JP2002159085A - Acoustic transducer - Google Patents

Acoustic transducer

Info

Publication number
JP2002159085A
JP2002159085A JP2000354137A JP2000354137A JP2002159085A JP 2002159085 A JP2002159085 A JP 2002159085A JP 2000354137 A JP2000354137 A JP 2000354137A JP 2000354137 A JP2000354137 A JP 2000354137A JP 2002159085 A JP2002159085 A JP 2002159085A
Authority
JP
Japan
Prior art keywords
rubber material
material layer
acoustic
sound wave
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000354137A
Other languages
Japanese (ja)
Other versions
JP4193352B2 (en
Inventor
Nobuhiro Tsutsumi
信博 堤
Shuichiro Sakai
周一郎 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2000354137A priority Critical patent/JP4193352B2/en
Publication of JP2002159085A publication Critical patent/JP2002159085A/en
Application granted granted Critical
Publication of JP4193352B2 publication Critical patent/JP4193352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an acoustic transducer that can withstand water pressure at a deep sea and can obtain a specific front-to-back ratio in reception sensitivity or transmission sensitivity even in the case of an array configuration of a compact piezoelectric element. SOLUTION: The acoustic transducer comprises a plurality of piezoelectric elements 1 for mainly receiving arrival sound waves from the front, a signal take-out substrate 2 for interconnecting each electrode of the plurality of piezoelectric elements and each conductor of a cable 3 via internal pattern wiring, and a rubber material layer 4 that is installed at the rear side of the signal take-out substrate, and material quality and thickness are set so that the amount of compression distortion when pressure is applied becomes small and the amount of attenuation when the sound wave is propagated becomes a specific value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、音響受波器または
音響送波器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acoustic receiver or an acoustic transmitter.

【0002】[0002]

【従来の技術】例えば水中の音響受波器として、周波数
が数百KHz帯で、単一指向性を有する受波器についての
公知例としては、例えば下記の公知文献1,2がある。 公知文献1:特公昭58−51477号“超音波受波器
アレイ” 公知文献2:日本音響学会講演論文集、昭和54年10
月、鎌田、“音響不整合層でバッキングされたトランス
ジューサの前後比”、p.13-14
2. Description of the Related Art Known examples of underwater acoustic receivers having a frequency of several hundred KHz and having unidirectionality include the following known documents 1 and 2, for example. Known Document 1: Japanese Patent Publication No. 58-51477 "Ultrasonic Receiver Array" Known Document 2: Proceedings of the Acoustical Society of Japan, October 1979
Tsuki, Kamada, “Before and after ratio of transducer backed by acoustic mismatch layer”, p.13-14

【0003】図4は前記公知文献1に示された音響受波
器の構造と水圧印加時の説明図である。図4の(a)は
音響受波器の側面断面図であり、図の21は、個々の圧
電子(振動子)であり、この例では、16個の圧電子が
同一面上に4行、4列の2次元に配列されアレイ構成と
なっている。22はキルクゴムであり、内部に気泡を含
んでいる。このキルクゴム22は、音波のバッフル材
(baffle,音波の伝搬を阻止する材料)として使用さ
れ、各圧電子21の後面と側面をすべて包むように設け
られる。但し各圧電子21の前面方向は音波の受波方向
のためキルクゴム22は設けない。また各圧電子21の
電極は、信号引出線24を介してケーブル23に接続さ
れ、受波時の出力信号が取り出される。そしてこの音響
受波器は水中で使用されるため、圧電子21の前面から
ケーブル23の一端までの全体を水密モールド材25で
水密モールドした構造になっている。
FIG. 4 is an explanatory view of the structure of the acoustic wave receiver disclosed in the above-mentioned known document 1 and when a water pressure is applied. FIG. 4A is a side sectional view of the acoustic receiver, and 21 in FIG. 4 is an individual piezoelectric element (vibrator). In this example, 16 piezoelectric elements have four rows on the same surface. , Arranged in a two-dimensional array of four rows. Reference numeral 22 denotes kilk rubber, which contains air bubbles therein. This kilk rubber 22 is used as a baffle material of sound waves (a material for preventing propagation of sound waves), and is provided so as to wrap all the rear and side surfaces of each piezoelectric element 21. However, the kilk rubber 22 is not provided since the front direction of each piezoelectric element 21 is the sound wave receiving direction. The electrodes of each piezoelectric element 21 are connected to a cable 23 via a signal lead 24, and an output signal at the time of receiving a signal is extracted. Since the acoustic receiver is used in water, the entire structure from the front surface of the piezoelectric element 21 to one end of the cable 23 is watertight molded with a watertight molding material 25.

【0004】図4では、水中音波の受波器として使用す
るので、この場合の音場媒質は水である。そして各素子
の音響インピーダンスを比較すると、到来する音波の受
波素子である圧電子21は水の約20倍の音響インピー
ダンスを有し、またキルクゴム22は水の約1/3程度
の音響インピーダンスである。図4の(a)のように構
成された音響受波器が、水中を伝搬する音波を受けた場
合、アレイの配列面と平行な方向からの入射音波はキル
クゴム22のバッフル材により打ち消され、図示後面方
向からの入射音波はキルクゴム22のバッフル材により
ほぼ遮音され、図示前面方向からの入射音波のみを受信
するので、単一指向特性の受波器となる。
In FIG. 4, the sound field medium in this case is water because it is used as a receiver for underwater sound waves. When the acoustic impedance of each element is compared, the piezoelectric element 21 which is a receiving element of the incoming sound wave has an acoustic impedance of about 20 times that of water, and the kilk rubber 22 has an acoustic impedance of about 1/3 of water. is there. When the acoustic receiver configured as shown in FIG. 4A receives a sound wave propagating in water, incident sound waves from a direction parallel to the array plane of the array are canceled by the baffle material of the kilk rubber 22, The sound wave incident from the rear side in the drawing is substantially sound-insulated by the baffle material of the kilk rubber 22 and receives only the sound wave incident from the front side in the drawing, so that the receiver has a unidirectional characteristic.

【0005】図5は前記公知文献2に示された音響受波
器の構造とその問題点の説明図である。図5の(a)は
音響受波器の側面断面図であり、図の21は個々の圧電
子である。図5の圧電子21も、図4の場合と同様に、
複数の圧電子が2次元に配列されアレイ構成となってい
る。また各圧電子21の電極は、信号引出線24を介し
てケーブル23に接続される。25は水密モールド材で
あり、図4の場合と同様に、圧電子21の前面からケー
ブル23の一端までの全体を水密モールドした構造にな
っている。図5の(a)が図4の(a)と相違する構成
素子は、26のゴム材料層と27の金属層であり、2次
元に配列された各圧電子21の後面(back side)には、
ゴム材料層26と金属層27からなる2層構造の音響不
整合層が設けられている。なお音響不整合層を用いた音
響受波器には、図5の(a)のようにゴム材料層26と
金属層27の両方に信号引出線24の貫通穴をあける代
りに、ゴム材料層26のみに穴をあけ、金属層27には
穴をあけずに、信号引出線24は金属層27を回避して
ケーブル23と接続させる構造のものも存在する。
FIG. 5 is an explanatory view of the structure of the acoustic receiver disclosed in the above-mentioned known document 2 and its problems. FIG. 5A is a side cross-sectional view of the acoustic receiver, and 21 in FIG. 5 represents individual piezoelectric elements. The piezoelectric element 21 of FIG. 5 is also similar to the case of FIG.
A plurality of piezoelectric elements are two-dimensionally arranged to form an array. The electrodes of each piezoelectric element 21 are connected to a cable 23 via a signal lead 24. Reference numeral 25 denotes a watertight molding material, which has a structure in which the whole from the front surface of the piezoelectric element 21 to one end of the cable 23 is watertight molded, as in the case of FIG. 5A are different from those of FIG. 4A in that they are 26 rubber material layers and 27 metal layers, and are provided on the back side of each piezoelectric element 21 arranged two-dimensionally. Is
An acoustic mismatch layer having a two-layer structure including a rubber material layer 26 and a metal layer 27 is provided. In the acoustic receiver using the acoustic mismatch layer, a rubber material layer is used instead of making a through hole for the signal lead wire 24 in both the rubber material layer 26 and the metal layer 27 as shown in FIG. There is also a structure in which the signal lead wire 24 is connected to the cable 23 avoiding the metal layer 27 by making a hole only in the metal layer 27 and not making a hole in the metal layer 27.

【0006】図5の場合も音場媒質は水であり、各素子
の音響インピーダンスを比較すると、圧電子21の音響
インピーダンスは水の約20倍であり、各圧電子21の
後面に設けられるゴム材料層26は水とほぼ近似の音響
インピーダンスであり、金属層27は例えば鋼の場合、
水の約30倍の音響インピーダンスである。このように
ゴム材料層26と金属板27は音響インピーダンスが3
0倍程度異なり、この2層構造の音響不整合層によるバ
ッキング(backing 裏あて)により、音響トランスジュ
ーサの受波感度の前面と後面との比が音波の中心周波数
で30dB程度得られる。従って図5の(a)の構造の音
響受波器でも、2層構造の音響不整合層により図示の後
面方向からの入射音はほぼ遮音され、図示の前面方向か
ら入射された音波のみを受信するので、単一指向性が得
られる。
In the case of FIG. 5 as well, the sound field medium is water, and when the acoustic impedance of each element is compared, the acoustic impedance of the piezoelectric element 21 is about 20 times that of water. The material layer 26 has an acoustic impedance approximately similar to that of water, and the metal layer 27 is made of, for example, steel.
The acoustic impedance is about 30 times that of water. Thus, the rubber material layer 26 and the metal plate 27 have an acoustic impedance of 3
The difference is about 0 times, and the backing by the two-layered acoustic mismatch layer can provide a ratio of the front and rear of the receiving sensitivity of the acoustic transducer of about 30 dB at the center frequency of the sound wave. Therefore, even in the acoustic receiver having the structure shown in FIG. 5A, the sound incident from the rear side in the drawing is substantially blocked by the two-layer acoustic mismatch layer, and only the sound wave incident from the front side in the drawing is received. Therefore, unidirectionality can be obtained.

【0007】[0007]

【発明が解決しようとする課題】しかしながら前記公知
文献1における音響受波器では、バッフル材としてキル
クゴムの材料を用いているが、これらの材料は内部に気
泡を含んでおり、圧力を受けるとこの気泡がつぶされ容
易に圧縮される。従ってこの音響受波器を例えば深海で
使用する場合、周囲からの水圧によりキルクゴムは圧縮
され、その音響インピーダンスが変化するので後面方向
からの入射音に対する遮音性を喪失する。その結果、受
波信号が圧電子の前面と後面のいずれの方向からの到来
音波によるものが判別できなくなる。またキルクゴム等
が圧縮されることで、受波器全体を覆う水密モールド材
に亀裂が生じ水密性が損われたり、信号引出線が断線す
る場合がある(図4の(b)を参照)。
However, in the acoustic wave receiver disclosed in the above-mentioned known document 1, a material of kilk rubber is used as a baffle material. Bubbles are crushed and easily compressed. Therefore, when this acoustic receiver is used, for example, in the deep sea, the water pressure from the surroundings compresses the kilk rubber and changes its acoustic impedance, thereby losing sound insulation against incident sound from the rear side. As a result, it is not possible to determine whether the received signal is due to the sound wave arriving from either the front surface or the back surface of the piezoelectric element. In addition, when the kilk rubber or the like is compressed, a crack may be generated in a watertight mold material covering the entire receiver, thereby impairing watertightness or disconnecting a signal lead wire (see FIG. 4B).

【0008】また前記公知文献2における音響受波器で
は、ゴム材料層に水圧による圧縮歪量が小さく、且つ音
響インピーダンスの低い材料を用いれば、かなりの水深
においても圧縮破壊を生じることなく、後面方向からの
入射音に対する遮音性は保持できる。しかしながら図5
の(b)に示すように、圧電子が小形の場合には、その
後面の面積の大部分は電極取付部により占められ、音響
不整合層による遮音効果は余り得られない。また複数の
圧電子を配列してアレイを構成し、それぞれの圧電子か
ら信号引出線を取出す場合に、ゴム材料層と金属層にそ
れぞれ個別の信号引出線を通すための穴が必要となる。
この信号引出線の貫通穴の加工は、圧電子が小形になる
に従い困難になると共に、貫通穴を多数設けることで、
音響不整合層の面積が減少し、遮音効果も減少する。ま
た金属層に穴をあけずに、これを回避して信号引出線を
設ける方式では、2次元アレイのように圧電子の数が多
くなると、配線の引きまわしが困難であった。
In the acoustic receiver disclosed in the above-mentioned known document 2, when the rubber material layer is made of a material having a small amount of compressive strain due to water pressure and a low acoustic impedance, the rear surface of the rubber material layer does not suffer from compressive failure even at a considerable water depth. Sound insulation to incoming sound from a direction can be maintained. However, FIG.
As shown in (b), when the piezoelectric element is small, most of the area of the rear surface is occupied by the electrode mounting portion, and the sound insulating effect by the acoustic mismatching layer is not obtained very much. Further, when an array is formed by arranging a plurality of piezo-electrons, and signal extraction lines are extracted from each of the piezoelectric electrons, holes for passing individual signal extraction lines through the rubber material layer and the metal layer are required.
Processing of the through hole of this signal lead wire becomes difficult as the piezoelectric electrons become smaller, and by providing a large number of through holes,
The area of the acoustic mismatch layer is reduced, and the sound insulation effect is also reduced. Further, in a method in which a signal lead line is provided without making a hole in a metal layer to avoid this, when the number of piezoelectric electrons increases as in a two-dimensional array, it is difficult to route the wiring.

【0009】[0009]

【課題を解決するための手段】本発明に係る音響受波器
は、圧電子の前方からの到来音波を主として受波する、
圧電子と該圧電子の後側に設置されるゴム材料層とを有
する音響受波器において、前記ゴム材料層の材料は、圧
力印加時の圧縮歪量が小さく且つ音波伝搬時の減衰係数
の大きな材料を使用し、該使用される材料のゴム材料層
内を音波が伝搬する際の減衰量が所定の値となるように
ゴム材料層の厚さを設定することにより音響受波感度の
前後比が所定の値となるように構成したものである。
An acoustic receiver according to the present invention mainly receives an incoming sound wave from the front of a piezoelectric element.
In an acoustic wave receiver having a piezoelectric material and a rubber material layer provided on the rear side of the piezoelectric material, the material of the rubber material layer has a small amount of compressive strain when pressure is applied and an attenuation coefficient of sound wave propagation. By using a large material and setting the thickness of the rubber material layer so that the amount of attenuation when a sound wave propagates through the rubber material layer of the used material becomes a predetermined value, the sound reception sensitivity can be increased or decreased. The ratio is configured to be a predetermined value.

【0010】また本発明に係る音響受波器は、各圧電子
の前方からの到来音波を各々主として受波する、複数の
圧電子と該複数の圧電子の各電極と信号出力ケーブルの
各導線間を内部パターン配線を介して相互に接続する信
号取出基板と、該信号取出基板の後側に設置されるゴム
材料層とを有する音響受波器において、前記ゴム材料層
の材料は、圧力印加時の圧縮歪量が小さく且つ音波伝搬
時の減衰係数の大きな材料を使用し、該使用される材料
のゴム材料層内を音波が伝搬する際の減衰量が所定の値
となるようにゴム材料層の厚さを設定することにより音
響受波感度の前後比が所定の値となるように構成したも
のである。
Further, the acoustic wave receiver according to the present invention comprises a plurality of piezo-electrons, respective electrodes of the plurality of piezo-electrons, and respective conductors of a signal output cable, each of which mainly receives an incoming sound wave from the front of each of the piezo-electrons. In an acoustic wave receiver having a signal extraction board interconnecting between them via an internal pattern wiring, and a rubber material layer provided on the rear side of the signal extraction board, the material of the rubber material layer is applied with pressure. A material having a small amount of compressive strain at the time and a large attenuation coefficient at the time of sound wave propagation is used, and a rubber material is used so that the amount of attenuation when the sound wave propagates through the rubber material layer of the used material becomes a predetermined value. By setting the thickness of the layer, the front-to-back ratio of the acoustic wave receiving sensitivity becomes a predetermined value.

【0011】また本発明に係る音響送波器は、圧電子の
前方へ主として音波を送波する、圧電子と該圧電子の後
側に設置されるゴム材料層とを有する音響受波器におい
て、前記ゴム材料層の材料は、圧力印加時の圧縮歪量が
小さく且つ音波伝搬時の減衰係数の大きな材料を使用
し、該使用される材料のゴム材料層内を音波が伝搬する
際の減衰量が所定の値となるようにゴム材料層の厚さを
設定することにより音響送波電力の前後比が所定の値と
なるように構成したものである。
An acoustic wave transmitter according to the present invention is directed to an acoustic wave receiver for transmitting a sound wave mainly in front of a piezoelectric element, comprising a piezoelectric element and a rubber material layer provided on the rear side of the piezoelectric element. As the material of the rubber material layer, a material having a small amount of compressive strain at the time of applying pressure and a large attenuation coefficient at the time of sound wave propagation is used, and attenuation when sound wave propagates through the rubber material layer of the used material. By setting the thickness of the rubber material layer such that the amount becomes a predetermined value, the front-to-back ratio of the acoustic transmission power becomes a predetermined value.

【0012】[0012]

【発明の実施の形態】実施形態1 実施形態1は、本発明を2次元の音響受波器アレイに適
用した実施例である。図1は本発明の実施形態1を示す
音響受波器の構造図であり、図は音響受波器の側面断面
図である。図1において、1は個々の圧電子であり、こ
の例では、複数の圧電子1が平面状の信号取出基板2上
に2次元に配列、取付けられアレイ構成になっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Embodiment 1 is an example in which the present invention is applied to a two-dimensional acoustic receiver array. FIG. 1 is a structural diagram of an acoustic receiver according to Embodiment 1 of the present invention, and the figure is a side sectional view of the acoustic receiver. In FIG. 1, reference numeral 1 denotes individual piezo-electrons. In this example, a plurality of piezo-electrons 1 are two-dimensionally arranged and mounted on a planar signal extraction board 2 to form an array configuration.

【0013】2は信号取出基板であり、この例では平面
形状の基板で、この基板の一方の面には各圧電子の電極
を接続する端子(ここでは入力側端子という)が、この
基板の他方の面にはケーブル3の各導線を接続する端子
(ここでは出力側端子という)が、この基板の内部には
前記入力側端子と出力側端子とを電気的に接続するパタ
ーン配線がそれぞれ設けられている。従って複数の各圧
電子1の各電極(正極及び負極の両極)は、例えば半田
付けなどで信号取出基板2の前記入力側端子に接続さ
れ、この入力側端子から内部のパターン配線を通った信
号取出基板2の前記出力側端子にケーブル3の各チャネ
ル毎の導線が接続される。また複数の各圧電子1は例え
ばエポキシ樹脂6等により数個づつまとめられた状態で
信号取出基板2へ固定される。
Reference numeral 2 denotes a signal extraction board, which is a flat board in this example. On one surface of the board, a terminal (herein referred to as an input terminal) for connecting electrodes of each piezoelectric element is provided. Terminals (herein, output terminals) for connecting the respective conductors of the cable 3 are provided on the other surface, and pattern wiring for electrically connecting the input terminals and the output terminals are provided inside the substrate. Have been. Therefore, each electrode (both positive electrode and negative electrode) of each of the plurality of piezoelectric elements 1 is connected to the input side terminal of the signal extraction board 2 by, for example, soldering, and the signal passing through the internal pattern wiring from this input side terminal. A lead wire for each channel of the cable 3 is connected to the output side terminal of the extraction board 2. The plurality of piezoelectric elements 1 are fixed to the signal extracting board 2 in a state where several piezoelectric elements 1 are grouped together by, for example, an epoxy resin 6 or the like.

【0014】図1の4はゴム材料層であり、この材料と
しては、圧力を受けたときの圧縮歪量が小さく、所定圧
力印加時に圧縮破壊を起こすこともなく、且つこの材料
層を音波が伝搬媒質として通過するときの減衰係数(dB
/m)が大きな材料が選択される。この例では、ウレタン
系のゴム材料を用いている。このゴム材料層4は、信号
取出基板2の後面に形成されるが、上記ウレタン系のゴ
ム材料層内を音波が伝搬する際の減衰量が所定の値にな
るようにゴム材料層の厚さを決定する。その結果、音響
受波感度の前後比が所定の値(例えば図2に示す30dB
程度)となるように構成することができる。
In FIG. 1, reference numeral 4 denotes a rubber material layer. This material has a small amount of compressive strain when subjected to pressure, does not cause compression breakage when a predetermined pressure is applied, and has a sound wave passing through this material layer. Attenuation coefficient when passing as a propagation medium (dB
/ m) is selected. In this example, a urethane rubber material is used. The rubber material layer 4 is formed on the rear surface of the signal extraction board 2, and the thickness of the rubber material layer is adjusted so that the attenuation when a sound wave propagates in the urethane rubber material layer becomes a predetermined value. To determine. As a result, the front-to-back ratio of the acoustic reception sensitivity is a predetermined value (for example, 30 dB shown in FIG. 2).
Degree).

【0015】またウレタン系のゴム材料層4は、この材
料を用いて構成した音響受波器を深海で使用するような
場合にも、周囲からの水圧により圧縮される歪量が小さ
く、また所定圧力(例えば図2で説明する39MPa程
度)の印加時に圧縮破壊を起すことがない。なお、この
ゴム材料層4の内部をケーブル3は貫通するが、このた
めの穴は1箇所のみ設ければよいのいで、この貫通穴に
よって音波の減衰材としての機能が損われることはほと
んどない。そして圧電子1の前面からケーブル3の一端
までの全体を水密モールド材5で水密モールドした構造
になっている。
The urethane-based rubber material layer 4 has a small amount of strain compressed by water pressure from the surroundings even when an acoustic wave receiver made of this material is used in the deep sea. When a pressure (for example, about 39 MPa described in FIG. 2) is applied, no compression breakage occurs. Although the cable 3 penetrates through the rubber material layer 4, only one hole is required for this purpose, so that the function as a sound wave attenuating material is hardly impaired by the through hole. . The entire structure from the front surface of the piezoelectric element 1 to one end of the cable 3 is watertight molded with a watertight molding material 5.

【0016】図1の音響受波器の動作を説明する。図1
の図示の前面方向からの入射音波は、2次元に配列され
た各圧電子1によりそれぞれ受波され、電気信号に変換
され、各圧電子の出力信号毎に信号取出基板2のパター
ン配線を経由してケーブル3から各チャネル毎に受波器
の外部へ取出される。なお、圧電子の表面及び受波器全
体は水密されており、電気的な絶縁性を有している。こ
こで信号取出基板2は、例えばガラスエポキシ系基板の
場合、その音響インピーダンスは水の2倍程度で、ゴム
材料層4の音響インピーダンスは、水に近い値であるか
ら、図示の前面方向からの入射音波の一部は信号取出基
板2及びゴム材料量4を通過するが、この通過時にゴム
材料層4により減衰を受ける。
The operation of the acoustic receiver shown in FIG. 1 will be described. FIG.
The incident sound wave from the front side shown in FIG. 1 is received by each of the piezoelectric elements 1 arranged two-dimensionally, converted into an electric signal, and passed through the pattern wiring of the signal extraction board 2 for each output signal of each piezoelectric element. Then, it is extracted from the cable 3 to the outside of the receiver for each channel. The surface of the piezoelectric device and the entire receiver are watertight, and have electrical insulation. Here, when the signal extraction board 2 is, for example, a glass epoxy-based board, its acoustic impedance is about twice that of water, and the acoustic impedance of the rubber material layer 4 is a value close to that of water. A part of the incident sound wave passes through the signal extraction board 2 and the rubber material 4, but is attenuated by the rubber material layer 4 during this passage.

【0017】いま音響受波器の後方に音波の反射物体が
存在する場合、前方から入射され受波器内部のゴム材料
層4の通過路(往路)において減衰を受けた音波が、前
記反射物体により反射され、再び音響受波器に入射され
ると、この後方から反射され受波器内部のゴム材料層4
の通過路(復路)において再び減衰を受けるため、圧電
子1には余り影響を及ぼさない。同様に図示の後面方向
から直接入射される音波は、ゴム材料層4と信号取出基
板2を通過して圧電子1に到達するが、ゴム材料層4を
通過する際の所定の減衰量を確保してあるので、圧電子
1により電気信号に変換されるレベルは、前面方向から
の入射音波の場合に比較してきわめて小さくなる(所定
の前後比となる)。即ち音響受波器の前面と後面との受
波感度の比が所定の値となるように構成できる。
If a sound wave reflecting object is present behind the acoustic receiver, the sound wave incident from the front and attenuated in the passage (outward path) of the rubber material layer 4 inside the receiver is reflected by the reflecting object. When the light is again incident on the acoustic receiver, it is reflected from behind and the rubber material layer 4 inside the receiver.
In the passing path (return path), the signal is attenuated again, so that the piezoelectric element 1 is not affected much. Similarly, a sound wave directly incident from the rear side of the drawing passes through the rubber material layer 4 and the signal extraction board 2 and reaches the piezoelectric element 1. However, a predetermined attenuation amount when passing through the rubber material layer 4 is secured. Therefore, the level converted into an electric signal by the piezoelectric element 1 is extremely small (a predetermined front-to-back ratio) as compared with the case of an incident sound wave from the front. That is, the acoustic receiver can be configured such that the ratio of the reception sensitivity between the front surface and the rear surface thereof becomes a predetermined value.

【0018】図2は図1の音響受波器の指向特性の測定
例を示す図である。図2の測定例では、ゴム材料層4及
び水密モールド材5にはウレタン系ゴムを使用した。ま
たゴム材料層4の厚さ(ケーブル3の貫通方向の厚さ)
は約60mmとした。なお水中音波の測定周波数は500
KHzとし、無響水槽を用いて測定した。測定結果とし
て、図2のように単一指向性で、音響受波感度の前後比
は30dB程度が得られた。なお図1の音響受波器を静水
圧で試験をした結果、約39.2MPa(MPaはメガパスカ
ル、旧単位の400kgf/cm2に相当)までの圧力に耐え
ることが確認できた。
FIG. 2 is a diagram showing a measurement example of the directional characteristics of the acoustic receiver of FIG. In the measurement example of FIG. 2, urethane rubber was used for the rubber material layer 4 and the watertight molding material 5. The thickness of the rubber material layer 4 (the thickness of the cable 3 in the penetrating direction)
Was about 60 mm. The measurement frequency of the underwater sound wave is 500
KHz and measured using an anechoic water tank. As a result of the measurement, as shown in FIG. 2, unidirectionality was obtained, and the front-to-back ratio of the acoustic wave receiving sensitivity was about 30 dB. In addition, as a result of testing the acoustic receiver of FIG. 1 with hydrostatic pressure, it was confirmed that the acoustic receiver could withstand a pressure up to about 39.2 MPa (MPa is megapascal, equivalent to the former unit of 400 kgf / cm 2 ).

【0019】図1の構成の音響受波器は、例えば水中音
響映像装置の2次元受波器アレイ(音響カメラ)に適用
することができ、特に耐水圧が要求される深海等におい
ても支障なく使用することができる。なお周波数として
数百KHzの音響波を単一指向性により受波する耐水圧性
能を有する図1の構成の受波器としては、上記水中音響
映像用のほか、音響測深用、海底探査用等にも適用する
ことができる。
The acoustic receiver having the configuration shown in FIG. 1 can be applied to, for example, a two-dimensional receiver array (acoustic camera) of an underwater acoustic imaging apparatus. Can be used. The receiver of the configuration shown in FIG. 1 having the water pressure resistance of receiving an acoustic wave having a frequency of several hundred KHz in a single directivity is used for underwater acoustic imaging, acoustic sounding, sea floor exploration, etc. Can also be applied.

【0020】実施形態2 実施形態2は、本発明を音響送波器に適用した実施例で
ある。図3は本発明の実施形態2を示す音響送波器の構
造図であり、図は音響送波器の側面断面図である。図3
において、16は筐体であり、材質は例えば黄銅等の金
属により下記の形状に形成される。即ち筐体16の先端
部は半球状に、この半球状先端の後部は円筒状に、全体
としては砲弾形状の容器で、後方は開口に形成される。
Embodiment 2 Embodiment 2 is an example in which the present invention is applied to an acoustic transmitter. FIG. 3 is a structural diagram of an acoustic transmitter showing Embodiment 2 of the present invention, and the figure is a side sectional view of the acoustic transmitter. FIG.
In the figure, reference numeral 16 denotes a housing, which is formed of a metal such as brass in the following shape. That is, the front end of the housing 16 is formed in a hemispherical shape, the rear end of the hemispherical shape is formed in a cylindrical shape, and is a shell-shaped container as a whole, and the rear is formed in an opening.

【0021】11は音波送波用の単一の圧電子である。
圧電子11の形状は、前記筐体16の先端部の半球の一
部を切取った切取部分と同一形状の球面状に形成され
る。従って筐体16の先端部の半球の一部を切取った際
の開口部に圧電子11をはめ込んで(但し、圧電子11
と筐体16とは電気的には絶縁された状態にはめ込ん
で)、送波器の外形を砲弾形状とすることができる。
Reference numeral 11 denotes a single piezoelectric element for transmitting a sound wave.
The shape of the piezoelectric element 11 is formed in a spherical shape having the same shape as a cutout portion obtained by cutting out a part of the hemisphere at the tip end of the housing 16. Therefore, the piezo-electron 11 is fitted into the opening when a part of the hemisphere at the tip of the housing 16 is cut off (however, the piezo-electron 11
And the housing 16 are fitted in an electrically insulated state), so that the outer shape of the transmitter can be formed into a shell shape.

【0022】圧電子11の形状を球状としたのは、単一
の圧電子で送波ビームを所望の指向性とするためであ
り、筐体16を砲弾形状としたのは、圧電子11の後側
の筐体を球バッフルとして使用するためである。圧電子
11の両電極(正極と負極)は、信号接続線14を経由
してケーブル13の各導線に接続される。
The reason why the shape of the piezo-electrons 11 is made spherical is to make the transmission beam a desired directivity with a single piezo-electron. This is because the rear housing is used as a ball baffle. Both electrodes (positive electrode and negative electrode) of the piezoelectric element 11 are connected to respective conductors of the cable 13 via signal connection lines 14.

【0023】12はゴム材料層であり、ゴム材料層12
は、実施形態1の場合と同様に、材料は圧力印加時の圧
縮歪量が小さく且つ音波伝搬時の減衰係数の大きな材料
(例えば前記ウレタン系ゴム材料)を使用し、この使用
される材料のゴム材料層内を音波が伝搬する際の減衰量
が所定の値となるようにゴム材料層の厚さを決定する。
これはゴム材料層12の厚さが、音波の減衰量として十
分な厚さになるように、筐体16の円筒部の長さを設計
するということであり、結果として砲弾形状の外形とな
ったのである。
Reference numeral 12 denotes a rubber material layer.
As in the case of the first embodiment, a material having a small amount of compressive strain when pressure is applied and having a large attenuation coefficient during sound wave propagation (for example, the urethane rubber material) is used. The thickness of the rubber material layer is determined so that the attenuation when the sound wave propagates in the rubber material layer has a predetermined value.
This means that the length of the cylindrical portion of the housing 16 is designed so that the thickness of the rubber material layer 12 is sufficient to attenuate the sound waves. It was.

【0024】図3では、ゴム材料層12として前記ウレ
タン系ゴム材料を用い、圧電子11の電極とケーブル1
3の各信号接続線14との接続後に、この材料を圧電子
11の後面からケーブル13の一端までの筐体16の内
部のすべてに充填した。その結果、前後の送波感度の比
が所定の値となるように構成することができる。また圧
電子11が電気的に絶縁されるように、圧電子11の前
面及び端面は水密モールド材15で覆われ、この水密モ
ールド材15は筐体16の先端部に接着される構造とし
た。
In FIG. 3, the urethane rubber material is used as the rubber material layer 12, and the electrodes of the piezoelectric element 11 and the cable 1 are used.
After the connection with each of the signal connection lines 14 of No. 3, this material was filled into the inside of the housing 16 from the rear surface of the piezoelectric element 11 to one end of the cable 13. As a result, the ratio of the front and rear transmission sensitivities can be set to a predetermined value. The front and end faces of the piezoelectric element 11 are covered with a watertight molding material 15 so that the piezoelectric element 11 is electrically insulated, and the watertight molding material 15 is bonded to the front end of the housing 16.

【0025】図3の音響送波器の動作を説明する。外部
からケーブル13及び信号接続線14を経由して圧電子
11に励振電圧が加えられると圧電子11は振動して音
波を発生する。圧電子11から図示の送波器前面方向に
放射される音波は水密モールド材15(例えばゴム材)
を通過するが、この水密モールド材15の厚さは薄いの
で減衰量は小さく、大部分は前面方向へ伝搬する。他方
圧電子11から図示の送波器後面方向に放射される音波
は、十分な減衰量が得られるように十分な厚さに設けら
れたゴム材料層12を通過することにより減衰され、通
過量はきわめて少ない。従って前後の送波感度の比を所
定の値とすることができる。
The operation of the acoustic transmitter shown in FIG. 3 will be described. When an excitation voltage is applied to the piezoelectric element 11 from outside via the cable 13 and the signal connection line 14, the piezoelectric element 11 vibrates to generate a sound wave. A sound wave emitted from the piezoelectric element 11 toward the front side of the illustrated transmitter is a watertight molding material 15 (for example, rubber material).
However, since the thickness of the water-tight molding material 15 is small, the attenuation is small, and most of the water-tight molding material 15 propagates in the front direction. On the other hand, a sound wave radiated from the piezoelectric element 11 toward the rear surface of the illustrated transmitter is attenuated by passing through a rubber material layer 12 provided with a sufficient thickness so as to obtain a sufficient attenuation. Is extremely small. Therefore, the ratio of the front and rear transmission sensitivities can be set to a predetermined value.

【0026】図3の音響送波器の構造における特徴を従
来技術によるものと比較して説明する。従来、この種の
単一指向性の音響送波器では、圧電子の後面に金属層に
よるバッキング層を設け、後面へ音波が出ないようにす
ると共に、その分前面へより大きな振幅で送波する構造
が用いられている。しかし図3のように圧電子11の後
面の形状が平面でない場合には、適切な厚さで金属層を
圧電子に密着させることが困難であり、密着させられな
かった部分はバッキング効果が得られない等で、送波器
の単一指向性の性能を劣化させる原因となっていた。さ
らにこの密着させられなかった部分は空気室となって送
波器に内在することになるので、深海等の圧力がかかる
環境では、この空気室が圧縮され、送波器が圧力破壊を
起すという問題があった。
The features of the structure of the acoustic transmitter of FIG. 3 will be described in comparison with those of the prior art. Conventionally, in this type of unidirectional acoustic transmitter, a backing layer made of a metal layer is provided on the back surface of the piezoelectric element to prevent sound waves from being emitted to the back surface, and to transmit a wave with a larger amplitude to the front surface by that amount. Is used. However, if the back surface of the piezoelectric element 11 is not flat as shown in FIG. 3, it is difficult to make the metal layer adhere to the piezoelectric element with an appropriate thickness, and the backing effect is obtained in the part that is not adhered. For example, the unidirectional performance of the transmitter is deteriorated. Furthermore, since the part that is not brought into close contact becomes an air chamber and is inherent in the transmitter, in an environment where pressure is applied, such as in the deep sea, the air chamber is compressed and the transmitter causes pressure destruction. There was a problem.

【0027】これに比較して、図3の構成では、音波を
減衰させると共に、圧力印加による圧縮歪量が小さなウ
レタン系ゴム等のゴム材料層12を圧電子11の後面に
密着させて十分な厚さだけ後方に設けているので、図3
の送波器を深海等で使用しても水圧による圧力破壊を生
じることはなく、且つ圧電子11から後方への放射音波
は十分に減衰され、一方、前方への放射音波は減衰しな
いので、音響送波感度の前後比が十分に大きな送波器を
構成することができる。さらに従来のように圧電子後面
に金属板を使用しないので、圧電子11の形状は平面に
限定されることがなく、送波感度及び指向性を最適化す
るため、曲面等を含む任意の形状の圧電子を設計できる
自由度を有する。
In contrast, in the configuration shown in FIG. 3, the sound wave is attenuated, and the rubber material layer 12 such as urethane rubber having a small amount of compressive strain due to the application of pressure is brought into close contact with the back surface of the piezoelectric element 11 to provide a sufficient pressure. Since it is provided at the rear only by the thickness, FIG.
Even if the transmitter is used in the deep sea or the like, pressure rupture due to water pressure does not occur, and the radiated sound wave backward from the piezoelectric element 11 is sufficiently attenuated, whereas the radiated sound wave forward is not attenuated. A transmitter having a sufficiently large front-to-back ratio of the acoustic transmission sensitivity can be configured. Furthermore, since a metal plate is not used on the back surface of the piezoelectric element as in the conventional case, the shape of the piezoelectric element 11 is not limited to a flat surface, and any shape including a curved surface or the like can be used to optimize the transmission sensitivity and directivity. Has the flexibility to design the piezo-electrons.

【0028】図3の構成の音響送波器は、例えば水中映
像装置の音響源(光学的な光源に相当する)に適用する
ことができ、さらに耐水圧が要求される深海等において
も支障なく使用することができる。特に送波感度や指向
性を最適化するため平面でない曲面等の圧電子を用いて
送波器を構成する場合に、図3の構成は有効である。な
お周波数として数百KHzの音響波を単一指向性により送
波する耐水圧性能を有する図3の構成の送波器として
は、上記水中音響映像用のほかにも海底探査用等にも適
用することができる。
The acoustic transmitter having the configuration shown in FIG. 3 can be applied to, for example, an acoustic source (corresponding to an optical light source) of an underwater video apparatus, and can be used without trouble even in the deep sea where water pressure is required. Can be used. In particular, the configuration of FIG. 3 is effective when a transmitter is configured using piezo-electrons such as a curved surface that is not flat to optimize the transmission sensitivity and directivity. In addition to the above-mentioned underwater acoustic image, the transmitter of the configuration shown in Fig. 3 which has the water pressure resistance of transmitting acoustic waves with a frequency of several hundred KHz with unidirectionality is applicable not only to the underwater acoustic image but also to the sea floor exploration etc. can do.

【0029】[0029]

【発明の効果】以上のように本発明によれば、圧電子
と、該圧電子の後側に設置されるゴム材料層とを有する
音響受波器において、前記ゴム材料層の材料は、圧力印
加時の圧縮歪量が小さく且つ音波伝搬時の減衰係数の大
きな材料を使用し、該使用される材料のゴム材料層内を
音波が伝搬する際の減衰量が所定の値となるようにゴム
材料層の厚さを設定するようにしたので、音響受波感度
の前後比が所定の値となるように構成することができ
る。
As described above, according to the present invention, in an acoustic wave receiver having a piezoelectric element and a rubber material layer provided on the rear side of the piezoelectric element, the rubber material layer has a pressure A material having a small amount of compressive strain at the time of application and a large attenuation coefficient at the time of sound wave propagation is used, and the rubber is used so that the amount of attenuation when the sound wave propagates through the rubber material layer of the material used becomes a predetermined value. Since the thickness of the material layer is set, it is possible to configure so that the front-to-back ratio of the acoustic wave receiving sensitivity becomes a predetermined value.

【0030】また本発明によれば、複数の圧電子と、該
複数の圧電子の各電極と信号出力ケーブルの各導線間を
内部パターン配線を介して相互に接続する信号取出基板
と、該信号取出基板の後側に設置されるゴム材料層とを
有する音響受波器において、前記ゴム材料層の材料は、
圧力印加時の圧縮歪量が小さく且つ音波伝搬時の減衰係
数の大きな材料を使用し、該使用される材料のゴム材料
層内を音波が伝搬する際の減衰量が所定の値となるよう
にゴム材料層の厚さを設定するようにしたので、音響受
波感度の前後比が所定の値となるように構成できると共
に、指向性のパターンを所望の形状とすることができ
る。
According to the present invention, a plurality of piezo-electrons, a signal extraction board for interconnecting each electrode of the plurality of piezo-electrons and each conductor of a signal output cable via an internal pattern wiring, In the acoustic receiver having a rubber material layer provided on the back side of the take-out substrate, the material of the rubber material layer is:
A material having a small amount of compressive strain at the time of applying pressure and having a large attenuation coefficient at the time of sound wave propagation is used so that the amount of attenuation at the time of sound wave propagation in the rubber material layer of the used material becomes a predetermined value. Since the thickness of the rubber material layer is set, the front-to-back ratio of the acoustic reception sensitivity can be configured to have a predetermined value, and the directivity pattern can have a desired shape.

【0031】また本発明によれば、圧電子と、該圧電子
の後側に設置されるゴム材料層とを有する音響送波器に
おいて、前記ゴム材料層の材料は、圧力印加時の圧縮歪
量が小さく且つ音波伝搬時の減衰係数の大きな材料を使
用し、該使用される材料のゴム材料層内を音波が伝搬す
る際の減衰量が所定の値となるようにゴム材料層の厚さ
を設定するようにしたので、音響送波感度の前後比が所
定の値となるように構成できると共に、送波感度及び指
向性を最適化するため音波を送波する圧電子を任意な形
状にすることができる。
According to the present invention, in an acoustic transmitter having a piezoelectric element and a rubber material layer provided on the rear side of the piezoelectric element, the material of the rubber material layer has a compression strain when a pressure is applied. A material having a small amount and a large attenuation coefficient at the time of sound wave propagation is used, and the thickness of the rubber material layer is set so that the amount of attenuation when the sound wave propagates through the rubber material layer of the used material becomes a predetermined value. Is set, so that the front-to-back ratio of the acoustic transmission sensitivity can be set to a predetermined value, and the piezo-electrons that transmit the sound waves in an arbitrary shape to optimize the transmission sensitivity and directivity can be formed. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1を示す音響受波器の構成図
である。
FIG. 1 is a configuration diagram of an acoustic receiver according to a first embodiment of the present invention.

【図2】図1の音響受波器の指向特性の測定例を示す図
である。
FIG. 2 is a diagram illustrating a measurement example of the directional characteristics of the acoustic receiver in FIG. 1;

【図3】本発明の実施形態2を示す音響送波器の構成図
である。
FIG. 3 is a configuration diagram of an acoustic transmitter according to a second embodiment of the present invention.

【図4】公知文献1に示された音響受波器の構造と水圧
印加時の説明図である。
FIG. 4 is a diagram illustrating the structure of the acoustic receiver disclosed in the known document 1 and when a water pressure is applied.

【図5】公知文献2に示された音響受波器の構造とその
問題点の説明図である。
FIG. 5 is an explanatory diagram of the structure of the acoustic receiver disclosed in the known document 2 and its problems.

【符号の説明】[Explanation of symbols]

1,11,21 圧電子 2 信号取出基板 3,13,23 ケーブル 4,12,26 ゴム材料層 5,15,25 水密モールド材 6 エポキシ樹脂 14 信号接続線 16 筐体 22 キルクゴム 24 信号引出線 27 金属層 1,11,21 Piezoelectric 2 Signal extraction board 3,13,23 Cable 4,12,26 Rubber material layer 5,15,25 Watertight molding material 6 Epoxy resin 14 Signal connection line 16 Housing 22 Kirk rubber 24 Signal extraction line 27 Metal layer

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 圧電子の前方からの到来音波を主として
受波する、圧電子と該圧電子の後側に設置されるゴム材
料層とを有する音響受波器において、 前記ゴム材料層の材料は、圧力印加時の圧縮歪量が小さ
く且つ音波伝搬時の減衰係数の大きな材料を使用し、該
使用される材料のゴム材料層内を音波が伝搬する際の減
衰量が所定の値となるようにゴム材料層の厚さを設定す
ることにより音響受波感度の前後比が所定の値となるよ
うに構成したことを特徴とする音響受波器。
1. An acoustic receiver mainly receiving a sound wave arriving from the front of a piezoelectric element and comprising a piezoelectric element and a rubber material layer provided on the rear side of the piezoelectric element, wherein the material of the rubber material layer is Uses a material having a small amount of compressive strain at the time of applying pressure and a large attenuation coefficient at the time of sound wave propagation, and a predetermined amount of attenuation at the time of sound wave propagation in the rubber material layer of the used material. The acoustic receiver according to claim 1, wherein the front-to-back ratio of the acoustic reception sensitivity is set to a predetermined value by setting the thickness of the rubber material layer as described above.
【請求項2】 各圧電子の前方からの到来音波を各々主
として受波する、複数の圧電子と該複数の圧電子の各電
極と信号出力ケーブルの各導線間を内部パターン配線を
介して相互に接続する信号取出基板と、該信号取出基板
の後側に設置されるゴム材料層とを有する音響受波器に
おいて、 前記ゴム材料層の材料は、圧力印加時の圧縮歪量が小さ
く且つ音波伝搬時の減衰係数の大きな材料を使用し、該
使用される材料のゴム材料層内を音波が伝搬する際の減
衰量が所定の値となるようにゴム材料層の厚さを設定す
ることにより音響受波感度の前後比が所定の値となるよ
うに構成したことを特徴とする音響受波器。
2. A plurality of piezo-electrons, which mainly receive a sound wave arriving from the front of each piezo-electron, and respective electrodes of the plurality of piezo-electrons and respective conductors of a signal output cable are interconnected via internal pattern wiring. In the acoustic receiver having a signal extraction board connected to the signal extraction board and a rubber material layer provided on the rear side of the signal extraction board, the material of the rubber material layer has a small amount of compressive strain when pressure is applied and a sound wave. By using a material having a large attenuation coefficient at the time of propagation, and by setting the thickness of the rubber material layer so that the amount of attenuation when a sound wave propagates in the rubber material layer of the used material becomes a predetermined value. An acoustic wave receiver characterized in that the front-to-back ratio of the acoustic wave reception sensitivity has a predetermined value.
【請求項3】 前記ゴム材料層の材料は、ウレタン系ゴ
ム材料とすることを特徴とする請求項1または2記載の
音響受波器。
3. The acoustic receiver according to claim 1, wherein a material of the rubber material layer is a urethane rubber material.
【請求項4】 前記圧電子または各圧電子が受波する到
来音波は、周波数が数百KHz帯の音波であることを特徴
とする請求項1から3までのいずれかの請求項に記載の
音響受波器。
4. The method according to claim 1, wherein the piezo-electrons or the incoming sound waves received by each of the piezo-electrons is a sound wave having a frequency of several hundred KHz. Acoustic receiver.
【請求項5】 圧電子の前方へ主として音波を送波す
る、圧電子と該圧電子の後側に設置されるゴム材料層と
を有する音響送波器において、 前記ゴム材料層の材料は、圧力印加時の圧縮歪量が小さ
く且つ音波伝搬時の減衰係数の大きな材料を使用し、該
使用される材料のゴム材料層内を音波が伝搬する際の減
衰量が所定の値となるようにゴム材料層の厚さを設定す
ることにより送波感度の前後比が所定の値となるように
構成したことを特徴とする音響送波器。
5. An acoustic transmitter that mainly transmits a sound wave in front of a piezoelectric element and includes a piezoelectric element and a rubber material layer provided on the rear side of the piezoelectric element, wherein the material of the rubber material layer is: A material having a small amount of compressive strain at the time of applying pressure and having a large attenuation coefficient at the time of sound wave propagation is used so that the amount of attenuation at the time of sound wave propagation in the rubber material layer of the used material becomes a predetermined value. An acoustic wave transmitter characterized in that the thickness of the rubber material layer is set so that the front-to-back ratio of the wave transmission sensitivity becomes a predetermined value.
【請求項6】 前記ゴム材料層の材料は、ウレタン系ゴ
ム材料とすることを特徴とする請求項5記載の音響送波
器。
6. The acoustic transmitter according to claim 5, wherein a material of the rubber material layer is a urethane rubber material.
【請求項7】 前記音波を送波する圧電子は、音波の送
波面が平面ではない面によって形成されたことを特徴と
する請求項5または6記載の音響送波器。
7. The acoustic wave transmitter according to claim 5, wherein the piezoelectric element for transmitting the sound wave has a sound wave transmission surface formed by a surface other than a plane.
【請求項8】 前記圧電子が送波する音波は、周波数が
数百KHz帯の音波であることを特徴とする請求項5から
7までのいずれかの請求項に記載の音響送波器。
8. The acoustic wave transmitter according to claim 5, wherein the sound wave transmitted by the piezoelectric element is a sound wave having a frequency of several hundred KHz.
JP2000354137A 2000-11-21 2000-11-21 Underwater acoustic transducer Expired - Fee Related JP4193352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000354137A JP4193352B2 (en) 2000-11-21 2000-11-21 Underwater acoustic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000354137A JP4193352B2 (en) 2000-11-21 2000-11-21 Underwater acoustic transducer

Publications (2)

Publication Number Publication Date
JP2002159085A true JP2002159085A (en) 2002-05-31
JP4193352B2 JP4193352B2 (en) 2008-12-10

Family

ID=18826787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000354137A Expired - Fee Related JP4193352B2 (en) 2000-11-21 2000-11-21 Underwater acoustic transducer

Country Status (1)

Country Link
JP (1) JP4193352B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060032A1 (en) * 2014-10-17 2016-04-21 株式会社ブリヂストン Vibration damping device
CN113687339A (en) * 2021-07-15 2021-11-23 中国船舶重工集团公司第七一五研究所 Full-sea-depth working high-frequency arc-shaped transmitting array
CN117849807A (en) * 2024-03-06 2024-04-09 西北工业大学青岛研究院 Method for optimizing tripwire sonar node layout of forward scattering detection
CN117849807B (en) * 2024-03-06 2024-05-10 西北工业大学青岛研究院 Method for optimizing tripwire sonar node layout of forward scattering detection

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060032A1 (en) * 2014-10-17 2016-04-21 株式会社ブリヂストン Vibration damping device
JPWO2016060032A1 (en) * 2014-10-17 2017-06-08 株式会社ブリヂストン Vibration isolator
CN107076257A (en) * 2014-10-17 2017-08-18 株式会社普利司通 Isolation mounting
CN113687339A (en) * 2021-07-15 2021-11-23 中国船舶重工集团公司第七一五研究所 Full-sea-depth working high-frequency arc-shaped transmitting array
CN113687339B (en) * 2021-07-15 2024-03-08 中国船舶重工集团公司第七一五研究所 High-frequency arc-shaped emission matrix for full-sea deep work
CN117849807A (en) * 2024-03-06 2024-04-09 西北工业大学青岛研究院 Method for optimizing tripwire sonar node layout of forward scattering detection
CN117849807B (en) * 2024-03-06 2024-05-10 西北工业大学青岛研究院 Method for optimizing tripwire sonar node layout of forward scattering detection

Also Published As

Publication number Publication date
JP4193352B2 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
US5655538A (en) Ultrasonic phased array transducer with an ultralow impedance backfill and a method for making
US5598051A (en) Bilayer ultrasonic transducer having reduced total electrical impedance
US5644085A (en) High density integrated ultrasonic phased array transducer and a method for making
US7889601B2 (en) Lightweight acoustic array
US5559388A (en) High density interconnect for an ultrasonic phased array and method for making
US7696672B2 (en) Ultrasonic sensor having acoustic matching member with conductive layer formed on and extending only along acoustic matching member connecting surface
US4789971A (en) Broadband, acoustically transparent, nonresonant PVDF hydrophone
US3718898A (en) Transducer
JPH09238399A (en) Ultrasonic wave probe and its manufacture
AU640067B2 (en) Ultrasonic electroacoustic transducer
US2416314A (en) Electroacoustic transducer
US4737939A (en) Composite transducer
US3277436A (en) Hollow electro-acoustic transducer
KR100517059B1 (en) Transducer for underwater high-power use
JP4193352B2 (en) Underwater acoustic transducer
JP3612312B2 (en) Ultrasonic probe and manufacturing method thereof
US7084552B2 (en) Anisotropic acoustic impedance matching material
US4532796A (en) Dual transducer connection by a single cable
CN112509541A (en) Small-size low-frequency non-resonant underwater acoustic transducer and system applied to active sound absorption
JPS6018096A (en) Composite transducer
JP3528491B2 (en) Ultrasonic transducer
US3380019A (en) Pressure-gradient hydrophone
US3425031A (en) Transmit-receive sonar array network
US8817575B1 (en) Transducer for high pressure environment
JPH08307995A (en) Ultrasonic probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4193352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees