JP2002156217A - Noncontact-type shape measuring method - Google Patents

Noncontact-type shape measuring method

Info

Publication number
JP2002156217A
JP2002156217A JP2000353273A JP2000353273A JP2002156217A JP 2002156217 A JP2002156217 A JP 2002156217A JP 2000353273 A JP2000353273 A JP 2000353273A JP 2000353273 A JP2000353273 A JP 2000353273A JP 2002156217 A JP2002156217 A JP 2002156217A
Authority
JP
Japan
Prior art keywords
shape
light
measuring
interference
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000353273A
Other languages
Japanese (ja)
Other versions
JP3635350B2 (en
Inventor
Koichi Iwata
耕一 岩田
Kazutoshi Adachi
和俊 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Osaka Prefecture
Original Assignee
Osaka Prefecture
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture, Japan Science and Technology Corp filed Critical Osaka Prefecture
Priority to JP2000353273A priority Critical patent/JP3635350B2/en
Publication of JP2002156217A publication Critical patent/JP2002156217A/en
Application granted granted Critical
Publication of JP3635350B2 publication Critical patent/JP3635350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a noncontact-type shape measuring method in which not only a plane but also a curved surface can be measured. SOLUTION: In the noncontact-type shape measuring method, light emitted from a light source for measurement is shone at a measuring-object face as spherical waves, the light from the light source is shone at a reference face, the phase distribution of reflected light is found on the basis of interference fringes formed by beams of reflected light on the respective faces, the face shape of an interference-fringes formation region on the measuring-object face is calculated on the basis of the phase distribution, the irradiation position of the spherical waves with reference to the measuring-object face is changed slightly by a known amount, the face shape of the interference-fringes formation region on the measuring-object face is calculated on the basis of the interference fringes in this case in the same manner, the continuous state of the face shape which is found in advance to the face shape which is found later is calculated on the basis of the known amount, the movement of the known amount, the face shape of the interference-fringes formation region and the continuous state are calculated repeatedly, and the shape of the measuring object is decided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光を用いた非接触
方式により面の形状を計測するための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a shape of a surface by a non-contact method using light.

【0002】[0002]

【従来の技術】物体の形状を精度よく計測する方法とし
て、触針を用いる接触方式と、光を用いる非接触方式と
がある。前者では、例えば原子間力顕微鏡の原理を用い
る等してできるだけ測定力を小さくする方法が用いられ
ているが、柔らかい金属の面を測定する場合に傷が付く
という欠点は完全には解消されていない。また、後者で
は、光波干渉法による面形状の測定法が一般的であり、
これには照射光を面状として一度に広い面積を測定する
場合と、点状照射光を対象領域を走査する方法とがあ
る。面状照射の場合は、対象面全体に亘って、ほぼ面に
垂直な光波を作るために、計算機ホログラム等を利用し
て入射波面をほぼ測定形状と同じ形にする必要がある。
しかし、対象面に応じてホログラムを作る必要があり、
精度の良いものを作るのが困難であり、柔軟性にも欠け
る。点状照射の場合は、センサから走査領域に照射した
光が再びセンサに戻ってくる必要があるので、一般的に
は、平面かこれに近い曲率の小さい曲面が測定対象とな
る。点状照射方式においては、常に光を対象面の法線方
向から照射するようにすれば、曲率の大きい曲面も測定
できるが、センサ部を対象曲面にしたがって傾けるよう
に移動させる必要が生じるので、装置が複雑となる。
2. Description of the Related Art As methods for accurately measuring the shape of an object, there are a contact method using a stylus and a non-contact method using light. In the former, for example, a method of reducing the measuring force as much as possible by using the principle of an atomic force microscope or the like is used, but the disadvantage of scratching when measuring a soft metal surface has been completely solved. Absent. In the latter, a method of measuring the surface shape by light wave interferometry is generally used,
This includes a method of measuring a large area at a time using irradiation light as a plane, and a method of scanning a target area with point irradiation light. In the case of planar irradiation, it is necessary to make the incident wavefront almost the same shape as the measured shape by using a computer hologram or the like in order to generate a light wave almost perpendicular to the entire surface of the object.
However, it is necessary to create a hologram according to the target surface,
It is difficult to make accurate ones and lacks flexibility. In the case of point-like irradiation, since light emitted from the sensor to the scanning area needs to return to the sensor again, generally, a flat surface or a curved surface having a small curvature close thereto is measured. In the point irradiation method, if the light is always irradiated from the normal direction of the target surface, a curved surface having a large curvature can be measured.However, since the sensor unit needs to be moved so as to be tilted according to the target curved surface, The device becomes complicated.

