JP2002139395A - Water-leakage position detection device and method therefor - Google Patents

Water-leakage position detection device and method therefor

Info

Publication number
JP2002139395A
JP2002139395A JP2000335183A JP2000335183A JP2002139395A JP 2002139395 A JP2002139395 A JP 2002139395A JP 2000335183 A JP2000335183 A JP 2000335183A JP 2000335183 A JP2000335183 A JP 2000335183A JP 2002139395 A JP2002139395 A JP 2002139395A
Authority
JP
Japan
Prior art keywords
electrode
current
water
protective layer
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000335183A
Other languages
Japanese (ja)
Inventor
Takeshi Arai
健 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP2000335183A priority Critical patent/JP2002139395A/en
Publication of JP2002139395A publication Critical patent/JP2002139395A/en
Pending legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve accuracy of detection of a water-leakage position through correction by extracting only the current flowing in leaked water and grasp the characteristics of current flowing through a protective layer. SOLUTION: A sealing work construction is constituted by an insulating sealing work 2, provided on a depression of the ground and the protective layer 3 through which the current is carried provided on the sealing work. A planar electrode 12 is disposed on a front surface or a reverse surface of the sealing work, and plural point electrodes are disposed on a side opposite to the planar electrode. Circular electrodes 13a and 13b for surrounding around the plural point electrodes or the planar electrode are located near a part where the protective layer is brought into contact with the ground. One of the point electrodes is selected from among the plural point electrodes and is connected with one end of a power supply, and all of the point electrodes, except the selected point electrode, the planar electrode and the circular electrode are connected with the other end of the power supply. A current, flowing between the selected point electrode, the planar electrode and the circular electrode, is measured, and a current component flowing through the protective layer is corrected from the measured current value of the planar electrode with the usage of the measured current value of the circular electrode. The water-leakage position of the sealing work construction is detected from the corrected current value and from the position of the selected point electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、合成樹脂や合成ゴ
ムなどの電気的絶縁性を有する材料からなる遮水工を敷
設して人工的に造られた貯水池、水路、或いは管理型一
般廃棄物最終処分場及び管理型産業廃棄物最終処分場な
どの遮水工構造物に関し、遮水工構造物の遮水工に生じ
る漏水の発生位置を検知する漏水発生位置検知装置及び
その方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reservoir, a waterway, or a managed municipal waste which is artificially constructed by laying a water shield made of an electrically insulating material such as synthetic resin or synthetic rubber. TECHNICAL FIELD The present invention relates to a water leakage occurrence position detecting device and method for detecting a water leakage occurrence position generated in a water impervious structure of a water impervious structure, such as a final disposal site and a managed industrial waste final disposal site.

【0002】[0002]

【従来の技術】貯水池、水路、或いは管理型一般廃棄物
最終処分場及び管理型産業廃棄物最終処分場などの遮水
工構造物1は、図10に示すように、合成樹脂や合成ゴ
ムなどの電気的絶縁性を有する材料からなる遮水工(例
えば、遮水シート)2を敷設して人工的に造られてい
る。
2. Description of the Related Art As shown in FIG. 10, a water-blocking structure 1 such as a reservoir, a waterway, a managed general waste final disposal site and a managed industrial waste final disposal site is made of synthetic resin or synthetic rubber. A water-blocking work (for example, a water-blocking sheet) 2 made of a material having electrical insulation property is laid and artificially made.

【0003】かかる遮水工構造物1は、遮水工2に亀裂
などの破損が生じると、破損箇所Lより漏水する。例え
ば、管理型一般廃棄物最終処分場の場合、遮水工が破損
した状態で放置すると、廃棄物H自体あるいは廃棄物H
により汚染した汚染液が漏水して近隣を汚染し、或いは
地下水を汚染して公害問題を引き起こしてしまう。そこ
で、遮水工2を用いた遮水工構造物1は、漏水(あるい
は遮水工の破損)Lの発生及び発生位置を早期に検知し
て破損箇所を補修する必要がある。
[0003] When a break such as a crack occurs in the water shield 2, the water shield structure 1 leaks from the damaged portion L. For example, in the case of a managed general waste final disposal site, if the impermeable structure is left in a damaged state, the waste H itself or the waste H
As a result, the contaminated liquid leaks and contaminates the neighborhood, or pollutes the groundwater, causing pollution problems. Therefore, it is necessary to repair the damaged portion of the water-blocking structure 1 using the water-blocking work 2 by detecting the occurrence and location of the water leakage (or breakage of the water-blocking work) L at an early stage.

【0004】このような遮水工構造物1の漏水発生位置
を検出するために、図9に示すような検知方式が採用さ
れている。この検知方式では、遮水工2が敷設された遮
水工構造物1内部に複数の点電極A1〜H8を所定間隔で
配置し、遮水工2の裏面側(地盤側、図10参照)にア
ルミ箔などを貼り付けた不織布などの面電極12を配置
した電極配置構成を用いる。この点電極A1〜H8は電極
切替器15a及び電流計5aを介して交流電源4の一方
に端子に接続している。また、面電極12は交流電源1
2の他方の端子に接続している。また、電極切替器15
aは点電極A1〜H8を1つずつ選択して電流計5aを介
して交流電源4の一方の端子に接続する。
[0004] In order to detect the position where the water leakage occurs in the water-blocking structure 1, a detection method as shown in FIG. 9 is employed. In this detection method, a plurality of point electrodes A 1 to H 8 are arranged at predetermined intervals inside a water impervious structure 1 on which a water impervious work 2 is laid, and a back side (ground side, FIG. An electrode arrangement configuration in which a surface electrode 12 such as a non-woven fabric on which an aluminum foil or the like is attached is disposed. This point electrodes A 1 to H 8 is connected to the terminal to one of the AC power supply 4 via an electrode switching unit 15a and the ammeter 5a. The surface electrode 12 is connected to the AC power supply 1.
2 is connected to the other terminal. In addition, the electrode switch 15
“a” selects the point electrodes A 1 to H 8 one by one and connects them to one terminal of the AC power supply 4 via the ammeter 5a.

【0005】このような電極配置構成において、遮水工
構造物1内部の点電極A1〜H8を電極切替器15aを介
して1つずつ選択し、選択した点電極と面電極12間に
交流電圧を印加し、この間に流れる電流を電流計5aで
検出する。そして、選択した点電極A1〜H8の各々にお
ける検出電流の比較から漏水発生位置を検知する。
In such an electrode arrangement, the point electrodes A 1 to H 8 inside the water shield structure 1 are selected one by one via the electrode switch 15 a, and the point electrodes A 1 to H 8 are selected between the selected point electrode and the surface electrode 12. An AC voltage is applied, and the current flowing during this time is detected by the ammeter 5a. Then, a water leak occurrence position is detected from a comparison of the detected currents at each of the selected point electrodes A 1 to H 8 .

【0006】[0006]

【発明が解決しようとする課題】ところで、遮水工の紫
外線劣化や熱劣化を防止するためや廃棄物を搬入する道
路にするために、土質材料やコンクリートを用いた保護
層3を遮水工2全体を覆うように設ける例が増えてい
る。この保護層3は、電気的絶縁体ではないので、遮水
工2の上下に電極を設置すると、遮水工上下の電極間に
保護層3を経由して遮水工上下を連絡(短絡)する電気
回路を形成してしまう(図10参照)。
By the way, in order to prevent ultraviolet ray deterioration and thermal deterioration of the water shielding work and to make a road for carrying waste, the protective layer 3 made of a soil material or concrete is provided with a water shielding work. 2 are provided so as to cover the entirety. Since the protective layer 3 is not an electrical insulator, if electrodes are provided above and below the water shield 2, the upper and lower electrodes between the upper and lower water shields are connected to each other via the protective layer 3 (short circuit). An electric circuit is formed (see FIG. 10).

【0007】この短絡する電気経路が形成されると、電
流計5aで計測される電流値は本来検知しようとする漏
水L経由の電流と保護層3経由の電流とが混在する。特
に、保護層3経由の電流の方が漏水L経由の電流より大
きいこともあり、短絡回路のものか漏水L経由のものか
の区別がつきにくく、漏水発生位置を検出する精度を向
上させる上での障害となっていた。
When the short-circuited electric path is formed, the current value measured by the ammeter 5a is a mixture of the current through the water leak L and the current through the protection layer 3, which are to be detected. In particular, since the current flowing through the protective layer 3 may be larger than the current flowing through the water leak L, it is difficult to distinguish between a short-circuit circuit and a water leak L, thereby improving the accuracy of detecting a water leak occurrence position. Was an obstacle in

【0008】以上から本発明は、前記問題点に鑑みてな
されたものであり、保護層を経由して流れる電流の特性
を把握することにより、漏水に流れる電流のみ抽出する
補正を行い、漏水発生位置を検出する精度を向上させる
漏水発生位置検知装置及びその方法を提供することを技
術的課題とする。
In view of the above, the present invention has been made in view of the above-mentioned problems. By grasping the characteristics of the current flowing through the protective layer, a correction for extracting only the current flowing in the water leakage is performed, and the occurrence of the water leakage is corrected. A technical problem is to provide a water leakage occurrence position detecting device and a method thereof that improve the accuracy of position detection.

【0009】[0009]

【課題を解決するための手段】前記課題を達成するため
に、本発明の漏水発生位置検知装置及びその方法は、以
下に示す手段を採用した。すなわち、請求項1の漏水発
生位置検知装置は、地盤に形成した窪みに電気的絶縁体
の遮水工を敷設すると共に電気を通す保護層を前記遮水
工上に層状に設けてた遮水工構造物と、前記遮水工の表
裏どちらかに設置した面電極と、前記面電極の反対側に
設置した複数の点電極と、前記保護層が前記地盤と接触
する部分の近傍に、前記複数の点電極あるいは前記面電
極の周辺を取り囲んで設置した環状電極と、前記複数の
点電極から1つを選択して電源の1端に接続すると共
に、前記選択した点電極を除く全ての点電極、前記面電
極及び前記環状電極を前記電源の他端に接続する選択接
続手段と、前記選択した点電極と前記面電極及び前記環
状電極との間に流れる電流を測定する電流測定手段と、
前記環状電極の測定電流値を用いて前記面電極の測定電
流値から前記保護層を経由して流れる電流成分を補正す
る補正手段と、を備え、前記補正した電流値と前記選択
した点電極の位置から前記遮水工構造物の漏水位置を検
知することを特徴とする。
Means for Solving the Problems In order to achieve the above object, a water leakage occurrence position detecting apparatus and method according to the present invention employs the following means. In other words, the water leakage occurrence detecting device according to claim 1 is a water leakage shielding device in which a water shielding work of an electrical insulator is laid in a depression formed in the ground and a protective layer for conducting electricity is provided in a layer on the water shielding work. Engineering structure, a surface electrode installed on either side of the water shield, a plurality of point electrodes installed on the opposite side of the surface electrode, and in the vicinity of a portion where the protective layer contacts the ground, A plurality of point electrodes or an annular electrode disposed around the periphery of the surface electrode, and one of the plurality of point electrodes selected and connected to one end of a power source, and all points except the selected point electrode An electrode, selective connection means for connecting the plane electrode and the annular electrode to the other end of the power supply, and current measuring means for measuring a current flowing between the selected point electrode and the plane electrode and the annular electrode,
Correction means for correcting a current component flowing through the protective layer from the measured current value of the surface electrode using the measured current value of the annular electrode, and the corrected current value and the selected point electrode. It is characterized by detecting a water leakage position of the impermeable structure from a position.

【0010】また、請求項2の漏水発生位置検知装置
は、前記環状電極が複数設けられ、少なくとも1つの前
記環状電極を前記選択接続手段が前記電流測定手段を迂
回して直接前記電源の他端に接続するように構成する。
従って、複数の環状電極のうち、電流測定手段を介して
電源の他端に接続する環状電極は補正専用電極となり、
電流測定手段を迂回して直接電源の他端に接続する環状
電極は電場制御専用電極となる。
In the water leakage occurrence position detecting device according to a second aspect of the present invention, a plurality of the annular electrodes are provided, and at least one of the annular electrodes is connected to the other end of the power supply by the selective connection means bypassing the current measuring means. It is configured to connect to.
Therefore, among the plurality of annular electrodes, the annular electrode connected to the other end of the power supply via the current measuring means is a correction-only electrode,
The ring-shaped electrode connected directly to the other end of the power supply bypassing the current measuring means is a dedicated electrode for electric field control.

【0011】請求項1及び請求項2の発明によれば、選
択接続手段により電源の1端(印加側端子)に接続され
た1個の点電極(印加電極)と、この印加電極を除くす
べての点電極と、面電極、及び環状電極(補正専用電極
と電場制御専用電極)との間に、(1) 印加電極→地盤→
印加電極以外の点電極および地盤側に設置した電場制御
専用電極→電源の他端。(2) 印加電極→保護層→補正専
用電極→電流測定手段→電源の他端。(3) 印加電極→漏
水→面電極→電流測定手段→電源の他端。(4)印加電極
→保護層(又は地盤)→面電極→電流測定手段→電源の
他端、の回路が形成される。そして、面電極に接続され
た電流測定手段から検出される電流値は、漏水を経由し
て流れる電流(回路(3))と保護層を経由して流れる電
流(回路(4))とが含まれている。一方、回路(2) を流
れる電流値は、保護層及び補正専用電極を介して流れる
電流値であるが、補正専用電極が遮水工構造物周辺の保
護層や地盤と接触している部分近くに配置されており、
補正専用電極が遮水工上下を短絡する経路を横断する位
置にあるため、測定電流値の傾向は、保護層を経由して
流れる電流の傾向とほぼ同一であると考えられる。そこ
で、保護層を経由して流れる電流の特性を補正専用電極
を介して流れる電流値により得て、保護層を経由して流
れる電流が混入した面電極の測定電流値から、保護層を
経由して流れる電流成分を除去し、漏水に関する電流成
分のみを抽出するための補正が可能とする。
According to the first and second aspects of the present invention, one point electrode (applied electrode) connected to one end (applied terminal) of the power supply by the selective connection means, and all points except this applied electrode Between the point electrode, the surface electrode, and the ring electrode (the electrode dedicated to correction and the electrode dedicated to electric field control), (1) applied electrode → ground →
Point electrodes other than the applied electrodes and electrodes dedicated to electric field control installed on the ground side → the other end of the power supply. (2) Applied electrode → protective layer → electrode for correction → current measuring means → other end of power supply. (3) Applying electrode → water leakage → surface electrode → current measuring means → other end of power supply. (4) A circuit is formed from the applied electrode → the protective layer (or the ground) → the surface electrode → the current measuring means → the other end of the power supply. The current value detected from the current measuring means connected to the surface electrode includes the current flowing through the water leakage (circuit (3)) and the current flowing through the protective layer (circuit (4)). Have been. On the other hand, the value of the current flowing through the circuit (2) is the value of the current flowing through the protective layer and the correction electrode, but is near the portion where the correction electrode is in contact with the protective layer and the ground around the impermeable structure. Are located in
Since the correction electrode is located at a position that traverses the path that short-circuits the top and bottom of the water shield, the tendency of the measured current value is considered to be almost the same as the tendency of the current flowing through the protective layer. Therefore, the characteristic of the current flowing through the protective layer is obtained from the current value flowing through the correction electrode, and the measured current value of the surface electrode mixed with the current flowing through the protective layer passes through the protective layer. To remove the current component flowing through the filter and to extract only the current component related to water leakage.

【0012】また、選択接続手段により印加電極を除く
全ての点電極、面電極及び電場制御専用電極(すなわ
ち、遮水工の上下の電場)が、印加側でない電源の他端
に接続されることで同電位に制御される。また、遮水工
を挟んで印加電極の反対側に設置された面電極と環状電
極が印加電極と反対の極性を持ち、また、環状電極が短
絡経路となる保護層(又は地盤)内に設けられているこ
と、及び電流測定手段に接続する補正専用電極が面電極
より印加電極に近いことから、保護層(又は地盤)を介
して面電極に流れる電流を低減させることができ、結果
として保護層の短絡経路を経由して流れる電流を低減さ
せるよう作用する。
In addition, all the point electrodes, surface electrodes and electrodes dedicated to electric field control (that is, electric fields above and below the water shield) other than the applied electrode are connected to the other end of the power source that is not the application side by the selective connection means. At the same potential. In addition, the surface electrode and the ring electrode provided on the opposite side of the application electrode across the water shield have polarities opposite to those of the application electrode, and the ring electrode is provided in a protective layer (or ground) serving as a short-circuit path. And the correction electrode connected to the current measuring means is closer to the applied electrode than the surface electrode, so that the current flowing to the surface electrode via the protective layer (or the ground) can be reduced, and as a result, protection can be achieved. It acts to reduce the current flowing through the short circuit path of the layer.

【0013】なお、遮水工は電気的絶縁性を有する材質
である合成樹脂や合成ゴムが例示できる。また、管理型
廃棄物最終処分場等に用いられる保護層は、ポリエステ
ルやポリプロピレンの不織布(遮光マット)を敷設する
場合や、土質材料やコンクリートを敷設する場合が例示
できる。
[0013] Examples of the water shielding work include a synthetic resin and a synthetic rubber which are electrically insulating materials. Examples of the protective layer used in the managed waste final disposal site include a case where a nonwoven fabric (light-shielding mat) of polyester or polypropylene is laid, or a case where a soil material or concrete is laid.

【0014】更に、請求項3の漏水発生位置検知装置
は、前記電流測定手段が、前記電源の印加電圧と同波長
および同位相の電流成分を抽出する位相検波回路を有す
るように構成する。
Further, the water leak occurrence position detecting device according to claim 3 is configured such that the current measuring means has a phase detection circuit for extracting a current component having the same wavelength and the same phase as the applied voltage of the power supply.

【0015】請求項3の発明によれば、電流測定手段が
検出する測定電流値から電源の印加電圧と同波長および
同位相の電流成分のみを抽出することで、前記測定電流
値から自然電流や高調波ノイズを除去することができ
る。このことにより、前記測定電流値の精度が向上し、
漏水発生位置を検出する精度が向上する。
According to the third aspect of the present invention, only the current component having the same wavelength and the same phase as the applied voltage of the power supply is extracted from the measured current value detected by the current measuring means, so that the natural current and the natural current can be extracted from the measured current value. Harmonic noise can be removed. This improves the accuracy of the measured current value,
The accuracy of detecting the location where a water leak occurs is improved.

【0016】更にまた、請求項4の漏水発生位置検知方
法は、地盤に形成した窪みに電気的絶縁体の遮水工を敷
設すると共に電気を通す保護層を前記遮水工上に層状に
設けて遮水工構造物とし、前記遮水工の表裏どちらかに
面電極を設置し、前記面電極の反対側に複数の点電極を
設置し、前記保護層が前記地盤と接触する部分の近傍
に、前記複数の点電極あるいは前記面電極の周辺を取り
囲む環状電極を配置し、前記複数の点電極から1つを選
択して電源の1端に接続すると共に、前記選択した点電
極を除く全ての点電極、前記面電極及び前記環状電極を
前記電源の他端に接続し、前記選択した点電極と前記面
電極及び前記環状電極との間に流れる電流を測定し、前
記環状電極の測定電流値を用いて前記面電極で測定した
電流値から前記保護層を経由して流れる電流成分を補正
し、前記補正した電流値と前記選択した点電極の位置か
ら前記遮水工構造物の漏水位置を検知することを特徴と
する。
Further, in the method for detecting a water leakage occurrence position according to a fourth aspect, a water barrier of an electrical insulator is laid in a depression formed in the ground, and a protective layer for conducting electricity is provided in a layer on the water barrier. And a water impervious structure, a surface electrode is installed on either side of the water impervious structure, a plurality of point electrodes are installed on the opposite side of the surface electrode, and a portion where the protective layer comes into contact with the ground. A plurality of point electrodes or an annular electrode surrounding the surface electrode is disposed, one of the plurality of point electrodes is selected and connected to one end of a power supply, and all except for the selected point electrode. The point electrode, the plane electrode and the annular electrode are connected to the other end of the power source, and a current flowing between the selected point electrode, the plane electrode and the annular electrode is measured, and the measured current of the annular electrode is measured. Protection from the current value measured at the surface electrode using the value It corrects the current component flowing through the, and detecting the water leakage position of the water-impervious Engineering structure from the position of the corrected current value and the selected points electrode.

【0017】請求項4の発明によれば、環状電極を配置
したことにより遮水工構造物内外の電位が同電位となる
条件で面電極を経由する電流が測定できる。そして、測
定対象(遮水工)の内外が、印加電極周辺以外同電位に
制御されるため、保護層を経由して流れる電流を少なく
することができる。また、環状電極に流れる電流の特性
が、電流測定電極(面電極)で測定される電流の特性の
うち保護層を経由して流れる電流の特性と相似の関係に
あることから、保護層を経由して流れる電流を補正する
ことができる。すなわち、電流測定電極(面電極)の周
囲の保護層内に設置した環状電極に流れる電流と、先の
電流測定電極(面電極)を経由する電流の測定値から、
保護層を経由して流れる電流を補正できる。
According to the fourth aspect of the present invention, by arranging the annular electrode, the current passing through the surface electrode can be measured under the condition that the electric potential inside and outside the impermeable structure becomes the same electric potential. Then, since the inside and outside of the measurement target (water shielding work) are controlled to the same potential except for around the application electrode, the current flowing through the protective layer can be reduced. In addition, since the characteristics of the current flowing through the annular electrode are similar to the characteristics of the current flowing through the protective layer among the characteristics of the current measured by the current measuring electrode (plane electrode), the characteristics of the current flowing through the protective layer pass through the protective layer. Current flowing therethrough can be corrected. That is, from the current flowing through the annular electrode provided in the protective layer around the current measuring electrode (plane electrode) and the measured value of the current passing through the previous current measuring electrode (plane electrode),
The current flowing through the protective layer can be corrected.

【0018】以上この発明では、漏水発生位置を検知す
る測定対象を電流値を構成要件としているが、この発明
の測定対象は電流値以外に、測定電流値と印加電圧から
求まる電気抵抗値であってもよい。また、この発明の構
成要件である電源は、二相交流電源であっても、交替直
流電源であってもよい。
As described above, in the present invention, the measurement target for detecting the position where the water leak has occurred is a current component, but the measurement target of the present invention is not only the current value but also the electric resistance value obtained from the measured current value and the applied voltage. You may. The power supply which is a component of the present invention may be a two-phase AC power supply or an alternating DC power supply.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態に係る
漏水発生位置検知装置を図1〜図8に基づいて詳細に説
明する。なお、実施の形態に係る漏水発生位置検知装置
は、遮水工構造物1に設置されている。また、遮水工構
造物1は管理型廃棄物最終処分場の場合として説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a water leakage occurrence position detecting device according to an embodiment of the present invention will be described in detail with reference to FIGS. In addition, the water leak occurrence position detecting device according to the embodiment is installed in the water shielding structure 1. In addition, the case where the impermeable structure 1 is a managed waste final disposal site will be described.

【0020】遮水工構造物1は、図1に示すように、窪
み1aに遮水工2を敷設し、遮水工2全体を覆うように
その斜面部に保護層3を積層したものである。そして、
遮水工2は電気的絶縁性を有する合成樹脂で形成されて
いる。また、保護層3は電気的絶縁体でないコンクリー
ト材料で形成されており、遮水工構造物1に敷設した遮
水工2の上面側と下面側とが保護層3を経由して電気的
短絡回路が形成可能な状態になっている。
As shown in FIG. 1, a water-blocking structure 1 has a water-blocking structure 2 laid in a depression 1a and a protective layer 3 laminated on a slope portion of the water-blocking structure 2 so as to cover the entire water-blocking structure 2. is there. And
The water shield 2 is formed of an electrically insulating synthetic resin. The protective layer 3 is formed of a concrete material that is not an electrical insulator, and the upper surface and the lower surface of the water shield 2 laid on the water shield structure 1 are electrically short-circuited via the protective layer 3. The circuit can be formed.

【0021】なお、管理型廃棄物最終処分場に用いられ
る保護層3は、ポリエステルやポリプロピレンの不織布
(遮光マット)を敷設する場合や、土質材料やコンクリ
ートを敷設する場合があるが、ポリエステルなど合成繊
維と比較すると土質材料やコンクリートの方が遮水工の
紫外線劣化や熱劣化防止に好適であり、耐久性において
非常に優れた素材であることが知られている。また、廃
棄物搬入道路用としてはコンクリートの方が耐久性にお
いて非常に優れた素材である。そこで、この実施の形態
ではコンクリート製の保護層3を敷設したものとして説
明する。
The protective layer 3 used in the final disposal site for managed waste may be laid with a non-woven fabric (light-shielding mat) of polyester or polypropylene, or with a soil material or concrete. Compared with fibers, soil materials and concrete are more suitable for preventing ultraviolet light deterioration and heat deterioration of the water shielding work, and are known to be materials excellent in durability. Concrete is a material with much higher durability for roads carrying waste. Therefore, in this embodiment, description will be made assuming that the protective layer 3 made of concrete is laid.

【0022】漏水発生位置検知装置は、遮水工2が敷設
された遮水工構造物1内部に線状電極を格子状に配列し
た面電極12(図2(a)参照)を配置し、遮水工2の
裏面側(地盤側)に複数の点電極Ta1〜Tj10(図2
(b)参照)を所定間隔で配置し、更に遮水工2全体を
取り囲むように遮水工2の上側及び下側に環状電極(補
正専用電極13aと電場制御専用電極13b;図1参
照)を配置した電極配置構成を用いる。
The water leakage occurrence position detecting device has a surface electrode 12 (see FIG. 2 (a)) in which linear electrodes are arranged in a grid pattern inside a water impervious structure 1 on which a water impervious work 2 is laid. A plurality of point electrodes T a1 to T j10 (FIG. 2)
(See (b)) at predetermined intervals, and further, annular electrodes (a correction electrode 13a and an electric field control electrode 13b; see FIG. 1) on the upper and lower sides of the water shield 2 so as to surround the entire water shield 2. Is used.

【0023】面電極12は電流測定装置5を介して交流
電源4の一方4aに接続している。一方、点電極点電極
a1〜Tj10はそれぞれ電極切替装置15を介して交流
電源4の一方4aあるいは他方4bに接続している。
The surface electrode 12 is connected to one side 4a of the AC power supply 4 via a current measuring device 5. On the other hand, it is connected to one 4a or the other 4b of the AC power supply 4 via the respective point electrodes point electrode T a1 through T j10 electrode switching device 15.

【0024】電極切替装置15は点電極Ta1〜Tj10
うち1つ(図1では点電極Td4)を選択すると残りの点
電極はすべて共通に接続する機能を持つ。すなわち、点
電極Ta1〜Tj10においては、電極切替装置15で選択
された1つの点電極Td4が交流電源4の出力側の他方4
bに接続され、残りの点電極はすべて共通に交流電源4
の一方4aに直接接続される。
When one of the point electrodes T a1 to T j10 (point electrode T d4 in FIG. 1) is selected, the electrode switching device 15 has a function of connecting all the other point electrodes in common. That is, the point in the electrode T a1 through T j10, the output side while the fourth electrode switching device 15 a point electrodes T d4 AC power source 4, which is selected by
b, and all the other point electrodes are connected to an AC power source 4 in common.
Is directly connected to one side 4a.

【0025】また、補正専用電極13a及び電場制御専
用電極13bは遮水工2の上側あるいは下側にあって保
護層3内あるいは地盤内に環状に配置されている。そし
て、補正専用電極13aは電流測定装置5を経由して交
流電源4の一方4aに接続している。また、電場制御専
用電極13bは電流測定装置5を迂回して直接交流電源
4の一方4aに接続している。
Further, the correction electrode 13a and the electric field control electrode 13b are disposed above or below the water shield 2 and are annularly arranged in the protective layer 3 or the ground. The correction electrode 13a is connected to one side 4a of the AC power supply 4 via the current measuring device 5. The electric field control electrode 13b is connected directly to one side 4a of the AC power supply 4 bypassing the current measuring device 5.

【0026】交流電源4は、図3に示すように、電力増
幅回路41と発振回路42を有し、発振回路42が電力
増幅回路41に接続している。そして、発振回路42は
信号波形を出力し、電力増幅回路41は発振回路42で
作り出された信号波形を電力増幅する。
As shown in FIG. 3, the AC power supply 4 has a power amplification circuit 41 and an oscillation circuit 42, and the oscillation circuit 42 is connected to the power amplification circuit 41. The oscillation circuit 42 outputs a signal waveform, and the power amplification circuit 41 power-amplifies the signal waveform generated by the oscillation circuit 42.

【0027】そして、交流電源4は、点電極Ta1〜T
j10と面電極12との間において、電極切替装置15の
選択接続により形成される回路に電圧を印加する。
The AC power supply 4 is connected to the point electrodes Ta1 to Ta1.
A voltage is applied to a circuit formed by the selective connection of the electrode switching device 15 between j10 and the plane electrode 12.

【0028】その結果、次のような回路が形成される。
なお、遮水工2には、漏水Lが点電極TD4の位置で発生
しているものとする。すなわち、(1) 電極切替装置15
→点電極Td4→地盤→点電極Td4以外の点電極および地
盤側に設置した環状の電場制御専用電極13b→交流電
源4の一方4a。 (2) 電極切替装置15→点電極Td4→保護層3→補正専
用電極13a→電流測定装置5→交流電源4の一方4
a。 (3) 電極切替装置15→点電極Td4→漏水L→面電極1
2→電流測定装置5→交流電源4の一方4a。 (4) 電極切替装置15→点電極Td4→保護層3(又は地
盤)→面電極12→電流測定装置5→交流電源4の一方
4a、の回路が形成される。
As a result, the following circuit is formed.
Note that Saegimizuko 2, it is assumed that the leakage L occurs at the position of the point electrodes T D4. That is, (1) the electrode switching device 15
→ Point electrode T d4 → ground → point electrode other than point electrode T d4 and annular electric field control electrode 13b installed on the ground side → one 4a of AC power supply 4. (2) Electrode switching device 15 → point electrode T d4 → protective layer 3 → correction electrode 13 a → current measuring device 5 → one of AC power supply 4
a. (3) Electrode switching device 15 → point electrode T d4 → water leakage L → surface electrode 1
2 → current measuring device 5 → one 4a of AC power supply 4. (4) A circuit of the electrode switching device 15 → point electrode T d4 → protective layer 3 (or ground) → surface electrode 12 → current measuring device 5 → one of the AC power supply 4a 4a is formed.

【0029】そして、回路(1)〜(4)によれば、電極切替
装置15により選択された1個の点電極(例えば、点電
極Td4)と、点電極Td4を除くすべての点電極と、補正
専用電極13a及び電場制御専用電極13bとの間に交
流電源4の電圧が印加されているので、点電極Td4(印
加電極)を除く全ての点電極、面電極12、補正専用電
極13a及び電場制御専用電極13bが、印加側でない
一方4aに接続されることで同電位に制御される。従っ
て、漏水発生位置検知装置は、回路(1)〜(4)が形成され
るように構成したことにより、遮水工2の上下の電場が
同電位となるように制御されている。
According to the circuits (1) to (4), one point electrode (for example, the point electrode T d4 ) selected by the electrode switching device 15 and all the point electrodes except the point electrode T d4 are selected. Since the voltage of the AC power supply 4 is applied between the correction electrode 13a and the electric field control electrode 13b, all the point electrodes, the surface electrode 12, and the correction electrode except the point electrode T d4 (applied electrode) are applied. When the electrode 13a and the electric field control exclusive electrode 13b are connected to the other side 4a which is not the application side, the electric potential is controlled to be the same. Therefore, the water leakage occurrence position detecting device is configured so that the circuits (1) to (4) are formed, so that the electric field above and below the water shield 2 is controlled to have the same electric potential.

【0030】すなわち、遮水工構造物1の地盤側に電圧
印加および電位を制御するための電極(印加電極を除く
すべての点電極及び電場制御専用電極13b)を設置し
た図1の電極配置からわかるように、環状の電場制御専
用電極13bは、遮水工構造物1内外を接続するコンク
リートなどの保護層3が地盤と接触する遮水工2上下の
電場を同電位に制御する。なお、環状電極(補正専用電
極13a及び電場制御専用電極13b)の太さと保護層
3の断面積を比較すると、保護層3の断面積が大きいた
め、環状電極だけで保護層3を経由して流れる電流を制
御することがむずかしいので、環状電極は単数よりは複
数であることが好ましい。
That is, the electrode arrangement shown in FIG. 1 in which electrodes for controlling voltage application and potential (all point electrodes except the applied electrode and the electrode 13 b dedicated to electric field control) are installed on the ground side of the water shield structure 1. As can be seen, the annular electric field control electrode 13b controls the electric field above and below the water shield 2 where the protective layer 3 such as concrete connecting the inside and the outside of the water shield structure 1 comes into contact with the ground, to the same potential. When comparing the thickness of the annular electrode (the correction electrode 13a and the electric field control electrode 13b) with the cross-sectional area of the protective layer 3, the cross-sectional area of the protective layer 3 is large. Since it is difficult to control the flowing current, it is preferable that the number of ring electrodes is more than one.

【0031】また、図1の電極配置から、遮水工2上下
の電位の制御は、面電極12に接続される交流電源4の
一方4aに、選択された点電極(例えば点電極Td4)だ
け除いた遮水工2裏面側の全電極を接続することにより
行われる。そして、電流測定は、遮水工構造物1内の面
電極12と遮水工2上側の補正専用電極13aについて
行われる。そして、この実施の形態では、点電極Ta1
j10により遮水工2の上下の電位を積極的に制御する
点があり、点電極が単に金属板であるよりも面的に広が
りがある方が有利となる。
Also, based on the electrode arrangement in FIG. 1, the upper and lower electric potentials of the water shield 2 are controlled by applying a selected point electrode (for example, a point electrode T d4 ) to one of the AC power supplies 4 connected to the plane electrode 12. This is performed by connecting all the electrodes on the back surface side of the water shield 2 excluding only those. Then, the current measurement is performed on the surface electrode 12 in the water shield structure 1 and the correction electrode 13a on the upper side of the water shield structure 2. In this embodiment, the point electrodes Ta1 to Ta1 to
There is a point that the potential above and below the water shield 2 is positively controlled by T j10, and it is more advantageous that the point electrode has a wider area than a simple metal plate.

【0032】点電極は、図4に示すように、裸銅線を正
方形の枠型に成形したもの(図4(a)の符号14
a)、あるいは裸銅線を螺旋型に成形したもの(図4
(b)の符号14b)が例示できる。なお、点電極の形
状は、矩形だけでなく、円形であっても同様の効果が期
待できる。
As shown in FIG. 4, the point electrode is formed by molding a bare copper wire into a square frame (reference numeral 14 in FIG. 4A).
a) or a bare copper wire formed into a spiral shape (Fig. 4
Reference numeral 14b) of (b) can be exemplified. The same effect can be expected if the point electrode is not only rectangular but also circular.

【0033】また、回路(1)〜(4)によれば、遮水工2を
挟んで印加電極Td4の反対側に設置された面電極12、
補正専用電極13a及び電場制御専用電極13bが印加
電極Td4と反対の極性を持ち、また、補正専用電極13
a及び電場制御専用電極13bが短絡経路となる保護層
3(又は地盤)内に設けられていること、及び補正専用
電極13aが面電極12より印加電極Td4より近いこと
から、保護層3(又は地盤)を経由して面電極12に流
れる電流を低減させることができ、結果として保護層3
の短絡経路を経由して流れる電流を低減させるよう作用
する。
Further, the circuit (1) to (4) According to the surface electrode 12 disposed opposite the application electrode T d4 across the Saegimizuko 2,
The correction electrode 13a and the electric field control electrode 13b have opposite polarities to the application electrode Td4.
a and the electric field control exclusive electrode 13b are provided in the protective layer 3 (or the ground) serving as a short-circuit path, and the correction exclusive electrode 13a is closer to the application electrode T d4 than the plane electrode 12, so that the protective layer 3 ( Or ground), the current flowing to the surface electrode 12 can be reduced.
To reduce the current flowing through the short-circuit path.

【0034】以上から、回路(1)〜(4)を用い、保護層3
を経由して流れる電流の特性を把握することにより、漏
水に流れる電流成分のみ抽出する補正が可能となる。
From the above, using the circuits (1) to (4), the protective layer 3
By grasping the characteristics of the current flowing through the filter, it is possible to perform a correction for extracting only the current component flowing in the water leakage.

【0035】ところで、回路(1)〜(4)のうち、電流が検
出される回路は(2)〜(4)であり、電流測定装置5で検出
される。
By the way, of the circuits (1) to (4), the circuits from which the current is detected are (2) to (4), which are detected by the current measuring device 5.

【0036】電流測定装置5は、図3に示すように、電
流検出回路16と位相検波回路17とA/Dコンバータ
18とコンピュータ19とを有し、電流検出回路16が
位相検波回路17及びA/Dコンバータ18を介してコ
ンピュータ19に接続する。位相検波回路17は、検出
した電流値から電力増幅回路41の印加電圧と同波長及
び同位相の電流分を抽出する。言い換えれば、位相検波
回路17は、検出した電流値から電力増幅回路41の印
加電圧と位相の異なる成分(例えば、遮水工2を介して
流れる電流成分)を除去する。従って、この位相検波出
力は、電力増幅回路41の印加電圧と同波長及び同位相
の電流分のみがA/Dコンバータ18によりデジタル信
号に変換され、コンピュータ19に与えられる。
As shown in FIG. 3, the current measuring device 5 includes a current detecting circuit 16, a phase detecting circuit 17, an A / D converter 18, and a computer 19, and the current detecting circuit 16 includes the phase detecting circuits 17 and It is connected to a computer 19 via a / D converter 18. The phase detection circuit 17 extracts a current component having the same wavelength and the same phase as the voltage applied to the power amplification circuit 41 from the detected current value. In other words, the phase detection circuit 17 removes a component having a phase different from the voltage applied to the power amplification circuit 41 (for example, a current component flowing through the water shield 2) from the detected current value. Therefore, in the phase detection output, only the current having the same wavelength and the same phase as the voltage applied to the power amplification circuit 41 is converted into a digital signal by the A / D converter 18 and supplied to the computer 19.

【0037】コンピュータ19は、双方向バスによって
相互に接続されたROM(リードオンリメモリ)、RA
M(ランダムアクセスメモリ)、CPU(中央処理装
置)、入力ポート、出力ポートを具備する。コンピュー
タ19の入力ポートは、A/Dコンバータ18及び位相
検波回路17を介して電流検出回路16と接続し、出力
信号(測定電流値)が入力される。また、コンピュータ
19の出力ポートは、電極切替装置15と結線し(図示
せず)、点電極の切替の指令を電極切替装置15に対し
出力する。なお、点電極の切替の指令は、後述する選択
接続手順に基づき実行される(選択接続手段)。更に、
コンピュータ19の出力ポートは、例えば、CRT装置
(図示せず)と結線し、CRT装置に対し、表示指令
(画像データ)を出力する。
The computer 19 includes a ROM (Read Only Memory), RA connected to each other by a bidirectional bus.
M (random access memory), CPU (central processing unit), input port, output port. The input port of the computer 19 is connected to the current detection circuit 16 via the A / D converter 18 and the phase detection circuit 17, and receives an output signal (measured current value). The output port of the computer 19 is connected to the electrode switching device 15 (not shown) and outputs a command for switching the point electrode to the electrode switching device 15. The command for switching the point electrodes is executed based on a selective connection procedure described later (selective connection means). Furthermore,
The output port of the computer 19 is connected to, for example, a CRT device (not shown) and outputs a display command (image data) to the CRT device.

【0038】ROMには、漏水発生位置検知処置のプロ
グラムや選択接続手順のプログラムが記憶されており、
CPUはこれらプログラムを読み出して処理を行う。な
お、選択接続手順は、電極切替装置15において、電流
検出回路16側に接続する端子に点電極Ta1〜T
j10(図2(b)参照)を1個ずつ接続する100種類
の手順を順次切り替える手順である。そして、CPUは
1番目(i=1;例えば点電極Ta1)から100番目
(i=100;例えば点電極Tj10)をROMから読み
出して電極切替装置15を切り替える指令を出力する。
すると、指令順番毎に、任意の点電極に交流電圧が印加
され、点電極の位置が選択されたことになる。
The ROM stores a program for detecting a position where a water leak has occurred and a program for a selective connection procedure.
The CPU reads these programs and performs processing. The selective connection procedure is as follows. In the electrode switching device 15, the terminals connected to the current detection circuit 16 are connected to the point electrodes Ta1 to T
j10 (see FIG. 2B) is a procedure for sequentially switching 100 types of procedures for connecting one by one. Then, the CPU reads the first (i = 1; for example, the point electrode T a1 ) to the 100th (i = 100; for example, the point electrode T j10 ) from the ROM and outputs a command to switch the electrode switching device 15.
Then, an AC voltage is applied to an arbitrary point electrode for each command order, and the position of the point electrode is selected.

【0039】次に、コンピュータ19による本発明の漏
水発生位置検知処理を図5の流れ図に基づき説明する。
コンピュータ19は、「i=1」とし(ステップ10
1)、ROMに記憶された選択接続手順に従って電極切
替装置15の切替を行い、点電極(位置)を選択する
(ステップ102)。即ち、「i」が1番目の組み合わ
せ(i=1;点電極Ta1)となるように、電極切替装置
15で点電極Ta1と交流電源4の他方4bを接続させ、
その他の点電源を交流電源4の他方4bに接続し、交流
電源4の一方4aと他方4bとの間に交流電圧を印加
し、これら点電極の位置を選択する。なお、補正専用電
極13aと面電極12は電流測定装置5を経由して交流
電源4の一方4aに接続されており、電場制御専用電極
13bは直接交流電源4の一方4aに接続されている。
Next, the water leak occurrence position detection processing of the present invention by the computer 19 will be described with reference to the flowchart of FIG.
The computer 19 sets “i = 1” (step 10
1) Switching of the electrode switching device 15 is performed according to the selective connection procedure stored in the ROM, and a point electrode (position) is selected (step 102). That is, the electrode switching device 15 connects the point electrode Ta1 and the other 4b of the AC power supply 4 so that "i" becomes the first combination (i = 1; the point electrode Ta1 ),
The other point power supply is connected to the other side 4b of the AC power supply 4, an AC voltage is applied between the one side 4a and the other side 4b of the AC power supply 4, and the positions of these point electrodes are selected. The correction electrode 13a and the plane electrode 12 are connected to one side 4a of the AC power supply 4 via the current measuring device 5, and the electric field control electrode 13b is directly connected to one side 4a of the AC power supply 4.

【0040】この時、漏水発生位置検知装置には、(1)
電極切替装置15→点電極Ta1→地盤→点電極Ta1以外
の点電極および電場制御専用電極13b→交流電源4の
一方4a。 (2) 電極切替装置15→点電極Ta1→保護層3→補正専
用電極13a→電流測定装置5→交流電源4の一方4
a。 (3) 電極切替装置15→点電極Ta1→漏水L→面電極1
2→電流測定装置5→交流電源4の一方4a。 (4) 電極切替装置15→点電極Ta1→保護層3(又は地
盤)→面電極12→電流測定装置5→交流電源4の一方
4a、の回路が形成されている。
At this time, (1)
One 4a of the electrode switching device 15 → point electrodes T a1 → ground → point electrodes other than point electrodes T a1 and field controlling dedicated electrode 13b → the AC power source 4. (2) Electrode switching device 15 → Point electrode Ta1 → Protective layer 3 → Correcting electrode 13a → Current measuring device 5 → One of AC power supply 4
a. (3) Electrode switching device 15 → point electrode Ta1 → water leakage L → surface electrode 1
2 → current measuring device 5 → one 4a of AC power supply 4. (4) A circuit of the electrode switching device 15 → point electrode Ta1 → protective layer 3 (or ground) → surface electrode 12 → current measuring device 5 → one of 4a of the AC power supply 4 is formed.

【0041】そして、電流測定装置5(電流検出回路1
6)は上記回路(2)〜(4)の電流値を測定し、位相検波回
路17及びA/Dコンバータ18を介してコンピュータ
19に出力する。すると、コンピュータ19は電流値を
「i=1」と共にRAMに記憶する(ステップ10
3)。なお、位相検波回路17は、電力増幅回路41の
印加電圧に同期した位相で検波を行い、電力増幅回路4
1の印加電圧と同波長及び同位相の電流分を抽出し、電
流値から自然電流や高調波ノイズを除去する。
Then, the current measuring device 5 (the current detecting circuit 1)
6) measures the current values of the circuits (2) to (4) and outputs them to the computer 19 via the phase detection circuit 17 and the A / D converter 18. Then, the computer 19 stores the current value in the RAM together with "i = 1" (step 10).
3). The phase detection circuit 17 performs detection with a phase synchronized with the voltage applied to the power amplification circuit 41, and
A current having the same wavelength and the same phase as the applied voltage is extracted, and natural current and harmonic noise are removed from the current value.

【0042】次に、コンピュータ19は、選択切替手順
が100番目(i=100;点電極Tj10)まで終了し
たかどうか判断し(ステップ104)、i=100であ
れば(ステップ104:YES)、ステップ105以降
の処理を行い。一方、i=100でなければ(ステップ
104:NO)、ステップ106の処理を行う。
Next, the computer 19 determines whether or not the selection switching procedure has been completed up to the 100th (i = 100; point electrode T j10 ) (step 104), and if i = 100 (step 104: YES). , And performs the processing from step 105 onward. On the other hand, unless i = 100 (step 104: NO), the processing of step 106 is performed.

【0043】ステップ105において、コンピュータ1
9は、i番目を1だけインクリメントし(i=i+
1)、ステップ102以降の処理を繰り返す。すなわ
ち、コンピュータ19は、「i=1」から「i=10
0」までの処理で検出された電流値をそれぞれ記憶す
る。
In step 105, the computer 1
9 increments the i-th by 1 (i = i +
1) Repeat the processing of step 102 and subsequent steps. That is, the computer 19 determines that “i = 1” to “i = 10”.
The current values detected in the processes up to “0” are stored.

【0044】ステップ106において、コンピュータ1
9は、RAM内に記憶された電流値に基づき保護層3を
経由して流れる電流の補正処理を行う(補正手段)。次
に、この補正処理を説明する。
In step 106, the computer 1
Numeral 9 corrects the current flowing through the protective layer 3 based on the current value stored in the RAM (correction means). Next, this correction processing will be described.

【0045】[補正処理の説明]遮水工構造物1内の面
電極(電流測定電極)12に流れる電流は、漏水Lを経
由して流れる電流と保護層3に流れる電流と遮水工2を
介して流れる電流が含まれる。また、保護層3の地盤と
接触している部分の電位は、保護層3の厚みがほぼ一様
になっており、保護層3と地盤が接触している部分近傍
に配置されているから、環状の補正専用電極13aで設
定される電流の傾向(図7参照)と面電極12に電流が
流れる保護層3を経由する電流成分の傾向(図6参照)
は、漏水の近傍以外相似の関係がある。
[Description of Correction Process] The current flowing through the surface electrode (current measuring electrode) 12 in the water shield structure 1 is the current flowing through the water leakage L, the current flowing through the protective layer 3 and the water shield 2 The current flowing through is included. The potential of the portion of the protective layer 3 that is in contact with the ground is located near the portion where the protective layer 3 is in contact with the ground because the thickness of the protective layer 3 is substantially uniform. The tendency of the current set by the annular correction electrode 13a (see FIG. 7) and the tendency of the current component passing through the protective layer 3 through which the current flows to the plane electrode 12 (see FIG. 6).
Has a similar relationship except near the water leakage.

【0046】そこで、下記に示すように、面電極12と
環状の補正専用電極13aに流れる電流の最大値を用い
て、保護層3を経由して流れる電流成分を消去すること
ができ、この処理により図8に示す漏水についての測定
結果を得ることができる。なお、図6〜図8の立体図に
示すx軸は点電極の「a」ライン〜「j」ラインの配置
を示し、y軸は点電極の「1」ライン〜「10」ライン
の配置を示し、z軸は電流値を示す。
Therefore, as shown below, the current component flowing through the protective layer 3 can be erased by using the maximum value of the current flowing through the surface electrode 12 and the annular correction electrode 13a. As a result, a measurement result on water leakage shown in FIG. 8 can be obtained. The x-axis shown in the three-dimensional views of FIGS. 6 to 8 shows the arrangement of the “a” to “j” lines of the point electrode, and the y-axis shows the arrangement of the “1” to “10” lines of the point electrode. And the z-axis shows the current value.

【0047】すなわち、図6から電流値の測定結果は、
漏水Lを経由して流れる電流値と保護層3を経由して流
れる電流値とが含まれていることを示している。また、
この実施の形態において環状の補正専用電極13aと電
場制御専用電極13bを設けたことにより、遮水工2の
上下の電場が同電位となるように制御されるため、保護
層3を経由して流れる電流が低減することがわかる。し
かし、これだけでは保護層3を経由して流れる電流の影
響を除去できない。
That is, the measurement result of the current value from FIG.
It shows that the current value flowing through the water leakage L and the current value flowing through the protection layer 3 are included. Also,
In this embodiment, by providing the annular correction electrode 13a and the electric field control electrode 13b, the upper and lower electric fields of the water shield 2 are controlled so as to have the same potential. It can be seen that the flowing current is reduced. However, this alone cannot eliminate the influence of the current flowing through the protective layer 3.

【0048】一方、図7に示す環状の補正専用電極13
aを経由して流れる電流の測定結果は、面電極12で測
定された電流値の測定結果(図6参照)における、漏水
周辺以外の傾向と非常に似ており、電流は保護層3に流
れる電流が大きいことを示している。なお、補正専用電
極13aを介して測定されるもの(回路(2))は、補正
専用電極13aが遮水工構造物1周辺の保護層3や地盤
と接触している部分近くに配置されているため、電流値
の傾向は、保護層3を経由して流れる電流の傾向とほぼ
同一であると考えられる。
On the other hand, the annular correction electrode 13 shown in FIG.
The measurement result of the current flowing through “a” is very similar to the tendency of the measurement result of the current value measured by the surface electrode 12 (see FIG. 6) except for the vicinity of the water leakage, and the current flows to the protective layer 3. This indicates that the current is large. In addition, what is measured via the correction electrode 13a (circuit (2)) is disposed near the portion where the correction electrode 13a is in contact with the protective layer 3 or the ground around the water-impervious structure 1. Therefore, the tendency of the current value is considered to be substantially the same as the tendency of the current flowing through the protective layer 3.

【0049】そこで、面電極12と環状の補正専用電極
13aに流れる電流Iを、印加電極位置(x,y)について
meas.(x,y),Icir.(x,y)と表記する。すると、面電
極12に流れる電流Imeas.(x,y) には、図6に示すよ
うに、保護層3を経由して流れる電流成分Ipro.(x,y)
と、漏水Lに流れる電流成分Ileak.(x,y)が含まれてい
る。
Therefore, the current I flowing through the plane electrode 12 and the annular correction electrode 13a is expressed as I meas. (X, y) and I cir. (X, y) for the applied electrode position (x, y) . . Then, the current I meas. (X, y) flowing through the plane electrode 12 includes a current component I pro. (X, y) flowing through the protective layer 3 as shown in FIG .
And a current component I leak. (X, y) flowing through the water leak L.

【0050】従って、面電極12に電流が流れる保護層
3を経由する電流成分の傾向(図6参照)と環状の補正
専用電極13aで設定される電流の傾向(図7参照)を
みると、測定範囲外周部分(保護層3を経由する電流成
分)の特性はほぼ同じで、相似となっていることが分か
る。
Therefore, the tendency of the current component passing through the protective layer 3 through which the current flows to the surface electrode 12 (see FIG. 6) and the tendency of the current set by the annular correction electrode 13a (see FIG. 7) are as follows. It can be seen that the characteristics of the outer peripheral portion of the measurement range (current component passing through the protective layer 3) are almost the same and similar.

【0051】また、環状の補正専用電極13aに流れる
電流Icir.(x,y) は、保護層3に流れる電流成分Ipro.
(x,y) の相似率kを用いて数式1と数式2とで表記でき
る。 Imeas.(x,y)=Ileak.(x,y)+Ipro.(x,y) …数式1 Icir.(x,y) =k・Ipro.(x,y) …数式2 このように、保護層3を経由する電流の影響は、図6お
よび図7からわかるように、測定範囲の外周部周辺に印
加電極がある場合に顕著となり、保護層3を経由する電
流の最大値は、印加電極が測定範囲外周にある条件で測
定される。
The current I cir. (X, y) flowing through the annular correction electrode 13a is a current component I pro.
Expression (1) and Expression (2) can be expressed using the similarity k of (x, y). I meas. (X, y) = I leak. (X, y) + I pro. (X, y) ... Equation 1 I cir. (X, y ) = k · I pro. (X, y) ... Equation 2 As can be seen from FIGS. 6 and 7, the influence of the current passing through the protective layer 3 becomes remarkable when the applied electrode is located around the outer periphery of the measurement range. The value is measured under the condition that the applied electrode is at the outer periphery of the measurement range.

【0052】そこで、数式1において、印加電極位置
(x,y)によって変化する電流のうち、保護層3に流れる
電流成分Ipro.(x,y) の最大値をIpro.maxとし、環状
の補正専用電極13aに流れる電流Icir.(x,y)の最大
値をIcir.maxとすると、数式3で示される。 Icir.max =k・Ipro.max …数式3
Therefore, in Equation 1, the position of the applied electrode
(x, y), the maximum value of the current component I pro. (x, y) flowing through the protective layer 3 is defined as I pro.max, and the current I cir. Assuming that the maximum value of (x, y) is I cir.max , it is expressed by Expression 3. I cir.max = k · I pro.max Equation 3

【0053】次に、数式2と数式3から相似率kを消去
すると、数式4が得られる。 Icir.(x,y)/ Icir.max=Ipro.(x,y)/Ipro.max …数式4 そこで、数式1のIpro.(x,y)を、数式4で消去し、漏
水に流れる電流成分Il eak.(x,y)について書き直すと数
式5が得られる。 Ileak.(x,y)=Imeas.(x,y)−{Ipro.max / Icir.max}・Icir.(x,y) …数式5
Next, Equation 4 is obtained by eliminating the similarity ratio k from Equations 2 and 3. I cir. (X, y) / I cir.max = I pro. (X, y) / I pro.max Equation 4 Then, I pro. (X, y) in Equation 1 is deleted by Equation 4. , equation 5 is obtained rewriting the current component I l eak flowing through the leak. (x, y). I leak. (X, y) = I meas. (X, y) − {I pro.max / I cir.max } · I cir. (X, y)… Equation 5

【0054】次に、コンピュータ19は、補正後の測定
値をCRT画面に表示する指令をCRT装置へ出力する
(ステップ107)。すると、CRT装置はCRT画面
の交差位置に「i=1」から「i=100」までの測定
値を表示する(図8参照)。すると、ステップ106の
補正処理により、保護層3を経由して流れる電流の影響
が完全に除去でき、漏水箇所が明瞭となる立体図となる
ことが分かる。
Next, the computer 19 outputs to the CRT device a command to display the corrected measured value on the CRT screen (step 107). Then, the CRT device displays the measured values from “i = 1” to “i = 100” at the intersection of the CRT screen (see FIG. 8). Then, it can be seen that the effect of the current flowing through the protective layer 3 can be completely removed by the correction processing in step 106, and a three-dimensional view in which the leak location becomes clear is obtained.

【0055】すなわち、遮水工2の点L1,L2,L3
(図2(b)及び図8参照)に漏水が発生している場
合、補正した電流値を表示すれば、遮水工2の破損個所
L1,L2,L3に近い点電極が大きい値を示し、遮水
工2の破損個所L1,L2,L3から点電極が離れるに
従って電流値が小さくなる傾向が表示されることにな
り、漏水発生位置L1,L2,L3を知ることが可能と
なる。
That is, the points L1, L2, L3
When the leaked current is displayed (see FIG. 2B and FIG. 8), the corrected current value indicates that the point electrode close to the breakage point L1, L2, L3 of the water shield 2 shows a large value. As the point electrode moves away from the damage location L1, L2, L3 of the water shield 2, a tendency that the current value becomes smaller is displayed, and it becomes possible to know the water leakage occurrence positions L1, L2, L3.

【0056】そして、コンピュータ19は、CRT画面
に測定値が表示されれば、漏水発生位置検知処理を終了
する。
When the measured value is displayed on the CRT screen, the computer 19 ends the water leak occurrence position detecting process.

【0057】上述の電流値補正例のように、この実施の
形態によれば、保護層3を経由して流れる電流の特性を
環状の補正専用電極13aを用いて把握することによ
り、漏水を経由して流れる電流(回路(3))のみ抽出す
る補正を行い、漏水発生位置を検知するように構成し
た。従って、遮水工2が破損して位置L1,L2,L3
で漏水が発生した場合、漏水を経由して流れる電流のみ
抽出できるので、漏水発生位置L1,L2,L3に近い
点電極と面電極の間を流れる電流値が他の電極間の電流
値よりも上昇することが明瞭に検知でき、漏水発生位置
L1,L2,L3の検出精度が向上する。
According to this embodiment, as in the above-described example of the current value correction, the characteristics of the current flowing through the protective layer 3 are grasped by using the annular correction electrode 13a, so that the current flowing through the water leakage can be prevented. It is configured to perform correction to extract only the current (circuit (3)) flowing and detect the position where water leakage occurs. Therefore, the water shield 2 is damaged and the positions L1, L2, L3
In the case where water leakage occurs, only the current flowing through the water leakage can be extracted, so the current value flowing between the point electrode and the surface electrode near the water leakage occurrence position L1, L2, L3 is smaller than the current value between the other electrodes. The rise can be clearly detected, and the detection accuracy of the water leakage occurrence positions L1, L2, L3 is improved.

【0058】また、この実施の形態によれば、環状電極
13a,13bを配置したことにより遮水工構造物1内
外の電位が同電位となる条件で面電極12を経由する電
流が測定できる。そして、測定対象(遮水工2)の内外
が、印加電極周辺以外同電位に制御されるため、保護層
3を経由して流れる電流を少なくすることができる。
Further, according to this embodiment, by arranging the annular electrodes 13a and 13b, it is possible to measure the current passing through the surface electrode 12 under the condition that the potential inside and outside the water-blocking structure 1 becomes the same potential. Then, since the inside and outside of the measurement target (water shield 2) are controlled to the same potential except for the vicinity of the application electrode, the current flowing through the protective layer 3 can be reduced.

【0059】なお、この実施の形態では、漏水発生位置
を検知する測定対象を電流値として説明したが、この発
明の測定対象は電流値以外に、測定電流値と印加電圧か
ら求まる電気抵抗値であってもよい。
In this embodiment, the measurement target for detecting the position where the water leak has occurred has been described as the current value. However, the measurement target of the present invention is not only the current value but also the electric resistance value obtained from the measurement current value and the applied voltage. There may be.

【0060】また、この実施の形態では電源4を発振回
路42の信号波形を電力増幅回路41で増幅する二相交
流電源として説明したが、電源は交替直流の電源でもよ
い。また、電源4の印加側を図1では、遮水工2の地盤
側に設置した場合で説明したが、原理的に遮水工構造物
1内の電極であってもよい。
Further, in this embodiment, the power supply 4 is described as a two-phase AC power supply in which the signal waveform of the oscillation circuit 42 is amplified by the power amplification circuit 41, but the power supply may be an alternating DC power supply. Although the application side of the power supply 4 is described in FIG. 1 as being installed on the ground side of the water shield 2, it may be an electrode in the water shield structure 1 in principle.

【0061】[0061]

【発明の効果】本発明によれば、どちらかの環状電極に
流れる電流の特性が、電流測定電極で測定される電流の
特性のうち保護層を経由して流れる電流の特性と相似の
関係にあることから、保護層を経由して流れる電流を補
正することができる。
According to the present invention, the characteristics of the current flowing through one of the ring electrodes are similar to the characteristics of the current flowing through the protective layer among the characteristics of the current measured by the current measuring electrode. As a result, the current flowing through the protective layer can be corrected.

【0062】また、本発明によれば、測定対象の内外
が、印加電極周辺以外同電位に制御されるため、保護層
を経由して流れる電流を少なくすることができる。
Further, according to the present invention, since the inside and outside of the object to be measured are controlled to the same potential except for around the application electrode, the current flowing through the protective layer can be reduced.

【0063】更に、本発明によれば、電流測定電極(複
数の線電極もしくは面電極)と点電極の設置範囲の周囲
を取り囲むように設置した環状電極により、保護層を経
由して流れる電流をさらに低減できる。
Further, according to the present invention, the current flowing through the protective layer can be controlled by the current measuring electrodes (a plurality of line electrodes or plane electrodes) and the annular electrodes provided so as to surround the installation area of the point electrodes. It can be further reduced.

【0064】従って、本発明は保護層を経由して流れる
電流の特性を把握することにより、漏水に流れる電流の
み抽出する補正を行い、漏水発生位置を検出する精度を
向上させる補正機能を有する漏水発生位置検知装置及び
その方法を提供することができる。
Therefore, according to the present invention, by grasping the characteristics of the current flowing through the protective layer, a correction is performed to extract only the current flowing in the water leak, and a correction function having a correction function for improving the accuracy of detecting the position where the water leak occurs is provided. An occurrence position detection device and a method thereof can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】遮水工構造物の側断面図である。FIG. 1 is a side sectional view of a seepage control structure.

【図2】遮水工構造物の平面図であり、図2(a)は面
電極の平面配置を示し、図2(b)は点電極の平面配置
を示す。
2A and 2B are plan views of a water impervious structure, in which FIG. 2A shows a plane arrangement of plane electrodes, and FIG. 2B shows a plane arrangement of point electrodes.

【図3】本発明の漏水発生位置検知装置の一部のブロッ
ク回路図である。
FIG. 3 is a block circuit diagram of a part of the water leakage occurrence position detecting device according to the present invention.

【図4】点電極の拡大図である。FIG. 4 is an enlarged view of a point electrode.

【図5】本発明の漏水発生位置検知処理の流れ図であ
る。
FIG. 5 is a flowchart of a water leakage occurrence position detection process according to the present invention.

【図6】電流値の測定結果を表示した立体図である。FIG. 6 is a three-dimensional view showing a measurement result of a current value.

【図7】環状の補正専用電極を流れる電流値の測定結果
を表示した立体図である。
FIG. 7 is a three-dimensional view showing a measurement result of a current value flowing through an annular correction electrode.

【図8】補正専用電極を用いて、図6の測定結果を補正
した場合の立体図である。
FIG. 8 is a three-dimensional view when the measurement result of FIG. 6 is corrected by using a correction electrode.

【図9】従来の漏水発生位置検知装置のブロック回路図
である。
FIG. 9 is a block circuit diagram of a conventional water leakage occurrence position detecting device.

【図10】従来の遮水工構造物の側断面図であり、保護
層を経由して電流が流れる状態を示している。
FIG. 10 is a side sectional view of a conventional waterproof structure, showing a state in which current flows through a protective layer.

【符号の説明】[Explanation of symbols]

1…遮水工構造物 1a…窪み 2…遮水工 3…保護層 4…交流電源 5…電流測定装置 12…面電極 13a…補正専用電極(環状電極) 13b…電場制御専用電極(環状電極) 15…電極切替装置 16…電流検出回路 17…位相検波回路 18…A/Dコンバータ 19…コンピュータ(補正手段) 41…電力増幅回路(二相交流電源) 42…発振回路 DESCRIPTION OF SYMBOLS 1 ... Water shielding structure 1a ... Depression 2 ... Water shielding 3 ... Protective layer 4 ... AC power supply 5 ... Current measuring device 12 ... Surface electrode 13a ... Correction electrode (annular electrode) 13b ... Electric field control electrode (annular electrode) 15 ... Electrode switching device 16 ... Current detection circuit 17 ... Phase detection circuit 18 ... A / D converter 19 ... Computer (correction means) 41 ... Power amplification circuit (two-phase AC power supply) 42 ... Oscillation circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】地盤に形成した窪みに電気的絶縁体の遮水
工を敷設すると共に電気を通す保護層を前記遮水工上に
層状に設けてた遮水工構造物と、 前記遮水工の表裏どちらかに設置した面電極と、 前記面電極の反対側に設置した複数の点電極と、 前記保護層が前記地盤と接触する部分の近傍に、前記複
数の点電極あるいは前記面電極の周辺を取り囲んで設置
した環状電極と、 前記複数の点電極から1つを選択して電源の1端に接続
すると共に、前記選択した点電極を除く全ての点電極、
前記面電極及び前記環状電極を前記電源の他端に接続す
る選択接続手段と、 前記選択した点電極と前記面電極及び前記環状電極との
間に流れる電流を測定する電流測定手段と、 前記環状電極の測定電流値を用いて前記面電極の測定電
流値から前記保護層を経由して流れる電流成分を補正す
る補正手段と、を備え、 前記補正した電流値と前記選択した点電極の位置から前
記遮水工構造物の漏水位置を検知することを特徴とする
漏水発生位置検知装置。
An impermeable structure having an electrically insulating water impervious structure laid in a depression formed in the ground and a protective layer for conducting electricity provided in a layer on the water impervious structure. A surface electrode installed on either side of the surface, a plurality of point electrodes installed on the opposite side of the surface electrode, and the plurality of point electrodes or the surface electrode near a portion where the protective layer contacts the ground. An annular electrode provided surrounding the periphery of, and one selected from the plurality of point electrodes and connected to one end of a power source, and all the point electrodes except the selected point electrode;
Selective connection means for connecting the surface electrode and the ring electrode to the other end of the power supply; current measurement means for measuring a current flowing between the selected point electrode and the surface electrode and the ring electrode; Correction means for correcting a current component flowing through the protective layer from the measured current value of the surface electrode using the measured current value of the electrode, and wherein the corrected current value and the position of the selected point electrode are provided. A water leak occurrence position detecting device for detecting a water leak position of the water impervious structure.
【請求項2】前記環状電極が複数設けられ、少なくとも
1つの前記環状電極を前記選択接続手段が前記電流測定
手段を迂回して直接前記電源の他端に接続する請求項1
記載の漏水発生位置検知装置。
2. A power supply according to claim 1, wherein a plurality of said annular electrodes are provided, and said at least one annular electrode is connected directly to the other end of said power supply by said selective connection means bypassing said current measuring means.
The leak detection position detecting device according to the above.
【請求項3】前記電流測定手段が、前記電源の印加電圧
と同波長および同位相の電流成分を抽出する位相検波回
路を有する請求項1または2に記載の漏水発生位置検知
装置。
3. The water leakage occurrence position detecting device according to claim 1, wherein the current measuring means has a phase detection circuit for extracting a current component having the same wavelength and the same phase as the applied voltage of the power supply.
【請求項4】地盤に形成した窪みに電気的絶縁体の遮水
工を敷設すると共に電気を通す保護層を前記遮水工上に
層状に設けて遮水工構造物とし、 前記遮水工の表裏どちらかに面電極を設置し、 前記面電極の反対側に複数の点電極を設置し、 前記保護層が前記地盤と接触する部分の近傍に、前記複
数の点電極あるいは前記面電極の周辺を取り囲む環状電
極を配置し、 前記複数の点電極から1つを選択して電源の1端に接続
すると共に、前記選択した点電極を除く全ての点電極、
前記面電極及び前記環状電極を前記電源の他端に接続
し、 前記選択した点電極と前記面電極及び前記環状電極との
間に流れる電流を測定し、 前記環状電極の測定電流値を用いて前記面電極で測定し
た電流値から前記保護層を経由して流れる電流成分を補
正し、 前記補正した電流値と前記選択した点電極の位置から前
記遮水工構造物の漏水位置を検知することを特徴とする
漏水発生位置検知方法。
4. A water impervious structure, wherein a water impervious work of an electrical insulator is laid in a depression formed in the ground, and a protective layer for conducting electricity is provided in a layer on the water impervious work to form a water impervious structure. A surface electrode is installed on either side of the surface electrode, a plurality of point electrodes are installed on the opposite side of the surface electrode, and a portion of the plurality of point electrodes or the surface electrode near the portion where the protective layer contacts the ground. An annular electrode surrounding the periphery is arranged, one of the plurality of point electrodes is selected and connected to one end of a power supply, and all the point electrodes except the selected point electrode are provided.
Connecting the surface electrode and the annular electrode to the other end of the power supply, measuring a current flowing between the selected point electrode and the surface electrode and the annular electrode, using a measured current value of the annular electrode Correcting a current component flowing through the protective layer from a current value measured at the surface electrode, and detecting a water leakage position of the water shield structure from the corrected current value and the position of the selected point electrode. A method for detecting a position at which a water leak has occurred.
JP2000335183A 2000-11-01 2000-11-01 Water-leakage position detection device and method therefor Pending JP2002139395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000335183A JP2002139395A (en) 2000-11-01 2000-11-01 Water-leakage position detection device and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000335183A JP2002139395A (en) 2000-11-01 2000-11-01 Water-leakage position detection device and method therefor

Publications (1)

Publication Number Publication Date
JP2002139395A true JP2002139395A (en) 2002-05-17

Family

ID=18810981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000335183A Pending JP2002139395A (en) 2000-11-01 2000-11-01 Water-leakage position detection device and method therefor

Country Status (1)

Country Link
JP (1) JP2002139395A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2393517A (en) * 2002-09-24 2004-03-31 Neil Graham Ferguson Adams Instrument for locating defects in non-conductive materials
CN102908686A (en) * 2012-07-26 2013-02-06 重庆山外山科技有限公司 Balance cavity leak detecting system for blood purification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2393517A (en) * 2002-09-24 2004-03-31 Neil Graham Ferguson Adams Instrument for locating defects in non-conductive materials
CN102908686A (en) * 2012-07-26 2013-02-06 重庆山外山科技有限公司 Balance cavity leak detecting system for blood purification

Similar Documents

Publication Publication Date Title
JP3622172B2 (en) Water leak occurrence position detection method
JP2002139395A (en) Water-leakage position detection device and method therefor
JP6826495B2 (en) Leakage position detection system
JP4375896B2 (en) Leakage occurrence position detection device and method
JP4375894B2 (en) Water leakage occurrence position detection device having a correction function and method thereof
JPH05133993A (en) Contactless electric field/magnetic field sensor
JP3236965B2 (en) Method and apparatus for detecting damaged portion of impermeable sheet in waste disposal site
JP2001099742A (en) Water leakage detection system and method thereof
JP3384849B2 (en) Leakage location detection system for impermeable structures
JP3579894B2 (en) Insulation sheet inspection method
JP2002139396A (en) Water-leakage position detection device and method therefor
JP2001099743A (en) Water leakage detection system
JP3716250B2 (en) Water leakage detection device and water leakage detection method
JP3567373B2 (en) Insulation sheet inspection method
JP4479861B2 (en) Device for detecting leakage of water shielding material
JP2001099741A (en) Water-leaking position detection system
JP3668958B2 (en) Impermeable sheet inspection method
JPH10300622A (en) Leak water detection system of waste disposal ground
JP2660955B2 (en) Water leak detection device
JPH11248589A (en) System for detecting water leaking position
JP4009030B2 (en) Water leak detection system at waste disposal site
JP2004333222A (en) Water leakage location detector
JP2007178252A (en) Water leakage outbreak position-detecting device
JP3048309B2 (en) Apparatus and method for detecting breakage of impermeable sheet
JP2003344210A (en) Detector and method for detecting water leakage position

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050405