JP2002158016A - Polymer electrolyte film and manufacturing method of the same, and solid fuel cell using polymer electrolyte film - Google Patents

Polymer electrolyte film and manufacturing method of the same, and solid fuel cell using polymer electrolyte film

Info

Publication number
JP2002158016A
JP2002158016A JP2000391638A JP2000391638A JP2002158016A JP 2002158016 A JP2002158016 A JP 2002158016A JP 2000391638 A JP2000391638 A JP 2000391638A JP 2000391638 A JP2000391638 A JP 2000391638A JP 2002158016 A JP2002158016 A JP 2002158016A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
fuel cell
polymer
electrolyte film
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000391638A
Other languages
Japanese (ja)
Inventor
Toshiki Koyama
俊樹 小山
Morio Taniguchi
彬雄 谷口
Setsuko Hirakawa
節子 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ueda Textile Science Foundation
Original Assignee
Ueda Textile Science Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ueda Textile Science Foundation filed Critical Ueda Textile Science Foundation
Priority to JP2000391638A priority Critical patent/JP2002158016A/en
Publication of JP2002158016A publication Critical patent/JP2002158016A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polymer electrolyte film furnished with a high proton conductivity and a methanol blocking property especially when used for a solid fuel cell, and to provide a manufacturing method of the same, and to provide a solid fuel cell. SOLUTION: The solid polymer electrolyte film for a methanol fuel cell is directly formed by making a film of perfluorosulfonic acid, which is swollen by solvent, contain a bridged polymer insides. The solid polymer electrolyte film is enabled to restrain the transmission of methanol while keeping high proton conductivity, and usable in various fields as a separator film. As a practical example, the polymer electrolyte film is used as a solid polymer electrolyte film for the production of pure water, a solid polymer electrolyte film for the production of sodium hydroxide, a solid polymer electrolyte film for the generation of hydrogen.oxygen by the electrolysis of pure water, a solid polymer electrolyte film for the diaphragm type electrochemical oxygen sensor, and the like. Further, it is effectively used as the solid polymer electrolyte film for the direct methanol fuel cell.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、とくに固体燃料電
池に用いた場合に、高いプロトン電導度とメタノールブ
ロック性を兼ね備える高分子電解質膜とその製造方法、
及びその高分子電解質膜を使用した固体燃料電池に関す
る。 【0002】 【従来の技術】従来、高分子固体燃料電池としては、水
素ガスを燃料に用いてパーフルオロスルホン酸ポリマー
であるNafion(登録商標、以下同)膜を水素イオ
ン伝導膜として使用するものが一般的であるが(Jou
rnal ofPower Sources,51巻,
129項,1994年)、水素ガスを燃料に用いた高分
子固体燃料電池は、1)水素ガスの供給に水素ボンベ、
あるいは水素吸蔵合金が必要、2)水素ガスの供給・輸
送における危険性、3)周辺保安装置のコストがかか
る、という問題点を有している。 【0003】これに対し、メタノールを供給して改質器
で変換した水素ガスを燃料とする高分子固体燃料電池
は、供給燃料液体であることから高圧容器等が不要で、
供給・輸送における安全性も比較的高く、供給・輸送に
おけるコストも低く抑えられ、また、天然ガスからの生
成が可能であることから、次世代の燃料電池として研究
開発がなされている(固体高分子型燃料電池の発展と応
用,69項,2000年)。 【0004】小型の改質器の開発により、自動車用の改
質型メタノール燃料電池として実用特性に近づいている
(第105回JOEM講演要旨集,燃料電池の開発動向
と発展,33項,1999年)。 【0005】ところで、高分子固体燃料電池の最大の特
徴は固体の電解質膜を用いることで電池本体が軽量・コ
ンパクトにできること、電解液の濃縮装置が不要である
こと、その結果エネルギー変換効率が高いこと、等が挙
げられる。しかし、メタノール改質器を用いる改質型メ
タノール燃料電池においては、小型化が進められている
(固体高分子型燃料電池の発展と応用,73項,200
0年)が改質器は不可欠で、さらにそれを加熱するため
に回収した水素の一部を燃焼する等効率の点でも課題が
残る。 【0006】一方、メタノールを改質せずに直接燃料電
池の陽極に供給する直接メタノール燃料電池の研究が始
められている(第105回JOEM講演要旨集,燃料電
池の開発動向と発展,35項,1999年)。この直接
メタノール燃料電池では改質器が不要であるため電池の
大幅な軽量・コンパクト化が可能で、改質器の加熱が不
要であるため、携帯型燃料電池としても期待される(E
lectrochimica Acta,45号,94
5項,1999年)。しかしながら、メタノールの電解
質膜への浸透・透過、さらに電解質膜ポリマーの溶出と
いった問題が未解決である。 【0007】現在,直接メタノール燃料電池用の電解質
膜としても,主にパーフルオロスルホン酸ポリマーであ
るNafionが検討されている。また、Nafion
に代わる電解質膜 として、新たにリン酸エステル化
させたポリビニールアルコール(P−PVA)を架橋に
よりゲル化させた電解質膜(Phys.Chem.Ch
em.Phys.,1巻,2749項,1999年)や
電解質としてのポリマーを耐熱性多孔性基材細孔中に充
填した膜(Polymer Preprints,Ja
pan,48巻,10号,1999年)、また、スルホ
ン酸基を多く含有するポリイミド膜(Polymer
Preprints,Japan,48巻,4号,20
00年)等が提案されている。 【0008】こうした電解質膜のほとんどは、プロトン
電導度については直接メタノール燃料電池に使用できる
性能を示しているが、メタノールブロック性については
まだ不充分である。例えば、Nafionを用いた電池
では、低いメタノール濃度で駆動したとしても、アノー
ドから供給したメタノールの約40%を透過させてしま
う。この電解質膜へのメタノールの透過はメタノールク
ロスオーバーと呼ばれる。透過したメタノールは対極で
あるカソードへ到達し、カソードで反応される。これは
燃料効率を下げるだけではなく、カソードの性能に悪影
響を及ぼす。このメタノールクロスオーバーは、燃料で
あるメタノールの濃度が高いほど、また、電極の触媒作
用が活発になる高温ほど顕著に起こる。 【0009】また、スルホン酸基を多く含有するポリイ
ミド膜についてはNafionに比べて高いメタノール
ブロック性を示しているが、プロトン電導度は電解質と
して用いるには不充分である。 【0010】 【発明が解決しようとする課題】本発明は、直接メタノ
ール燃料電池のための電解質膜として、低いメタノール
透過性と高いイオン電導性を併せ持つ直接メタノール燃
料電池用高分子電解質膜を提供することを目的とする。 【0011】 【課題を解決するための手段】本発明者は、直接メタノ
ール燃料電池用高分子電解質膜における問題点を解決す
るため、パーフルオロスルホン酸ポリマー膜へ含有して
もそのプロトン電導度を低下させないと同時にメタノー
ルブロック効果を発現する架橋ポリマーを得るべく鋭意
研究を重ねた結果、下記一般式(1)で表される構造の
少なくとも一種の架橋ポリマーを含有した直接メタノー
ル燃料電池用高分子電解質膜が上記課題を解決するのに
有用であることをつきとめ、本発明を完成するに至っ
た。 〔ここで、Xは2価の置換基を示す。Rは水素,アルキ
ル基,アルコキシ基を示し、mは0〜2から選ばれる整
数を示す。また,Rは環を形成してもよい。Yは炭素数
1〜8の枝分かれした、また、環を形成しても良い2価
の炭化水素基を示す。〕 【0012】本発明においては、特定の構造を有する架
橋ポリマーをパーフルオロスルホン酸ポリマー膜に含有
させることで、高いプロトン電導度とメタノールブロッ
ク性を同時に改善することを可能とした。即ち、高度に
架橋した特定の構造を有するポリマーをパーフルオロス
ルホン酸ポリマー膜に含有させることにより、パーフル
オロスルホン酸ポリマー膜内に分子ふるい構造が形成さ
れ、サイズの小さい水素イオンは透過するが、サイズの
大きいメタノールは透過しにくくなる。その結果、プロ
トン電導性は低下させずに、メタノール透過をブロック
する効果が発現する。 【0013】 【発明の形態】特定の構造を有する架橋ポリマーはAn
al.Chem.,59巻,1758項,1987年に
示された方法を参考にすることにより合成することがで
きる。 【0014】特定の繰り返し構造を有する架橋ポリマー
としては、下記一般式(4)で表される繰り返し単位を
有することが、得られる直接メタノール燃料電池用高分
子電解質膜の特性上好ましい。 〔ここで、Rは水素,アルキル基,アルコキシ基を示
し,mは0〜2から選ばれる整数を示す。また、Rは環
を形成してもよい。Yは炭素数1〜8の枝分かれした、
また、環を形成しても良い2価の炭化水素基を示す。〕 【0015】具体的なポリマーの構造としては、一般式
(1)で表される部分構造をA、一般式(4)で表され
る部分構造をBで表すと、例えば、下記一般式(5)〜
(7)等で表されるポリエーテル、ポリウレタン、ポリ
イミド、それらのランダム共重合体等が挙げられる。 〔ここで、Qはカルボン酸基、スルホン酸基、リン酸基
であってもよい。nは0〜4から選択される整数。k,
lは任意に設定できる。〕 【0016】また、本発明において、パーフルオロスル
ホン酸ポリマー膜は下記一般式(2)で表される構造で
あることが、プロトン電導性を発現する上で好ましい。〔ここで、rは1〜15、p,qはそれぞれ0〜20、
1〜10から選ばれる数値を示す。sは任意に設定でき
る。〕 【0017】パーフルオロスルホン酸ポリマー膜のイオ
ン導電度は、水またはメタノール水溶液に膨潤した状態
で、0.01S/cm以上、好ましくは0.05S/c
m以上であることが好ましく、また、特定の繰り返し構
造を有する架橋ポリマーの含有量は、パーフルオロスル
ホン酸ポリマーに対して、0.1〜50重量%の範囲で
あることが好ましい。 【0018】前記一般式(1)において、Xとしては以
下の構造が挙げられる。 【0019】また、前記一般式(1)および(4)にお
いて、Yとしては以下の構造が挙げられる。 【0020】また、前記一般式(1)および(4)にお
いて、Rとしては以下の構造が挙げられる。 【0021】 【実施例】以下、実施例で本発明を説明する。 実施例1 まず、下記構造式(8)で表される厚さ200μmのパ
ーフルオロスルホン酸ポリマー膜(PFS1)を厚さ1
50nmのITO膜を設けたガラス基板上に固定し、作
用極として、Pt対極、Ag/Ag+参照電極を用い、
下記構造式(9)で表されるモノマー(M1)200m
M、ジエチルアミン450mM、過塩素酸リチウム0.
2Mを含むアセトニトリル溶液中で1300mV(対A
g/Ag+参照電極)で2時間電解重合してから膜をア
セトニトリルで洗浄後、複合膜を100℃のオーブンで
30分間加熱することによって架橋させ、その後、5w
t%HSO水溶液、純水で各1時間ずつ煮沸し、ス
ルホン酸基を酸型にすることによって、下記構造式(1
0)で表される架橋ポリマー(BP1)を合成し、パー
フルオロスルホン酸ポリマー膜(PFS1)中に含有さ
せることによって、直接メタノール燃料電池用高分子電
解質膜(BPPFS1)を形成した。 【0022】この電解質膜の90℃でのメタノール透過
速度を測定し、メタノールブロック率を求めた。また、
プロトン電導度も測定した。その結果を表1に示す。 【0023】実施例2 実施例1における電解溶液の組成を、モノマー(M1)
230mM、アリルアミン400mM、ブチルセルソル
ブ200mMを含むメタノール水溶液(vol.1:
1)に変え、電解印加方法を400〜1200mV(対
Ag/AgCl参照電極)で周期掃引させる方法に変え
た以外は実施例1と同様に操作し、直接メタノール燃料
電池用電解質膜(BPPFS2)を形成し、評価を行っ
た。その結果を表1に示す。 【表1】 【0024】 【発明の効果】本発明の高分子電解質膜は、高いプロト
ン電導度を維持したまま、メタノールの透過を抑制する
ことができ、あらゆる分野での分離膜として使用するこ
とができる。具体的な例としては、純水製造用固体高分
子電解質膜、苛性ソーダ製造用固体高分子電解質膜、純
水の電気分解による水素・酸素ガスの製造用固体高分子
電解質膜、隔膜式電気化学酸素センサ用固体高分子電解
質膜などが挙げられる。さらに、直接メタノール燃料電
池用高分子電解質膜としても有効に使用できるものであ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte membrane having high proton conductivity and methanol blocking property, particularly when used in a solid fuel cell, and a method for producing the same.
And a solid fuel cell using the polymer electrolyte membrane. 2. Description of the Related Art Conventionally, a solid polymer fuel cell uses hydrogen gas as a fuel and uses a Nafion (registered trademark) film, which is a perfluorosulfonic acid polymer, as a hydrogen ion conductive film. Is common (Jou
rnal of Power Sources, Volume 51,
129, 1994), a polymer solid fuel cell using hydrogen gas as a fuel: 1) a hydrogen cylinder for supplying hydrogen gas;
Alternatively, there is a problem that a hydrogen storage alloy is required, 2) danger in supply / transport of hydrogen gas, and 3) cost of a peripheral security device is required. [0003] On the other hand, a polymer solid fuel cell using hydrogen gas converted from a reformer by supplying methanol as a fuel does not require a high-pressure vessel or the like because it is a supplied fuel liquid.
Since the safety in supply and transportation is relatively high, the cost in supply and transportation is low, and generation from natural gas is possible, research and development are being carried out as next-generation fuel cells (solid high Development and application of molecular fuel cells, 69, 2000). [0004] The development of a compact reformer is approaching the practical characteristics of a reformed methanol fuel cell for automobiles. (Abstracts of the 105th JOEM Lecture, Development Trends and Development of Fuel Cells, 33, 1999) ). [0005] By the way, the most important features of the polymer solid fuel cell are that the use of a solid electrolyte membrane makes it possible to reduce the weight and size of the cell body, eliminates the need for an electrolytic solution concentrator, and as a result has a high energy conversion efficiency. And the like. However, miniaturization of reformed methanol fuel cells using a methanol reformer has been promoted (development and application of polymer electrolyte fuel cells, 73, 200).
(0 years), a reformer is indispensable, and there remains a problem in terms of efficiency such as burning part of the recovered hydrogen to heat it. On the other hand, research on direct methanol fuel cells, in which methanol is supplied directly to the anode of the fuel cell without reforming, has been started (Abstracts of the 105th JOEM Lecture, Development Trends and Developments of Fuel Cells, Item 35) , 1999). This direct methanol fuel cell does not require a reformer, so it is possible to significantly reduce the weight and size of the cell, and does not require heating of the reformer, so it is also expected as a portable fuel cell (E
electrochimica Acta, No. 45, 94
5, 1999). However, problems such as permeation and permeation of methanol into the electrolyte membrane and elution of the polymer of the electrolyte membrane have not been solved. At present, Nafion, which is a perfluorosulfonic acid polymer, is being studied mainly as an electrolyte membrane for a direct methanol fuel cell. Also, Nafion
An electrolyte membrane (Phys. Chem. Ch.) Obtained by gelling polyvinyl alcohol (P-PVA), which has been newly phosphorylated, by cross-linking as an electrolyte membrane replacing
em. Phys. , Vol. 1, 2749, 1999) and a film in which a polymer as an electrolyte is filled in pores of a heat-resistant porous substrate (Polymer Preprints, Ja.).
Pan, Vol. 48, No. 10, 1999), and a polyimide film containing a large amount of sulfonic acid groups (Polymer)
Preprints, Japan, 48, No. 4, 20
2000) has been proposed. Most of these electrolyte membranes show performance that can be used for direct methanol fuel cell in terms of proton conductivity, but are still insufficient in methanol blocking property. For example, in a battery using Nafion, even when driven at a low methanol concentration, about 40% of the methanol supplied from the anode is permeated. This permeation of methanol into the electrolyte membrane is called methanol crossover. The permeated methanol reaches the counter electrode, the cathode, where it is reacted. This not only reduces fuel efficiency, but also adversely affects cathode performance. This methanol crossover occurs more remarkably as the concentration of methanol as a fuel is higher and as the temperature at which the catalytic action of the electrode becomes more active. A polyimide membrane containing a large amount of sulfonic acid groups shows a higher methanol blocking property than Nafion, but the proton conductivity is insufficient for use as an electrolyte. [0010] The present invention provides a polymer electrolyte membrane for a direct methanol fuel cell having both low methanol permeability and high ion conductivity as an electrolyte membrane for a direct methanol fuel cell. The purpose is to: In order to solve the problems in the polymer electrolyte membrane for a direct methanol fuel cell, the present inventor has determined that the proton conductivity of a perfluorosulfonic acid polymer membrane can be reduced even if it is contained in a perfluorosulfonic acid polymer membrane. As a result of intensive studies to obtain a crosslinked polymer which does not lower and at the same time exhibits a methanol blocking effect, a polymer electrolyte for a direct methanol fuel cell containing at least one crosslinked polymer having a structure represented by the following general formula (1) The inventors have found that the film is useful for solving the above problems, and have completed the present invention. [Where X represents a divalent substituent. R represents hydrogen, an alkyl group, or an alkoxy group, and m represents an integer selected from 0 to 2. R may form a ring. Y represents a branched divalent hydrocarbon group having 1 to 8 carbon atoms and which may form a ring. In the present invention, the inclusion of a crosslinked polymer having a specific structure in a perfluorosulfonic acid polymer membrane makes it possible to simultaneously improve high proton conductivity and methanol blocking property. That is, by including a polymer having a highly crosslinked specific structure in the perfluorosulfonic acid polymer membrane, a molecular sieve structure is formed in the perfluorosulfonic acid polymer membrane, and small-sized hydrogen ions are transmitted therethrough. Large size methanol becomes difficult to permeate. As a result, the effect of blocking the permeation of methanol is exhibited without lowering the proton conductivity. A crosslinked polymer having a specific structure is An
al. Chem. 59, 1758, 1987. The crosslinked polymer having a specific repeating structure preferably has a repeating unit represented by the following general formula (4) in terms of characteristics of the obtained polymer electrolyte membrane for a direct methanol fuel cell. [Where R represents a hydrogen, an alkyl group, or an alkoxy group, and m represents an integer selected from 0 to 2.] R may form a ring. Y is branched having 1 to 8 carbon atoms,
Further, it represents a divalent hydrocarbon group which may form a ring. As a specific structure of the polymer, when the partial structure represented by the general formula (1) is represented by A and the partial structure represented by the general formula (4) is represented by B, for example, the following general formula ( 5)-
And polyethers, polyurethanes, polyimides, and random copolymers thereof represented by (7) and the like. [Here, Q may be a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group. n is an integer selected from 0 to 4. k,
l can be set arbitrarily. In the present invention, the perfluorosulfonic acid polymer membrane preferably has a structure represented by the following general formula (2) in order to exhibit proton conductivity. [Where r is 1 to 15, p and q are each 0 to 20,
Shows a numerical value selected from 1 to 10. s can be set arbitrarily. The ionic conductivity of the perfluorosulfonic acid polymer membrane is 0.01 S / cm or more, preferably 0.05 S / c, when swollen in water or an aqueous methanol solution.
m or more, and the content of the crosslinked polymer having a specific repeating structure is preferably in the range of 0.1 to 50% by weight based on the perfluorosulfonic acid polymer. In the general formula (1), X has the following structure. In the general formulas (1) and (4), Y has the following structure. In the general formulas (1) and (4), R has the following structure. The present invention will be described below with reference to examples. Example 1 First, a 200 μm-thick perfluorosulfonic acid polymer film (PFS1) represented by the following structural formula (8) was formed to a thickness of 1 μm.
Fixing on a glass substrate provided with a 50 nm ITO film, using a Pt counter electrode and an Ag / Ag + reference electrode as working electrodes,
200 m of a monomer (M1) represented by the following structural formula (9)
M, diethylamine 450 mM, lithium perchlorate 0.
1300 mV (vs. A in acetonitrile solution containing 2M)
g / Ag + reference electrode) for 2 hours, and after washing the membrane with acetonitrile, the composite membrane is cross-linked by heating in an oven at 100 ° C. for 30 minutes, and then 5 w
By boiling for 1 hour each in an aqueous solution of t% H 2 SO 4 and pure water to convert the sulfonic acid group into an acid form, the following structural formula (1)
A polymer electrolyte membrane for a methanol fuel cell (BPPFS1) was directly formed by synthesizing a crosslinked polymer (BP1) represented by the formula (0) and incorporating it into a perfluorosulfonic acid polymer membrane (PFS1). The methanol permeation rate at 90 ° C. of the electrolyte membrane was measured to determine a methanol block rate. Also,
Proton conductivity was also measured. Table 1 shows the results. Example 2 The composition of the electrolytic solution in Example 1 was changed to the monomer (M1)
Methanol aqueous solution containing 230 mM, allylamine 400 mM, and butyl cellosolve 200 mM (vol. 1:
1) except that the electrolytic application method was changed to a method of periodically sweeping at 400 to 1200 mV (vs. Ag / AgCl reference electrode), and the operation was performed in the same manner as in Example 1, and the direct methanol fuel cell electrolyte membrane (BPPFS2) was used. Formed and evaluated. Table 1 shows the results. [Table 1] The polymer electrolyte membrane of the present invention can suppress the permeation of methanol while maintaining high proton conductivity, and can be used as a separation membrane in various fields. Specific examples include a solid polymer electrolyte membrane for producing pure water, a solid polymer electrolyte membrane for producing caustic soda, a solid polymer electrolyte membrane for producing hydrogen and oxygen gas by electrolysis of pure water, and a diaphragm type electrochemical oxygen membrane. Examples include a solid polymer electrolyte membrane for a sensor. Further, it can be effectively used as a polymer electrolyte membrane for direct methanol fuel cells.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷口 彬雄 長野県上田市中央3−14−2−602 (72)発明者 平川 節子 群馬県吾妻郡草津町464−837 Fターム(参考) 4J002 BD15X CH07W GQ00 4J100 AC26P AE38Q BA09Q BA56Q BB10Q CA04 FA27 JA43 5H026 AA06 CX04 EE19 HH00    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Akio Taniguchi             3-14-2-602 Chuo, Ueda City, Nagano Prefecture (72) Inventor Setsuko Hirakawa             464-837 Kusatsu-machi, Agatsuma-gun, Gunma F term (reference) 4J002 BD15X CH07W GQ00                 4J100 AC26P AE38Q BA09Q BA56Q                       BB10Q CA04 FA27 JA43                 5H026 AA06 CX04 EE19 HH00

Claims (1)

【特許請求の範囲】 【請求項1】下記一般式(1)の繰り返し単位を有する
架橋ポリマーをパーフルオロスルホン酸ポリマー膜中に
含有する高分子電解質膜。 〔ここで、Xは2価の置換基を示す。Rは水素、アルキ
ル基、アルコキシ基を示し、mは0〜2から選ばれる整
数を示す。また、Rは環を形成してもよい。Yは炭素数
1〜8の枝分かれした、または、環を形成してもよい2
価の炭化水素基を示す。〕 【請求項9】パーフルオロスルホン酸ポリマー膜が、下
記一般式(2)で表される繰り返し単位を有することを
特徴とする請求項1記載の高分子電解質膜。 〔ここで、rは1〜15、p,qはそれぞれ0〜20、
1〜10から選ばれる数値を示す。sは任意に設定でき
る。〕 【請求項3】パーフルオロスルホン酸ポリマー膜が、下
記一般式(3)で表される化合物であることを特徴とす
る請求項1記載の高分子電解質膜。 〔ここで、rは5〜13.5、pは1〜20から選ばれ
る数値を示す。sは任意に設定できる。〕 【請求項4】メタノールあるいはメタノールと水の混合
物を燃料とする高分子固体燃料電池に用いる請求項1〜
3記載の直接メタノール燃料電池用高分子電解質膜。 【請求項5】上記一般式(1)の繰り返し単位を有する
架橋ポリマーをパーフルオロスルホン酸ポリマー膜中に
電解重合によって含有させることを特徴とする請求項1
〜3記載の高分子電解質膜の製造方法。 【請求項6】請求項1〜3記載の高分子電解質膜を用い
た固体燃料電池。 【請求項7】架橋ポリマーが下記一般式(4)の繰り返
し単位を有する高分子電解質膜。 〔ここで、Xは2価の置換基を示す。Rは水素、アルキ
ル基、アルコキシ基を示し、mは0〜2から選ばれる整
数を示す。また、Rは環を形成してもよい。Yは炭素数
1〜8の枝分かれした、または、環を形成してもよい2
価の炭化水素基を示す。〕 【請求項8】メタノールあるいはメタノールと水の混合
物を燃料とする高分子固体燃料電池に用いる請求項5記
載の直接メタノール燃料電池用高分子電解質膜。 【請求項9】上記一般式(4)の繰り返し単位を有する
架橋ポリマーをパーフルオロスルホン酸ポリマー膜中に
電解重合によって含有することを特徴とする請求項5記
載の高分子電解質膜の製造方法。 【請求項10】請求項5記載の高分子電解質膜を用いた
固体燃料電池。
Claims: 1. A polymer electrolyte membrane containing a crosslinked polymer having a repeating unit represented by the following general formula (1) in a perfluorosulfonic acid polymer membrane. [Where X represents a divalent substituent. R represents hydrogen, an alkyl group, or an alkoxy group, and m represents an integer selected from 0 to 2. R may form a ring. Y is a branched or branched ring having 1 to 8 carbon atoms,
Represents a monovalent hydrocarbon group. 9. The polymer electrolyte membrane according to claim 1, wherein the perfluorosulfonic acid polymer membrane has a repeating unit represented by the following general formula (2). [Where r is 1 to 15, p and q are each 0 to 20,
Shows a numerical value selected from 1 to 10. s can be set arbitrarily. 3. The polymer electrolyte membrane according to claim 1, wherein the perfluorosulfonic acid polymer membrane is a compound represented by the following general formula (3). [Here, r represents a numerical value selected from 5 to 13.5, and p represents a numerical value selected from 1 to 20. s can be set arbitrarily. 4. A polymer solid fuel cell using methanol or a mixture of methanol and water as a fuel.
4. The polymer electrolyte membrane for a direct methanol fuel cell according to 3. 5. A perfluorosulfonic acid polymer membrane comprising a crosslinked polymer having a repeating unit represented by the general formula (1) by electrolytic polymerization.
4. The method for producing a polymer electrolyte membrane according to any one of claims 1 to 3. 6. A solid fuel cell using the polymer electrolyte membrane according to claim 1. 7. A polymer electrolyte membrane wherein the crosslinked polymer has a repeating unit represented by the following general formula (4). [Where X represents a divalent substituent. R represents hydrogen, an alkyl group, or an alkoxy group, and m represents an integer selected from 0 to 2. R may form a ring. Y is a branched or branched ring having 1 to 8 carbon atoms,
Represents a monovalent hydrocarbon group. 8. The polymer electrolyte membrane for a direct methanol fuel cell according to claim 5, which is used for a solid polymer fuel cell using methanol or a mixture of methanol and water as a fuel. 9. The method for producing a polymer electrolyte membrane according to claim 5, wherein the crosslinked polymer having the repeating unit of the general formula (4) is contained in the perfluorosulfonic acid polymer membrane by electrolytic polymerization. 10. A solid fuel cell using the polymer electrolyte membrane according to claim 5.
JP2000391638A 2000-11-17 2000-11-17 Polymer electrolyte film and manufacturing method of the same, and solid fuel cell using polymer electrolyte film Pending JP2002158016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000391638A JP2002158016A (en) 2000-11-17 2000-11-17 Polymer electrolyte film and manufacturing method of the same, and solid fuel cell using polymer electrolyte film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000391638A JP2002158016A (en) 2000-11-17 2000-11-17 Polymer electrolyte film and manufacturing method of the same, and solid fuel cell using polymer electrolyte film

Publications (1)

Publication Number Publication Date
JP2002158016A true JP2002158016A (en) 2002-05-31

Family

ID=18857745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000391638A Pending JP2002158016A (en) 2000-11-17 2000-11-17 Polymer electrolyte film and manufacturing method of the same, and solid fuel cell using polymer electrolyte film

Country Status (1)

Country Link
JP (1) JP2002158016A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004027909A1 (en) * 2002-09-20 2006-01-19 株式会社カネカ Proton conducting polymer membrane and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004027909A1 (en) * 2002-09-20 2006-01-19 株式会社カネカ Proton conducting polymer membrane and method for producing the same
JP4794170B2 (en) * 2002-09-20 2011-10-19 株式会社カネカ Proton conducting polymer membrane, membrane-electrode assembly using the same, and fuel cell using them

Similar Documents

Publication Publication Date Title
TWI286854B (en) Proton conducting mediums for electrochemical devices and electrochemical devices comprising the same
JPH11503262A (en) Proton conductive polymer
JP4887580B2 (en) Gas diffusion electrode and polymer electrolyte fuel cell having the same
JP4036279B2 (en) Proton conductor and fuel cell using the same
KR102126034B1 (en) Ion exchange membrane, method for preparing the same, and redox flow battery comprising the same
Huang et al. Direct borohydride fuel cell performance using hydroxide‐conducting polymeric nanocomposite electrolytes
US7316854B2 (en) Proton conducting material, proton conducting membrane, and fuel cell
US20080026276A1 (en) Proton-Conducting Material, Solid Polymer Electrolyte Membrane, and Fuel Cell
US7306867B2 (en) Proton conductive solid polymer electrolyte
KR20130060159A (en) Ion-exchange membbrane for redox flow batterry
US7824781B2 (en) Metal phosphate composite and dense material comprised of the same
JP4170973B2 (en) Polymer containing terminal sulfonic acid group and polymer electrolyte and fuel cell employing the same
JP2006521265A (en) Tetravalent metal acidic triphosphate
WO2008031318A1 (en) A liquid cathode fuel cell
Fan et al. Effect of heteropolyacid and heteropolyacid salt on the performance of nanometer proton membrane microbial fuel cell
Tawalbeh et al. High Temperature Studies of Graphene Nanoplatelets-MOFs Membranes for PEM Fuel Cells Applications
JP5005160B2 (en) Gel electrolyte and fuel cell
JP2002158016A (en) Polymer electrolyte film and manufacturing method of the same, and solid fuel cell using polymer electrolyte film
JP2010218742A (en) Solid polymer electrolyte membrane and fuel cell
JP2009129881A (en) Aqueous liquid fuel for anion-exchange membrane fuel cell, and anion-exchange membrane fuel cell
JP2002313366A (en) Polymer electrolyte film, its manufacturing method, and fuel cell using polymer electrolyte film
JP2003229143A (en) Proton conductive polymer membrane and fuel cell made thereof
KR101785012B1 (en) Ion-exchnage Membrane
RU2787343C1 (en) Proton-exchange membrane based on organometallic framework structure hkust-1
JP5053504B2 (en) Fuel cell electrolyte and fuel cell