【0003】[0003]

【発明が解決しようとする課題】本願発明は、平面のみ
ならず曲面の測定も可能にする非接触式の形状計測方法
を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a non-contact type shape measuring method which can measure not only a flat surface but also a curved surface.

【0004】[0004]

【課題を解決するための手段】本発明は、前記目的を達
成するため、測定用光源から発せられた光を測定対象面
に対し球面波として照射すると共に、前記光源からの光
を参照面に照射し、各々の面での反射光により形成され
る干渉縞から反射光の位相分布を求め、該位相分布に基
づいて測定対象面における干渉縞形成領域の面形状を算
出し、測定対象面に対する球面波の照射位置を既知量だ
け僅かに変化させ、その場合の干渉縞から同様にして測
定対象面における干渉縞形成領域の面形状を算出し、さ
らに前記既知量に基づき先に求めた面形状と後に求めた
面形状との連続状態を算出し、さらに既知量の移動と干
渉縞形成領域の面形状及び連続状態の算出とを繰り返し
て測定対象面の形状を決定することを特徴とする非接触
式形状計測方法を提供するものである。
In order to achieve the above object, the present invention irradiates light emitted from a light source for measurement as a spherical wave to a surface to be measured, and applies light from the light source to a reference surface. Irradiate, determine the phase distribution of the reflected light from the interference fringes formed by the reflected light on each surface, calculate the surface shape of the interference fringe formation region on the measurement target surface based on the phase distribution, The irradiation position of the spherical wave is slightly changed by a known amount, the surface shape of the interference fringe formation area on the measurement target surface is similarly calculated from the interference fringe in that case, and the surface shape previously obtained based on the known amount is further calculated. And calculating the continuous state of the surface shape determined later and repeating the calculation of the surface shape and the continuous state of the interference fringe forming region by moving the known amount and determining the shape of the measurement target surface. Contact form measurement method It is intended to provide.

【0005】[0005]

【発明の実施の形態】以下、本発明の一実施形態につい
て添付図面を参照しつつ説明する。図1は、本発明を実
施するための計測装置を概略的に示している。この装置
は、直交する水平及び垂直の3軸に沿って移動可能なテ
ーブルを備えたXYZステージ1と、XYZステージ1
に向けて平行光を発するレーザ光源2と、これらに関連
して以下のように配置された部分とを備えている。XY
Zステージ1とレーザ光源2との間には、光源からステ
ージの方向へ順に、集光レンズL1,L2、フィルタ
P、ビームスプリッタB、集光レンズl3がレーザ光源
2の光軸に沿って配置されている。また、ビームスプリ
ッタBで前記光軸に垂直に分岐された光を受けるよう
に、該ビームスプリッタBの一方の側に集光レンズL4
及びCCDカメラ3、他方の側に参照ミラーM及び該ミ
ラーの支持装置4が配置されている。CCDカメラ3は
画像表示のためモニタ5に接続されている。また、XY
Zステージ1、CCDカメラ3、支持装置4は、各々の
制御のためコンピュータ6に接続されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 schematically shows a measuring device for carrying out the present invention. This apparatus comprises an XYZ stage 1 having a table movable along three orthogonal horizontal and vertical axes, and an XYZ stage 1
A laser light source 2 that emits parallel light toward the light source, and a portion arranged as described below in relation to the laser light source 2. XY
Condensing lenses L1 and L2, a filter P, a beam splitter B, and a condensing lens 13 are arranged along the optical axis of the laser light source 2 between the Z stage 1 and the laser light source 2 in the direction from the light source to the stage. Have been. A condensing lens L4 is provided on one side of the beam splitter B so as to receive the light split by the beam splitter B perpendicular to the optical axis.
And a CCD camera 3, and a reference mirror M and a support device 4 for the mirror on the other side. The CCD camera 3 is connected to a monitor 5 for displaying images. Also, XY
The Z stage 1, the CCD camera 3, and the support device 4 are connected to a computer 6 for each control.

【0006】集光レンズL1、L2は、レーザ光源2か
らの平行光の径を適度に調整するように設けられてい
る。レンズL2を経た光はフィルタPを通過して適切な
光量となり、ビームスプリッタBに達する。ビームスプ
リッタBは、光軸に対して45度傾斜したハーフミラー
を備えており、到達して光を光軸に沿ってXYZステー
ジ1側へ透過する光と、該光軸に垂直な反射光とに分岐
する。ビームスプリッタBを透過した光は、集光レンズ
L3によりその焦点に集められた後、円錐状に広がって
XYZステージ1に達する。ビームスプリッタBで反射
された光は、参照ミラーMに向かい、該ミラーで反射さ
れ、再びビームスプリッタBに達し、ビームスプリッタ
Bを透過した光は集光レンズL4を経てCCDカメラ3
に達する。支持装置4は、支持したミラーMをビームス
プリッタBから来る光の方向に必要な距離だけ正確に前
後動させるように圧電アクチュエータを備えている。
The condenser lenses L1 and L2 are provided so as to appropriately adjust the diameter of the parallel light from the laser light source 2. The light having passed through the lens L2 passes through the filter P to have an appropriate light amount, and reaches the beam splitter B. The beam splitter B includes a half mirror inclined at 45 degrees with respect to the optical axis. The beam splitter B receives the light and transmits the light along the optical axis to the XYZ stage 1 side, and the reflected light perpendicular to the optical axis. Branch to The light transmitted through the beam splitter B is collected at the focal point by the condenser lens L3, and then spreads conically to reach the XYZ stage 1. The light reflected by the beam splitter B travels toward the reference mirror M, is reflected by the mirror, reaches the beam splitter B again, and the light transmitted through the beam splitter B passes through the condenser lens L4 and passes through the condenser camera L4.
Reach The support device 4 includes a piezoelectric actuator so as to move the supported mirror M back and forth accurately by a necessary distance in the direction of light coming from the beam splitter B.

【0007】次に、この装置を使用した本発明方法の実
施形態について説明する。先ず、測定対象Sを、被測定
面がレーザ光源2から延びる光軸に向くようにしてXY
Zステージ1上に固定する。レーザ光源2から光を発す
ると、その光は、前述のように集光レンズL1,L2、
フィルタP、ビームスプリッタB、集光レンズL3を通
過して測定対象Sに到達する。集光レンズL3を通過し
た光は、集光レンズL3の焦点に集められた後、円錐状
に広がりつつ測定対象Sに達する。したがって、その光
は、球面波となって測定対象Sに達することになる。
Next, an embodiment of the method of the present invention using this apparatus will be described. First, the measurement target S is set in the XY direction so that the surface to be measured faces the optical axis extending from the laser light source 2.
It is fixed on the Z stage 1. When light is emitted from the laser light source 2, the light is condensed by the condenser lenses L1, L2,
The light passes through the filter P, the beam splitter B, and the condenser lens L3 to reach the measurement target S. The light that has passed through the condenser lens L3 is focused on the focal point of the condenser lens L3, and then reaches the measurement target S while expanding in a conical shape. Therefore, the light reaches the measurement target S as a spherical wave.

【0008】ここで重要なことは、照射面の曲率に対し
て球面波の発散角が十分に大きい場合は、光の進行方向
に垂直な点(微小面)が存在するということである。こ
のように、光の進行方向に垂直な点が存在することによ
り、その点で反射された光は同じ経路を進行し集光レン
ズL3を経てビームスプリッタBで一部が反射され集光
レンズL4を経てCCDカメラ3に達する。
What is important here is that when the divergence angle of the spherical wave is sufficiently large with respect to the curvature of the irradiation surface, a point (a minute surface) perpendicular to the traveling direction of light exists. As described above, since there is a point perpendicular to the traveling direction of the light, the light reflected at that point travels along the same path, passes through the condenser lens L3, is partially reflected by the beam splitter B, and is partially reflected by the condenser lens L4. And reaches the CCD camera 3.

【0009】一方、レーザ光源2からビームスプリッタ
Bに達し、ここで反射された光は、参照ミラーMに達
し、そこで反射されて再びビームスプリッタBに向か
う。そして、ビームスプリッタBを透過した光は、集光
レンズL4を経てCCDカメラ3に達する。
On the other hand, the laser beam from the laser light source 2 reaches the beam splitter B, and the light reflected here reaches the reference mirror M, where it is reflected and travels to the beam splitter B again. Then, the light transmitted through the beam splitter B reaches the CCD camera 3 via the condenser lens L4.

【0010】したがって、CCDカメラ3には、測定対
象Sで反射され入射光と同じ経路を辿ってビームスプリ
ッタBで反射された光と、参照ミラーMで反射された光
が到達する。2つの光の間には測定対象Sの反射面の形
状に応じて位相差が生じるために干渉縞を形成する。こ
の干渉縞から反射光の位相分布を求める。そして、その
位相分布から測定対象面における干渉縞形成領域の面形
状を算出する。干渉縞から位相分布を求め、面形状を算
出する手法としては、位相シフト法等、公知の種々の方
法を適用することができる。
Accordingly, the light reflected by the beam splitter B and the light reflected by the reference mirror M reach the CCD camera 3 along the same path as the incident light reflected by the measurement target S. Since a phase difference occurs between the two lights according to the shape of the reflection surface of the measurement target S, interference fringes are formed. The phase distribution of the reflected light is obtained from the interference fringes. Then, the surface shape of the interference fringe formation region on the measurement target surface is calculated from the phase distribution. Various known methods such as a phase shift method can be applied as a method of calculating the phase distribution from the interference fringes and calculating the surface shape.

【0011】次に、XYZステージ1を作動させて測定
対象の位置を既知量だけ変化させる。そして、その場合
にCCDカメラ3上に生じる干渉縞から同様にして測定
対象面における干渉縞形成領域の面形状を算出する。さ
らに前記既知量に基づき先に求めた面形状と後に求めた
面形状とをつなぎ合わせるようにその連続状態を算出す
る。検出できる位相差の最大値が照射光の1波長に相当
する量に制限されるために、干渉縞を生じている範囲が
重なり合うような距離でXYZステージ1を移動させる
のが望ましい。尤も、面形状の変化が、照射光の2分の
1波長以内に留まっていることが確実な場合は、それを
越えた距離を移動する離散的な測定をしてもよい。隣り
合う測定点の位置関係は、干渉縞の中心間距離に基づい
て求めることができる。干渉縞の中心間距離は、以下の
準備を予めしておくことにより、モニタ上の像間の画素
数から求めることができる。すなわち、予め長さ目盛り
を有するスケールをXYZステージ1上で測定対象面と
同じ位置に置いて、前述の装置によりモニタ5上に画像
を形成し、スケール上の距離と画素数との関係を求めて
おくのである。なお、通常の測定において、XYZステ
ージ1による隣り合う測定点への移動距離は、数十ミク
ロン〜数百ミクロン程度である。
Next, the XYZ stage 1 is operated to change the position of the object to be measured by a known amount. Then, in this case, the surface shape of the interference fringe formation region on the measurement target surface is calculated from the interference fringes generated on the CCD camera 3 in the same manner. Further, the continuous state is calculated so that the previously obtained surface shape and the subsequently obtained surface shape are connected based on the known amount. Since the maximum value of the detectable phase difference is limited to an amount corresponding to one wavelength of the irradiation light, it is desirable to move the XYZ stage 1 by a distance such that the ranges where the interference fringes are generated overlap. However, if it is certain that the change in the surface shape remains within a half wavelength of the irradiation light, a discrete measurement may be performed in which the change is performed over a distance beyond the half wavelength. The positional relationship between adjacent measurement points can be obtained based on the distance between the centers of the interference fringes. The distance between the centers of the interference fringes can be obtained from the number of pixels between images on the monitor by preparing the following in advance. That is, a scale having a length scale is previously placed at the same position as the surface to be measured on the XYZ stage 1, an image is formed on the monitor 5 by the above-described device, and the relationship between the distance on the scale and the number of pixels is obtained. Keep it. In a normal measurement, a moving distance to an adjacent measurement point by the XYZ stage 1 is about several tens of microns to several hundreds of microns.

【0012】このようにして、既知量の移動と干渉縞形
成領域の面形状の算出及び移動前後干渉縞形成領域の連
続状態の算出とを繰り返すことにより、測定対象面の三
次元形状を決定することができる。なお、本発明に使用
する装置は、前述のものに限定されないことは勿論であ
り、前記装置における各構成要素は、他の同様の機能を
有するものに置き換えることができる。
In this way, the three-dimensional shape of the surface to be measured is determined by repeating the movement of the known amount, the calculation of the surface shape of the interference fringe formation region, and the calculation of the continuous state of the interference fringe formation region before and after the movement. be able to. It should be noted that the device used in the present invention is not limited to the above-described device, and each component in the device can be replaced with a device having another similar function.

【0013】測定用に球面波を使用することにより、切
削などによる部材の加工後又は加工途中に部材を加工機
に取り付けたまま部材形状を測定する、いわゆるオンマ
シン計測が可能になる。図2は、回転砥石(又はバイ
ト)Cを工具として被削材Wを加工する状態を示してい
る。工具は、作用面が球面の一部で構成された球面工具
である。図2は、被削材の加工面が非回転対称で非球面
の場合を示している。図2に示す被削材は、レーザビー
ムプリンタのf−θレンズ等の走査系レンズ、マイクロ
レンズアレイ、回折格子、自由画面ミラー等に使用され
る形状のものである。加工と測定は、例えば以下のよう
にして行なわれる。
The use of spherical waves for measurement enables so-called on-machine measurement in which the shape of a member is measured while the member is mounted on a processing machine after or during processing of the member by cutting or the like. FIG. 2 shows a state in which the workpiece W is machined using the rotating grindstone (or cutting tool) C as a tool. The tool is a spherical tool whose working surface is constituted by a part of a spherical surface. FIG. 2 shows a case where the processing surface of the work material is non-rotationally symmetric and aspheric. The work material shown in FIG. 2 has a shape used for a scanning system lens such as an f-θ lens of a laser beam printer, a micro lens array, a diffraction grating, a free screen mirror, and the like. Processing and measurement are performed, for example, as follows.

【0014】前述のような計測装置において球面波を被
削面に照射する際の球面波形成用集光レンズ(対物レン
ズ)の焦点位置と被削面との距離を、加工に使用する工
具の中心から工具表面までの距離と一致させる。工具に
よる切削後、被削材から工具を遠ざけるなどして対物レ
ンズが切削面に対して前記距離となるように計測装置を
配置する。既に述べたようにしてレーザ(例えば波長λ
=632.8nmのHe-Neレーザ)の照射により、CCDカメラ
上に干渉縞を生じさせる。参照ミラーMをを照射光軸方
向にλ/4ずつ移動させ、全部で4つの縞画像をサンプ
リングする。このとき得られる同心円上の縞の中心が照
射光軸に対して垂直な面上の点であり、加工時に工具が
接触した点を示している。4つの画像データから位相シ
フト法により同心縞の中心Oの被測定面内での位置と位
相分布を求める。次式から位相φを距離dに変換し、中
心Oでの相対的な高さ(光軸方向の位置)を得る。λは
照射光の波長である。
The distance between the focal position of the spherical wave forming condensing lens (objective lens) and the work surface when the work surface is irradiated with the spherical wave in the above-described measuring apparatus is determined from the center of the tool used for processing. Match the distance to the tool surface. After cutting by the tool, the measuring device is arranged so that the objective lens is at the above-mentioned distance with respect to the cut surface by moving the tool away from the workpiece. As described above, the laser (for example, the wavelength λ
Irradiation (= 632.8 nm He-Ne laser) produces interference fringes on the CCD camera. The reference mirror M is moved by λ / 4 in the irradiation optical axis direction, and a total of four fringe images are sampled. The center of the concentric stripes obtained at this time is a point on a plane perpendicular to the irradiation optical axis, and indicates a point where the tool has contacted during machining. From the four image data, the position and the phase distribution of the center O of the concentric stripes in the measured surface are obtained by the phase shift method. The phase φ is converted into the distance d from the following equation, and the relative height (position in the optical axis direction) at the center O is obtained. λ is the wavelength of the irradiation light.

【0015】d=λ・φ/(4π) 被削材をサンプリング間隔だけ移動し、上記と同様にし
て、同心縞中心の三次元的な相対位置を求める。この手
順を被削材上の必要な領域に対して走査をしながら繰り
返し行なう。これにより、切削加工による立体形状を計
測することができる。このように、被削材を球面工具を
用いて加工し、その球面工具の径と同じ照射距離で球面
波を被削面に照射しながら形状計測をするようにすれ
ば、計測時に加工時と同じ動きを被削材又は計測機に与
えればよい。したがって、加工時と同じNCプログラム
を使用することができる等、計測が簡略化されるという
利点が得られる。なお、球面工具以外の工具での加工の
際にも、球面波の照射に基づく形状計測を行なうことが
できる。この場合は、加工時と同じ動きによる計測はで
きないが、球面波を用いることによる前述の利点が得ら
れる。
D = λ · φ / (4π) The workpiece is moved by the sampling interval, and the three-dimensional relative position of the center of the concentric stripes is obtained in the same manner as described above. This procedure is repeated while scanning a required area on the work material. Thereby, the three-dimensional shape by cutting can be measured. In this way, if the work material is machined using a spherical tool and the shape is measured while irradiating the work surface with a spherical wave at the same irradiation distance as the diameter of the spherical tool, the same as during machining at the time of measurement The movement may be given to the work material or the measuring machine. Therefore, there is an advantage that the measurement is simplified, for example, the same NC program as in the machining can be used. It should be noted that even when machining with a tool other than a spherical tool, shape measurement based on irradiation of a spherical wave can be performed. In this case, although the measurement cannot be performed by the same movement as in the processing, the above-described advantage by using the spherical wave can be obtained.

【0016】[0016]

【発明の効果】以上のように、本発明によれば、以下の
効果を奏する非接触式形状計測方法を提供することがで
きる。すなわち、測定対象面の微小領域への光照射によ
り干渉縞を形成し、測定対象面上での走査により、干渉
縞から得られる面形状及び微小領域間の連続状態を得、
これに基づき測定対象面の立体形状を計測することがで
きる。そして、測定対象面の照射光として球面波を使用
しているので、照射面の中に光の進行方向に垂直な点
(微小面)が存在する。したがって、これを利用して精
密な測定を簡単な構造の装置により行なうことができ
る。
As described above, according to the present invention, it is possible to provide a non-contact type shape measuring method having the following effects. That is, an interference fringe is formed by irradiating light to a minute region of the measurement target surface, and scanning on the measurement target surface obtains a surface shape obtained from the interference fringe and a continuous state between the minute regions,
Based on this, the three-dimensional shape of the measurement target surface can be measured. Since a spherical wave is used as irradiation light on the surface to be measured, a point (a minute surface) perpendicular to the traveling direction of light exists in the irradiation surface. Therefore, by utilizing this, precise measurement can be performed by a device having a simple structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法の実施に用いる装置の概略図であ
る。
FIG. 1 is a schematic view of an apparatus used to carry out the method of the present invention.

【図2】本発明の1実施形態を示す斜視図である。FIG. 2 is a perspective view showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 XYZステージ 2 レーザ光源 3 CCDカメラ 4 支持装置 B ビームスプリッタ L1,L2,L3 集光レンズ M 参照ミラー P フィルタ DESCRIPTION OF SYMBOLS 1 XYZ stage 2 Laser light source 3 CCD camera 4 Support device B Beam splitter L1, L2, L3 Condensing lens M Reference mirror P Filter

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F064 AA09 BB01 BB03 FF01 GG12 GG22 GG41 HH03 HH08 JJ01 2F065 AA51 BB05 BB16 CC21 CC22 FF51 FF67 GG04 JJ03 JJ26 LL04 LL10 LL12 LL21 LL24 LL46 PP12 QQ00 SS02 SS13 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F064 AA09 BB01 BB03 FF01 GG12 GG22 GG41 HH03 HH08 JJ01 2F065 AA51 BB05 BB16 CC21 CC22 FF51 FF67 GG04 JJ03 JJ26 LL04 LL10 LL12 LL21 Q12 SS13

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 測定用光源から発せられた光を測定対象
面に対し球面波として照射すると共に、前記光源からの
光を参照面に照射し、各々の面での反射光により形成さ
れる干渉縞から反射光の位相分布を求め、該位相分布に
基づいて測定対象面における干渉縞形成領域の面形状を
算出し、測定対象面に対する球面波の照射位置を既知量
だけ僅かに変化させ、その場合の干渉縞から同様にして
測定対象面における干渉縞形成領域の面形状を算出し、
さらに前記既知量に基づき先に求めた面形状と後に求め
た面形状との連続状態を算出し、さらに既知量の移動と
干渉縞形成領域の面形状及び連続状態の算出とを繰り返
して測定対象面の形状を決定することを特徴とする非接
触式形状計測方法。
1. A light emitted from a light source for measurement is radiated to a surface to be measured as a spherical wave, and a light from the light source is radiated to a reference surface, and interference formed by light reflected on each surface. Obtain the phase distribution of the reflected light from the fringes, calculate the surface shape of the interference fringe formation region on the measurement target surface based on the phase distribution, slightly change the irradiation position of the spherical wave on the measurement target surface by a known amount, Similarly, from the interference fringes in the case, calculate the surface shape of the interference fringe formation region on the measurement target surface,
Further, the continuous state of the previously obtained surface shape and the subsequently obtained surface shape is calculated based on the known amount, and the movement of the known amount and the calculation of the surface shape and the continuous state of the interference fringe formation region are repeatedly performed to measure the object. A non-contact shape measurement method, characterized by determining a shape of a surface.
JP2000353273A 2000-11-20 2000-11-20 Non-contact shape measurement method Expired - Fee Related JP3635350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000353273A JP3635350B2 (en) 2000-11-20 2000-11-20 Non-contact shape measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000353273A JP3635350B2 (en) 2000-11-20 2000-11-20 Non-contact shape measurement method

Publications (2)

Publication Number Publication Date
JP2002156217A true JP2002156217A (en) 2002-05-31
JP3635350B2 JP3635350B2 (en) 2005-04-06

Family

ID=18826059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000353273A Expired - Fee Related JP3635350B2 (en) 2000-11-20 2000-11-20 Non-contact shape measurement method

Country Status (1)

Country Link
JP (1) JP3635350B2 (en)

Also Published As

Publication number Publication date
JP3635350B2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
CN106595515B (en) The topography measurement device that a kind of white light interference and laser scanning combine
EP2930461A1 (en) Three-dimensional shape measuring device, method for acquiring hologram image, and method for measuring three-dimensional shape
KR20210048528A (en) Surface shape measurement device and surface shape measurement method
US6061136A (en) Method for measuring shape of object and apparatus for carrying out the same
JP2005503272A (en) Method and apparatus for polishing a workpiece surface
CN105758381A (en) Method for detecting inclination of camera die set based on frequency spectrum analysis
CN106767500B (en) Light path system for topography measurement
JP3294985B2 (en) Surface curvature measurement device
US7724375B1 (en) Method and apparatus for increasing metrology or inspection tool throughput
JP4434431B2 (en) 3D shape measuring device
US7471398B2 (en) Method for measuring contour variations
JP2022162306A (en) Surface shape measurement device and surface shape measurement method
JP2002156217A (en) Noncontact-type shape measuring method
JP2002116010A (en) Three-dimensional shape measuring method and device
JP3958099B2 (en) Holographic device
JP4922905B2 (en) Method and apparatus for measuring position variation of rotation center line
JP2002054987A (en) Three-dimensional laser doppler vibrograph
JPH04204032A (en) Lens optical performance measuring device
JP3916991B2 (en) Indenter shape measuring instrument
JP2753545B2 (en) Shape measurement system
JP2915599B2 (en) Method and apparatus for measuring toroidal surface
JPH03276044A (en) Method and instrument for measuring radius of curvature of curved surface
JP2877935B2 (en) Surface accuracy measuring method and measuring device
JP2000097617A (en) Interferometer
JPH0469508A (en) Method and instrument for optical contactless shape measurement

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031218

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees