JP2002158037A - Polymer secondary battery and its manufacturing method - Google Patents

Polymer secondary battery and its manufacturing method

Info

Publication number
JP2002158037A
JP2002158037A JP2000350962A JP2000350962A JP2002158037A JP 2002158037 A JP2002158037 A JP 2002158037A JP 2000350962 A JP2000350962 A JP 2000350962A JP 2000350962 A JP2000350962 A JP 2000350962A JP 2002158037 A JP2002158037 A JP 2002158037A
Authority
JP
Japan
Prior art keywords
polymer
battery
molecular weight
oligomer
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000350962A
Other languages
Japanese (ja)
Other versions
JP2002158037A5 (en
Inventor
Yasuyuki Shibano
靖幸 柴野
Satoshige Nanai
識成 七井
Kenichi Morigaki
健一 森垣
Yoshiaki Nitta
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000350962A priority Critical patent/JP2002158037A/en
Publication of JP2002158037A publication Critical patent/JP2002158037A/en
Publication of JP2002158037A5 publication Critical patent/JP2002158037A5/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent that as the interface of the polymer electrolyte layer and the electrode is formed by contact of a solid-solid, contact of the interface of an active substance and an electrolyte is likely to become unstable and the battery property deteriorates such as deterioration of charge and discharge characteristics and increase of internal resistance. SOLUTION: The polymer battery uses for jointing of the interface of the positive and negative electrodes a polymer having an average molecular weight of 5,000 to 1,000,000 that has a cyanic group or ester group having a large electron suctioning performance and an oligomer having an average molecular weight of 500 to 3,000 that has compatibility with the above polymer and has an unsaturated double bond of more than two functional groups, and comprises a process of laminating the electrode painted with the polymer and the electrolyte layer containing the thermal polymerization initiator and the oligomer and making thermal polymerization.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池、
特に高分子固体電解質を用いた二次電池とその製造方法
に関する。
The present invention relates to a lithium secondary battery,
In particular, the present invention relates to a secondary battery using a solid polymer electrolyte and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、ノートパソコンや携帯電話、PDA
などの電子機器が盛んに用いられており、その小型化、
薄型化、軽量化がすすめられている。それらの機器の電
源として主に二次電池が用いられており、その中でもエ
ネルギー密度が高いリチウムイオン二次電池が多く用い
られている。
2. Description of the Related Art In recent years, notebook computers, mobile phones, PDAs
And other electronic devices are actively used.
Thinner and lighter are being promoted. Secondary batteries are mainly used as power sources for these devices, and among them, lithium ion secondary batteries having high energy density are often used.

【0003】現在もっとも普及している二次電池は負極
に炭素材料、正極にリチウム酸化物を用いた、いわゆる
リチウムイオン二次電池と呼ばれるものである。負極に
リチウム金属を用いた場合に比べて電気容量は低いもの
のサイクル特性などに優れており、現在は軽量、高容量
が求められるモバイル機器を中心に様々な機器に搭載さ
れている。
At present, the most widespread secondary battery is a so-called lithium ion secondary battery using a carbon material for the negative electrode and a lithium oxide for the positive electrode. Although the electric capacity is lower than when lithium metal is used for the negative electrode, it has excellent cycle characteristics and the like, and is currently mounted on various devices, especially mobile devices that require light weight and high capacity.

【0004】しかし、これらリチウムイオン電池は非水
溶液系電解液を使用しており、電解液の漏液などを起こ
す場合がある。
[0004] However, these lithium ion batteries use a non-aqueous electrolyte and may cause leakage of the electrolyte.

【0005】このため漏液の心配のない固体電解質を用
いた固体二次電池の研究が盛んに行われており、とくに
ポリエチレンオキシド(PEO)などを用いた高分子固
体電解質の研究が盛んに行われた。例えば1975年に
はWrightらがPEOとアルカリ金属が錯体を形成
することを発見し、60℃で10-4[S/cm]以上の
伝導度があることがわかった(Br.Polym.
J.,7,319)。またArmandは1988年に
PEOとポリプロピレンオキシド(PPO)と各種アル
カリ金属塩についてそのイオン伝導機構について説明し
ている(Electroresponsive Mol
ecular and polymericSyste
ms Vol 1, Marcel Dekker I
nc Publisher,)。しかしこれらは高温で
は十分な伝導率があるが、常温では伝導率が低いという
欠点がある。
[0005] For this reason, studies on solid secondary batteries using a solid electrolyte free from the risk of liquid leakage have been actively conducted, and particularly studies on a polymer solid electrolyte using polyethylene oxide (PEO) have been actively conducted. Was done. For example, in 1975, Wright et al. Discovered that PEO and an alkali metal form a complex, and found that it has a conductivity of 10 −4 [S / cm] or more at 60 ° C. (Br. Polym.
J. , 7, 319). Armand also described the ion conduction mechanism of PEO, polypropylene oxide (PPO) and various alkali metal salts in 1988 (Electroresponsive Mol).
ecological and polymericSystem
ms Vol 1, Marcel Dekker I
nc Publisher,). However, they have sufficient conductivity at high temperatures but have low conductivity at room temperature.

【0006】このために高分子固体電解質に多量の有機
溶媒を可塑剤として添加してゲル状にすることによって
イオン伝導度の向上がはかられ、ポリエチレンオキシド
やポリフッ化ビニリデン(PVDF)などのポリマーに
有機電解液を含有させたいわゆるゲルポリマーを固体電
解質として電池に用いられるのが一般である。例えばB
ellcore社がポリフッ化ビニリデン系ポリマーを
用いたポリマー電池の特許を開示している(例えば米国
特許5296318号、米国特許5456000号な
ど)。
For this purpose, a large amount of an organic solvent is added as a plasticizer to a polymer solid electrolyte to form a gel, thereby improving the ionic conductivity, and improving the ion conductivity of a polymer such as polyethylene oxide or polyvinylidene fluoride (PVDF). In general, a so-called gel polymer containing an organic electrolyte solution is used for a battery as a solid electrolyte. For example, B
The company discloses a patent for a polymer battery using a polyvinylidene fluoride-based polymer (for example, US Pat. No. 5,296,318, US Pat. No. 5,545,6000).

【0007】また、機械的強度を向上させるということ
で2種類以上のポリマーを混合するということがなされ
ている。例えば特開平8−165395号公報には、ポ
リフッ化ビニリデン(ポリフッ化ビニリデン)とポリア
ルキレンオキサイド、及びイオン解離性塩からなる半導
電性固体組成物が開示されている。また、特開平8−1
76389号公報には、ポリフッ化ビニリデン等の熱可
塑性樹脂、ポリアルキレンオキサイドのアクリレート置
換体とアルキルアクリレートの共重合体を組み合わせ、
さらにイオン解離性塩を含ませた半導電性固体組成物が
開示されている。電池としては特開平9−97618号
公報では有機電解液に難溶性のポリフッ化ビニリデンと
可溶性のポリエチレンオキサイドもしくはポリメチルメ
タクリレートを混合させたポリマーアロイフィルムを作
製し、それに有機電解液を含浸させて硬化させたポリマ
ー電解質が開示されている。また特開平11−1498
22号公報や特開平11−35765号公報等でもポリ
フッ化ビニリデン系ポリマーとポリエチレンオキシド系
ポリマーとの混合物にイオン解離性塩を含有させたポリ
マー電解質が開示されている。
In order to improve mechanical strength, two or more kinds of polymers are mixed. For example, JP-A-8-165395 discloses a semiconductive solid composition comprising polyvinylidene fluoride (polyvinylidene fluoride), a polyalkylene oxide, and an ion dissociable salt. Also, JP-A-8-1
No. 76389 discloses a thermoplastic resin such as polyvinylidene fluoride, a combination of an acrylate-substituted polyalkylene oxide and a copolymer of an alkyl acrylate,
Further, a semiconductive solid composition further containing an ion dissociable salt is disclosed. JP-A-9-97618 discloses a battery in which a polymer alloy film is prepared by mixing a poorly soluble polyvinylidene fluoride and a soluble polyethylene oxide or polymethyl methacrylate in an organic electrolytic solution, and impregnated with the organic electrolytic solution and cured. A disclosed polymer electrolyte is disclosed. Also, JP-A-11-1498
No. 22, JP-A-11-35765 and the like also disclose a polymer electrolyte in which a mixture of a polyvinylidene fluoride polymer and a polyethylene oxide polymer contains an ion dissociable salt.

【0008】[0008]

【発明が解決しようとする課題】しかしこれらの公報の
ように、ポリフッ化ビニリデンとポリエチレンオキサイ
ドの組み合わせでは機械的強度は向上するものの相溶系
ではないため、均質なゲル電解質は得られにくく、かつ
より均質なゲルを作製するためには複雑な工程が必要で
ある。つまり厳密に均質でなおかつ機械的強度の強いゲ
ル電解質はこの方法では得られない。また電解質の機械
的強度を向上させても電解質と電極の界面接合の安定化
という課題は残されている。
However, as disclosed in these publications, the combination of polyvinylidene fluoride and polyethylene oxide improves mechanical strength but is not a compatible system, so that it is difficult to obtain a homogeneous gel electrolyte, and moreover, Complicated steps are required to produce a homogeneous gel. That is, a gel electrolyte that is strictly homogeneous and has high mechanical strength cannot be obtained by this method. Further, even if the mechanical strength of the electrolyte is improved, the problem of stabilizing the interface bonding between the electrolyte and the electrode remains.

【0009】界面接触の安定化の改善策として、接着剤
を極板と電解質層の界面に塗布することにより極板と電
解質層の界面の接合を改善する試みがなされている。例
えば特開平11−40201号公報では電解質層にポリ
フッ化ビニリデンやエチレン−酢酸ビニル共重合体など
を接着剤として極板に塗布して接着を向上させるという
ことが提案されているが電極と電解質の界面の安定な接
触には至っていない。
As a measure for improving the stability of interfacial contact, an attempt has been made to improve the bonding at the interface between the electrode plate and the electrolyte layer by applying an adhesive to the interface between the electrode plate and the electrolyte layer. For example, Japanese Patent Application Laid-Open No. H11-40201 proposes that a polyvinylidene fluoride or an ethylene-vinyl acetate copolymer or the like be applied to an electrode plate as an adhesive for an electrolyte layer to improve the adhesion, The interface has not reached stable contact.

【0010】ポリマー電池の場合、ポリマー電解質層と
電極の界面は、従来の電解液のみを用いた電池のような
固体―液体界面で形成される反応系ではなく、固体−固
体間の接触により形成されるため、活物質と電解質の界
面接触が不安定になりやすい。その結果充放電特性の劣
化や内部抵抗の上昇などの電池特性が悪くなる。すなわ
ち正極にコバルト酸リチウムやニッケル酸コバルトなど
の遷移金属酸化物、負極にはグラファイトなどの層状負
極活物質を用いた場合には、これらの化合物は充放電反
応により、結晶の膨張、収縮が起こり活物質と電解質の
界面接触が不安定になり、劣化してしまう。
In the case of a polymer battery, the interface between the polymer electrolyte layer and the electrode is formed by a solid-solid contact, not by a reaction system formed at a solid-liquid interface as in a conventional battery using only an electrolytic solution. Therefore, the interface contact between the active material and the electrolyte tends to be unstable. As a result, battery characteristics such as deterioration of charge / discharge characteristics and increase in internal resistance are deteriorated. That is, when a transition metal oxide such as lithium cobaltate or cobalt nickelate is used for the positive electrode, and a layered negative electrode active material such as graphite is used for the negative electrode, these compounds undergo expansion and contraction of crystals due to charge / discharge reaction. Interfacial contact between the active material and the electrolyte becomes unstable and deteriorates.

