JP2002156305A - Water leak generation position detecting device and its method - Google Patents

Water leak generation position detecting device and its method

Info

Publication number
JP2002156305A
JP2002156305A JP2000350034A JP2000350034A JP2002156305A JP 2002156305 A JP2002156305 A JP 2002156305A JP 2000350034 A JP2000350034 A JP 2000350034A JP 2000350034 A JP2000350034 A JP 2000350034A JP 2002156305 A JP2002156305 A JP 2002156305A
Authority
JP
Japan
Prior art keywords
electrode
potential difference
water
electrodes
point electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000350034A
Other languages
Japanese (ja)
Other versions
JP4375896B2 (en
Inventor
Takeshi Arai
健 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP2000350034A priority Critical patent/JP4375896B2/en
Publication of JP2002156305A publication Critical patent/JP2002156305A/en
Application granted granted Critical
Publication of JP4375896B2 publication Critical patent/JP4375896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water leak generation position detection device and its method, capable of distinguishing and detecting the water leak position surely, even if plural water leak locations exist, and improving accuracy for detecting the water leak generation position. SOLUTION: This water leak generation position detection device is equipped with a sealing construction structure 1 for laying a sealing construction 2 of an electrical insulator, a surface electrode 12 installed on either of the front and the back of the sealing construction 2, plural point electrodes installed on the opposite side to the surface electrode 12, a first selection connection means for setting an applicator by selecting one from the plural point electrodes and connecting the electrode to the application side of a power source 4, a potential difference measuring means 5 for measuring the potential difference between the point electrodes except the applicator by a voltage applied between the applicator and the surface electrode 12, and a second selection connection means for setting potential difference measuring electrodes by selecting two point electrodes adjacent to the application electrode and connecting the electrodes to the potential difference measuring means 5. The device is used for detecting the water leak position of the sealing construction structure 1 from the measured potential difference and the position of the applicator. The device has a third selection connection means for connecting all point electrodes, except the selected applicator and the potential difference measuring electrodes, and the surface electrode 12 to the other terminal of the power source 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、合成樹脂や合成ゴ
ムなどの電気的絶縁性を有する材料からなる遮水工を敷
設して人工的に造られた貯水池、水路、或いは管理型一
般廃棄物最終処分場及び管理型産業廃棄物最終処分場な
どの遮水工構造物に関し、遮水工構造物の遮水工に生じ
る漏水の発生位置を検知する漏水発生位置検知装置及び
その方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reservoir, a waterway, or a managed municipal waste which is artificially constructed by laying a water shield made of an electrically insulating material such as synthetic resin or synthetic rubber. TECHNICAL FIELD The present invention relates to a water leakage occurrence position detecting device and method for detecting a water leakage occurrence position generated in a water impervious structure of a water impervious structure, such as a final disposal site and a managed industrial waste final disposal site.

【0002】[0002]

【従来の技術】貯水池、水路、或いは管理型一般廃棄物
最終処分場及び管理型産業廃棄物最終処分場などの遮水
工構造物は、合成樹脂や合成ゴムなどの電気的絶縁性を
有する材料からなる遮水工を地盤の窪みに敷設して人工
的に造られている。
2. Description of the Related Art Water-blocking structures such as reservoirs, waterways, or managed general waste final disposal sites and managed industrial waste final disposal sites are made of electrically insulating materials such as synthetic resins and synthetic rubbers. It is constructed artificially by laying a water barrier made of pits in a depression in the ground.

【0003】かかる遮水工構造物は、遮水工に亀裂など
の破損が生じると、破損箇所より地盤側へ漏水する。例
えば、管理型一般廃棄物最終処分場の場合、遮水工が破
損した状態で放置すると、汚染液が漏水して近隣を汚染
し、或いは地下水を汚染して公害問題を引き起こしてし
まう。そこで、遮水工を用いた遮水工構造物は、漏水
(あるいは遮水工の破損)の発生及び発生位置を早期に
検知して破損箇所を補修する必要がある。
[0003] In such a seepage control structure, when damage such as a crack occurs in the seepage control work, water leaks from the damaged portion to the ground side. For example, in the case of a managed municipal solid waste final disposal site, if the impermeable works are left in a damaged state, the contaminated liquid leaks and contaminates nearby areas, or contaminates groundwater, causing a pollution problem. Therefore, it is necessary to detect the occurrence and location of water leakage (or damage to the water impervious work) and repair the damaged part in the water impervious structure using the water impervious work.

【0004】従来このような遮水工の漏水部の検知方法
として、遮水工構造物の内部に設置した電極と外部の地
盤側に設置した電極との間に電圧を印加し、前記電圧を
印加する電極とは別に、遮水工の表裏どちらかに設置し
た多数の電極を用いて電位分布を測定し、遮水工の漏水
周辺に生じた電位異常を検知することにより漏水位置を
特定する方法が知られている。
Conventionally, as a method for detecting a water leaking portion of such a seepage control structure, a voltage is applied between an electrode installed inside the seepage control structure and an electrode installed on the outside ground side, and the voltage is detected. In addition to the electrodes to be applied, the potential distribution is measured by using a large number of electrodes installed on the front and back of the water shield, and the leak location is specified by detecting the potential abnormality around the water leak of the water shield. Methods are known.

【0005】[0005]

【発明が解決しようとする課題】ところで、遮水工の紫
外線劣化や熱劣化を防止する保護層で遮水工全体を覆う
ように設けるよう定められている。これら保護層等の材
料は、一般にポリエステルなどの合成繊維の不織布が用
いられているが、耐久性の面からは土質材料やコンクリ
ートの方が優れているので、土質材料やコンクリートを
用いる場合も多い。いずれにしても、これら保護層等の
材料は、電気的絶縁体ではない。従って、保護層等が電
気的に漏水と等価であるため、遮水工の上下で電極に電
圧を印加しても、保護層等の周辺では電位差異常が発生
しても本来検知しようとする漏水によるものなのか、保
護層等によるものなのかの区別がつきにくく、漏水発生
位置を検出する精度を向上させる上での障害となってい
た。この現象は、従来の処分場においても、廃棄物搬入
道路や浸出水排水管において同種の測定障害があり、測
定精度を低下させている。また、複数の漏水部が発生し
た場合も同様に、それぞれの漏水部の影響によって電位
差が重なり合って個々の漏水の位置が区別がつきにく
く、漏水発生位置を検出する精度を向上させる上での障
害となっていた。
By the way, it is provided that a protective layer for preventing ultraviolet ray deterioration and thermal deterioration of the water shielding work is provided so as to cover the entire water shielding work. As a material for the protective layer and the like, a nonwoven fabric of synthetic fiber such as polyester is generally used. However, since a soil material or concrete is superior in terms of durability, a soil material or concrete is often used. . In any case, these materials such as the protective layer are not electrical insulators. Therefore, since the protective layer and the like are electrically equivalent to water leakage, even if a voltage is applied to the electrodes above and below the water shielding work, even if a potential difference abnormality occurs around the protective layer, etc. It is difficult to distinguish whether the leakage is caused by the protection layer or the like, which is an obstacle to improving the accuracy of detecting the position where the water leak has occurred. This phenomenon has the same type of measurement obstacle in the waste loading road and the leachate drainage pipe even in the conventional disposal site, and reduces the measurement accuracy. Similarly, when a plurality of water leaks occur, the potential difference overlaps due to the influence of the water leaks, making it difficult to distinguish the positions of the individual water leaks, which is an obstacle to improving the accuracy of detecting the water leak occurrence position. Had become.

【0006】以上から本発明は、前記問題点に鑑みてな
されたものであり、複数の漏水位置が存在しても確実に
漏水位置を区別して検知することができ、漏水発生位置
を検出する精度を向上させることができる漏水発生位置
検知装置及びその方法を提供することを技術的課題とす
る。
In view of the above, the present invention has been made in view of the above problems, and even if there are a plurality of water leakage positions, the water leakage positions can be reliably distinguished and detected, and the accuracy of detecting the water leakage occurrence position can be improved. It is an object of the present invention to provide a water leak occurrence position detecting device and a method thereof that can improve the water leakage.

【0007】[0007]

【課題を解決するための手段】前記課題を達成するため
に、本発明の漏水発生位置検知装置及びその方法は、以
下に示す手段を採用した。すなわち、請求項1の漏水発
生位置検知装置は、地盤に形成した窪みに電気的絶縁体
の遮水工を敷設する遮水工構造物と、前記遮水工の表裏
どちらかに設置した面電極と、前記面電極の反対側に設
置した複数の点電極と、前記複数の点電極から1つを選
択し電源の印加側に接続して印加電極とする第1の選択
接続手段と、前記印加電極を除く点電極間で電位差を測
定する電位差測定手段と、前記印加電極に隣り合う2個
の前記点電極を選択して前記電位差測定手段に接続して
電位差測定用電極とする第2の選択接続手段と、を備
え、前記測定した電位差及び前記印加電極の位置から前
記遮水工構造物の漏水位置を検知する漏水発生位置検知
装置であって、前記選択された印加電極及び電位差測定
用電極を除く全ての点電極と前記面電極を前記電源の他
端に接続する第3の選択接続手段を有することを特徴と
する。
Means for Solving the Problems In order to achieve the above object, a water leakage occurrence position detecting apparatus and method according to the present invention employs the following means. In other words, the water leakage occurrence position detecting device according to claim 1 is a water impervious structure in which a water impervious structure of an electrical insulator is laid in a depression formed in the ground, and a surface electrode installed on either side of the water impervious work. A plurality of point electrodes provided on the opposite side of the surface electrode, a first selection connection means for selecting one of the plurality of point electrodes and connecting to an application side of a power supply to make an application electrode; A potential difference measuring means for measuring a potential difference between the point electrodes excluding the electrodes, and a second selection of selecting the two point electrodes adjacent to the application electrode and connecting to the potential difference measuring means to form a potential difference measuring electrode And a connection means, comprising: a water leakage occurrence position detecting device that detects a water leakage position of the impermeable structure from the measured potential difference and the position of the application electrode, wherein the selected application electrode and the potential difference measurement electrode are provided. All point electrodes except for And having a third selective connection means for connecting the other end of the source.

【0008】請求項1の発明によれば、第1の選択接続
手段により印加電極と面電極との間に印加された電圧に
より、(1) 第1の選択接続手段→印加電極→地盤→印加
電極と電位差測定用電極以外の点電極→電源4の他端。
(2) 第1の選択接続手段→印加電極→地盤→面電極→電
源の他端。(3) 第1の選択接続手段→印加電極→漏水→
面電極→電源の他端、の回路が形成される。
According to the first aspect of the present invention, the voltage applied between the applied electrode and the plane electrode by the first selective connecting means is: (1) the first selective connecting means → applied electrode → ground → applied A point electrode other than the electrode and the potential difference measuring electrode → the other end of the power supply 4.
(2) First selective connection means → applied electrode → ground → surface electrode → other end of power supply. (3) First selective connection means → applied electrode → water leakage →
A circuit from the surface electrode to the other end of the power supply is formed.

【0009】そして、回路(1)〜(3)によれば、第1の選
択接続手段により選択された1個の印加電極と面電極と
の間に電圧が印加され、第2の選択接続手段により選択
された2個の電位差測定用電極間で電位差が測定され
る。また、第3の選択接続手段により、印加電極と電位
差測定用電極を除くすべての点電極が、印加側でない電
源の他端に接続されることで遮水工の表裏の電場が同電
位となるように制御される。
According to the circuits (1) to (3), a voltage is applied between the one application electrode selected by the first selection connection means and the surface electrode, and the second selection connection means The potential difference is measured between the two potential difference measuring electrodes selected by the above. In addition, by the third selective connection means, all the point electrodes except the applied electrode and the potential difference measuring electrode are connected to the other end of the power source which is not the applied side, so that the electric fields on the front and back of the water shield work have the same potential. Is controlled as follows.

【0010】すなわち、遮水工表裏の電位の制御は、面
電極に接続される電源の他端に、選択された1個の印加
電極と2個の電位差測定用電極を除くすべての点電極を
接続することにより行われる。そして、印加電極と2個
の電位差測定用電極を除く遮水工上下を同電位に制御し
ておけば、印加電極周辺に漏水部がない条件で、電位傾
度は理論的に0Vが測定され、印加電極周辺に漏水部が
ある条件で有意な電位差が測定されることになる。ま
た、電位差の変動は漏水周辺でのみ測定され、漏水が複
数存在しても従来のように漏水の影響によって電位差が
重なり合うことはなく、漏水部を確実に区別して検知す
ることができる。
[0010] That is, the control of the electric potential on the front and back of the water shield works by connecting all the point electrodes except one selected application electrode and two potential difference measurement electrodes to the other end of the power supply connected to the surface electrode. This is done by connecting. If the upper and lower water shields except the applied electrode and the two potential difference measuring electrodes are controlled to have the same potential, the potential gradient is theoretically measured to be 0 V under the condition that there is no water leak around the applied electrode, A significant potential difference will be measured under the condition that there is a water leak around the application electrode. Further, the fluctuation of the potential difference is measured only around the water leak, and even if there are a plurality of water leaks, the potential differences do not overlap due to the influence of the water leak as in the related art, and the leak portion can be reliably distinguished and detected.

【0011】なお、点電極は単に金属板であるよりも面
的に広がりがある方が有利となる。そこで、点電極は裸
銅線を矩形枠状に形成したものや、より感度を高めるた
めに裸銅線を螺旋状に形成してもの、などが例示でき
る。
It is more advantageous that the point electrode has a wider area than a simple metal plate. Therefore, the point electrode can be exemplified by one in which a bare copper wire is formed in a rectangular frame shape, or one in which a bare copper wire is formed in a spiral shape to further increase sensitivity.

【0012】また、遮水工は電気的絶縁性を有する材質
である合成樹脂や合成ゴムが例示できる。また、管理型
廃棄物最終処分場等に用いられる保護層は、ポリエステ
ルやポリプロピレンの不織布(遮光マット)を敷設する
場合や、土質材料やコンクリートを敷設する場合が例示
できる。
[0012] Examples of the water shielding work include a synthetic resin and a synthetic rubber, which are electrically insulating materials. Examples of the protective layer used in the managed waste final disposal site include a case where a nonwoven fabric (light-shielding mat) of polyester or polypropylene is laid, or a case where a soil material or concrete is laid.

【0013】また、請求項2の漏水発生位置検知装置
は、請求項1の構成において、前記電位差測定用電極が
前記印加電極を中心として全方向における整列線上にあ
る点電極であり、前記第2の選択接続手段が1つの前記
印加電極に対して異方向の整列線上にある1組みの隣り
合う点電極を複数組み順次選択して前記電位差測定手段
に順次接続することを特徴とする。
[0013] In a second aspect of the present invention, in the configuration of the first aspect, the potential difference measuring electrode is a point electrode that is on an alignment line in all directions around the application electrode. Wherein said selective connection means sequentially selects a plurality of sets of adjacent point electrodes on an alignment line in a different direction with respect to one applied electrode and sequentially connects them to said potential difference measuring means.

【0014】請求項2の発明によれば、1つの印加電極
に対し、異方向に隣り合う電位差測定用電極間の変化の
特性を利用して、電位差と電位差の極性と大きさから、
漏水位置を特定することが可能となる。例えば、印加電
圧と同一位相の電流が漏水部周辺に向かって流れ易くな
り、測線方向に隣り合う2個の点電極間では測定値が漏
水部の周辺でN字型に変化する傾向にあり、測線方向と
直角方向に隣り合う2個の点電極間では漏水部を挟んだ
それぞれの測線において極性が異なるピークを示す傾向
にある。かかる測定する向きの特性を利用することによ
り、漏水位置の特定精度が向上する。
According to the second aspect of the present invention, the potential difference and the polarity and magnitude of the potential difference are determined for one applied electrode by utilizing the characteristics of the change between the potential difference measuring electrodes adjacent in different directions.
It is possible to specify the leak position. For example, a current having the same phase as the applied voltage tends to flow toward the vicinity of the water leaking portion, and the measured value tends to change in an N-shape around the water leaking portion between two point electrodes adjacent in the measurement direction. Between two point electrodes adjacent to each other in a direction perpendicular to the line direction, there is a tendency that the respective lines along the line sandwiching the water leakage portion show peaks having different polarities. By utilizing the characteristic of the direction to be measured, the accuracy of specifying the water leakage position is improved.

【0015】更に、請求項3の漏水発生位置検知装置
は、請求項1または請求項2の構成において、前記遮水
工が前記地盤に接触する部分の近傍に、前記複数の点電
極あるいは前記面電極の周辺を取り囲んで配置した環状
電極を前記電源の他端に接続したことを特徴とする。
Further, in the water leakage occurrence position detecting device according to the third aspect of the present invention, in the configuration according to the first or second aspect, the plurality of point electrodes or the surface is provided near a portion where the water shield works in contact with the ground. An annular electrode surrounding the periphery of the electrode is connected to the other end of the power supply.

【0016】請求項3の発明によれば、複数の点電極あ
るいは面電極の周辺を取り囲んで配置した環状電極を遮
水工構造物内の面電極と同様に印加側でない他端に直接
接続することで、環状電極や面電極が遮水工構造物を覆
う遮水工表裏の電場を同電位に制御する。この遮水工表
裏の電場が同電位に制御される構成から、保護層や地盤
等を経由して流れる電流による影響を少なくすることが
できる。
According to the third aspect of the present invention, an annular electrode arranged so as to surround a plurality of point electrodes or surface electrodes is directly connected to the other end which is not the application side like the surface electrodes in the water shield structure. Thus, the electric field on the front and back of the water impervious structure, in which the annular electrode or the surface electrode covers the water impervious structure, is controlled to the same potential. The configuration in which the electric fields on the front and back of the seepage control are controlled to the same potential can reduce the influence of the current flowing through the protective layer, the ground, and the like.

【0017】更に、請求項4の漏水発生位置検知方法
は、地盤に形成した窪みに電気的絶縁体の遮水工を敷設
する遮水工構造物とし、前記遮水工の表裏どちらかに面
電極を設置し、前記面電極の反対側に複数の点電極を設
置し、前記複数の点電極から1つを選択し電源の印加側
に接続して印加電極とし、前記印加電極に隣り合う2個
の前記点電極を選択して電位差測定用電極とし、前記選
択された印加電極及び電位差測定用電極を除く全ての点
電極と前記面電極を前記電源の他端に接続し、前記電位
差測定用電極間で電位差を測定し、前記測定した電位差
及び前記印加電極の位置から前記遮水工構造物の漏水位
置を検知することを特徴とする。
Further, according to a fourth aspect of the present invention, there is provided a method for detecting a water leak occurrence position, wherein a water impervious structure is provided in which a water impervious work of an electrical insulator is laid in a depression formed in the ground. An electrode is provided, a plurality of point electrodes are provided on the opposite side of the plane electrode, one of the plurality of point electrodes is selected and connected to an application side of a power source to form an application electrode, and two adjacent electrodes are provided. Selecting the point electrodes as potential difference measurement electrodes, connecting all the point electrodes and the surface electrode except the selected applied electrode and potential difference measurement electrode to the other end of the power supply, A potential difference between the electrodes is measured, and a water leakage position of the seepage control structure is detected from the measured potential difference and the position of the application electrode.

【0018】請求項4の発明によれば、遮水工構造物内
外の電位が同電位となるようにして電位差測定用電極に
よる電位差の変動は漏水周辺でのみ測定され、漏水が複
数存在しても従来のように漏水の影響によって電位差が
重なり合うことはなく、漏水部を確実に区別して検知す
ることができる。以上の発明の構成要件である二相交流
電源は、交替直流電源であってもよい。
According to the fourth aspect of the present invention, the fluctuation of the potential difference by the potential difference measuring electrode is measured only in the vicinity of the water leakage so that the potential inside and outside the water shielding structure becomes the same potential. Also, unlike the related art, the potential difference does not overlap due to the influence of water leakage, and the leaked portion can be reliably distinguished and detected. The two-phase AC power supply which is a component of the invention described above may be an alternating DC power supply.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態に係る
漏水発生位置検知装置を図1〜図10に基づいて詳細に
説明する。なお、実施の形態に係る漏水発生位置検知装
置は、遮水工構造物1に設置されている。また、遮水工
構造物1は管理型廃棄物最終処分場の場合として説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a water leakage occurrence position detecting device according to an embodiment of the present invention will be described in detail with reference to FIGS. In addition, the water leak occurrence position detecting device according to the embodiment is installed in the water shielding structure 1. In addition, the case where the impermeable structure 1 is a managed waste final disposal site will be described.

【0020】遮水工構造物1は、図1に示すように、地
盤に形成した窪み1aに遮水工2を敷設し、遮水工2全
体を覆うようにその斜面部に保護層3を積層したもので
ある。そして、遮水工2は電気的絶縁性を有する合成樹
脂で形成されている。また、保護層3は電気的絶縁体で
ないコンクリート材料で形成されており、遮水工構造物
1に敷設した遮水工2の表面側と裏面側とが保護層3を
経由して電気的短絡回路が形成可能な状態になってい
る。
As shown in FIG. 1, a water shield structure 1 has a water shield 2 laid in a depression 1a formed in the ground, and a protective layer 3 on a slope portion thereof so as to cover the entire water shield 2. It is a laminate. The water shield 2 is formed of a synthetic resin having electrical insulation. The protective layer 3 is formed of a concrete material that is not an electrical insulator, and the front side and the rear side of the water shield 2 laid on the water shield structure 1 are electrically short-circuited via the protective layer 3. The circuit can be formed.

【0021】なお、管理型廃棄物最終処分場に用いられ
る保護層3は、ポリエステルやポリプロピレンの不織布
(遮光マット)を敷設する場合や、土質材料やコンクリ
ートを敷設する場合があるが、ポリエステルなど合成繊
維と比較すると土質材料やコンクリートの方が遮水工の
紫外線劣化や熱劣化防止に好適であり、耐久性において
非常に優れた素材であることが知られている。また、廃
棄物搬入道路等は耐久性において非常に優れたコンクリ
ートを素材として使用している。そこで、この実施の形
態ではコンクリート製の保護層3を敷設したものとして
説明する。
The protective layer 3 used in the final disposal site for managed waste may be laid with a non-woven fabric (light-shielding mat) of polyester or polypropylene, or with a soil material or concrete. Compared with fibers, soil materials and concrete are more suitable for preventing ultraviolet light deterioration and heat deterioration of the water shielding work, and are known to be materials excellent in durability. In addition, concrete roads with extremely high durability are used as the material for roads carrying waste. Therefore, in this embodiment, description will be made assuming that the protective layer 3 made of concrete is laid.

【0022】実施の形態に係わる漏水発生位置検知装置
は、遮水工2が敷設された遮水工構造物1内部(表面
側)に面電極12を配置し、遮水工2の裏面側(地盤
側)に複数の点電極Ta1〜Tm14(図5参照)を所定間
隔で配置し、更に遮水工2全体を取り囲むように環状電
極13を配置した電極配置構成を用いている。
In the water leakage occurrence position detecting apparatus according to the embodiment, a surface electrode 12 is arranged inside (a front surface side) of a water impervious structure 1 on which a water impervious work 2 is laid, and a rear surface side (a back surface side of the water impervious work 2) A plurality of point electrodes T a1 to T m14 (see FIG. 5) are arranged at predetermined intervals on the ground side) and an annular electrode 13 is arranged so as to surround the entire water shield 2.

【0023】面電極12は導電性の金属箔や金属網等で
面状に構成したものである。また、面電極12は交流電
源4の一方4aに接続している。なお、面電極12は遮
水工構造物1内では、廃棄物から電気伝導度の高い浸出
水が出るため、線状電極(例えば、裸銅線)を10m〜20m
間隔で格子状に配置してもよい。
The surface electrode 12 is made of a conductive metal foil, a metal net, or the like to have a planar shape. The surface electrode 12 is connected to one side 4 a of the AC power supply 4. In addition, since the leachate having high electric conductivity is discharged from the waste in the water shield structure 1 in the water shield structure 1, the linear electrode (for example, a bare copper wire) has a length of 10 m to 20 m.
They may be arranged in a grid at intervals.

【0024】一方、点電極Ta1〜Tm14は、図5の縦方
向にa〜mの13個、横方向に1〜14の14個(計1
82個)配列したものである。これら点電極Ta1〜T
m14の外周には、遮水工2が地盤に接触する部分の近傍
に、環状電極13が配置されている。この環状電極13
は面電極12と同様に、交流電源4の一方4aに接続し
ている。複数の点電極Ta1〜Tm14は、それぞれ電極切
替装置15を介して電位差測定装置5、交流電源4の一
方4aあるいは他方4bに接続している。
On the other hand, there are thirteen point electrodes T a1 to T m14 in the vertical direction in FIG.
82). These point electrodes T a1 to T a
An annular electrode 13 is arranged on the outer periphery of m14 in the vicinity of a portion where the water shield 2 contacts the ground. This annular electrode 13
Is connected to one side 4a of the AC power supply 4 like the surface electrode 12. The plurality of point electrodes T a1 to T m14 are respectively connected to the potential difference measuring device 5 and one of the AC power supplies 4 4a or 4b via the electrode switching device 15.

【0025】点電極Ta1〜Tm14の接続関係を更に詳し
く説明すると、電極切替装置15は点電極Ta1〜Tm14
のうち1つ(図5では点電極Tg5)を選択し交流電源4
の印加側である他方4bに接続して印加電極Tg5とする
(第1の選択接続手段)。
The point when the electrode T a1 is described in more detail a connection relationship through T m14, electrode switching device 15 point electrodes T a1 through T m14
Of them (point electrode T g5 in FIG. 5) and
Is connected to the other side 4b, which is the application side, to form an application electrode Tg5 (first selective connection means).

【0026】また、電極切替装置15は印加電極Tg5
対し測線上の隣り合う2個の点電極(図6では点電極T
g4,Tg6)を選択して電位差測定装置5に接続して電位
差測定用電極Tg4,Tg6とする(第2の選択接続手
段)。なお、電極切替装置15は、第2の選択接続手段
が電位差測定用電極を選択する場合、印加電極Tg5に対
し測線上だけでなく、測線方向に対し直角に交わる整列
線上の隣り合う2個の点電極(図7では点電極Tf5,T
h5)も選択して電位差測定装置5に接続して電位差測定
用電極とする。すなわち、第2の選択接続手段は1つの
印加電極に対して、異方向の整列線上にある1組みの隣
り合う点電極を複数組み順次選択して電位差測定手段に
順次接続する。
The electrode switching device 15 is connected to two adjacent point electrodes (in FIG. 6, the point electrode Tg5) on the measurement line with respect to the applied electrode Tg5 .
g4 , T g6 ) are selected and connected to the potential difference measuring device 5 to be used as potential difference measuring electrodes T g4 , T g6 (second selective connection means). When the second selection connection means selects an electrode for measuring a potential difference, the electrode switching device 15 determines that not only two adjacent electrodes on an alignment line that intersects the applied electrode T g5 at right angles to the measurement line direction but also on the alignment line. 7 (point electrodes T f5 , T
h5 ) is also selected and connected to the potential difference measuring device 5 to form a potential difference measuring electrode. In other words, the second selective connection means sequentially selects a plurality of sets of adjacent point electrodes on an alignment line in different directions for one applied electrode, and sequentially connects to the potential difference measuring means.

【0027】更に、電極切替装置15は、選択された印
加電極(例えばTg5)及び電位差測定用電極(印加電極
がTg5の場合は、電位差測定用電極がTg4,Tg6あるい
はT f5,Th5)を除く全ての点電極、面電極12及び環
状電極13を交流電源4の一方4aに接続する(第3の
選択接続手段)。
Further, the electrode switching device 15 is provided with the selected mark.
An additional electrode (for example, Tg5) And potential difference measurement electrode (applying electrode
Is Tg5In the case of, the electrode for measuring the potential difference is Tg4, Tg6There
Is T f5, Th5), All point electrodes, surface electrodes 12 and rings
Electrode 13 is connected to one side 4a of AC power supply 4 (third electrode).
Selection connection means).

【0028】電源4(図1参照)は、印加電極(例えば
g5)と面電極12との間において、電極切替装置(第
1の選択接続手段)15の選択接続により形成される回
路に電圧を印加する。なお、電源4は、交替直流であっ
ても交流であってもよいが、この実施の形態では交流電
源を用いる。電源4が交流電源の場合、電極切替装置1
5と電位差測定装置5との関係は、図2のブロック図に
示すようになる。
A power supply 4 (see FIG. 1) applies a voltage to a circuit formed by selective connection of an electrode switching device (first selective connection means) 15 between an applied electrode (for example, T g5 ) and a plane electrode 12. Is applied. The power supply 4 may be alternate DC or AC, but in this embodiment, an AC power supply is used. When the power supply 4 is an AC power supply, the electrode switching device 1
The relationship between 5 and the potential difference measuring device 5 is as shown in the block diagram of FIG.

【0029】すなわち、電位差測定装置5は、印加電極
(例えばTg5)と面電極12との間に印加された電圧に
より、電位差測定用電極(印加電極がTg5の場合は、電
位差測定用電極がTg4,Tg6あるいはTf5,Th5)間で
電位差を測定する装置である。そして、図2に示すよう
に、電源4が交流電源の場合、電位差測定装置5は、簡
単に電位差を求められる差動回路5aとすることができ
る。この時、印加電極の両側にある電位差測定用電極と
ある地点の電位差を、それぞれ別個に測定し、それらの
電位測定値の差をとっても同様の結果が得られる。
That is, the potential difference measuring device 5 uses the voltage applied between the applied electrode (eg, T g5 ) and the plane electrode 12 to measure the potential difference between the potential difference measuring electrode (the potential difference measuring electrode when the applied electrode is T g5 ). Is a device for measuring a potential difference between T g4 and T g6 or T f5 and T h5 ). As shown in FIG. 2, when the power supply 4 is an AC power supply, the potential difference measuring device 5 can be a differential circuit 5a that can easily obtain a potential difference. At this time, the same result can be obtained by separately measuring the potential difference between the potential difference measuring electrodes on both sides of the application electrode and a certain point and taking the difference between the measured potential values.

【0030】そして、印加電極(例えばTg5)と面電極
12との間に印加された電圧により、第2の選択接続手
段は電位差測定用電極(印加電極がTg5の場合は、電位
差測定用電極がTg4,Tg6)を選択した場合は、次のよ
うな回路が形成される。なお、遮水工2には、漏水
1,L2,L3が発生しているものとする。
The voltage applied between the applied electrode (for example, T g5 ) and the plane electrode 12 causes the second selective connection means to use the potential difference measuring electrode (if the applied electrode is T g5 , the potential difference measuring electrode). When the electrodes are selected to be T g4 , T g6 ), the following circuit is formed. It is assumed that water leakage L 1 , L 2 , L 3 has occurred in the water shield 2.

【0031】すなわち、(1) 電極切替装置15→印加電
極Tg5→地盤→印加電極Tg5と電位差測定用電極Tg4
g6以外の点電極及び環状電極13→交流電源4の一方
4a。 (2) 電極切替装置15→印加電極Tg5→保護層3→面電
極12→交流電源4の一方4a。 (3) 電極切替装置15→印加電極Tg5→漏水L1,L2
3→面電極12→交流電源4の一方4a、の回路が形
成される。
That is, (1) the electrode switching device 15 → the applied electrode T g5 → the ground → the applied electrode T g5 and the potential difference measuring electrode T g4 ,
Point electrode and ring electrode 13 other than T g6 → one 4a of AC power supply 4. (2) Electrode switching device 15 → applied electrode T g5 → protective layer 3 → plane electrode 12 → one of 4a of AC power supply 4. (3) Electrode switching device 15 → applied electrode T g5 → water leakage L 1 , L 2 ,
A circuit of L 3 → surface electrode 12 → one 4 a of the AC power supply 4 is formed.

【0032】そして、回路(1)〜(3)によれば、電極切替
装置15により選択された1個の印加電極(例えば、印
加電極Tg5)と面電極12との間に交流電源4の電圧が
印加される一方で、1個の印加電極(例えば、印加電極
g5)と2個の電位差測定用電極(例えば、Tg4
g6)を除くすべての点電極と面電極12及び環状電極
13が、印加側でない交流電源4の一方4aに接続され
ることで同電位に制御される。
According to the circuits (1) to (3), the AC power supply 4 is connected between one applied electrode (for example, the applied electrode T g5 ) selected by the electrode switching device 15 and the plane electrode 12. While a voltage is applied, one applied electrode (eg, applied electrode T g5 ) and two potential difference measuring electrodes (eg, T g4 ,
All the point electrodes except T g6 ), the plane electrode 12 and the ring electrode 13 are controlled to the same potential by being connected to one side 4 a of the AC power supply 4 which is not the application side.

【0033】従って、この実施の形態の漏水発生位置検
知装置は、回路(1)〜(3)が形成されるように構成したこ
とにより、コンクリートなどの保護層3や地盤等によっ
て遮水工構造物1を覆う遮水工2の表裏の電場が、1個
の印加電極と2個の電位差測定用電極を除いて同電位と
なるように制御される。なお、環状電極13の太さと保
護層3の断面積を比較すると、保護層3の断面積が大き
いため、環状電極131本だけで保護層3を経由して流
れる電流を制御することがむずかしいので、環状電極1
3は単数よりも複数であることが好ましい。
Therefore, the water leakage occurrence detecting device according to the present embodiment is constructed such that the circuits (1) to (3) are formed, so that the waterproof structure is formed by the protective layer 3 such as concrete or the ground. The electric fields on the front and back of the water shield 2 covering the object 1 are controlled so as to have the same potential except for one applied electrode and two potential difference measuring electrodes. When the thickness of the annular electrode 13 is compared with the cross-sectional area of the protective layer 3, it is difficult to control the current flowing through the protective layer 3 with only the 131 annular electrodes because the cross-sectional area of the protective layer 3 is large. , Annular electrode 1
It is preferable that 3 is more than one.

【0034】上述のように、図1の電極配置から、遮水
工2表裏の電位の制御は、面電極12に接続される交流
電源4の一方4aに、1個の印加電極(例えば、印加電
極T g5)と2個の電位差測定用電極(例えば、Tg4,T
g6)を除くすべての点電極を接続することにより行われ
る。そして、電位差測定は、遮水工構造物1の地盤側の
電位差測定用電極(例えば、Tg4,Tg6)の間について
行われる。従って、電位差の変動は漏水周辺でのみ測定
され、漏水が複数存在しても従来のように漏水の影響に
よって電位差が重なり合うことはなく、漏水部を確実に
区別して検知することができる。
As described above, from the electrode arrangement of FIG.
The control of the potential on the front and back sides is performed by controlling the AC
One applied electrode (for example, an applied
Extreme T g5) And two electrodes for measuring the potential difference (for example, Tg4, T
g6Is done by connecting all point electrodes except)
You. Then, the potential difference measurement is performed on the ground side of the impermeable structure 1.
An electrode for measuring a potential difference (for example, Tg4, Tg6) Between
Done. Therefore, the fluctuation of the potential difference is measured only around the water leakage
Even if there are multiple leaks, the
Therefore, the potential difference does not overlap,
It can be detected separately.

【0035】また、この実施の形態では、印加電極(例
えば、印加電極Tg5)と電位差測定用電極(例えば、T
g4,Tg6)を除くすべての点電極により遮水工2の表裏
の電位を積極的に制御する点があり、点電極が単に金属
板であるよりも面的に広がりがある方が有利となる。
In this embodiment, an applied electrode (for example, applied electrode T g5 ) and an electrode for measuring potential difference (for example, T
g4 , Tg6 ) except for the point electrode which positively controls the potential on the front and back of the water shield 2 by using all the point electrodes, and it is advantageous that the point electrode has a wider area than a simple metal plate. Become.

【0036】そこで、点電極Ta1〜Tm14(略してTXY
とする)は、図3に示すように、裸銅線を矩形枠状に形
成し、この点電極TXYに接続するケーブルを介して他の
機器と接続している。なお、この点電極Ta1〜Tm14
電極の感度を高めるために裸銅線を螺旋状に形成しても
よいし(図4の点電極Txy参照)、矩形状の金属板でも
よい。
[0036] Therefore, the point electrode T a1 ~T m14 (short T XY
3), a bare copper wire is formed in a rectangular frame shape as shown in FIG. 3 and connected to another device via a cable connected to the point electrode TXY . Incidentally, it may be formed bare copper wire helically in order to increase the sensitivity of the point electrode T a1 through T m14 electrode (electrode T xy reference point in FIG. 4), it may be a rectangular metal plate.

【0037】ところで、電位差測定用電極(例えば、T
g4,Tg6)間の電位差測定は電位差測定装置5で行われ
る。この電位差測定装置5は、図2に示すように、差動
回路5aとA/Dコンバータ18とコンピュータ19と
を有し、差動回路5aがA/Dコンバータ18を介して
コンピュータ19に接続する。
Incidentally, an electrode for measuring a potential difference (for example, T
The potential difference between g4 and Tg6 ) is measured by the potential difference measuring device 5. As shown in FIG. 2, the potential difference measuring device 5 has a differential circuit 5a, an A / D converter 18, and a computer 19, and the differential circuit 5a is connected to the computer 19 via the A / D converter 18. .

【0038】コンピュータ19は、双方向バスによって
相互に接続されたROM(リードオンリメモリ)、RA
M(ランダムアクセスメモリ)、CPU(中央処理装
置)、入力ポート、出力ポートを具備する。コンピュー
タ19の入力ポートは、A/Dコンバータ18を介して
差動回路5aと接続し、出力信号(電位差測定値)が入
力される。また、コンピュータ19の出力ポートは、電
極切替装置15と結線し(図示せず)、点電極の切替の
指令を電極切替装置15に対し出力する。なお、点電極
の切替の指令は、後述する選択接続手順に基づき実行さ
れる(第1、第2、第3の選択接続手段)。更に、コン
ピュータ19の出力ポートは、例えば、CRT装置(図
示せず)と結線し、CRT装置に対し、表示指令(画像
データ)を出力する。
The computer 19 comprises a ROM (Read Only Memory), RA interconnected by a bidirectional bus.
M (random access memory), CPU (central processing unit), input port, output port. The input port of the computer 19 is connected to the differential circuit 5a via the A / D converter 18, and receives an output signal (potential difference measurement value). The output port of the computer 19 is connected to the electrode switching device 15 (not shown) and outputs a command for switching the point electrode to the electrode switching device 15. The command for switching the point electrode is executed based on a selective connection procedure described later (first, second, and third selective connection means). Further, the output port of the computer 19 is connected to, for example, a CRT device (not shown), and outputs a display command (image data) to the CRT device.

【0039】ROMには、漏水発生位置検知処置のプロ
グラムや第1〜第3の選択接続手順のプログラムが記憶
されており、CPUはこれらプログラムを読み出して処
理を行う。なお、第1の選択接続手順は、電極切替装置
15において、交流電源4の他方4b(印加側)に接続
する点電極Ta1〜Tm14を1個ずつ測線方向(図5の左
から右へ且つ上から下へスキャンする方向)に182
(横方向×縦方向;14×13)種類の選択接続手順を順次
切り替える手順である。そして、CPUは1番目(i=
1;例えば点電極Ta1)から測線方向に182番目(i
=182;例えば点電極Tm14)をROMから読み出し
て電極切替装置15を切り替える指令を出力する。する
と、指令順番毎に、任意の点電極に交流電圧が印加さ
れ、点電極の位置が選択されたことになる。また、第2
の選択接続手順は、電極切替装置15において、第1の
選択接続手段が選択した印加電極に対し、測線上に隣り
合う2個の点電極(電位差測定電極)を選択して電位差
測定装置5に接続する手順である。この時、第3の選択
接続手段は印加電極及び電位差測定電極を除く全ての点
電極を交流電源4の一方4aに接続する。更に、第2の
選択接続手順は、電極切替装置15において、第1の選
択接続手段が選択した印加電極に対し、測線方向と直角
方向に隣り合う2個の点電極(電位差測定電極)を選択
して電位差測定装置5に接続する。この時も、第3の選
択接続手段は印加電極及び電位差測定電極を除く全ての
点電極を交流電源4の一方4aに接続する。そして、C
PUはかかる第2及び第3の選択接続手順を1番目(i
=1)から182番目(i=182)の印加電極毎にR
OMから読み出して電極切替装置15を切り替える指令
を出力する。
The ROM stores a program for detecting a position where a water leak has occurred and a program for the first to third selective connection procedures. The CPU reads out these programs and performs processing. Note that the first selective connection procedure, the electrode switching device 15, from the left of the other 4b (application side) points connected to the electrodes T a1 through T m14 one by measuring line direction (Fig. 5 of the AC power source 4 to the right 182 in the direction of scanning from top to bottom)
This is a procedure for sequentially switching (horizontal direction × vertical direction; 14 × 13) types of selective connection procedures. Then, the CPU first (i =
1; for example, from the point electrode Ta1 ) to the 182th (i
= 182; for example, the point electrode T m14 ) is read from the ROM, and a command to switch the electrode switching device 15 is output. Then, an AC voltage is applied to an arbitrary point electrode for each command order, and the position of the point electrode is selected. Also, the second
In the electrode connection device 15, the electrode switching device 15 selects two point electrodes (potential difference measurement electrodes) adjacent to each other on the measurement line with respect to the applied electrode selected by the first selection connection means, and sends the selected electrode to the potential difference measurement device 5. This is the connection procedure. At this time, the third selective connection means connects all the point electrodes except the application electrode and the potential difference measurement electrode to one side 4a of the AC power supply 4. Further, in the second selective connection procedure, the electrode switching device 15 selects two point electrodes (potential difference measurement electrodes) adjacent to the application electrode selected by the first selective connection means in a direction perpendicular to the measurement line direction. And connected to the potential difference measuring device 5. Also at this time, the third selective connection means connects all the point electrodes except the application electrode and the potential difference measurement electrode to one side 4 a of the AC power supply 4. And C
The PU performs the second and third selective connection procedures in the first (i.
= 1) to 182th (i = 182) applied electrodes
A command is read from the OM to switch the electrode switching device 15.

【0040】次に、コンピュータ19による本発明の漏
水発生位置検知処理を図8の流れ図に基づき説明する。
コンピュータ19は、「i=1」とし(ステップ10
1)、ROMに記憶された第1の選択接続手順に従って
電極切替装置15の切替を行い、点電極(及び位置)を
選択する(ステップ102)。即ち、「i」が1番目
(i=1;点電極T a1)となるように、電極切替装置1
5で点電極Ta1と交流電源4の他方4bを接続させ、面
電極12に接続する交流電源4の一方4aとの間に交流
電圧を印加し、これら点電極の位置を選択する。
Next, the leakage of the present invention by the computer 19 will be described.
The water generation position detection processing will be described based on the flowchart of FIG.
The computer 19 sets “i = 1” (step 10
1) According to the first selective connection procedure stored in the ROM
The electrode switching device 15 is switched to change the point electrode (and the position).
Select (step 102). That is, "i" is the first
(I = 1; point electrode T a1), The electrode switching device 1
5 is a point electrode Ta1And the other 4b of the AC power supply 4
AC between one of the AC power supplies 4 connected to the electrode 12
A voltage is applied to select the positions of these point electrodes.

【0041】次に、コンピュータ19は、「i=1」に
おける第2の選択接続手段において、第1の選択接続手
段が選択した印加電極Ta1に対し、測線上に隣り合う2
個の点電極(電位差測定電極)を選択して電位差測定装
置5に接続する。なお、点電極Ta1を印加電極とした場
合(図5の配置図のうち角部の点電極;Ta14,Tm1
m14も同様)は印加電極と隣り合う2個の点電極が存
在しないので(即ち、角部の点電極は電場制御用だけに
使用される)、コンピュータ19は、ステップ105の
処理に移行する。また、図5に示す最外周の点電極のう
ち縦方向の点電極(Tb1〜Tl1;Tb14〜Tl14)を印加
電極とした場合は測線上に隣り合う2個の点電極が存在
しないので(但し、最外周縦方向の点電極は測線方向と
直角方向に隣り合う2個の点電極が存在する)、コンピ
ュータ19は、ステップ104の処理に移行する。しか
し、前記した点電極Tg5を印加電極とした場合(「i=
89」)のように、印加電極Tg5に対し測線上の隣り合
う2個の点電極(図6では点電極Tg4,Tg6)が選択可
能であれば、点電極Tg4,Tg6を電位差測定装置5に接
続して電位差測定用電極とする(第2の選択接続手
段)。この時、第3の選択接続手段は印加電極Tg5及び
電位差測定電極Tg4,Tg6を除く全ての点電極を交流電
源4の一方4aに接続する。
Next, the computer 19, in the second selective connection means in the "i = 1", with respect to application electrode T a1 of the first selective connection means is selected, adjacent to the measuring line 2
The point electrodes (potential difference measuring electrodes) are selected and connected to the potential difference measuring device 5. In addition, when the point electrode Ta1 is used as the application electrode (the point electrode at the corner in the arrangement diagram of FIG. 5; Ta14 , Tm1 ,
Since the two point electrodes adjacent to the application electrode do not exist at T m14 (the same applies to T m14 ) (that is, the corner point electrodes are used only for electric field control), the computer 19 proceeds to the processing at step 105. . The vertical direction of the point electrodes of the point electrodes of the outermost shown in FIG. 5; there are (T b1 ~T l1 T b14 ~T l14) 2 pieces of point electrodes when the application electrode adjacent on measuring line a The computer 19 shifts to the process of step 104 because the point electrode in the outermost peripheral vertical direction has two point electrodes adjacent to each other in the direction perpendicular to the measurement line direction. However, when the point electrode T g5 is used as the application electrode (“i =
As 89 "), application electrode T g5 2 pieces of point electrodes neighboring on survey line to (6 point electrodes T g4, T g6) is selected if the point electrodes T g4, T g6 It is connected to the potential difference measuring device 5 to form a potential difference measuring electrode (second selective connection means). At this time, the third selective connection means connects all the point electrodes except the application electrode T g5 and the potential difference measurement electrodes T g4 and T g6 to one of the AC power sources 4a.

【0042】そして、電位差測定装置5(差動回路5
a)は電位差測定用電極Tg4,Tg6の間の電位差を測定
し、A/Dコンバータ18を介してコンピュータ19に
出力する。すると、コンピュータ19は電位差値を「i
=89」と共にRAMに記憶する(ステップ103)。
Then, the potential difference measuring device 5 (differential circuit 5
In a), the potential difference between the potential difference measuring electrodes T g4 and T g6 is measured and output to the computer 19 via the A / D converter 18. Then, the computer 19 sets the potential difference value to “i”.
= 89 "in the RAM (step 103).

【0043】次に、コンピュータ19は、「i=89」
における第2の選択接続手段において、第1の選択接続
手段が選択した印加電極Tg5に対し、測線方向と直角方
向に隣り合う2個の点電極(図7では点電極Tf5
h5)を選択して電位差測定装置5に接続する。この時
も、第3の選択接続手段は印加電極Tg5及び電位差測定
電極Tf5,Th5を除く全ての点電極を交流電源4の一方
4aに接続する。そして、ステップ103と同様な手順
で電位差測定装置5(差動回路5a)は電位差測定電極
f5,Th5間の電位差を測定し、A/Dコンバータ18
を介してコンピュータ19に出力し、コンピュータ19
は電位差値を「i=89」と共にRAMに記憶する(ス
テップ104)。なお、図5に示す最外周の点電極のう
ち横方向の点電極(Ta2〜Ta13;Tm2〜Tm13)を印加
電極とした場合は測線方向と直角方向に隣り合う2個の
点電極が存在しないので、コンピュータ19は、ステッ
プ105の処理に移行する。
Next, the computer 19 sets "i = 89"
In the second selective connection means in (2), two point electrodes (point electrodes T f5 and T f5 in FIG. 7) adjacent to the applied electrode T g5 selected by the first selective connection means in the direction perpendicular to the line-of-sight direction.
Th5 ) is selected and connected to the potential difference measuring device 5. Also at this time, the third selective connection means connects all the point electrodes except the application electrode T g5 and the potential difference measurement electrodes T f5 and Th 5 to one side 4a of the AC power supply 4. Then, the potential difference measuring device 5 (differential circuit 5a) measures the potential difference between the potential difference measuring electrodes T f5 and T h5 in the same procedure as step 103, and the A / D converter 18
Output to the computer 19 via the
Stores the potential difference value in the RAM together with "i = 89" (step 104). The horizontal direction of the point electrodes of the point electrodes of the outermost shown in FIG. 5; the two points adjacent to the measuring line direction perpendicular to the direction in case of the (T a2 ~T a13 T m2 ~T m13) the application electrode Since there is no electrode, the computer 19 proceeds to the process of step 105.

【0044】次に、コンピュータ19は、第1の選択切
替手順が182番目(i=182;点電極Tm14)まで
終了したかどうか判断し(ステップ105)、i=18
2であれば(ステップ105:YES)、ステップ10
7以降の処理を行い。一方、i=182でなければ(ス
テップ105:NO)、ステップ106の処理を行う。
Next, the computer 19 determines whether the first selection switching procedure has been completed up to the 182nd (i = 182; point electrode T m14 ) (step 105), and i = 18.
If 2 (Step 105: YES), Step 10
Step 7 and subsequent steps are performed. On the other hand, unless i = 182 (step 105: NO), the processing of step 106 is performed.

【0045】ステップ106において、コンピュータ1
9は、i番目を1だけインクリメントし(i=i+
1)、ステップ102以降の処理を繰り返す。すなわ
ち、コンピュータ19は、「i=1」から「i=18
2」までの処理で測定された電位差値をそれぞれ記憶す
る。
In step 106, the computer 1
9 increments the i-th by 1 (i = i +
1) Repeat the processing of step 102 and subsequent steps. That is, the computer 19 determines that “i = 1” to “i = 18”.
2) are stored.

【0046】ステップ107において、コンピュータ1
9は、RAM内に記憶された電位差値をCRT画面に表
示する指令をCRT装置へ出力する。すると、CRT装
置はCRT画面の交差位置に「i=1」から「i=18
2」までの測定値を表示する(図9または図10参
照)。
In step 107, the computer 1
Reference numeral 9 outputs to the CRT device a command to display the potential difference value stored in the RAM on the CRT screen. Then, the CRT device sets “i = 1” to “i = 18” at the intersection of the CRT screen.
The measured values up to "2" are displayed (see FIG. 9 or FIG. 10).

【0047】そして、コンピュータ19は、CRT画面
に測定値が表示されれば、漏水発生位置検知処理を終了
する。
When the measured value is displayed on the CRT screen, the computer 19 ends the water leak occurrence position detecting process.

【0048】[電位差による漏水発生位置の検知]次
に、漏水発生位置検知装置の測定例である図9または図
10に示す測定結果に基づき漏水発生位置の検知を説明
する。なお、図9及び図10は、図5の点電極の配置図
に対応する位置関係を示す座標であり、縦方向にa〜m
が記入され、横方向に1〜14が記入されている。そし
て、図9及び図10の座標において、例えば、縦方向の
「a」と横方向の「1」とで、点電極Ta1の位置を示
す。また、「a」ラインの「1」から「m」ラインの
「14」まで進む場合、測線方向は図の「a」ライン上
を左から右へ「1」〜「14」まで進んだ後、ラインを
1段下の「b」ラインに変えて同様に左から右に進むこ
ととする。更に、図9と図10の座標では、それぞれの
測線に合わせて電位差を図示したもので、それぞれの横
軸(測線)の上側が正で下側が負であることを示してい
る。
[Detection of Water Leakage Occurrence Position Based on Potential Difference] Next, detection of a water leak occurrence position based on the measurement result shown in FIG. 9 or FIG. 10 which is a measurement example of the water leak occurrence position detecting device will be described. 9 and 10 show coordinates indicating a positional relationship corresponding to the arrangement diagram of the point electrodes in FIG.
And 1 to 14 are written in the horizontal direction. 9 and 10, the position of the point electrode Ta1 is indicated by, for example, “a” in the vertical direction and “1” in the horizontal direction. In the case of proceeding from “1” of the “a” line to “14” of the “m” line, the measurement line direction proceeds from “1” to “14” from left to right on the “a” line in the figure, It is assumed that the line is changed to the line “b” one step below, and the line proceeds from left to right in the same manner. Further, in the coordinates of FIGS. 9 and 10, the potential difference is shown in accordance with each measurement line, and the upper side of each horizontal axis (measurement line) is positive and the lower side is negative.

【0049】図9は印加電極毎に、測線上に隣り合う2
個の点電極間で測定した電位差を表示した座標図であ
る。図9において、漏水部がない場合、電位差は変化し
ない。一方、遮水工に漏水部がある場合、印加電圧と同
一位相の電流が漏水部周辺に向かって流れ易くなるの
で、電位差の変化は一様ではなく漏水部周辺で歪みが生
じる左右非対称の電位差分布になる。従って、図9のよ
うに電位差の変化を破線のグラフにすると漏水部
(L1,L2,L3)の周辺でN字型を示す。そして、こ
の電位差分布から漏水部に近いほど電位差の絶対値が大
きく、漏水位置で0Vとなり、この周辺に漏水部が存在
することがわかる。
FIG. 9 shows two adjacent electrodes on the measurement line for each applied electrode.
It is a coordinate diagram which displayed the potential difference measured between the point electrodes. In FIG. 9, when there is no water leak portion, the potential difference does not change. On the other hand, if there is a water leak in the water shield, the current in the same phase as the applied voltage tends to flow toward the area around the water leak. Distribution. Therefore, when the change of the potential difference is represented by a broken line graph as shown in FIG. 9, an N-shape is shown around the water leaking portions (L 1 , L 2 , L 3 ). Then, from this potential difference distribution, the absolute value of the potential difference becomes larger as the position is closer to the water leaking portion, becomes 0 V at the water leaking position, and it can be seen that the water leaking portion is present around this.

【0050】次に、図10は印加電極毎に、測線方向と
直角方向に隣り合う2個の点電極間で測定した電位差を
表示した座標図である。図10において、漏水部がない
場合、図9の場合と同様に電位差は変化しない。一方、
遮水工に漏水部がある場合、電位差は変動し、変動を破
線のグラフにすると漏水部(L1,L2,L3)を挟んだ
それぞれの測線において極性が異なるピークを示す。そ
して、電位差は測線から漏水間の距離が最短の条件で最
大値を示す。図10では、漏水部が測線の右手にある条
件で正の最大値となることを示し、漏水部が左手にある
条件で負の最大値となることを示す。
Next, FIG. 10 is a coordinate diagram showing, for each applied electrode, a potential difference measured between two point electrodes adjacent to each other in a direction perpendicular to the measurement line direction. In FIG. 10, when there is no water leak portion, the potential difference does not change as in the case of FIG. on the other hand,
When there is a water leakage part in the water impervious works, the potential difference fluctuates, and when the fluctuation is represented by a broken line graph, peaks having different polarities are shown in the respective measurement lines sandwiching the water leakage part (L 1 , L 2 , L 3 ). The potential difference shows the maximum value under the condition that the distance between the measurement line and the water leak is the shortest. FIG. 10 shows that the water leak portion has a positive maximum value under the condition on the right hand side of the survey line, and indicates that the water leak portion has a negative maximum value under the condition on the left hand side.

【0051】この実施の形態によれば、1つの印加電極
に対し、異方向に隣り合う電位差測定用電極間の変化の
特性を利用して、電位差と電位差の極性と大きさから、
漏水位置を特定することが可能となる。
According to this embodiment, the potential difference and the polarity and magnitude of the potential difference are determined for one applied electrode by utilizing the characteristics of change between potential difference measuring electrodes adjacent in different directions.
It is possible to specify the leak position.

【0052】[0052]

【発明の効果】本発明によれば、印加電極および電位差
測定用電極の周辺以外は、遮水工の表裏が同電位に制御
されているため、印加電極周辺に漏水部がない条件で、
電位傾度は理論的に0Vが測定され、印加電極周辺に漏
水部がある条件で有意な電位差が測定されることにな
る。また、漏水が複数存在しても従来のように漏水の影
響によって電位差が重なり合うことはない。従って、電
位差の変動は漏水周辺でのみ測定され、漏水部を確実に
区別して検知することができる。
According to the present invention, except for the vicinity of the application electrode and the potential difference measuring electrode, the front and back sides of the water shield work are controlled to the same potential, so that there is no water leak around the application electrode.
The potential gradient is theoretically measured to be 0 V, and a significant potential difference is measured under the condition that there is a water leak around the application electrode. Further, even if a plurality of leaks exist, the potential difference does not overlap due to the influence of the leak unlike the conventional case. Therefore, the fluctuation of the potential difference is measured only in the vicinity of the water leakage, and the water leakage part can be reliably distinguished and detected.

【0053】また、本発明によれば、遮水工の表裏を同
電位に制御することによって、廃棄物処分場の廃棄物搬
入道路など、漏水でなくとも遮水工表裏を短絡する経路
となる部分が測定障害とならない。
Further, according to the present invention, by controlling the front and rear surfaces of the water shield work to the same potential, a path for short-circuiting the front and back of the water shield work even if there is no water leakage, such as a waste carrying road at a waste disposal site. The part does not interfere with the measurement.

【0054】従って、本発明は複数の漏水位置が存在し
ても確実に漏水位置を区別して検知することができ、漏
水発生位置を検出する精度を向上させることができる漏
水発生位置検知装置及びその方法を提供することができ
る。
Therefore, the present invention can detect a water leak position reliably even if there are a plurality of water leak positions, and can improve the accuracy of detecting the water leak position, and a water leak occurrence position detecting device and its device. A method can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】遮水工構造物の側断面図である。FIG. 1 is a side sectional view of a seepage control structure.

【図2】本発明の漏水発生位置検知装置の一部のブロッ
ク回路図である。
FIG. 2 is a block circuit diagram of a part of the water leakage occurrence position detecting device according to the present invention.

【図3】点電極の拡大図である。FIG. 3 is an enlarged view of a point electrode.

【図4】点電極の拡大図である。FIG. 4 is an enlarged view of a point electrode.

【図5】点電極の配置図である。FIG. 5 is a layout diagram of point electrodes.

【図6】第2の選択接続手段が電位差測定用電極を選択
する説明図であり、測線上に印加電極と隣り合う場合を
示す。
FIG. 6 is an explanatory diagram in which a second selective connection means selects an electrode for measuring a potential difference, and shows a case where the electrode is adjacent to an application electrode on a measurement line.

【図7】第2の選択接続手段が電位差測定用電極を選択
する説明図であり、測線方向と直角方法に印加電極と隣
り合う場合を示す。
FIG. 7 is an explanatory diagram in which a second selective connection means selects an electrode for measuring a potential difference, and shows a case where the electrode is adjacent to an application electrode in a direction perpendicular to the measurement direction.

【図8】本発明の漏水発生位置検出処理の流れ図であ
る。
FIG. 8 is a flowchart of a water leakage occurrence position detection process according to the present invention.

【図9】電位差の測定結果を表示した座標図であり、測
線上に印加電極と隣り合う電位差測定用電極を選択した
場合を示す。
FIG. 9 is a coordinate diagram showing a measurement result of a potential difference, and shows a case where an electrode for measuring a potential difference adjacent to an application electrode on a measurement line is selected.

【図10】電位差の測定結果を表示した座標図であり、
測線方向と直角方法に印加電極と隣り合う電位差測定用
電極を選択した場合を示す。
FIG. 10 is a coordinate diagram showing a measurement result of a potential difference;
The case where the potential difference measuring electrode adjacent to the application electrode is selected in a method perpendicular to the measurement direction is shown.

【符号の説明】[Explanation of symbols]

1…遮水工構造物 1a…窪み 2…遮水工 3…保護層 4…交流電源 5…電位差測定装置 5a…差動回路 12…面電極 13…環状電極 15…電極切替装置 18…A/Dコンバータ 19…コンピュータ DESCRIPTION OF SYMBOLS 1 ... Water shielding structure 1a ... Depression 2 ... Water shielding work 3 ... Protective layer 4 ... AC power supply 5 ... Potential difference measuring device 5a ... Differential circuit 12 ... Surface electrode 13 ... Ring electrode 15 ... Electrode switching device 18 ... A / D converter 19 ... Computer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】地盤に形成した窪みに電気的絶縁体の遮水
工を敷設する遮水工構造物と、 前記遮水工の表裏どちらかに設置した面電極と、 前記面電極の反対側に設置した複数の点電極と、 前記複数の点電極から1つを選択し電源の印加側に接続
して印加電極とする第1の選択接続手段と、 前記印加電極を除く点電極間で電位差を測定する電位差
測定手段と、 前記印加電極に隣り合う2個の前記点電極を選択して前
記電位差測定手段に接続して電位差測定用電極とする第
2の選択接続手段と、を備え、 前記測定した電位差及び前記印加電極の位置から前記遮
水工構造物の漏水位置を検知する漏水発生位置検知装置
であって、 前記選択された印加電極及び電位差測定用電極を除く全
ての点電極と前記面電極を前記電源の他端に接続する第
3の選択接続手段を有することを特徴とする漏水発生位
置検知装置。
1. A water impervious structure for laying a water impervious work of an electrical insulator in a depression formed in the ground, a surface electrode installed on either side of the water impervious work, and an opposite side of the surface electrode. A plurality of point electrodes installed at a plurality of point electrodes; a first selection connection means for selecting one of the plurality of point electrodes and connecting to an application side of a power source to form an application electrode; and a potential difference between the point electrodes excluding the application electrode. And a second selection connection means for selecting two point electrodes adjacent to the application electrode and connecting to the potential difference measurement means to form a potential difference measurement electrode, A water leakage occurrence position detecting device that detects a water leakage position of the impermeable structure from the measured potential difference and the position of the applied electrode, wherein all the point electrodes and the selected electrode except the selected applied electrode and the electrode for measuring a potential difference are used. A third selection for connecting a plane electrode to the other end of the power supply; A water leak occurrence position detecting device, comprising a selective connection means.
【請求項2】前記電位差測定用電極は前記印加電極を中
心として全方向における整列線上にある点電極であり、 前記第2の選択接続手段は1つの前記印加電極に対して
異方向の整列線上にある1組みの隣り合う点電極を複数
組み順次選択して前記電位差測定手段に順次接続する請
求項1に記載の漏水発生位置検知装置。
2. The potential difference measuring electrode is a point electrode on an alignment line in all directions around the application electrode, and the second selective connection means is on an alignment line in a different direction with respect to one of the application electrodes. The water leak occurrence position detecting device according to claim 1, wherein a plurality of sets of adjacent point electrodes are sequentially selected and connected to the potential difference measuring means.
【請求項3】前記遮水工が前記地盤に接触する部分の近
傍に、前記複数の点電極あるいは前記面電極の周辺を取
り囲んで配置した環状電極を前記電源の他端に接続した
請求項1または請求項2に記載の漏水発生位置検知装
置。
3. An annular electrode disposed around the plurality of point electrodes or the surface electrode in the vicinity of a portion where the water shield works in contact with the ground, is connected to the other end of the power supply. Alternatively, the water leakage occurrence position detecting device according to claim 2.
【請求項4】地盤に形成した窪みに電気的絶縁体の遮水
工を敷設する遮水工構造物とし、 前記遮水工の表裏どちらかに面電極を設置し、 前記面電極の反対側に複数の点電極を設置し、 前記複数の点電極から1つを選択し電源の印加側に接続
して印加電極とし、 前記印加電極に隣り合う2個の前記点電極を選択して電
位差測定用電極とし、 前記選択された印加電極及び電位差測定用電極を除く全
ての点電極と前記面電極を前記電源の他端に接続し、 前記電位差測定用電極間で電位差を測定し、 前記測定した電位差及び前記印加電極の位置から前記遮
水工構造物の漏水位置を検知することを特徴とする漏水
発生位置検知方法。
4. A water impervious structure in which a water impervious structure of an electrical insulator is laid in a depression formed in the ground, and a surface electrode is installed on one of the front and rear sides of the water impervious structure. A plurality of point electrodes are provided, and one of the plurality of point electrodes is selected and connected to an application side of a power source to form an application electrode. Two of the point electrodes adjacent to the application electrode are selected to measure a potential difference All the point electrodes except the selected application electrode and the potential difference measuring electrode and the surface electrode were connected to the other end of the power supply, and the potential difference was measured between the potential difference measuring electrodes. A method for detecting a water leakage occurrence position, comprising detecting a water leakage position of the water shielding structure from a potential difference and a position of the application electrode.
JP2000350034A 2000-11-16 2000-11-16 Leakage occurrence position detection device and method Expired - Fee Related JP4375896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000350034A JP4375896B2 (en) 2000-11-16 2000-11-16 Leakage occurrence position detection device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000350034A JP4375896B2 (en) 2000-11-16 2000-11-16 Leakage occurrence position detection device and method

Publications (2)

Publication Number Publication Date
JP2002156305A true JP2002156305A (en) 2002-05-31
JP4375896B2 JP4375896B2 (en) 2009-12-02

Family

ID=18823339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000350034A Expired - Fee Related JP4375896B2 (en) 2000-11-16 2000-11-16 Leakage occurrence position detection device and method

Country Status (1)

Country Link
JP (1) JP4375896B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2393517A (en) * 2002-09-24 2004-03-31 Neil Graham Ferguson Adams Instrument for locating defects in non-conductive materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101721164B1 (en) * 2015-03-24 2017-03-30 (주)지오룩스 Method and Apparatus for Determining Leak Location of Waterfront Structures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2393517A (en) * 2002-09-24 2004-03-31 Neil Graham Ferguson Adams Instrument for locating defects in non-conductive materials

Also Published As

Publication number Publication date
JP4375896B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
JP3622172B2 (en) Water leak occurrence position detection method
JP4375896B2 (en) Leakage occurrence position detection device and method
JP2018205165A (en) Water leaking position detection system
JP3236965B2 (en) Method and apparatus for detecting damaged portion of impermeable sheet in waste disposal site
JP2002139395A (en) Water-leakage position detection device and method therefor
JP2002257668A (en) Method and system for detecting water leakage
JP3259912B2 (en) Leakage location detector for waste disposal sites
JP3579894B2 (en) Insulation sheet inspection method
JP4375894B2 (en) Water leakage occurrence position detection device having a correction function and method thereof
JP2001099742A (en) Water leakage detection system and method thereof
JP3716250B2 (en) Water leakage detection device and water leakage detection method
JP4660720B2 (en) Water leakage detection method and water leakage detection device
JP3567373B2 (en) Insulation sheet inspection method
JP3668958B2 (en) Impermeable sheet inspection method
JP3048309B2 (en) Apparatus and method for detecting breakage of impermeable sheet
JPH07120343A (en) Detecting system for water leakage position of water in impervious structure
JP4479861B2 (en) Device for detecting leakage of water shielding material
JP4053864B2 (en) Water leakage detection system and water leakage detection method
JP4159201B2 (en) Water leak detection system
JP2003177072A (en) Method and system for detecting water leakage
JP2007178252A (en) Water leakage outbreak position-detecting device
JP3708061B2 (en) Water leak occurrence position detection system
JP4092216B2 (en) Water leakage detection device and water leakage detection method
JP3380386B2 (en) Water leakage detection method and water leakage detection laminated sheet
JP2002139396A (en) Water-leakage position detection device and method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090908

R150 Certificate of patent or registration of utility model

Ref document number: 4375896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees