JP2002154997A - Method for producing cyclopentanol - Google Patents

Method for producing cyclopentanol

Info

Publication number
JP2002154997A
JP2002154997A JP2000351749A JP2000351749A JP2002154997A JP 2002154997 A JP2002154997 A JP 2002154997A JP 2000351749 A JP2000351749 A JP 2000351749A JP 2000351749 A JP2000351749 A JP 2000351749A JP 2002154997 A JP2002154997 A JP 2002154997A
Authority
JP
Japan
Prior art keywords
cyclopentanol
catalyst
cyclopentene
zeolite
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000351749A
Other languages
Japanese (ja)
Inventor
Ho Go
鵬 呉
Takashi Tatsumi
敬 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2000351749A priority Critical patent/JP2002154997A/en
Publication of JP2002154997A publication Critical patent/JP2002154997A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method by which cyclopentanol is produced from cyclopentene with high yield and high selectivity while suppressing generation of by-products. SOLUTION: This method for producing the cyclopentanol is characterized by using a protonic zeolite having >=10 ratio of (SiO2)/(Al2O3) and regulated in x-ray diffraction pattern substantially to the pattern represented by the table 1 as a catalyst in the method for producing the cyclopentanol by hydrating the cyclopentene in the presence of the catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シクロペンテンを
ゼオライト触媒の存在下、水と反応させてシクロペンタ
ノールを製造する接触水和反応に関する。
[0001] The present invention relates to a catalytic hydration reaction for producing cyclopentanol by reacting cyclopentene with water in the presence of a zeolite catalyst.

【0002】[0002]

【従来の技術】従来、水和反応に使用されるゼオライト
触媒として、モルデナイト、クリノブチロライト又はフ
ォージャサイト系ゼオライト(特公昭47−45323
号公報等)、ZSM系ゼオライト(特公平2−3105
6号公報等)を用いる方法が知られている。
2. Description of the Related Art Conventionally, mordenite, clinobutyrolite or faujasite zeolite (JP-B-47-45323) has been used as a zeolite catalyst used in a hydration reaction.
Publication), ZSM zeolite (JP-B 2-3105)
No. 6 is known.

【0003】しかし、これらの触媒を用いる方法は、触
媒活性及びシクロペンタノールの選択率が低いため工業
的に満足できるものではない。特に、シクロヘキサノー
ルの製造用触媒として提案されているZSM―5系ゼオ
ライトを用いた場合においては、シクロペンタノールの
選択率が極端に低く、その結果としてシクロペンタノー
ルの収率も低いものである。例えば、特開昭60―10
4028号公報には、ZSM−5を用いてシクロペンテ
ンの水和反応を行った結果、生成したシクロペンタノー
ルの濃度は1.4重量%であり、それ以外の生成物はな
かったと記載されている。また、特開平5−97736
号公報では、シクロペンテンの接触水和反応により、シ
クロペンタノールが濃度12.5重量%、選択率99.
5%で得られたと記載されているが、ZSM―5系ゼオ
ライト触媒を用いてシクロペンテンの水和反応を実際に
行ったところ、生成したシクロペンタノールの濃度は2
重量%以下であり、その選択率も30%以下という結果
であった。
However, methods using these catalysts are not industrially satisfactory due to low catalytic activity and low selectivity of cyclopentanol. In particular, when a ZSM-5 zeolite proposed as a catalyst for producing cyclohexanol is used, the selectivity of cyclopentanol is extremely low, and as a result, the yield of cyclopentanol is low. . For example, JP-A-60-10
Japanese Patent No. 4028 describes that as a result of a hydration reaction of cyclopentene using ZSM-5, the concentration of cyclopentanol produced was 1.4% by weight, and there was no other product. . In addition, Japanese Patent Application Laid-Open No. 5-97736
In the publication, cyclopentanol is obtained by a catalytic hydration reaction of cyclopentene at a concentration of 12.5% by weight and a selectivity of 99.
Although it was described that it was obtained at 5%, when the hydration reaction of cyclopentene was actually carried out using a ZSM-5 zeolite catalyst, the concentration of produced cyclopentanol was 2%.
% By weight and the selectivity was 30% or less.

【0004】上記反応において、シクロペンタノール濃
度及び選択率が低いのは、シクロペンテンが水和してシ
クロペンタノールが生成した後、さらに反応が進行して
ジシクロペンチルエーテルが生成しているためである。
これは、シクロペンテンの水和反応により生成したシク
ロペンタノールの水への溶解度がシクロヘキサノールに
比べて高いため、有機相への移動速度が遅いこと、及び
触媒であるZSM―5が3次元に連結した細孔を有し、
シクロペンテン及び生成したシクロペンタノールの拡散
に有利であるため、逐次反応が進行してしまうためと考
えられる。
In the above reaction, the cyclopentanol concentration and the selectivity are low because the cyclopentene is hydrated to produce cyclopentanol, and then the reaction proceeds further to produce dicyclopentyl ether. .
This is because cyclopentanol produced by the hydration reaction of cyclopentene has a higher solubility in water than cyclohexanol, so the transfer rate to the organic phase is slow, and the catalyst ZSM-5 is linked in three dimensions. With pores
It is considered that this is advantageous for the diffusion of cyclopentene and the generated cyclopentanol, so that the sequential reaction proceeds.

【0005】一方、ゼオライト触媒を用いて、環状オレ
フィンの水和反応による環状アルコールの収率向上を目
的として、有機溶剤を添加する方法が数多く開示されて
いる。例えば、特開昭58−194828号公報に
は、炭素数1〜10のアルコール、ハロゲン化炭化水
素、エーテル類、アセトン、メチルエチルケトン等の有
機溶剤、特開昭62−120333号公報及び特開昭
62−126141号公報にはフェノール類、特開昭
64−13044号公報にはフルオロアルコール類、
特開平1−254634号公報、特開平1−31344
7号公報及び特開平4−247041号公報には脂肪族
カルボン酸類、及び特開平5−255162号公報に
は安息香酸類等を、水和反応系にそれぞれ添加する方法
が報告されている。
[0005] On the other hand, there have been disclosed many methods for adding an organic solvent using a zeolite catalyst for the purpose of improving the yield of a cyclic alcohol by a hydration reaction of a cyclic olefin. For example, JP-A-58-194828 discloses alcohols having 1 to 10 carbon atoms, halogenated hydrocarbons, ethers, organic solvents such as acetone and methyl ethyl ketone, JP-A-62-120333 and JP-A-62-120333. JP-A-126141 discloses phenols, JP-A-64-13044 discloses fluoroalcohols,
JP-A-1-254634, JP-A-1-31344
No. 7, JP-A-4-247041 and JP-A-5-255162 report a method of adding an aliphatic carboxylic acid and a benzoic acid, respectively, to a hydration reaction system.

【0006】しかしながら、上記した溶剤を水和反応系
に添加する方法は、シクロペンタノールの収率は向上す
るものの選択率が不十分であったり、選択率は向上する
ものの収率が不十分である等の問題があり、収率及び選
択率が共に向上する有効なものではなかった。
However, in the method of adding the above-mentioned solvent to the hydration reaction system, the yield of cyclopentanol is improved but the selectivity is insufficient, or the selectivity is improved but the yield is insufficient. There were problems such as the presence of such a compound, and it was not effective in improving both the yield and the selectivity.

【0007】また、選択率を向上させる方法として、Z
SM―5よりも孔径の小さいゼオライトを用いる方法も
考えられるが、触媒活性が非常に低く、効率よく目的物
が得られないという問題がある。
As a method of improving the selectivity, Z
Although a method using a zeolite having a smaller pore size than SM-5 is also conceivable, there is a problem that the catalytic activity is extremely low and the target product cannot be obtained efficiently.

【0008】さらに、プロトン型のゼオライトの一部を
金属イオンで交換することにより、孔径を小さくしたゼ
オライトを用いる方法も良く知られている(例えば、
J.Catalysis.,,225(196
7).、J.Catalysis.,10,34(19
68).及び、J.Catalysis.,33,48
6(1974)等参照)。しかしながら、予めイオン交
換する場合においては、ゼオライトのナトリウム塩を交
換したい金属の塩化物、硝酸塩あるいはアンモニウム塩
で処理した後、焼成しなければならず、触媒の製造工程
を煩雑にすることから、工業的に実施する上で問題とな
る。
Further, a method of using a zeolite having a small pore size by exchanging a part of the proton type zeolite with a metal ion is well known (for example,
J. Catalysis. , 9 , 225 (196
7). J. Catalysis. , 10 , 34 (19
68). And J. Catalysis. , 33 , 48
6 (1974) and the like). However, in the case of performing ion exchange in advance, the sodium salt of zeolite must be treated with a chloride, nitrate or ammonium salt of the metal to be exchanged, and then calcined, which complicates the production process of the catalyst. This is a problem in implementing the method.

【0009】本発明に関連する技術として、特許第2,
754,063号公報には、「明細書の表1に実質的に
示す値を含むX線回折パターンと、10wt%より大の
水蒸気の吸着量と、4.5wt%より大のシクロヘキサ
ン蒸気の吸着容量と、10wt%より大のn−ヘキサン
蒸気の吸着容量をもつことを特徴とする合成多孔質結晶
性物質」の発明が記載されている。しかしながら、同公
報には、炭素数2〜7のオレフィンを水和反応により対
応するアルコールを得ることができる旨の記載はあるも
のの、その内容は合成多孔質結晶性物質の製造とプロピ
レンの水和反応であり、本発明のごときシクロペンテン
からシクロペンタノールを製造できる旨の記載等はな
い。
As a technique related to the present invention, Patent No. 2
No. 754,063 discloses "X-ray diffraction patterns containing values substantially as shown in Table 1 of the specification, adsorption of water vapor of more than 10 wt%, and adsorption of cyclohexane vapor of more than 4.5 wt%. Of synthetic porous crystalline material characterized by having a capacity and an adsorption capacity for n-hexane vapor of more than 10 wt%. However, although the publication discloses that the corresponding alcohol can be obtained by a hydration reaction of an olefin having 2 to 7 carbon atoms, the content of the hydration reaction includes production of a synthetic porous crystalline substance and hydration of propylene. This is a reaction and there is no description that cyclopentanol can be produced from cyclopentene as in the present invention.

【0010】[0010]

【発明が解決しようとする課題】本発明は、かかる実状
に鑑みなされたものであり、副生成物の生成を抑制しつ
つ、シクロペンテンからシクロペンタノールを高収率か
つ高選択率で製造する方法を提供することを課題とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and a method for producing cyclopentanol from cyclopentene with high yield and high selectivity while suppressing the generation of by-products. The task is to provide

【0011】[0011]

【課題を解決するための手段】本発明者らは上記課題を
解決すべく、ゼオライトを触媒として用いシクロペンテ
ンを水和してシクロペンタノールを製造する方法につい
て鋭意検討した。その結果、触媒として、SiO2/Al
23比が10以上であり、且つX線回折パターンが実質
的に第1表のパターンで規定され、Langmuir表
面積が300m 2/g以上であるプロトン型ゼオライトを
使用することにより、シクロペンタノールを高収率かつ
高選択率に製造することができることを見出し、本発明
を完成するに至った。
Means for Solving the Problems The present inventors have solved the above problems.
To solve this problem, cyclopente was used with zeolite as a catalyst.
About the method of producing cyclopentanol by hydrating
I studied hard. As a result, as a catalyst, SiO 2Two/ Al
TwoOThreeThe ratio is 10 or more and the X-ray diffraction pattern is substantially
Is defined by the pattern in Table 1 and the Langmuir table
Area is 300m Two/ g or more proton type zeolite
By using it, cyclopentanol can be obtained in high yield and
The present invention was found to be able to be manufactured with high selectivity, and the present invention
Was completed.

【0012】すなわち、本発明は、触媒の存在下でシク
ロペンテンを水和してシクロペンタノールを製造する方
法において、SiO2/Al23比が10以上であり、且
つX線回折パターンが実質的に第1表のパターンで規定
されるプロトン型ゼオライトを触媒として使用すること
を特徴とするシクロペンタノールの製造方法を提供す
る。
That is, the present invention relates to a method for producing cyclopentanol by hydrating cyclopentene in the presence of a catalyst, wherein the ratio of SiO 2 / Al 2 O 3 is 10 or more and the X-ray diffraction pattern is substantially Specifically, the present invention provides a method for producing cyclopentanol, which comprises using a proton type zeolite defined by the pattern shown in Table 1 as a catalyst.

【0013】本発明においては、前記触媒として、La
ngmuir表面積が300m2/g以上の触媒を使用す
るのが好ましい。
In the present invention, the catalyst may be La
It is preferable to use a catalyst having an ngmuir surface area of 300 m 2 / g or more.

【0014】[0014]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明は、SiO2/Al23比が10以上であり、且つ
X線回折パターンが実質的に第1表のパターンで規定さ
れ、限定条件としてLangmuir表面積が300m
2/g以上であるプロトン型ゼオライトを用いることを特
徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the present invention, the SiO 2 / Al 2 O 3 ratio is 10 or more, and the X-ray diffraction pattern is substantially defined by the pattern shown in Table 1. As a limiting condition, the Langmuir surface area is 300 m
It is characterized by using a proton type zeolite having a mass of 2 / g or more.

【0015】本発明において、ゼオライト触媒として、
SiO2/Al23比が10未満のゼオライトを用いる場
合は、シクロペンテンからシクロペンタノールへの選択
率が低下する。また、Langmuir表面積は、例え
ば、液体窒素温度でのゼオライト表面への窒素吸着量か
ら求めるBET法等の公知の方法によって求めることが
できる。用いるゼオライト触媒のLangmuir表面
積が300m2/g未満のものでは触媒活性が劣るものと
なる。
In the present invention, as the zeolite catalyst,
When a zeolite having a SiO 2 / Al 2 O 3 ratio of less than 10 is used, the selectivity from cyclopentene to cyclopentanol decreases. The Langmuir surface area can be determined, for example, by a known method such as a BET method determined from the amount of nitrogen adsorbed on the zeolite surface at the temperature of liquid nitrogen. If the Langmuir surface area of the zeolite catalyst used is less than 300 m 2 / g, the catalytic activity will be poor.

【0016】ゼオライトは、その特性として結晶中で
(AlO4-を電気的に中和しているカチオンを容易に
他のカチオンと交換することが可能である。本発明にお
いてプロトン型ゼオライトとは、形式的には基本形のN
+をプロトンと交換したゼオライトをいう。プロトン
型ゼオライトは、例えば、Na+型ゼオライトを希塩酸
処理する方法や、Na+型ゼオライトを先ずアンモニウ
ムイオンでイオン交換し、後に加熱してアンモニアを追
い出す方法等により調製することができる。
Zeolite has the property that cations that electrically neutralize (AlO 4 ) in the crystal can be easily exchanged for other cations. In the present invention, the proton type zeolite is formally referred to as a basic form of N
Zeolite in which a + is exchanged for a proton. Proton-type zeolites can be prepared by, for example, a method of treating Na + -type zeolite with dilute hydrochloric acid, a method of first exchanging Na + -type zeolite with ammonium ions, and then heating to drive off ammonia.

【0017】本発明において使用されるゼオライトは、
下記第1表に規定されるX線回折パターンを有する。こ
のX線回折パターンは本発明に用いるゼオライト触媒の
特徴である。
The zeolite used in the present invention is
It has an X-ray diffraction pattern defined in Table 1 below. This X-ray diffraction pattern is characteristic of the zeolite catalyst used in the present invention.

【0018】[0018]

【表1】 [Table 1]

【0019】これらの値は、X線源として銅のK−アル
ファ線を用い、シンチレーションカウンターを備えた回
折計とそれに連動するコンピュータとを有するX線回折
装置を用いる標準手法により求めることができる。すな
わち、ピークの高さIと2θ(θはブラッグ角であ
る。)を、回折計と連動したコンピュータ上のアルゴリ
ズムを用いて求め、これらの値から相対強度:100×
I/I0(I0は最強の線又はピークの高さである。)
と、オングストローム単位(Å)で示される格子面間隔
dを求めることができる。
These values can be determined by a standard method using copper K-alpha rays as an X-ray source and using an X-ray diffractometer having a diffractometer equipped with a scintillation counter and a computer linked thereto. That is, the peak height I and 2θ (θ is the Bragg angle) are determined using an algorithm on a computer linked to the diffractometer, and from these values, the relative intensity: 100 ×
I / I 0 (I 0 is the height of the strongest line or peak.)
And the lattice spacing d expressed in angstrom units (Å) can be obtained.

【0020】なお、第1表において、相対強度は記号W
=弱い、M=中間、S=強い及びVS=非常に強い、を
もって示してある。 W=0−20 M=20−40 S=40−60 VS=60−100
In Table 1, the relative intensity is represented by the symbol W
= Weak, M = medium, S = strong and VS = very strong. W = 0-20 M = 20-40 S = 40-60 VS = 60-100

【0021】本発明において使用されるゼオライトの形
態はいかなるものでもよく、例えば、粉末状、顆粒状等
のものが使用できる。また、担体あるいはバインダーと
してアルミナ、シリカ、チタニア、粘土化合物等を使用
することもできる。
The zeolite used in the present invention may be in any form, for example, powder, granules and the like. Alumina, silica, titania, clay compounds and the like can also be used as a carrier or a binder.

【0022】水和反応の形態は、回分式、半回分式、流
動床式、固定床連続流通式等の一般的に使用し得るいか
なる形態でも良く、特に制限を受けない。また、水和反
応の条件は、触媒が水相、有機相又は両者の混合相のい
ずれかの液相に存在していれば、特に制約を受けない。
The form of the hydration reaction may be any commonly used form such as a batch type, a semi-batch type, a fluidized bed type, and a fixed bed continuous flow type, and is not particularly limited. The conditions of the hydration reaction are not particularly limited as long as the catalyst is present in any one of a liquid phase of an aqueous phase, an organic phase, or a mixed phase of both.

【0023】ゼオライト触媒の使用量は、触媒/シクロ
ペンテンの重量比で、通常0.001〜200、好まし
くは0.05〜20の範囲である。また、水の使用量は
特に制限はないが、原料であるシクロペンテン1重量部
に対して0.10〜100重量部、好ましくは0.5〜
50重量部の範囲である。
The amount of the zeolite catalyst used is usually in the range of 0.001 to 200, preferably 0.05 to 20, by weight of catalyst / cyclopentene. The amount of water used is not particularly limited, but is 0.10 to 100 parts by weight, preferably 0.5 to 100 parts by weight, per part by weight of the raw material cyclopentene.
It is in the range of 50 parts by weight.

【0024】反応温度は、シクロペンテンの水和反応の
平衡をシクロペンタノール側に偏らせつつ、副反応を抑
制するためには低温が有利であるが、反応速度の点から
は高い方が有利である。したがって、本発明において
は、反応温度は通常50〜200℃、好ましくは80〜
150℃の範囲である。
The reaction temperature is preferably a low temperature in order to suppress the side reaction while shifting the equilibrium of the hydration reaction of cyclopentene toward the cyclopentanol side, but a higher reaction temperature is more advantageous in terms of the reaction rate. is there. Therefore, in the present invention, the reaction temperature is usually 50 to 200 ° C, preferably 80 to 200 ° C.
It is in the range of 150 ° C.

【0025】反応系内の圧力は、反応条件下でシクロペ
ンテン、水及び有機溶媒を液相に保つのに必要な圧力以
上とすることが好ましい。但し、シクロペンテンが十分
に反応液に溶解すれば低い圧力でもよい。また、窒素ガ
ス等の不活性ガスによって反応系内の圧力を調節するこ
ともできる。反応時間あるいは滞留時間は、通常0.1
〜10時間、好ましくは0.5〜5時間である。
The pressure in the reaction system is preferably equal to or higher than the pressure required to keep cyclopentene, water and the organic solvent in a liquid phase under the reaction conditions. However, a lower pressure may be used as long as cyclopentene is sufficiently dissolved in the reaction solution. Further, the pressure in the reaction system can be adjusted by an inert gas such as nitrogen gas. The reaction time or residence time is usually 0.1
10 to 10 hours, preferably 0.5 to 5 hours.

【0026】水和反応においては有機溶媒を使用するこ
とができる。有機溶媒としては、シクロペンテン及びシ
クロペンタノールを溶解し、水和反応に不活性なもので
あれば特に限定されないが、アルコール系溶媒、ケトン
系溶媒、フェノール系溶媒、エーテル系溶媒、炭化水素
系溶媒及びこれら2種以上からなる混合溶媒を例示する
ことができる。
In the hydration reaction, an organic solvent can be used. The organic solvent is not particularly limited as long as it dissolves cyclopentene and cyclopentanol and is inert to the hydration reaction, but is not limited to alcohol solvents, ketone solvents, phenol solvents, ether solvents, and hydrocarbon solvents. And a mixed solvent composed of two or more of these.

【0027】アルコール系溶媒としては、例えば、シク
ロヘキサノール、1−メチルシクロヘキサノール、2−
メチルシクロヘキサノール、3−メチルシクロヘキサノ
ール、4−メチルシクロヘキサノール等の環状アルコー
ル類;シクロヘプタノール、シクロオクタノール等の環
状アルコール類;エチレングリコールモノメチルエーテ
ル、ポリエチレングリコールモノラウレート等のグリコ
ールエーテル類等が挙げられる。ケトン系溶媒として
は、例えば、4−メチル−2−ペンタノン、3、3−ジ
メチル−2−ブタノン、2,4−ジメチル−3−ペンタ
ノン、アセトフェノン、2,4−ペンタンジオン、2,
3−ブタンジオン、シクロペンタノン、シクロヘキサノ
ン、シクロヘプタノン、シクロオクタノン等が挙げられ
る。
Examples of the alcohol solvent include cyclohexanol, 1-methylcyclohexanol,
Cyclic alcohols such as methylcyclohexanol, 3-methylcyclohexanol and 4-methylcyclohexanol; cyclic alcohols such as cycloheptanol and cyclooctanol; glycol ethers such as ethylene glycol monomethyl ether and polyethylene glycol monolaurate. No. Examples of the ketone solvent include 4-methyl-2-pentanone, 3,3-dimethyl-2-butanone, 2,4-dimethyl-3-pentanone, acetophenone, 2,4-pentanedione,
Examples include 3-butanedione, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, and the like.

【0028】フェノール系溶媒としては、例えば、フェ
ノール、クレゾール、キシレノール、エチルフェノー
ル、トリメチルフェノール、イソプロピルフェノール、
t−ブチルフェノール、フェニルフェノール、クロロフ
ェノール、ハイドロキノンモノメチルエーテル、4−ヒ
ドロキシ安息香酸等のフェノール及び置換フェノール
類;1−ナフトール、2−ナフトール等のナフトール類
が挙げられる。エーテル系溶媒としては、例えば、ジオ
キサン、ジイソプロピルエーテル、ジブチルエーテル、
ジアミルエーテル、ジシクロペンチルエーテル、エチレ
ングリコールジメチルエーテル等が挙げられる。炭化水
素系溶媒としては、例えば、ブタン、ペンタン、ヘキサ
ン、ヘプタン、オクタン等の鎖状脂肪族炭化水素類;メ
チルシクロペンタン、シクロヘキサン、デカリン等の脂
環式炭化水素類;ベンゼン、トルエン、キシレン、エチ
ルベンゼン、メシチレン、テトラリン等の芳香族炭化水
素類等が挙げられる。
Examples of phenol solvents include phenol, cresol, xylenol, ethylphenol, trimethylphenol, isopropylphenol,
Examples include phenols and substituted phenols such as t-butylphenol, phenylphenol, chlorophenol, hydroquinone monomethyl ether and 4-hydroxybenzoic acid; and naphthols such as 1-naphthol and 2-naphthol. Examples of ether solvents include dioxane, diisopropyl ether, dibutyl ether,
Examples include diamyl ether, dicyclopentyl ether, and ethylene glycol dimethyl ether. Examples of the hydrocarbon-based solvent include chain aliphatic hydrocarbons such as butane, pentane, hexane, heptane, and octane; alicyclic hydrocarbons such as methylcyclopentane, cyclohexane, and decalin; benzene, toluene, xylene, Examples include aromatic hydrocarbons such as ethylbenzene, mesitylene, and tetralin.

【0029】これら有機溶媒の使用量は、原料であるシ
クロペンテン1重量部に対して、通常0.01〜10重
量部、好ましくは0.1〜5重量部の範囲である。
The amount of the organic solvent to be used is generally 0.01 to 10 parts by weight, preferably 0.1 to 5 parts by weight, based on 1 part by weight of the starting material cyclopentene.

【0030】また、反応系は窒素、水素、ヘリウム、ア
ルゴン、二酸化炭素等の不活性ガス雰囲気下に保つこと
が好ましい。不活性ガス中の酸素の含有量は少ない方が
より好ましく、酸素含有量は通常100ppm以下、好
ましくは20ppm以下である。
The reaction system is preferably maintained in an atmosphere of an inert gas such as nitrogen, hydrogen, helium, argon and carbon dioxide. The content of oxygen in the inert gas is preferably smaller, and the oxygen content is usually 100 ppm or less, preferably 20 ppm or less.

【0031】[0031]

【実施例】次に、実施例によって本発明について更に詳
しく説明するが、本発明は以下の実施例に限定されるこ
となく、本発明の主旨を逸脱しない限り、用いる触媒の
種類や反応条件等を自由に変更することができる。
EXAMPLES Next, the present invention will be described in more detail by way of examples. However, the present invention is not limited to the following examples, and the type of catalyst used, reaction conditions, and the like are not departed from the gist of the present invention. Can be changed freely.

【0032】(1)触媒の調製 NaAlO2(和光純薬(株)製)6.8g、NaOH
(和光純薬(株)製)8.6g及びイオン交換水460
gをポリバケツに入れて撹拌し、透明な溶液Aを得た。
次いで、別のポリバケツにイオン交換水350gとヘキ
サメチレンイミン41gを入れて混合溶液とし、そこ
へ、シリカ(Cab−O−Sil・M7D)60gを加
えて30分撹拌しゲルBを得た。さらに、撹拌しながら
溶液AにゲルBを少しずつ加え、ゲルBの添加が終了し
てからさらに2時間撹拌することにより、SiO2:A
23:ヘキサメチレンイミン:Na2O:H2Oの比が
1:0.033:0.5:0.15:45の混合ゲルC
を得た。
(1) Preparation of catalyst 6.8 g of NaAlO 2 (manufactured by Wako Pure Chemical Industries, Ltd.), NaOH
8.6 g (manufactured by Wako Pure Chemical Industries, Ltd.) and ion-exchanged water 460
g in a bucket and stirred to obtain a clear solution A.
Next, 350 g of ion-exchanged water and 41 g of hexamethyleneimine were put into another polybucket to form a mixed solution, and 60 g of silica (Cab-O-Sil.M7D) was added thereto, followed by stirring for 30 minutes to obtain gel B. Further, the gel B is added little by little to the solution A with stirring, and the mixture is further stirred for 2 hours after the addition of the gel B is completed, whereby SiO 2 : A
Mixed gel C having a ratio of l 2 O 3 : hexamethyleneimine: Na 2 O: H 2 O of 1: 0.033: 0.5: 0.15: 45
I got

【0033】得られた混合ゲルCを内壁がテフロン(登
録商標)コーティングされたオートクレーブ中に移し、
60rpmの回転速度で撹拌しながら2時間かけて15
0℃まで昇温させたのち、7日間150℃で撹拌を継続
した。反応混合物から析出した結晶を濾別、洗浄した
後、125℃にて一晩乾燥し、空気雰囲気下、550℃
で10時間焼成した。さらに得られた焼成品を0.2M
硝酸アンモニウム水溶液でイオン交換し、空気雰囲気
下、500℃で5時間焼成することにより、触媒Aを得
た。得られた触媒AのLangmuir表面積は548
2/gであり、ICP発光分光分析により測定したSi
2/Al23比は30であった。また、触媒AのX線回
折(XRD)測定結果(CuKα)は第2表に示した通
りであり、第1表に規定されたXRDパターンと一致し
た。
The obtained mixed gel C was transferred into an autoclave having an inner wall coated with Teflon (registered trademark),
15 hours over 2 hours while stirring at a rotation speed of 60 rpm.
After the temperature was raised to 0 ° C, stirring was continued at 150 ° C for 7 days. The crystals precipitated from the reaction mixture were separated by filtration, washed, dried at 125 ° C. overnight, and then dried at 550 ° C. in an air atmosphere.
For 10 hours. Further, the obtained fired product is 0.2M
The catalyst A was obtained by ion exchange with an aqueous ammonium nitrate solution and calcining at 500 ° C. for 5 hours in an air atmosphere. The resulting catalyst A has a Langmuir surface area of 548.
m 2 / g and measured by ICP emission spectroscopy.
The O 2 / Al 2 O 3 ratio was 30. Further, the X-ray diffraction (XRD) measurement results (CuKα) of Catalyst A were as shown in Table 2, and were consistent with the XRD pattern specified in Table 1.

【0034】[0034]

【表2】 [Table 2]

【0035】(実施例1)シクロペンテンの水和反応 熱電対を備えた50mlのオートクレーブ中にシクロペ
ンテン4g、水5.4g、触媒A5g及びスターラーチ
ップを入れ、窒素雰囲気下、120℃で18時間反応さ
せた。反応終了後、反応溶液にメタノールを加えて均一
化し、濾過により触媒を取り出した。触媒をメタノール
で洗浄後、この洗液と遠心分離の上澄み液を合わせ、シ
クロヘキサノールを内部標準物質としてガスクロマトグ
ラフィーにより分析した。このときのシクロペンテンの
転化率は4.8mol%、シクロペンタノールの選択率
は99.0mol%、副生物であるジシクロペンチルエ
ーテルの選択率は0.8mol%であった。
(Example 1) Hydration reaction of cyclopentene 4 g of cyclopentene, 5.4 g of water, 5 g of catalyst A and a stirrer chip were placed in a 50 ml autoclave equipped with a thermocouple, and reacted at 120 ° C for 18 hours under a nitrogen atmosphere. Was. After completion of the reaction, methanol was added to the reaction solution to homogenize it, and the catalyst was taken out by filtration. After washing the catalyst with methanol, the washings and the supernatant of the centrifugation were combined and analyzed by gas chromatography using cyclohexanol as an internal standard substance. At this time, the conversion of cyclopentene was 4.8 mol%, the selectivity of cyclopentanol was 99.0 mol%, and the selectivity of dicyclopentyl ether as a by-product was 0.8 mol%.

【0036】(比較例1)実施例1において、触媒Aの
代わりに触媒としてZSM−5(SiO2/Al23比=
25のもの)を用いた以外は実施例1と同様に反応を行
った。このときのシクロペンテンの転化率は4.2mo
l%、シクロペンタノールの選択率は93.3mol
%、副生物であるジシクロペンチルエーテルの選択率は
6.4mol%であった。
Comparative Example 1 In Example 1, ZSM-5 (SiO 2 / Al 2 O 3 ratio =
The reaction was carried out in the same manner as in Example 1 except that 25) was used. At this time, the conversion of cyclopentene was 4.2 mo.
1%, selectivity of cyclopentanol is 93.3 mol
%, And the selectivity for dicyclopentyl ether as a by-product was 6.4 mol%.

【0037】[0037]

【発明の効果】以上説明したように、本発明の製造方法
によればシクロペンテンの水和反応時における副生成物
の生成を抑制しながら、目的生成物であるシクロペンタ
ノールの収率を向上させることができる。
As described above, according to the production method of the present invention, the yield of cyclopentanol, which is the target product, is improved while suppressing the formation of by-products during the hydration reaction of cyclopentene. be able to.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G069 AA02 AA14 BA07A BA07B CB21 EC03X EC04X EC04Y ZA01A ZA01B ZC02 ZC04 ZC07 4H006 AA02 AC41 BA71 BA85 BE60 FC22 FE12 4H039 CA60 CF10  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G069 AA02 AA14 BA07A BA07B CB21 EC03X EC04X EC04Y ZA01A ZA01B ZC02 ZC04 ZC07 4H006 AA02 AC41 BA71 BA85 BE60 FC22 FE12 4H039 CA60 CF10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】触媒の存在下でシクロペンテンを水和して
シクロペンタノールを製造する方法において、SiO2/
Al23比が10以上であり、且つX線回折パターンが
実質的に第1表のパターンで規定されるプロトン型ゼオ
ライトを触媒として使用することを特徴とするシクロペ
ンタノールの製造方法。
We claim: 1. hydrating cyclopentene in the presence of a catalyst in a process for producing cyclopentanol, SiO 2 /
A method for producing cyclopentanol, wherein an Al 2 O 3 ratio is 10 or more and a proton-type zeolite whose X-ray diffraction pattern is substantially defined by the pattern shown in Table 1 is used as a catalyst.
【請求項2】前記触媒として、Langmuir表面積
が300m2/g以上であるゼオライト触媒を使用する請
求項1記載のシクロペンタノールの製造方法。
2. The method for producing cyclopentanol according to claim 1, wherein a zeolite catalyst having a Langmuir surface area of 300 m 2 / g or more is used as the catalyst.
JP2000351749A 2000-11-17 2000-11-17 Method for producing cyclopentanol Pending JP2002154997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000351749A JP2002154997A (en) 2000-11-17 2000-11-17 Method for producing cyclopentanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000351749A JP2002154997A (en) 2000-11-17 2000-11-17 Method for producing cyclopentanol

Publications (1)

Publication Number Publication Date
JP2002154997A true JP2002154997A (en) 2002-05-28

Family

ID=18824753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000351749A Pending JP2002154997A (en) 2000-11-17 2000-11-17 Method for producing cyclopentanol

Country Status (1)

Country Link
JP (1) JP2002154997A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130630A (en) * 2013-03-01 2013-06-05 张若煜 Cyclopentanol green synthetic method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130630A (en) * 2013-03-01 2013-06-05 张若煜 Cyclopentanol green synthetic method
CN103130630B (en) * 2013-03-01 2014-07-02 张若煜 Cyclopentanol green synthetic method

Similar Documents

Publication Publication Date Title
KR101044495B1 (en) Molecular sieve compositionemm-10, its method of making, and use for hydrocarbon conversions
WO2009106237A2 (en) Catalyst for the synthesis of alkyl carbamates, the method for preparing the same and the use thereof
JPS63185808A (en) Cryatalline silica polygonal body
US20170368542A1 (en) Silicoaluminophosphate catalyst for chloromethane conversion
JPH0729962B2 (en) Method for producing phenols
TW200819199A (en) Molecular sieve composition (EMM-10-P), its method of making, and use for hydrocarbon conversions
JP4682157B2 (en) Improved synthesis of highly sterically hindered amino-ether alcohols and diamino polyalkenyl ethers using highly active powder catalysts
JP5668422B2 (en) Method for producing aluminosilicate
EP0393895B1 (en) Silicometallate molecular sieves and their use as catalysts in oxidation of alkanes
US4711869A (en) Silica-titania hydrocarbon conversion catalyst
TWI439418B (en) A novel molecular sieve composition emm-13, a method of making and a process of using the same
US9550178B2 (en) Stable silicoaluminophosphate catalysts for conversion of alkyl halides to olefins
CN112138724B (en) Hydroalkylation catalyst and method thereof
US6407291B1 (en) Preparation of 1,1,4,4-tetramethoxy-2-butene
JP2002154997A (en) Method for producing cyclopentanol
US8921634B2 (en) Conversion of methane to aromatic compounds using UZM-44 aluminosilicate zeolite
JP5720508B2 (en) Method for producing H-type zeolite having silylated CHA-type structure
JP2005089342A (en) Method for producing cyclooctene oxide
US5364980A (en) Process for the production of unsymmetrical tert-dialkyl ethers
JPH0416447B2 (en)
JP2023107542A (en) Method for producing ddr-type zeolite catalyst and lower olefin
JPS60248633A (en) Preparation of alcohol by olefin
Sasidharan et al. Synthesis, characterization and catalytic activity of SnAPO-5 in hydrogenation reaction
JPH08113606A (en) Polymerization of lower hydrocarbon
JPH0327541B2 (en)