JP2002159836A - Continuous processing method and device for liquid substance - Google Patents

Continuous processing method and device for liquid substance

Info

Publication number
JP2002159836A
JP2002159836A JP2000360429A JP2000360429A JP2002159836A JP 2002159836 A JP2002159836 A JP 2002159836A JP 2000360429 A JP2000360429 A JP 2000360429A JP 2000360429 A JP2000360429 A JP 2000360429A JP 2002159836 A JP2002159836 A JP 2002159836A
Authority
JP
Japan
Prior art keywords
carrier liquid
pressure
liquid
temperature
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000360429A
Other languages
Japanese (ja)
Inventor
Yutaka Osajima
豊 筬島
Mitsuya Shimoda
満哉 下田
Masaki Miyake
正起 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2000360429A priority Critical patent/JP2002159836A/en
Publication of JP2002159836A publication Critical patent/JP2002159836A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device capable of correctly evaluating the effect of a continuous processing such as oxygen deactivation/disinfection of a liquid-like substance using a fluid operating to a microorganism or the like (operating fluid). SOLUTION: Carbon dioxide is dissolved in a carrier liquid by fine-bubbling and introducing a high pressure carbon dioxide gas (operating fluid) to the carrier liquid while the carrier liquid (physiological salt solution or the like) is continuously flowed to a dissolution tank 16 disposed on a line at a predetermined flow rate. After the carrier liquid in which carbon dioxide is dissolved is made to a desired processing temperature by a first heating device 18, a sample liquid including a microorganism or the like to be processed is introduced to the carrier liquid. Thereafter, the carrier liquid flows in a line while it maintains the processing temperature by a second heating device 20 and a pressure thereof is reduced when it passes through a pressure regulating valve 48. By this pressure reduction, carbon dioxide dissolved in the carrier liquid is gasified and is separated from the carrier liquid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酵素や胞子の失活
作用及び/又は菌の殺傷作用を有する流体を用いて液状
物質(液状食品、液状薬品等)を連続的に処理する方法
及びそのための装置に関し、特に、前記のような連続処
理の効果の評価に適した方法及び装置に関する。なお、
本明細書では、細菌、真菌、酵素、胞子等を「微生物
等」と総称し、上記のような作用を有する流体を「微生
物等に作用する流体」又は「作用流体」と呼ぶ。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously treating liquid substances (liquid foods, liquid chemicals, etc.) using a fluid having an inactivating effect on enzymes and spores and / or a killing effect on bacteria. In particular, the present invention relates to a method and an apparatus suitable for evaluating the effect of the continuous processing as described above. In addition,
In the present specification, bacteria, fungi, enzymes, spores, and the like are collectively referred to as “microorganisms,” and a fluid having the above-described action is referred to as “fluid acting on microorganisms or the like” or “working fluid.”

【0002】[0002]

【従来の技術】微生物等に作用する流体を用いた液状物
質の連続処理の手順の一例を図2に示す。この処理で
は、まず、処理対象となる微生物等を含む液状物質(以
下、原料液とする)を所定流量でラインに連続的に流し
つつ、ラインの途上において原料液に作用流体を所定流
量で導入することにより、作用流体を原料液に混合、溶
解させる(溶解工程)。次に、作用流体の溶解した原料
液を所定の処理温度まで加温し(加温工程)、更に原料
液の温度及び圧力を所定の処理時間維持する。この処理
時間中に、原料液に溶解した作用流体が同液中の微生物
等に作用し、酵素や胞子が失活させられ、菌が殺傷され
る(失活・殺菌工程)。その後、原料液から作用流体を
分離し(分離工程)、処理後の原料液を製品として回収
する。
2. Description of the Related Art FIG. 2 shows an example of a procedure for a continuous treatment of a liquid substance using a fluid acting on microorganisms or the like. In this process, first, a working substance is introduced into the raw material liquid at a predetermined flow rate in the middle of the line while a liquid substance (hereinafter, referred to as a raw material liquid) containing a microorganism or the like to be treated is continuously flown at a predetermined flow rate. Thus, the working fluid is mixed and dissolved in the raw material liquid (dissolution step). Next, the raw material liquid in which the working fluid is dissolved is heated to a predetermined processing temperature (heating step), and the temperature and pressure of the raw material liquid are maintained for a predetermined processing time. During this treatment time, the working fluid dissolved in the raw material liquid acts on microorganisms and the like in the liquid, the enzymes and spores are inactivated, and the bacteria are killed (inactivation / sterilization step). Thereafter, the working fluid is separated from the raw material liquid (separation step), and the processed raw material liquid is recovered as a product.

【0003】上記作用流体としては、微生物等に作用す
る薬品を溶解した液体を利用することも可能であるが、
最近では超臨界流体、亜臨界流体又は高圧ガスを作用流
体として利用する技術が注目されている。具体的には、
超臨界状態、亜臨界状態又は高圧ガス状態の二酸化炭素
が、安全性が高いこと、コストが低いこと、原料液から
の分離が容易であること、作用効果が顕著であること等
の理由で最も多く利用されている。また、二酸化炭素以
外の物質(例えば窒素)を利用する例も見られる。
As the working fluid, a liquid in which a chemical acting on microorganisms or the like is dissolved can be used.
In recent years, attention has been paid to a technique using a supercritical fluid, a subcritical fluid, or a high-pressure gas as a working fluid. In particular,
Carbon dioxide in supercritical, subcritical or high-pressure gas state is the most important because of its high safety, low cost, easy separation from raw material liquid, and remarkable effect. Many are used. In addition, there is an example in which a substance (for example, nitrogen) other than carbon dioxide is used.

【0004】上記のような処理において、処理効果に影
響する主な因子としては原料液中の作用流体の濃度、作
用流体と微生物等を接触させる温度(以下、処理温度と
する)及び時間(以下、処理時間とする)が挙げられ
る。処理効果に対するこれらの因子の影響を評価する場
合、従来は、既知の量の微生物等を含む原料液を所定条
件(作用流体の濃度、処理温度、処理時間)を制御しつ
つ上記のように処理した後、原料液を回収し、その原料
液中に残存する微生物等の数を測定し、その数を処理前
の原料液中に含まれていた微生物等の数と比較する、と
いう手順を踏んでいた。
In the above treatment, the main factors affecting the treatment effect include the concentration of the working fluid in the raw material liquid, the temperature at which the working fluid is brought into contact with microorganisms (hereinafter referred to as the treatment temperature), and the time (hereinafter referred to as the treatment temperature). , Processing time). Conventionally, when evaluating the influence of these factors on the treatment effect, a raw material liquid containing a known amount of microorganisms is treated as described above while controlling predetermined conditions (concentration of working fluid, treatment temperature, treatment time). After that, the raw material liquid is collected, the number of microorganisms and the like remaining in the raw material liquid is measured, and the number is compared with the number of microorganisms and the like contained in the raw material liquid before the treatment. Was out.

【0005】[0005]

【発明が解決しようとする課題】上記処理では、原料液
へ作用流体を導入してから、原料液から作用流体を分離
するまでの間が作用流体の実質的な作用時間となる。こ
の作用時間は微生物等の個体レベルで見ると一定ではな
く、ラインが長くなったりラインの構成が複雑になると
作用時間に大きなばらつきが生じることは避けられな
い。従って、上記処理により得られる効果の評価精度を
十分に高めるには処理時間を長くすることにより作用時
間のばらつきの影響をなくす必要がある。
In the above process, the time from the introduction of the working fluid to the raw material liquid to the separation of the working fluid from the raw material liquid is a substantial working time of the working fluid. The action time is not constant when viewed at the individual level of microorganisms and the like, and if the line becomes long or the line configuration becomes complicated, it is unavoidable that the action time greatly varies. Therefore, in order to sufficiently increase the accuracy of evaluating the effect obtained by the above-described processing, it is necessary to eliminate the influence of the variation in the operation time by lengthening the processing time.

【0006】また、上記処理では、溶解工程と失活・殺
菌工程との間に加温工程があるが、この加温工程におい
ても作用流体が微生物等に幾分作用する。従って、例え
ば、失活・殺菌工程における作用流体の作用効果を評価
することを目的とした実験において、原料液中の作用流
体の濃度や失活・殺菌工程における処理温度及び処理時
間といった因子を制御しながら処理を行っても、正しい
評価結果を得ることができない。
In the above treatment, there is a heating step between the dissolving step and the deactivation / sterilization step. In this heating step, the working fluid acts somewhat on microorganisms and the like. Therefore, for example, in an experiment aimed at evaluating the effect of the working fluid in the inactivation / sterilization process, factors such as the concentration of the working fluid in the raw material liquid and the processing temperature and time in the inactivation / sterilization process are controlled. Even if the processing is performed, a correct evaluation result cannot be obtained.

【0007】本発明は上記のような課題を解決するため
に成されたものであり、その目的とするところは、作用
流体を用いた液状物質の酵素失活・殺菌等の処理の効果
を正しく評価できるような液状物質の連続処理方法及び
前記評価に適した液状物質の連続処理装置を提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and an object of the present invention is to correctly evaluate the effects of treatments such as enzyme deactivation / sterilization of a liquid substance using a working fluid. It is an object of the present invention to provide a method for continuously processing a liquid substance that can be evaluated and a continuous processing apparatus for a liquid substance suitable for the evaluation.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に成された本発明に係る液状物質の連続処理方法は、超
臨界流体、亜臨界流体又は高圧ガスを作用流体として利
用する液状物質の連続処理法において、ラインにキャリ
ア液を所定流量で連続的に流す工程、前記ラインを流れ
るキャリア液に前記作用流体を所定流量で連続的に導入
することにより該キャリア液中に該作用流体を溶解させ
る溶解工程、前記作用流体の溶解したキャリア液の温度
を所定の処理温度に調節する温度調節工程、前記作用流
体の溶解したキャリア液の圧力を所定の処理圧力に調節
する圧力調節工程、前記処理温度及び処理圧力になった
キャリア液に処理対象の微生物等を含む試料を導入する
試料導入工程、前記試料を導入したキャリア液を所定の
処理時間の間、前記処理温度及び処理圧力に維持する温
度・圧力維持工程、及び前記温度・圧力維持工程を経た
キャリア液から前記作用流体を分離する工程を備えるこ
とを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a method for continuously treating a liquid material according to the present invention is directed to a method for processing a liquid material using a supercritical fluid, a subcritical fluid, or a high-pressure gas as a working fluid. In the continuous processing method, a step of continuously flowing a carrier liquid at a predetermined flow rate into a line, and dissolving the working fluid in the carrier liquid by continuously introducing the working fluid at a predetermined flow rate into the carrier liquid flowing through the line. Dissolving step, a temperature adjusting step of adjusting the temperature of the carrier liquid in which the working fluid is dissolved to a predetermined processing temperature, a pressure adjusting step of adjusting the pressure of the carrier liquid in which the working fluid is dissolved to a predetermined processing pressure, the processing A sample introduction step of introducing a sample containing a microorganism or the like to be processed into the carrier liquid at the temperature and the processing pressure, wherein the carrier liquid into which the sample has been introduced is placed in the carrier liquid for a predetermined processing time; Characterized in that the temperature and pressure hold step to maintain the process temperature and process pressure, and a carrier liquid having passed through the temperature and pressure hold step comprises the step of separating the working fluid.

【0009】また、本発明に係る液状物質の連続処理装
置は、超臨界流体、亜臨界流体又は高圧ガスを作用流体
として利用する液状物質の連続処理装置において、ライ
ンにキャリア液を所定流量で連続的に流すためのキャリ
ア液供給手段、前記ラインの途上で前記キャリア液に前
記作用流体を所定流量で連続的に導入する流体導入手
段、前記作用流体を導入したキャリア液の温度を所定の
処理温度に調節する温度調節手段、前記作用流体を導入
したキャリア液の圧力を所定の処理圧力に調節する圧力
調節手段、前記処理温度及び処理圧力になったキャリア
液に処理対象の微生物等を含む試料を導入する試料導入
手段、前記試料を導入したキャリア液を所定時間、前記
処理温度及び処理圧力に維持する温度・圧力維持手段、
及び前記温度・圧力維持手段を通過したキャリア液から
前記作用流体を分離するための分離手段を備えることを
特徴とする。
Further, the continuous processing apparatus for a liquid substance according to the present invention is a continuous processing apparatus for a liquid substance using a supercritical fluid, a subcritical fluid or a high-pressure gas as a working fluid. Means for supplying the working fluid to the carrier liquid at a predetermined flow rate in the middle of the line, a carrier liquid supply means for continuously flowing the working fluid at a predetermined flow rate, Temperature adjusting means for adjusting the pressure of the carrier liquid into which the working fluid has been introduced, a pressure adjusting means for adjusting the pressure of the carrier liquid to a predetermined processing pressure, and a sample containing a microorganism to be processed in the carrier liquid having the processing temperature and the processing pressure. A sample introduction unit to be introduced, a carrier liquid into which the sample has been introduced for a predetermined time, a temperature / pressure maintaining unit for maintaining the processing temperature and the processing pressure,
And separating means for separating the working fluid from the carrier liquid having passed through the temperature / pressure maintaining means.

【0010】[0010]

【発明の実施の形態】本発明に係る方法及び装置では、
まず、処理対象の微生物等を含まないキャリア液をライ
ンに連続的に供給する。キャリア液としては例えば生理
食塩水や緩衝液が利用できる。また、特定の液状物質に
含まれる微生物等の酵素失活・殺菌処理に関する評価デ
ータが必要な場合は、その液状物質を滅菌処理したもの
をキャリア液としてラインに流すようにしてもよい。次
に、上記のようにラインを流れるキャリア液に作用流体
(超臨界流体、亜臨界流体又は高圧ガス)をキャリア液
に導入することにより、キャリア液に作用流体を溶解さ
せる。溶解工程は、例えば、ラインの途上に液体入口及
び液体出口を有する溶解槽を配設し、その溶解槽を通過
するようにキャリア液を流しつつ、槽内を流れるキャリ
ア液に作用流体を微小泡化して導入するという形で行う
ようにする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the method and apparatus according to the present invention,
First, a carrier liquid containing no microorganisms to be treated is continuously supplied to the line. As the carrier liquid, for example, physiological saline or a buffer can be used. When evaluation data on enzyme deactivation / sterilization treatment of microorganisms or the like contained in a specific liquid substance is required, the liquid substance obtained by sterilizing the liquid substance may flow as a carrier liquid into a line. Next, as described above, the working fluid (supercritical fluid, subcritical fluid, or high-pressure gas) is introduced into the carrier fluid flowing through the line, thereby dissolving the working fluid in the carrier fluid. In the dissolving step, for example, a dissolving tank having a liquid inlet and a liquid outlet is provided in the middle of the line, and while the carrier liquid is caused to flow through the dissolving tank, the working fluid is finely bubbled into the carrier liquid flowing in the tank. And then introduce it.

【0011】温度調節工程では、作用流体の溶解したキ
ャリア液の温度を、ヒータや温度センサ等で構成された
温度調節手段により所定の処理温度に調節する。また、
圧力調節工程では、キャリア液の圧力を、ポンプや圧力
調節弁等で構成された圧力調節手段により所定の処理圧
力に調節する。なお、温度調節工程及び圧力調節工程の
順序は本発明にとって本質的ではなく、両工程は同時に
行われてもよい。
In the temperature adjusting step, the temperature of the carrier liquid in which the working fluid is dissolved is adjusted to a predetermined processing temperature by a temperature adjusting means comprising a heater, a temperature sensor and the like. Also,
In the pressure adjusting step, the pressure of the carrier liquid is adjusted to a predetermined processing pressure by pressure adjusting means constituted by a pump, a pressure adjusting valve, and the like. The order of the temperature adjustment step and the pressure adjustment step is not essential to the present invention, and both steps may be performed simultaneously.

【0012】試料導入工程では、上記のように温度及び
圧力を調整されたキャリア液に処理対象の微生物等を含
む試料を導入する。試料導入手段は、例えば、上記のよ
うに温度及び圧力の調節されたキャリア液が流れる第一
の管、その配管に設けられた試料導入口、試料を入れた
容器の試料取出口と前記試料導入口とを接続する第二の
管、及び、第二の管の途上に配設されたポンプを備える
構成とする。
In the sample introducing step, a sample containing a microorganism to be treated is introduced into the carrier liquid whose temperature and pressure have been adjusted as described above. The sample introducing means includes, for example, a first pipe through which the carrier liquid whose temperature and pressure are adjusted as described above, a sample inlet provided in the pipe, a sample outlet of a container containing a sample, and the sample inlet. It is configured to include a second pipe connecting the port and a pump disposed on the way of the second pipe.

【0013】温度・圧力維持工程では、上記のように試
料を導入したキャリア液を所定の処理時間、前記処理温
度及び処理圧力に維持する。温度・圧力維持手段は、例
えば、前記試料導入口よりも下流において第一の配管の
途上に配設された処理ユニット(内部にキャリア液の流
路を備える)、その処理槽を加温するためのヒータ、処
理槽の流路を流れるキャリア液の温度をモニタするため
の温度センサ、処理槽の流路内の圧力を調節するための
ポンプや圧力調節弁等を備える構成とする。なお、圧力
調節工程と本工程との間にキャリア液の圧力に影響を与
えるような工程が含まれていなければ、先に説明した圧
力調節手段を動作させることにより、本工程におけるキ
ャリア液の圧力も自動的に処理圧力に維持されるように
なる。この場合、温度・圧力維持工程のために特に圧力
調節機構を設ける必要はない。
In the temperature / pressure maintaining step, the carrier liquid into which the sample has been introduced as described above is maintained at the processing temperature and the processing pressure for a predetermined processing time. The temperature / pressure maintaining means is, for example, for heating a processing unit (including a carrier liquid flow path therein) disposed on the way of the first pipe downstream of the sample introduction port, and a processing tank thereof. , A temperature sensor for monitoring the temperature of the carrier liquid flowing through the flow path of the processing tank, a pump and a pressure control valve for adjusting the pressure in the flow path of the processing tank, and the like. If a step that affects the pressure of the carrier liquid is not included between the pressure adjusting step and the present step, the pressure adjusting unit described above is operated to operate the carrier liquid in the present step. Is automatically maintained at the processing pressure. In this case, it is not necessary to provide a pressure adjusting mechanism for the temperature / pressure maintaining step.

【0014】分離工程では、温度・圧力維持工程を経た
キャリア液から作用流体を分離する。例えば、作用流体
が超臨界状態、亜臨界状態又は高圧ガス状態の二酸化炭
素である場合、その二酸化炭素が溶解したキャリア液を
減圧すると、二酸化炭素は気化する一方、キャリア液は
液体の状態を維持するため、キャリア液から二酸化炭素
を容易に分離できる。
In the separation step, the working fluid is separated from the carrier liquid that has undergone the temperature / pressure maintaining step. For example, when the working fluid is carbon dioxide in a supercritical state, a subcritical state, or a high-pressure gas state, when the carrier liquid in which the carbon dioxide is dissolved is decompressed, the carbon dioxide is vaporized, while the carrier liquid maintains a liquid state. Therefore, carbon dioxide can be easily separated from the carrier liquid.

【0015】[0015]

【実施例】図1に本発明の一実施例である連続処理装置
の概略構成を示す。この装置1は、液体二酸化炭素が封
入されたボンベ10、キャリア液が貯留されたキャリア
液タンク12、処理対象の微生物等を含む試料液が貯留
された試料タンク14、二酸化炭素をキャリア液に溶解
させるための溶解槽16、二酸化炭素の溶解したキャリ
ア液の温度を所定の処理温度に調節するための第一の加
温器18、及び、キャリア液の温度を所定時間、前記処
理温度に維持するための第二の加温器20を備えてい
る。
FIG. 1 shows a schematic configuration of a continuous processing apparatus according to an embodiment of the present invention. The apparatus 1 includes a cylinder 10 in which liquid carbon dioxide is sealed, a carrier liquid tank 12 in which a carrier liquid is stored, a sample tank 14 in which a sample liquid containing microorganisms to be treated is stored, and dissolving carbon dioxide in the carrier liquid. Dissolving tank 16, a first heater 18 for adjusting the temperature of the carrier liquid in which carbon dioxide is dissolved to a predetermined processing temperature, and maintaining the temperature of the carrier liquid at the processing temperature for a predetermined time. And a second heater 20 for heating.

【0016】ボンベ10の液体取出口は、ポンプ22及
び気化器24が配設された二酸化炭素供給管21によ
り、溶解槽16の底部に設けられた二酸化炭素導入口1
61と接続されている。二酸化炭素導入口161は溶解
槽16の底壁を外から内へ貫通しており、その上端には
ミクロフィルタ26が取り付けられている。キャリア液
タンク12の液体取出口は、ポンプ28及び電磁弁30
が配設されたキャリア液供給管32により、溶解槽16
の側壁下部に設けられたキャリア液導入口162と接続
されている。溶解槽16の側壁上部には液体取出口16
3が設けられている。この液体取出口163は管34に
より第一の加温器18の液体入口181と接続されてい
る。管34には、その中を流れる液体の温度を測定する
ための温度センサ36が取り付けられている。
The liquid outlet of the cylinder 10 is connected to a carbon dioxide inlet 1 provided at the bottom of the dissolving tank 16 by a carbon dioxide supply pipe 21 provided with a pump 22 and a vaporizer 24.
61 is connected. The carbon dioxide inlet 161 penetrates the bottom wall of the dissolving tank 16 from outside to inside, and a micro filter 26 is attached to an upper end thereof. The liquid outlet of the carrier liquid tank 12 is provided with a pump 28 and an electromagnetic valve 30.
The dissolution tank 16 is provided by a carrier liquid supply pipe 32 provided with
Is connected to a carrier liquid inlet 162 provided at a lower portion of the side wall of the liquid crystal display. A liquid outlet 16 is provided above the side wall of the dissolving tank 16.
3 are provided. The liquid outlet 163 is connected to a liquid inlet 181 of the first heater 18 by a pipe 34. The tube 34 is provided with a temperature sensor 36 for measuring the temperature of the liquid flowing therein.

【0017】第一の加温器18の内部には、液体入口1
81から液体出口182へ至る螺旋状流路183が形成
されている。液体出口182は、試料導入口37が配設
された管38により第二の加温器20の液体入口201
と接続されている。管38には、その中を流れる液体の
温度を測定するための温度センサ42が取り付けられて
いる。試料導入口37は、ポンプ44が配設された試料
供給管46により試料タンク14の液体取出口と接続さ
れている。第二の加温器20には液体入口201から液
体出口202へ至る螺旋状流路203、及び、管203
の中を流れる液体の温度を液体出口202付近で測定す
るための温度センサ40が内蔵されている。第二の加温
器20の液体出口202は、圧力調節弁48が配設され
た管50により分離槽51と接続されている。
The first heater 18 has a liquid inlet 1 therein.
A spiral flow path 183 from 81 to the liquid outlet 182 is formed. The liquid outlet 182 is connected to the liquid inlet 201 of the second warmer 20 by a pipe 38 provided with the sample inlet 37.
Is connected to The tube 38 is provided with a temperature sensor 42 for measuring the temperature of the liquid flowing therein. The sample inlet 37 is connected to a liquid outlet of the sample tank 14 by a sample supply pipe 46 provided with a pump 44. The second heater 20 has a spiral flow path 203 extending from the liquid inlet 201 to the liquid outlet 202, and a pipe 203.
A temperature sensor 40 for measuring the temperature of the liquid flowing in the vicinity of the liquid outlet 202 is incorporated. The liquid outlet 202 of the second heater 20 is connected to the separation tank 51 by a pipe 50 provided with the pressure control valve 48.

【0018】再び溶解槽16において、溶解槽16の頂
部には気体取出口164が設けられている。気体取出口
164には、2つの圧力調節弁52、54及び二酸化炭
素回収タンク56が配設された二酸化炭素回収管58の
一端が接続されている。また、溶解槽16の側壁下部に
は液体排出口165が設けられており、ここに、電磁弁
60を備える排液管62が接続されている。
In the dissolving tank 16, a gas outlet 164 is provided at the top of the dissolving tank 16. One end of a carbon dioxide recovery pipe 58 in which two pressure regulating valves 52 and 54 and a carbon dioxide recovery tank 56 are disposed is connected to the gas outlet 164. Further, a liquid outlet 165 is provided at a lower portion of the side wall of the dissolving tank 16, and a drain pipe 62 having an electromagnetic valve 60 is connected to the liquid outlet 165.

【0019】また、装置1には、操作部64からの操作
信号や各温度センサの出力信号に応じてポンプ、電磁
弁、圧力制御弁、加温器等の動作を制御する制御装置6
6が備えられている。
The apparatus 1 includes a control device 6 for controlling the operation of a pump, a solenoid valve, a pressure control valve, a heater, and the like in accordance with an operation signal from the operation section 64 and an output signal of each temperature sensor.
6 are provided.

【0020】上記のように構成された装置1を用いた評
価実験は以下のように行われる。
An evaluation experiment using the apparatus 1 configured as described above is performed as follows.

【0021】まず、使用者が、試料タンク14に処理対
象の微生物等を含む試料液を入れた後、操作部64を通
じて処理温度及び処理圧力を実験の目的に応じて設定
し、制御装置66に処理の開始を指示する。この指示を
受けると、制御装置66は、排液管62の電磁弁60を
閉じ、キャリア液供給管32の途上の電磁弁30を開
き、ポンプ28を起動する。ポンプ28を起動すると、
キャリア液タンク12に貯留されたキャリア液がキャリ
ア液供給管32を通じて溶解槽16に流入するようにな
る。溶解槽16に流入したキャリア液は槽16の中を上
向きに流れ、液体取出口163から管34に流入する。
管34に流入したキャリア液は第一の加温器18におい
て上記処理温度まで加温され、管38、第二の加温器2
0及び管50を通って分離槽51に流入する。
First, after a user puts a sample liquid containing a microorganism to be processed into the sample tank 14, a processing temperature and a processing pressure are set through the operation unit 64 according to the purpose of the experiment. Instructs the start of processing. Upon receiving this instruction, the control device 66 closes the electromagnetic valve 60 of the drain pipe 62, opens the electromagnetic valve 30 in the middle of the carrier liquid supply pipe 32, and starts the pump 28. When the pump 28 is started,
The carrier liquid stored in the carrier liquid tank 12 flows into the dissolution tank 16 through the carrier liquid supply pipe 32. The carrier liquid flowing into the dissolution tank 16 flows upward in the tank 16 and flows into the pipe 34 from the liquid outlet 163.
The carrier liquid that has flowed into the pipe 34 is heated to the processing temperature in the first warmer 18, and is heated by the pipe 38 and the second warmer 2.
0 and flows into the separation tank 51 through the pipe 50.

【0022】また、上記使用者からの指示を受けて、制
御装置66は二酸化炭素供給管21のポンプ22を起動
する。すると、ボンベ10に封入された液体二酸化炭素
が二酸化炭素供給管21に流入するようになる。この液
体二酸化炭素は気化器24を通過する際に気化して高圧
ガスとなり、更にその高圧ガスはミクロフィルタ26を
通過する際に微小泡となる。この微小泡はキャリア液と
ともに溶解槽16の中を上昇するが、その間に、微小泡
中の二酸化炭素がキャリア液に溶解する。なお、条件に
よっては一部の二酸化炭素が微小泡の状態で残るが、こ
うして残った二酸化炭素は溶解槽16の気体取出口16
4から取り出され、二酸化炭素回収タンク56に回収さ
れて再利用される。
In response to the instruction from the user, the control device 66 starts the pump 22 of the carbon dioxide supply pipe 21. Then, the liquid carbon dioxide sealed in the cylinder 10 flows into the carbon dioxide supply pipe 21. The liquid carbon dioxide is vaporized when passing through the vaporizer 24 and becomes a high-pressure gas, and the high-pressure gas becomes fine bubbles when passing through the microfilter 26. The fine bubbles rise in the dissolving tank 16 together with the carrier liquid, during which time the carbon dioxide in the fine bubbles dissolves in the carrier liquid. Depending on the conditions, some carbon dioxide remains in the form of fine bubbles.
4 and collected in a carbon dioxide recovery tank 56 for reuse.

【0023】上記のような状態で十分な時間が経過する
と、二酸化炭素の溶解したキャリア液が安定した流量で
管34、第一の加温器18、管38、第二の加温器20
及び管50を流れるようになる。ここで、管50を流れ
るキャリア液の圧力は圧力調節弁48を通過する際に急
激に低下する。この減圧の結果、キャリア液に溶解した
二酸化炭素が気化する。こうして気体となった二酸化炭
素は分離槽51においてキャリア液から自然に分離され
る。
When a sufficient time has elapsed in the above state, the carrier liquid in which the carbon dioxide is dissolved is supplied at a stable flow rate through the pipe 34, the first heater 18, the pipe 38, and the second heater 20.
And flow through the tube 50. Here, the pressure of the carrier liquid flowing through the pipe 50 rapidly decreases when passing through the pressure control valve 48. As a result of this reduced pressure, carbon dioxide dissolved in the carrier liquid evaporates. The gasified carbon dioxide is naturally separated from the carrier liquid in the separation tank 51.

【0024】上記のような安定状態になった後、制御装
置66は試料供給管46のポンプ44を起動する。する
と、試料タンク14に貯留された試料液が試料供給管4
6を流れ、試料導入口37を通って管38に流入するよ
うになる。このとき、制御装置66は、温度センサ40
及び42の出力信号から求められるキャリア液の温度が
上記処理温度で維持されるように、2つの加温器18、
20の動作を制御する。
After the above-mentioned stable state is established, the controller 66 starts the pump 44 of the sample supply pipe 46. Then, the sample liquid stored in the sample tank 14 is
6 through the sample inlet 37 and into the tube 38. At this time, the control device 66 controls the temperature sensor 40
And two heaters 18 so that the temperature of the carrier liquid determined from the output signals of and is maintained at the processing temperature.
20 is controlled.

【0025】以上のような処理において、キャリア液に
溶解した二酸化炭素が微生物等に作用する時間は、試料
液をキャリア液に導入した時点から、キャリア液が減圧
される時点までとなる。この時間は、キャリア液の流
量、二酸化炭素の流量、試料液の流量、試料導入口37
から圧力調節弁48までのラインの容量に基づいて求め
ることができる。そして、第二の加温器20として内部
の螺旋状流路の長さが異なる複数の加温器20を順次使
用することにより、作用時間を制御パラメータとする評
価実験を行うことができる。また、処理圧力について
は、ポンプの出力や圧力調節弁の開度を適宜設定するこ
とにより、ライン中の圧力を所望の圧力にすることがで
きる。また、処理温度については、2つの加温器18、
20を用いて、作用時間中のキャリア液の温度を所望の
温度に維持することができる。
In the above treatment, the time during which carbon dioxide dissolved in the carrier liquid acts on microorganisms and the like is from the time when the sample liquid is introduced into the carrier liquid to the time when the carrier liquid is depressurized. This time depends on the flow rate of the carrier liquid, the flow rate of the carbon dioxide, the flow rate of the sample liquid, and the sample inlet 37.
From the pressure control valve 48 to the pressure control valve 48. Then, by sequentially using a plurality of heaters 20 having different internal spiral flow paths as the second heater 20, an evaluation experiment using the operation time as a control parameter can be performed. As for the processing pressure, the pressure in the line can be set to a desired pressure by appropriately setting the output of the pump and the opening of the pressure control valve. Regarding the processing temperature, two heaters 18,
By using 20, the temperature of the carrier liquid during the working time can be maintained at a desired temperature.

【0026】[0026]

【発明の効果】本発明によれば、キャリア液に溶解した
二酸化炭素が微生物等に作用する時間は、従来のように
最初から微生物等を含んだ原料液を用いる場合における
作用時間に比べてはるかに短い。また、本発明によれ
ば、二酸化炭素が微生物等に作用する区間ではキャリア
液が淀みなく流れる。以上のようなことから、本発明の
方法によれば、従来の方法に比べて微生物等の個体レベ
ルでの作用時間のばらつきがはるかに小さくなり、短時
間でも高い精度で実験を行うことができる。
According to the present invention, the time required for carbon dioxide dissolved in the carrier liquid to act on microorganisms and the like is much longer than the time required when a raw material liquid containing microorganisms and the like is used from the beginning as in the prior art. Short. Further, according to the present invention, the carrier liquid flows without stagnation in a section where carbon dioxide acts on microorganisms and the like. From the above, according to the method of the present invention, the variation in the action time at the individual level such as microorganisms is much smaller than in the conventional method, and the experiment can be performed with high accuracy even in a short time. .

【0027】また、本発明によれば、処理対象の微生物
等を含む試料は加温工程よりも後でキャリア液に導入さ
れる。従って、例えば、失活・殺菌工程における作用流
体の作用効果を評価することを目的とした実験におい
て、原料液中の作用流体の濃度や失活・殺菌工程におけ
る処理温度及び処理時間といった因子を制御しながら処
理を行うことにより、それら因子の作用効果への影響を
正しく評価できる。
According to the present invention, the sample containing the microorganisms to be treated is introduced into the carrier liquid after the heating step. Therefore, for example, in an experiment aimed at evaluating the effect of the working fluid in the inactivation / sterilization process, factors such as the concentration of the working fluid in the raw material liquid and the processing temperature and time in the inactivation / sterilization process are controlled. By performing the treatment while doing so, it is possible to correctly evaluate the influence of these factors on the effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例である連続処理装置の概略
構成図。
FIG. 1 is a schematic configuration diagram of a continuous processing apparatus according to an embodiment of the present invention.

【図2】 微生物等に作用する流体を用いた液状物質の
連続処理の一例。
FIG. 2 shows an example of continuous treatment of a liquid substance using a fluid acting on microorganisms and the like.

【符号の説明】[Explanation of symbols]

1…連続処理装置 10…ボンベ 12…キャリア液タンク 14…試料タンク 16…溶解槽 18、20…加温器 24…気化器 26…ミクロフィルタ 51…分離槽 66…制御装置 DESCRIPTION OF SYMBOLS 1 ... Continuous processing apparatus 10 ... Cylinder 12 ... Carrier liquid tank 14 ... Sample tank 16 ... Dissolution tank 18, 20 ... Heater 24 ... Vaporizer 26 ... Microfilter 51 ... Separation tank 66 ... Control device

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) A61L 2/24 A61L 2/24 // A23L 3/015 A23L 3/015 Fターム(参考) 4B021 LA42 LP07 LW06 LW10 4C058 AA12 AA30 BB07 JJ06 JJ12 JJ28 JJ29 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) A61L 2/24 A61L 2/24 // A23L 3/015 A23L 3/015 F term (reference) 4B021 LA42 LP07 LW06 LW10 4C058 AA12 AA30 BB07 JJ06 JJ12 JJ28 JJ29

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 超臨界流体、亜臨界流体又は高圧ガスを
作用流体として利用する液状物質の連続処理法におい
て、 ラインにキャリア液を所定流量で連続的に流す工程、 前記ラインを流れるキャリア液に前記作用流体を所定流
量で連続的に導入することにより該キャリア液中に該作
用流体を溶解させる溶解工程、 前記作用流体の溶解したキャリア液の温度を所定の処理
温度に調節する温度調節工程、 前記作用流体の溶解したキャリア液の圧力を所定の処理
圧力に調節する圧力調節工程、 前記処理温度及び処理圧力になったキャリア液に処理対
象の微生物等を含む試料を導入する試料導入工程、 前記試料を導入したキャリア液を所定の処理時間の間、
前記処理温度及び処理圧力に維持する温度・圧力維持工
程、及び前記温度・圧力維持工程を経たキャリア液から
前記作用流体を分離する工程を備えることを特徴とする
液状物質の連続処理方法。
1. A method for continuously treating a liquid material using a supercritical fluid, a subcritical fluid, or a high-pressure gas as a working fluid, wherein a carrier liquid is continuously supplied to a line at a predetermined flow rate. A dissolving step of dissolving the working fluid in the carrier liquid by continuously introducing the working fluid at a predetermined flow rate; a temperature adjusting step of adjusting the temperature of the carrier liquid in which the working fluid is dissolved to a predetermined processing temperature; A pressure adjusting step of adjusting the pressure of the carrier liquid in which the working fluid is dissolved to a predetermined processing pressure; a sample introducing step of introducing a sample containing a microorganism to be processed into the carrier liquid having the processing temperature and the processing pressure; The carrier liquid into which the sample has been introduced is subjected to a predetermined processing time,
A method for continuously processing a liquid material, comprising: a temperature / pressure maintaining step of maintaining the processing temperature and the processing pressure; and a step of separating the working fluid from the carrier liquid having passed through the temperature / pressure maintaining step.
【請求項2】 超臨界流体、亜臨界流体又は高圧ガスを
作用流体として利用する液状物質の連続処理装置におい
て、 ラインにキャリア液を所定流量で連続的に流すためのキ
ャリア液供給手段、 前記ラインの途上で前記キャリア液に前記作用流体を所
定流量で連続的に導入する流体導入手段、 前記作用流体を導入したキャリア液の温度を所定の処理
温度に調節する温度調節手段、 前記作用流体を導入したキャリア液の圧力を所定の処理
圧力に調節する圧力調節手段、 前記処理温度及び処理圧力になったキャリア液に処理対
象の微生物等を含む試料を導入する試料導入手段、 前記試料を導入したキャリア液を所定時間、前記処理温
度及び処理圧力に維持する温度・圧力維持手段、及び前
記温度・圧力維持手段を通過したキャリア液から前記作
用流体を分離するための分離手段を備えることを特徴と
する液状物質の連続処理装置。
2. A continuous processing apparatus for a liquid substance using a supercritical fluid, a subcritical fluid or a high pressure gas as a working fluid. Fluid introduction means for continuously introducing the working fluid into the carrier liquid at a predetermined flow rate, temperature adjusting means for adjusting the temperature of the carrier liquid into which the working fluid has been introduced to a predetermined processing temperature, and introducing the working fluid. Pressure adjusting means for adjusting the pressure of the obtained carrier liquid to a predetermined processing pressure; sample introducing means for introducing a sample containing a microorganism to be processed into the carrier liquid having the processing temperature and the processing pressure; A temperature / pressure maintaining means for maintaining the liquid at the processing temperature and the processing pressure for a predetermined time, and the operation from the carrier liquid passing through the temperature / pressure maintaining means. An apparatus for continuously treating a liquid substance, comprising a separation means for separating a fluid.
JP2000360429A 2000-11-28 2000-11-28 Continuous processing method and device for liquid substance Withdrawn JP2002159836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000360429A JP2002159836A (en) 2000-11-28 2000-11-28 Continuous processing method and device for liquid substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000360429A JP2002159836A (en) 2000-11-28 2000-11-28 Continuous processing method and device for liquid substance

Publications (1)

Publication Number Publication Date
JP2002159836A true JP2002159836A (en) 2002-06-04

Family

ID=18832033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000360429A Withdrawn JP2002159836A (en) 2000-11-28 2000-11-28 Continuous processing method and device for liquid substance

Country Status (1)

Country Link
JP (1) JP2002159836A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004000434A1 (en) * 2002-06-20 2003-12-31 Kyushu Tlo Company, Limited Method of separating dissolved gas and separating apparatus
WO2004045316A1 (en) * 2002-11-21 2004-06-03 Kyushu Tlo Company, Limited Method of processing liquid food and processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004000434A1 (en) * 2002-06-20 2003-12-31 Kyushu Tlo Company, Limited Method of separating dissolved gas and separating apparatus
WO2004045316A1 (en) * 2002-11-21 2004-06-03 Kyushu Tlo Company, Limited Method of processing liquid food and processing apparatus

Similar Documents

Publication Publication Date Title
US6279882B1 (en) Oxygenating apparatus, method for oxygenating a liquid therewith, and applications thereof
Lin et al. Inactivation of Saccharomyces cerevisiae by supercritical and subcritical carbon dioxide
JP5131625B2 (en) Food processing method and food processing apparatus
EP1887892B1 (en) Systems and methods to reduce the pressure in a pressure chamber
CN101160067B (en) Liquid product pressure treatment method and device
US6821481B1 (en) Continuous processing method and continuous processing apparatus for liquid-form substance, and liquid-form substance processed thereby
US6638434B2 (en) Method for automatically controlling the level of dissolved oxygen in water based on a pressure tank system equipped with sterilizer
US6616849B1 (en) Method of and system for continuously processing liquid materials, and the product processed thereby
JP2007152195A (en) Supercritical fluid cleaner
CN111109544A (en) High-emulsibility high-heat-resistance quick-frozen yolk liquid preparation system
JP2002159836A (en) Continuous processing method and device for liquid substance
JP7391067B2 (en) Apparatus and method for contacting blood with ozone
JP2005021798A (en) Method and apparatus for manufacturing ozone water
JP2002191336A (en) Method and system for treating liquid material
KR20190039033A (en) Autoclave sterilization process of first containers made of glass
JP2005137452A (en) Artificial carbonated spring manufacturing apparatus
JP2820625B2 (en) Enzyme inactivation method for liquid food
CA2102362C (en) Method and apparatus of at least partially sterilizing foodstuffs
JP2004313304A (en) Disinfection method and apparatus for liquid and solid object to be treated
JP4105972B2 (en) Method for producing effervescent liquid food
JP2005130777A (en) Method for sterilizing liquid food comprising aroma recovery process
JP2001128652A (en) Continuous treating device of liquid state material and liquid material treated with the same
KR101854628B1 (en) Bathtub system of providing carbonated water
JP2002186977A (en) Automatically controlling method of dissolved gas in water using pressure tank
US1573177A (en) William mccomb

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090826