415086B2 (en) 2003-06-09

Family

ID=18502877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37385699A Expired - Lifetime JP3415086B2 (en) 1999-12-28 1999-12-28 Hydrogen generator

Country Status (1)

Country Link
JP (1) JP3415086B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116609A1 (en) 2009-03-30 2010-10-14 パナソニック株式会社 Fuel cell system and operating method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160565A (en) * 2004-12-08 2006-06-22 Idemitsu Kosan Co Ltd Hydrogen production system and method for controlling the same
WO2007091632A1 (en) * 2006-02-08 2007-08-16 Matsushita Electric Industrial Co., Ltd. Fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116609A1 (en) 2009-03-30 2010-10-14 パナソニック株式会社 Fuel cell system and operating method thereof

Also Published As

Publication number Publication date
JP2001180906A (en) 2001-07-03

Similar Documents

Publication Publication Date Title
US6797420B2 (en) Power generation device and operation method therefor
KR100466381B1 (en) Fuel reforming system
US6562088B2 (en) Method for operating a hydrogen generating apparatus
JP4105758B2 (en) Fuel cell system
US7135050B2 (en) Hydrogen generator
WO2007111123A1 (en) Reforming apparatus
EP3981739A1 (en) Hydrogen generator, fuel cell system using same, and operation method thereof
EP2172420B1 (en) Method for operation of a hydrogen generation system
US20060046114A1 (en) Fuel cell system
WO2007119736A1 (en) Hydrogen generator, fuel cell system equipped therewith and method of operating the same
US20040037761A1 (en) Hydrogen formation apparatus
EP0973220A2 (en) Device and method for controlling reformer
JP2000340246A (en) Reforming device for fuel cell
JP4827405B2 (en) Hydrogen generator and fuel cell system using the same
JP3415086B2 (en) Hydrogen generator
JP4945878B2 (en) Hydrogen generator
US6607855B2 (en) Control system for fuel cell
JP2009084135A (en) Fuel processor, driving method therefor, and fuel cell system
JP2008269887A (en) Fuel cell system
JPH08133701A (en) Carbon monoxide removing device
JP4164901B2 (en) Control device for reformer
JP5406107B2 (en) Operation method of hydrogen generator
JP2005216615A (en) Fuel processing device and fuel cell power generation system
JP3708428B2 (en) Hydrogen generator
JP2003214995A (en) Carbon monoxide concentration measuring device and fuel reforming system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R151 Written notification of patent or utility model registration

Ref document number: 3415086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 11

EXPY Cancellation because of completion of term