【0011】このような問題を改善するために様々な試
みがなされており、界面接合のために従来のポリフッ化
ビニリデン系ポリマーでは電極と電解質層を熱溶着させ
て一体化させることにより接合し、上記のような課題を
解決しているが、工法が複雑で難しいために量産性に劣
るという欠点がある。
Various attempts have been made to improve such a problem. For the purpose of interfacial bonding, conventional polyvinylidene fluoride-based polymers are joined by heat-welding an electrode and an electrolyte layer to integrate them. Although the above-mentioned problems have been solved, there is a drawback that mass production is inferior because the construction method is complicated and difficult.

【0012】一方、化学架橋型ポリマー電解質の場合ポ
リマー濃度が高いと伝導度が低く、電池として動作しな
かったり、高粘度液体を使用することになるためにプロ
セス上取り扱いが難しいため、ポリマー濃度を低くして
使用する。ポリマー濃度を低くすると電解質の物性は電
解液の状態に近くなり、電極への浸透性も改良される
が、ポリマー濃度が低いため、架橋密度が低下してしま
い、ゲルポリマーの機械的強度が低くなる欠点を有して
いる。その結果内部短絡を誘発する確率が高くなり電池
の劣化に至る。
On the other hand, in the case of a chemically crosslinked polymer electrolyte, if the polymer concentration is high, the conductivity is low, and the polymer does not operate as a battery or a high-viscosity liquid is used. Use lower. When the polymer concentration is lowered, the physical properties of the electrolyte become closer to the state of the electrolyte and the permeability to the electrodes is improved, but the low polymer concentration causes the crosslink density to decrease, and the mechanical strength of the gel polymer is low. Disadvantages. As a result, the probability of inducing an internal short circuit increases, leading to deterioration of the battery.

【0013】本発明はこのような課題を解決するもので
あり、電極と電解質層間の接合を強化することによりサ
イクル特性の良好なポリマー電解質を用いたポリマー二
次電池を提供するものである。
The present invention has been made to solve such a problem, and an object of the present invention is to provide a polymer secondary battery using a polymer electrolyte having good cycle characteristics by strengthening the bonding between an electrode and an electrolyte layer.

【0014】[0014]

【課題を解決するための手段】上記問題を解決するべく
研究を行った結果、以下のような本発明に至った。すな
わち正負極と電解質との界面の接合に電子吸引性の大き
いシアノ基、もしくはエステル基を有する平均分子量が
5,000から1,000,000であるポリマーを用
いる。シアノ基もしくはエステル基を用いることにより
コバルト酸リチウムなどの正極活物質や炭素材料、合金
などの負極活物質に対して極板への接着能力を高めるこ
とができる。
As a result of research for solving the above problems, the present invention has been made as follows. That is, a polymer having an average molecular weight of 5,000 to 1,000,000 having a cyano group or an ester group having a high electron-withdrawing property is used for bonding the interface between the positive electrode and the negative electrode and the electrolyte. By using a cyano group or an ester group, the ability to adhere to a positive electrode active material such as lithium cobalt oxide or a negative electrode active material such as a carbon material or an alloy can be increased.

【0015】さらに電解質に前記ポリマーに対して相溶
性があり、2官能基以上の不飽和二重結合を有する平均
分子量が500から3,000であるオリゴマーを用い
ることによりポリマーと相溶性があるために均質で安定
な電極とポリマー電解質の界面を形成することが可能と
なった。
Further, the use of an oligomer having an average molecular weight of from 500 to 3,000 having an unsaturated double bond having two or more functional groups in the electrolyte is compatible with the polymer, and is therefore compatible with the polymer. It has become possible to form a homogeneous and stable interface between the electrode and the polymer electrolyte.

【0016】その上常温で相溶性があるので熱溶着など
の工程が不要であり、接着ポリマーを塗布した電極と熱
重合開始剤とオリゴマーを含む電解質層を積層させ、熱
重合させるだけという簡単な工程で電池を作成すること
ができるポリマー二次電池製造法を提供するものであ
る。
In addition, since it is compatible at room temperature, there is no need for a process such as heat welding, and the electrode coated with an adhesive polymer is laminated with an electrolyte layer containing a thermal polymerization initiator and an oligomer, and is simply subjected to thermal polymerization. An object of the present invention is to provide a method for producing a polymer secondary battery capable of producing a battery in a process.

【0017】[0017]

【発明の実施の形態】(図1)に本発明のポリマー二次
電池の一例を示す。1枚の負極5は2枚の正極3ではさ
まれている。負極5と正極3の表面にポリマー層を塗布
してその間にセパレータ4にオリゴマーを含浸させた電
解質層がはさまれている。ここでできた基本スタックを
電池ケース1内に減圧封止する。この図では基本スタッ
クはひとつであるが、実際は複数枚積層させる。また基
本スタックもこの構成に限らず正極一枚と負極1枚を電
解質層を対向させたもの、あるいは捲回した電極群の構
成でもかまわない。
FIG. 1 shows an example of a polymer secondary battery according to the present invention. One negative electrode 5 is sandwiched between two positive electrodes 3. A polymer layer is applied to the surfaces of the negative electrode 5 and the positive electrode 3, and an electrolyte layer in which the oligomer is impregnated in the separator 4 is interposed between the polymer layers. The basic stack formed here is sealed in the battery case 1 under reduced pressure. In this figure, the number of basic stacks is one, but actually a plurality of sheets are stacked. The basic stack is not limited to this configuration, but may be a configuration in which one positive electrode and one negative electrode are provided with an electrolyte layer facing each other, or a configuration of a wound electrode group.

【0018】本発明におけるポリマーの構成要素として
は、シアノ基またはエステル基を含むポリマーでなけれ
ばならない。また、分子量は5,000から1,00
0,000の範囲のものが好ましい。ここでシアノ基も
しくはエステル基を含むのはその強い電子吸引性の性質
を生かしポリマーに接着剤としての機能を持たせ、接着
ポリマーとしての役割を持たせるためである。平均分子
量が5000以下になるとポリマーの主鎖が短くなり、
粘着性が低くなってしまうので、ポリマーの結着剤とし
ての役割が小さくなってしまう。逆に平均分子量が1,
000,000以上になるとポリマーの主鎖が長すぎて
しまいオリゴマーとの相溶性が悪くなってしまう。
The constituent of the polymer in the present invention must be a polymer containing a cyano group or an ester group. The molecular weight is from 5,000 to 1,000.
Those in the range of 000 are preferred. Here, the reason for containing a cyano group or an ester group is to make use of its strong electron-withdrawing property so that the polymer has a function as an adhesive and has a role as an adhesive polymer. When the average molecular weight is less than 5000, the main chain of the polymer becomes shorter,
Since the tackiness is reduced, the role of the polymer as a binder is reduced. Conversely, if the average molecular weight is 1,
If it is more than 1,000,000, the main chain of the polymer becomes too long, and the compatibility with the oligomer becomes poor.

【0019】またオリゴマーはマトリックスポリマーを
作るので重合時に架橋点となるアクリレート基、メタク
リレート基のどちらかが少なくとも2つ以上備わってい
る必要がある。また分枝構造があるアルキレンオキシド
基が備わっていなければならない。この側鎖があるとシ
アノ基とエステル基のあるポリマーと絡まりやすく、こ
のポリマーとオリゴマーが電解質層を形成するときにオ
リゴマーからできるポリマーマトリック中にポリマーが
溶解しやすくなり、相溶性が現れるからである。
Further, since the oligomer forms a matrix polymer, it is necessary that at least two of an acrylate group and a methacrylate group which are cross-linking points during polymerization are provided. In addition, an alkylene oxide group having a branched structure must be provided. If this side chain is present, the polymer is likely to be entangled with a polymer having a cyano group and an ester group, and when the polymer and the oligomer form an electrolyte layer, the polymer is easily dissolved in a polymer matrix formed from the oligomer, and compatibility appears. is there.

【0020】オリゴマーの平均分子量は500〜3,0
00の範囲のものが好ましい。平均分子量を500以下
にすると硬化させたときのマトリックスの網目が小さく
なり、十分な電解液保持性が得られない。また、平均分
子量を3,000以上とすると架橋点間分子量が大きく
なりすぎると十分な電解液保液性が得られず、充放電特
性が低下するためである。
The average molecular weight of the oligomer is from 500 to 3,0
A range of 00 is preferred. If the average molecular weight is 500 or less, the network of the matrix when cured becomes small, and sufficient electrolyte retention cannot be obtained. On the other hand, if the average molecular weight is 3,000 or more, if the molecular weight between cross-linking points is too large, sufficient electrolyte retention property cannot be obtained, and the charge / discharge characteristics deteriorate.

【0021】電池の構成方法は積層型にして極板にポリ
マーを塗布して使用することが好ましいが、捲回型であ
ってもかまわない。このときポリマーを真空含浸させる
のは極板への含浸性をあげるためである。
It is preferable that the battery is formed by using a laminated type and applying a polymer to an electrode plate, but a wound type may be used. The reason why the polymer is impregnated in vacuum at this time is to increase the impregnation property of the electrode plate.

【0022】用いる正極は活物質がリチウム含有金属酸
化物であるものであれば特に限定はないが、一例として
コバルト酸リチウム、ニッケル酸リチウム、マンガン酸
リチウムなどがある。また負極もリチウム金属またはリ
チウムイオンを吸蔵放出できる炭素材料、合金、窒素化
合物から選ばれる負極活物質からなるものであれば良い
が、天然黒鉛、人造黒鉛、窒化コバルトリチウムなどが
好ましい。セパレータも有孔質のものであればその限定
はない。
The positive electrode to be used is not particularly limited as long as the active material is a lithium-containing metal oxide. Examples thereof include lithium cobaltate, lithium nickelate and lithium manganate. The negative electrode may be made of a negative electrode active material selected from a carbon material, an alloy, and a nitrogen compound capable of inserting and extracting lithium metal or lithium ions. Natural graphite, artificial graphite, lithium cobalt nitride, and the like are preferable. The separator is not limited as long as it is porous.

【0023】使用する電池ケース1は特に限定されるも
のではないが、アルミラミネートを使用するのが好まし
い。これはアルミラミネートのほうが形状自由度が大き
く、薄くて軽いのでポリマー電池のケースとして適して
いるからである。そのうえ電池作成工程が容易であるの
も長所である。
The battery case 1 to be used is not particularly limited, but it is preferable to use an aluminum laminate. This is because aluminum laminate has a greater degree of freedom in shape, is thinner and lighter, and is therefore suitable for a polymer battery case. Another advantage is that the battery manufacturing process is easy.

【0024】電解液に用いられる溶媒は、充放電にリチ
ウムを用いるために非水溶液系溶媒を用いることが望ま
しい。また、リチウム塩を混合したときにイオン伝導度
が高いものがより好ましい。例えばエチレンカーボネー
ト(EC)、プロピレンカーボネート(PC)、γ−ブ
チラクトン(GBL)、エチルメチルカーボネート(E
MC)、ジエチルカーボネート(DEC)等が上げられ
る。本発明に用いられる非水溶液はこれらのうち、少な
くとも1種類、もしくは2種類以上を混合して使用する
ことが好ましく、高誘電率溶媒であるECをその混合要
素の1つにすることがより好ましい。
The solvent used for the electrolytic solution is preferably a non-aqueous solvent in order to use lithium for charging and discharging. Further, those having high ionic conductivity when a lithium salt is mixed are more preferable. For example, ethylene carbonate (EC), propylene carbonate (PC), γ-butylactone (GBL), ethyl methyl carbonate (E
MC), diethyl carbonate (DEC) and the like. The non-aqueous solution used in the present invention is preferably used as a mixture of at least one kind or two or more kinds, and more preferably EC, which is a high dielectric constant solvent, is used as one of the mixed elements. .

【0025】リチウム塩としては上記非水溶液と混合し
うるものであり、リチウム電池の電解質となるものであ
れば特に限定されるものではない。例えばLiPF6、
LiClO4、LiBF4、LiN(C2F5SO2)
2等があげられる。これらのリチウム塩は1種類、もし
くは2種類以上を混合して用いることができる。特にL
iBF4などは非水溶液などの溶媒に溶解させたときに
LiPF6やLiClO4の場合と比べてイオン伝導率
が低いので2種類以上の混合系にすることが好ましい。
The lithium salt is not particularly limited as long as it can be mixed with the above-mentioned non-aqueous solution and can be used as an electrolyte of a lithium battery. For example, LiPF6,
LiClO4, LiBF4, LiN (C2F5SO2)
2 and the like. These lithium salts can be used alone or in combination of two or more. Especially L
Since iBF4 and the like have a lower ionic conductivity when dissolved in a solvent such as a non-aqueous solution than LiPF6 and LiClO4, it is preferable to use a mixed system of two or more types.

【0026】これら非水溶液とリチウム塩を混合させた
非水溶液電解液のリチウム塩濃度は0.5モル/リット
ルから2モル/リットルの範囲となることが好ましい。
一般的に非水溶液電解液の濃度は低くなるとイオン伝導
度が小さくなり、濃度が高くなるとイオンの解離が困難
になり、いずれの場合においてもイオン伝導性は低下す
る傾向を示す。
It is preferable that the lithium salt concentration of the non-aqueous electrolyte obtained by mixing the non-aqueous solution and the lithium salt is in the range of 0.5 mol / L to 2 mol / L.
Generally, as the concentration of the non-aqueous electrolyte decreases, the ionic conductivity decreases, and as the concentration increases, the dissociation of ions becomes difficult, and in any case, the ionic conductivity tends to decrease.

【0027】オリゴマーを重合させる方法は使用する重
合開始剤の種類によって異なる。この場合は構成方法か
ら熱重合開始剤が好ましい。具体的にはアゾビス(イソ
ブチロニトリル)、アゾビス(ジメチルバレロニトリ
ル)などアゾ系の重合開始剤や過酸化ベンゾイルなどの
有機過酸化物系のものがある。ここでは熱重合の場合し
か述べていないが、電池表面から電子線を照射すること
によってオリゴマーを重合させる電子線重合を採用する
こともできる。
The method of polymerizing the oligomer depends on the type of polymerization initiator used. In this case, a thermal polymerization initiator is preferred in view of the constitution method. Specific examples include azo-based polymerization initiators such as azobis (isobutyronitrile) and azobis (dimethylvaleronitrile) and organic peroxide-based compounds such as benzoyl peroxide. Although only the case of thermal polymerization is described here, electron beam polymerization in which an oligomer is polymerized by irradiating an electron beam from the battery surface can also be employed.

【0028】正極と負極、セパレータ層を積層させた後
にオリゴマーを重合させてゲル電解質層を形成するのだ
が、積層させてからすぐに重合させるのではなくて時間
をおいてから重合させるのが好ましい。オリゴマーとポ
リマーをなじませ、なおかつ電極層にこれらの溶液をな
じませるためである。
After laminating the positive electrode, the negative electrode, and the separator layer, the oligomer is polymerized to form a gel electrolyte layer, but it is preferable to polymerize after a certain period of time, not immediately after the lamination. . This is for the purpose of allowing the oligomer and the polymer to blend in and the electrode layer to be blended with these solutions.

【0029】ポリマーとオリゴマー、電解液と重合開始
剤をあわせた溶液の水分量は20ppm以下になること
が望ましい。含有水分量が多いと重合させた後に電解質
層を着色させたり分解させたりする原因になるからであ
る。
It is desirable that the water content of the combined solution of the polymer and the oligomer and the electrolytic solution and the polymerization initiator be 20 ppm or less. If the water content is too high, it causes coloration or decomposition of the electrolyte layer after polymerization.

【0030】以上詳述したように本発明によるポリマー
二次電池は、正極、負極、ポリマー電解質層を有し、ポ
リマーを電解質層と電極の界面に配し、そのポリマーと
相溶性のあるオリゴマーと電解液、重合開始剤を混合さ
せた溶液を架橋させたものを電解質に用いた電池であ
る。
As described in detail above, the polymer secondary battery according to the present invention has a positive electrode, a negative electrode, and a polymer electrolyte layer, arranges a polymer at the interface between the electrolyte layer and the electrode, and forms an oligomer compatible with the polymer. This is a battery in which a solution obtained by mixing an electrolytic solution and a polymerization initiator is crosslinked to form an electrolyte.

【0031】ポリマーはシアノ基もしくはエステル基を
持っているために極板との接着性があり、さらにポリマ
ーと相溶性のあるオリゴマーを用いて電解質層を形成す
るためにポリマーと電解質層の接着性もあり、結果とし
て活物質と電解質層との界面接触が安定なものとなり充
放電を繰り返しても極板(活物質)と電解質との接合を
維持し、充放電サイクル特性に優れたポリマー二次電池
が得られる。
Since the polymer has a cyano group or an ester group, it has an adhesive property to the electrode plate. Further, since the polymer is formed by using an oligomer compatible with the polymer, the adhesive property between the polymer and the electrolyte layer is increased. As a result, the interfacial contact between the active material and the electrolyte layer becomes stable, maintaining the junction between the electrode plate (active material) and the electrolyte even after repeated charge / discharge, and a polymer secondary with excellent charge / discharge cycle characteristics. A battery is obtained.

【0032】また本発明によると、電池作成方法も電解
液とオリゴマーと重合開始剤を混合させた溶液をセパレ
ータに含浸させて電池を構成し、熱重合させるだけで電
解質層が出来る。そのために活物質と電解質層の界面接
触を安定化させるための熱溶着などの余分な工程が不要
であるために量産性のあるポリマー二次電池を提供する
ことができる。
According to the present invention, a battery is also prepared by simply impregnating a separator with a solution obtained by mixing an electrolytic solution, an oligomer and a polymerization initiator into a battery, and thermally polymerizing the battery to form an electrolyte layer. Therefore, an extra step such as heat welding for stabilizing the interface contact between the active material and the electrolyte layer is not required, so that a polymer secondary battery with high productivity can be provided.

【0033】[0033]

【実施例】以下に本発明の固体電解質二次電池およびそ
の製造法について実施例により具体的に説明するが、本
発明はこれらの実施例のみに限定されるものではない。
EXAMPLES Hereinafter, the solid electrolyte secondary battery of the present invention and the method for producing the same will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0034】〈実施例1〉まずLiClO4を用意し、
エチレンカーボネート(EC)とジエチルカーボネート
(DEC)の混合溶液に溶解させて電解液を作製する。
このときECとDECは体積比で1:1で調合し、Li
ClO4の電解液濃度は1モル/リットルとした。
Example 1 First, LiClO4 was prepared.
An electrolytic solution is prepared by dissolving in a mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC).
At this time, EC and DEC are mixed at a volume ratio of 1: 1.
The concentration of the electrolytic solution of ClO4 was 1 mol / liter.

【0035】次にコバルト酸リチウムを活物質とした正
極と人造黒鉛を負極活物質とした正極、負極に(化1)
の構造で示される平均分子量が85000であるポリマ
ーのNMP溶液を塗布し、真空含浸した後に80℃減圧
乾燥を行った。正極/セパレータ/負極/セパレータ/
正極と積層した電極群を作製した。セパレータは厚み2
7μm、空孔率50%の物を使用した。この電極群をア
ルミラミネートに挿入する。そして(化2)の構造で示
されるオリゴマーとアゾビスイソブチロニトリル(AI
BN)と作製した電解液を25:0.125:100の
重量比で混合した。
Next, a positive electrode using lithium cobalt oxide as an active material, a positive electrode using artificial graphite as a negative electrode active material, and a negative electrode
Was coated with an NMP solution of a polymer having an average molecular weight of 85,000 and impregnated in a vacuum, followed by drying at 80 ° C. under reduced pressure. Positive electrode / separator / negative electrode / separator /
An electrode group laminated with the positive electrode was produced. Separator thickness 2
7 μm, porosity 50% was used. This electrode group is inserted into an aluminum laminate. Then, the oligomer represented by the structure of Chemical Formula 2 and azobisisobutyronitrile (AI
BN) and the prepared electrolytic solution were mixed at a weight ratio of 25: 0.125: 100.

【0036】[0036]

【化1】 Embedded image

【0037】[0037]

【化2】 Embedded image

【0038】アルミラミネートケース内の電極群にオリ
ゴマーと電解液の混合溶液を注液し、真空含浸を行った
後、開口部を封止した。その後電池を80℃の状態で1
時間保持しておきオリゴマーを架橋させた。
A mixed solution of the oligomer and the electrolytic solution was injected into the electrode group in the aluminum laminate case, and after performing vacuum impregnation, the opening was sealed. After that, the battery is kept at 80 ° C for 1 hour.
The oligomer was cross-linked while holding for a time.

【0039】〈実施例2〉(化1)のポリマーの分子量
を5,000とした以外実施例1と同様の操作を行って
ポリマー電池を作製した。
Example 2 A polymer battery was manufactured in the same manner as in Example 1 except that the molecular weight of the polymer of Chemical Formula 1 was changed to 5,000.

【0040】〈実施例3〉(化1)のポリマーの分子量
を1,000,000とした以外実施例1と同様の操作
を行ってポリマー電池を作製した。
Example 3 A polymer battery was manufactured in the same manner as in Example 1, except that the molecular weight of the polymer of Chemical Formula 1 was changed to 1,000,000.

【0041】〈実施例4〉(化2)のオリゴマーの分子
量を500とした以外実施例1と同様の操作を行ってポ
リマー電池を作製した。
Example 4 A polymer battery was manufactured in the same manner as in Example 1 except that the molecular weight of the oligomer of Chemical Formula 2 was changed to 500.

【0042】〈実施例5〉(化2)のオリゴマーの分子
量を3,000とした以外実施例1と同様の操作を行っ
てポリマー電池を作製した。
Example 5 A polymer battery was manufactured in the same manner as in Example 1 except that the molecular weight of the oligomer of Chemical Formula 2 was changed to 3,000.

【0043】〈実施例6〉(化1)のポリマーの分子量
を4,000とした以外実施例1と同様の操作を行って
ポリマー電池を作製した。
Example 6 A polymer battery was manufactured in the same manner as in Example 1 except that the molecular weight of the polymer of Chemical Formula 1 was changed to 4,000.

【0044】〈実施例7〉(化1)のポリマーの分子量
を2,000,000とした以外実施例1と同様の操作
を行ってポリマー電池を作製した。
Example 7 A polymer battery was manufactured in the same manner as in Example 1 except that the molecular weight of the polymer of Chemical Formula 1 was changed to 2,000,000.

【0045】〈実施例8〉(化2)のオリゴマーの分子
量を400とした以外実施例1と同様の操作を行ってポ
リマー電池を作製した。
Example 8 A polymer battery was manufactured in the same manner as in Example 1 except that the molecular weight of the oligomer of Chemical Formula 2 was changed to 400.

【0046】〈実施例9〉(化2)のオリゴマーの分子
量を4,000とした以外実施例1と同様の操作を行っ
てポリマー電池を作製した。
Example 9 A polymer battery was manufactured in the same manner as in Example 1 except that the molecular weight of the oligomer of Chemical Formula 2 was changed to 4,000.

【0047】〈比較例1〉(化1)のポリマーの代わり
に平均分子量300,000のポリフッ化ビニリデンを
用いたこと以外実施例1と同様の操作を行ってポリマー
電池を作製した。
Comparative Example 1 A polymer battery was manufactured in the same manner as in Example 1, except that polyvinylidene fluoride having an average molecular weight of 300,000 was used instead of the polymer of Chemical Formula 1.

【0048】〈比較例2〉ポリフッ化ビニリデンと(化
2)のオリゴマーの代わりに平均分子量1,000のポ
リエチレンジメタクリレートを用いたこと以外実施例1
と同様の操作を行ってポリマー電池を作製した。
Comparative Example 2 Example 1 was repeated except that polyethylene dimethacrylate having an average molecular weight of 1,000 was used in place of the oligomer of polyvinylidene fluoride and (formula 2).
The same operation as described above was performed to produce a polymer battery.

【0049】(試料の評価方法及び結果)実施例1〜9
と比較例1、2で作製したポリマー電池の充放電試験を
行った。充放電試験は10時間率の電流で4.2Vまで
充電を行い、その後3.0Vまで放電を行った。充電と
放電の間の休止時間は30分である。この充放電操作を
100サイクルまで充放電をおこない、このときの容量
維持率を(表1)に示す。また、サイクル試験終了後各
実施例、比較例で作製した電池の電解質の膜の状態も観
測した。
(Sample Evaluation Method and Results) Examples 1 to 9
And the polymer batteries prepared in Comparative Examples 1 and 2 were subjected to a charge / discharge test. In the charge / discharge test, the battery was charged to 4.2 V at a 10-hour rate current, and then discharged to 3.0 V. The downtime between charge and discharge is 30 minutes. The charging / discharging operation was performed up to 100 cycles, and the capacity retention rate at this time is shown in (Table 1). After the cycle test, the state of the electrolyte membrane of the batteries prepared in each of the examples and comparative examples was also observed.

【0050】[0050]

【表1】 [Table 1]

【0051】(表1)より、100サイクル後の容量維
持率は実施例1が一番大きいという結果が得られた。ま
た、実施例1、2、3、6、7の比較からポリマーの分
子量は5,000から1,000,000の範囲が好ま
しく、オリゴマーの分子量実施例1、4、5、6、8、
9も500から3,000範囲が好ましいことがわか
る。
From Table 1, it was found that the capacity retention ratio after 100 cycles was the largest in Example 1. From the comparison of Examples 1, 2, 3, 6, and 7, the molecular weight of the polymer is preferably in the range of 5,000 to 1,000,000, and the molecular weights of the oligomers of Examples 1, 4, 5, 6, 8,
9, it is understood that the range of 500 to 3,000 is preferable.

【0052】[0052]

【発明の効果】本発明に示すポリマー二次電池において
は、電極と電解質間の界面接着能力の高いポリマーを用
い、そのポリマーと相溶性のあるオリゴマーをポリマー
電解質に用いることにより、充放電を繰り返しても電極
と電解質との接合を維持し、充放電サイクル特性に優れ
たポリマー二次電池を提供することができる。
According to the polymer secondary battery of the present invention, a polymer having a high interfacial adhesion ability between an electrode and an electrolyte is used, and an oligomer compatible with the polymer is used as a polymer electrolyte to repeatedly charge and discharge. Accordingly, a polymer secondary battery that maintains the connection between the electrode and the electrolyte and has excellent charge / discharge cycle characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のポリマー2次電池の一実施例の模式断
面図
FIG. 1 is a schematic sectional view of one embodiment of a polymer secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 正極芯剤 3 正極活物質 4 セパレータ 5 負極活物質 6 負極芯剤 DESCRIPTION OF SYMBOLS 1 Battery case 2 Positive electrode core material 3 Positive electrode active material 4 Separator 5 Negative electrode active material 6 Negative electrode core material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森垣 健一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 新田 芳明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4J011 HA04 HA06 HB06 PA69 PA90 PC02 PC08 4J027 AC02 AC03 CA10 CB09 CC02 5H029 AJ05 AK03 AL01 AL06 AL07 AL12 AM03 AM05 AM07 AM16 BJ02 BJ12 CJ02 CJ08 CJ22 CJ23 CJ28 DJ02 DJ04  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kenichi Morigaki 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. F-term (reference) 4J011 HA04 HA06 HB06 PA69 PA90 PC02 PC08 4J027 AC02 AC03 CA10 CB09 CC02 5H029 AJ05 AK03 AL01 AL06 AL07 AL12 AM03 AM05 AM07 AM16 BJ02 BJ12 CJ02 CJ08 CJ22 CJ23 CJ28 DJ02 DJ04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質がリチウム含有金属酸化物か
らなる正極を用い、リチウム金属もしくはリチウムイオ
ンを吸蔵放出できる炭素材料、合金、窒素化合物から選
ばれる負極活物質からなる負極とポリマー電解質とを含
む二次電池において、シアノ基またはエステル基を含
み、平均分子量が5,000から1,000,000で
あるポリマーを極板とポリマー電解質層の界面に配した
ことを特徴し、アクリレート基、メタクリレート基の一
方、もしくは両方を少なくとも2つ以上もち、また分枝
構造があるアルキレンオキシド基を含む平均分子量が5
00から3,000であり、前記ポリマーと相溶性のあ
るオリゴマーを電解液の共存下で架橋させたポリマー電
解質に用いるポリマー二次電池。
1. A negative electrode comprising a negative electrode active material selected from a carbon material, an alloy, and a nitrogen compound capable of inserting and extracting lithium metal or lithium ions using a positive electrode comprising a positive electrode active material comprising a lithium-containing metal oxide, and a polymer electrolyte. A secondary battery containing a polymer having a cyano group or an ester group and having an average molecular weight of 5,000 to 1,000,000 at an interface between an electrode plate and a polymer electrolyte layer, comprising an acrylate group, a methacrylate Having at least two or more of one or both of the groups and having an average molecular weight of 5 including an alkylene oxide group having a branched structure.
A polymer secondary battery which is used as a polymer electrolyte in which an oligomer having a molecular weight of from 00 to 3,000, which is compatible with the polymer, is crosslinked in the presence of an electrolytic solution.
【請求項2】 正極、負極の少なくともどちらか一方に
前記ポリマーを塗布、真空含浸する工程と、オリゴマー
と重合開始剤、電解液を混合した溶液をセパレータに含
浸する工程、これらを積層し電極群を構成し、次に電池
ケース内に挿入し、減圧状態で封止後架橋、加熱する工
程からなるポリマー二次電池の製造方法。
2. A step of applying the polymer to at least one of a positive electrode and a negative electrode and performing vacuum impregnation, and a step of impregnating a separator with a solution obtained by mixing an oligomer, a polymerization initiator, and an electrolytic solution into a separator; And then inserting the battery into a battery case, sealing under reduced pressure, cross-linking and heating, to produce a polymer secondary battery.
JP2000350962A 2000-11-17 2000-11-17 Polymer secondary battery and its manufacturing method Withdrawn JP2002158037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000350962A JP2002158037A (en) 2000-11-17 2000-11-17 Polymer secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000350962A JP2002158037A (en) 2000-11-17 2000-11-17 Polymer secondary battery and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2002158037A true JP2002158037A (en) 2002-05-31
JP2002158037A5 JP2002158037A5 (en) 2007-08-02

Family

ID=18824103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000350962A Withdrawn JP2002158037A (en) 2000-11-17 2000-11-17 Polymer secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002158037A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149463A (en) * 2001-08-31 2003-05-21 Fuji Photo Film Co Ltd Method for manufacturing plastic optical member
JP2005327645A (en) * 2004-05-17 2005-11-24 Yuasa Corp Organic sulfur secondary battery
JP2008071624A (en) * 2006-09-14 2008-03-27 Nec Tokin Corp Lithium polymer battery
JP2011530782A (en) * 2008-08-05 2011-12-22 エルジー・ケム・リミテッド Method for producing gel polymer electrolyte secondary battery, and gel polymer electrolyte secondary battery produced thereby
US11658301B2 (en) 2018-04-10 2023-05-23 Lg Energy Solution, Ltd. Lithium secondary battery and method of preparing the same
US11721810B2 (en) 2018-04-04 2023-08-08 Lg Energy Solution, Ltd. Electrode for lithium secondary battery and lithium secondary battery including the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149463A (en) * 2001-08-31 2003-05-21 Fuji Photo Film Co Ltd Method for manufacturing plastic optical member
JP2005327645A (en) * 2004-05-17 2005-11-24 Yuasa Corp Organic sulfur secondary battery
JP4670258B2 (en) * 2004-05-17 2011-04-13 株式会社Gsユアサ Electrode material for electrochemical device and electrochemical device provided with the same
JP2008071624A (en) * 2006-09-14 2008-03-27 Nec Tokin Corp Lithium polymer battery
JP2011530782A (en) * 2008-08-05 2011-12-22 エルジー・ケム・リミテッド Method for producing gel polymer electrolyte secondary battery, and gel polymer electrolyte secondary battery produced thereby
US8916297B2 (en) 2008-08-05 2014-12-23 Lg Chem, Ltd. Method of preparing gel polymer electrolyte secondary battery and gel polymer electrolyte secondary battery
JP2015111587A (en) * 2008-08-05 2015-06-18 エルジー・ケム・リミテッド Method for manufacturing gel polymer electrolyte secondary battery, and gel polymer electrolyte secondary battery manufactured thereby
US9362592B2 (en) 2008-08-05 2016-06-07 Lg Chem, Ltd. Method of preparing gel polymer electrolyte secondary battery and gel polymer electrolyte secondary battery
US11721810B2 (en) 2018-04-04 2023-08-08 Lg Energy Solution, Ltd. Electrode for lithium secondary battery and lithium secondary battery including the same
US11658301B2 (en) 2018-04-10 2023-05-23 Lg Energy Solution, Ltd. Lithium secondary battery and method of preparing the same

Similar Documents

Publication Publication Date Title
US7883554B2 (en) Lithium secondary battery with suppressed decomposition of electrolytic solution and preparation method thereof
US6680147B2 (en) Lithium battery
CA2545174C (en) Functional polymer film-coated electrode and electrochemical device using the same
JP5174376B2 (en) Non-aqueous lithium ion secondary battery
US9533475B2 (en) Crosslinking polymer-supported porous film for battery separator and method for producing battery using the same
KR100847232B1 (en) Gel electrolyte and nonaqueous electrolyte battery
JP4418139B2 (en) Polymer electrolyte and lithium secondary battery including the same
WO2002061874A1 (en) A multi-layered, uv-cured polymer electrolyte and lithium secondary battery comprising the same
JP4418126B2 (en) Gel polymer electrolyte and lithium battery using the same
EP2159863B1 (en) Crosslinking polymer-supported porous film for battery separator and use thereof
JP2001319694A (en) Lithium-polymer secondary battery
JP2002158037A (en) Polymer secondary battery and its manufacturing method
JP2002158037A5 (en)
KR100327492B1 (en) Preparation of lithium secondary battery employing gelled polymer electrolyte
WO2023108322A1 (en) Solid electrolyte having mechanical gradient and preparation method therefor and application thereof
JP2002184466A (en) Battery for portable equipment
KR100369077B1 (en) Lithium secondary battery and preparing method thereof
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
KR100858795B1 (en) Lithium polymer battery containing seperator chemically bonded to polymer electrolyte and manufacturing method thereof
JP5371403B2 (en) Polymer electrolyte laminated lithium secondary battery with improved output performance and method for improving output performance
KR100406793B1 (en) secondary battery
JP2002190320A (en) Solid state electrolyte and battery using the electrolyte
KR20030022588A (en) Lithium ion polymer battery and process for preparing the same
JP2002190317A (en) Solid state electrolyte and nonaqueous electrolytic solution battery using the electrolyte
JP2002190318A (en) Solid state electrolyte and nonaqueous electrolytic solution battery using the electrolyte

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070712

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080807