JP2002154888A - Classifying method for granular fertilizer and classifying equipment for granular fertilizer - Google Patents

Classifying method for granular fertilizer and classifying equipment for granular fertilizer

Info

Publication number
JP2002154888A
JP2002154888A JP2000288974A JP2000288974A JP2002154888A JP 2002154888 A JP2002154888 A JP 2002154888A JP 2000288974 A JP2000288974 A JP 2000288974A JP 2000288974 A JP2000288974 A JP 2000288974A JP 2002154888 A JP2002154888 A JP 2002154888A
Authority
JP
Japan
Prior art keywords
granular fertilizer
fertilizer
separating
elution
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000288974A
Other languages
Japanese (ja)
Inventor
Unpei Nagashima
雲兵 長嶋
Hisato Saito
久登 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2000288974A priority Critical patent/JP2002154888A/en
Publication of JP2002154888A publication Critical patent/JP2002154888A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sorting Of Articles (AREA)
  • Fertilizers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a classifying method for granular fertilizers capable of extremely rapidly, accurately and easily evaluating and classifying the quality and function of the granular fertilizer and an apparatus for manufacturing the granular fertilizers. SOLUTION: The granular fertilizers are irradiated with electromagnetic waves of different wavelengths, the reflection or absorption spectral values are measured and the granular fertilizers are classified by the spectral values thereof. The apparatus for classifying has an electromagnetic wave irradiation means for irradiating the granular fertilizers with the electromagnetic waves of the different wavelengths, a measuring means for measuring the reflection or absorption spectral values of the electromagnetic waves of the granular fertilizers and a classifying means for classifying the granular fertilizers by the measured spectral values.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は粒状肥料の分別方
法、及び分別装置に係り、詳しくは粒状肥料に電磁波を
照射して得られるスペクトル値に基づいて、粒状肥料を
分別するようにした粒状肥料の分別方法及び分別装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for separating granular fertilizer, and more particularly to a granular fertilizer for separating granular fertilizer based on a spectrum value obtained by irradiating the granular fertilizer with electromagnetic waves. And a separation apparatus.

【0002】[0002]

【従来の技術】尿素や化成肥料、更にはこれらを例えば
高分子樹脂を主成分として含む皮膜等で被覆し溶出制御
された被覆肥料などに代表される粒状肥料は、出荷前に
その品質・機能を確認するための様々な検査が行なわれ
ている。例えば、各製造ロットや処方変更毎に製造され
る粒状肥料の一部を抜き取って品質・機能検査等を行
い、検査に合格したものを分別し販売に供する。
2. Description of the Related Art Granular fertilizers, such as urea and chemical fertilizers, and coated fertilizers coated with a film containing a polymer resin as a main component and controlled in dissolution, etc., are manufactured before shipment. Various tests have been carried out to confirm this. For example, a part of the granular fertilizer produced for each production lot or each change of the prescription is extracted, quality and function inspections are performed, and those that pass the inspection are separated and supplied for sale.

【0003】この様な粒状肥料の品質・機能検査には様
々な検査の為の分析・測定項目がある。例えば肥料の保
証成分定量として中和滴定法、比色法、原子吸光法等に
代表される成分及び元素分析、水分定量として加熱減量
法による水分測定、吸湿性評価として温度と湿度が規定
された条件での直接的な吸湿速度測定、固結性評価とし
て荷重負荷時の経時的固結量測定、粒度評価として篩い
分けによる粒度分布測定、浮上性評価として水中での経
時的浮上量測定、発塵性評価として発塵時の発塵密度測
定等である。
[0003] There are various analysis / measurement items for such quality and function tests of granular fertilizers. For example, components and elemental analysis represented by neutralization titration method, colorimetric method, atomic absorption method, etc., as a guaranteed component quantification of fertilizer, moisture measurement by heating weight loss method as moisture quantification, and temperature and humidity as moisture absorption evaluation were specified. Direct measurement of moisture absorption rate under conditions, measurement of solidification amount over time under load as consolidation evaluation, measurement of particle size distribution by sieving as particle size evaluation, measurement of floating amount over time in water as floating evaluation, As dust evaluation, dust density measurement at the time of dust generation and the like are performed.

【0004】また、被覆肥料においては、その重要な機
能である肥料成分の溶出誘導時間や特定割合溶出時間等
の溶出特性を評価する必要がある。この評価方法には、
水中又は土中での溶出を長時間に渡って直接的に測定す
る方法が採用されている。
[0004] In the case of coated fertilizers, it is necessary to evaluate elution characteristics such as elution induction time and specific ratio elution time of fertilizer components, which are important functions. This evaluation method includes:
A method of directly measuring elution in water or soil over a long period of time has been adopted.

【0005】[0005]

【発明が解決しようとする課題】近年、肥料の品質・機
能管理において、評価法に対する要求は、迅速・高精度
・簡便の面で益々強くなっている。しかしながら上述し
たように肥料の品質・機能の評価は直接的な評価法が多
いが故に、破壊的で且つ長時間を要し、非常に手間がか
かるという問題があった。当然ながら、粒状肥料製造後
もこの評価結果が出るまで良品か不良品かの分別が困難
なため、出荷までに膨大な時間と手間を要した。とりわ
け溶出特性等の評価には実際の溶出時間と同等の時間を
要するので、極めて効率の悪いものとなっていた。
In recent years, in quality and function management of fertilizers, demands for evaluation methods have been increasing in terms of speed, accuracy, and simplicity. However, as described above, there are many direct evaluation methods for evaluating the quality and function of fertilizers, so that there is a problem that it is destructive, requires a long time, and is extremely troublesome. Naturally, even after the production of granular fertilizer, it is difficult to distinguish good or bad products until this evaluation result is obtained, so it took enormous time and trouble before shipping. In particular, the evaluation of elution characteristics and the like requires a time equivalent to the actual elution time, which is extremely inefficient.

【0006】特開平11−72434号公報には、高分
子樹脂に可視光ないし近赤外光を照射し、その反射又は
吸収スペクトルをフーリエ変換すると共にパワースペク
トルを求め、このパワースペクトルを両対数の直線に近
似的に回帰し、この直線の傾きと切片とから樹脂の種類
や状態等を識別する方法が記載されている。しかし同公
報にはスペクトル値により物質自体の識別やその状態、
例えば高分子樹脂の密度や混合物か否か等を識別できる
ことのみが記載されているだけであり、被検体の品質や
機能につき分別できることを示唆する記載は一切見られ
ない。加えて、被検体として粒状肥料を示唆する記載も
一切無い。
Japanese Patent Application Laid-Open No. 11-72434 discloses that a polymer resin is irradiated with visible light or near-infrared light, its reflection or absorption spectrum is Fourier-transformed, and a power spectrum is obtained. It describes a method of approximately regressing on a straight line and identifying the type and state of the resin from the slope and intercept of the straight line. However, the publication discloses the identification of the substance itself, its state,
For example, it only describes that the density of the polymer resin and whether or not it is a mixture can be identified, and there is no description suggesting that the quality and function of the test object can be separated. In addition, there is no description suggesting a granular fertilizer as a subject.

【0007】被覆肥料における溶出特性機能は、皮膜組
成種類や高分子樹脂等の状態が識別できても、これだけ
では被覆肥料としての溶出特性を的確に把握できないこ
とが広く知られており、溶出特性を評価するには直接的
に水中又は土中で長期間に渉る煩雑な溶出評価を実施す
るしかないとされてきた。
[0007] It is widely known that the elution characteristics of coated fertilizers are not enough to accurately grasp the elution characteristics of coated fertilizers, even if the type of film composition and the state of the polymer resin, etc. can be identified. It has been said that the only way to evaluate is to carry out a long-term complicated elution evaluation directly in water or soil.

【0008】この溶出特性評価に要する時間と手間を少
しでも短く且つ簡易化すべく、評価条件を通常の施肥条
件に比して高温とするなどの評価方法の改良が実施され
てきた。しかし仮に溶出温度を高めても、例えば評価系
における雰囲気温度を実際の施肥条件よりも15℃高く
しても、せいぜい4〜5倍の加速程度であり、それ以上
の高温では精度及び再現性が低下する。現在最も社会的
要求の高い、溶出期間が100日程度の粒状被覆肥料で
は、少なくとも評価に20日間程度を費やさねばなら
ず、非常に長期間で手間がかかる。
In order to shorten and simplify the time and labor required for the evaluation of the dissolution characteristics, improvements have been made in evaluation methods such as raising the evaluation conditions to higher temperatures than normal fertilization conditions. However, even if the elution temperature is increased, for example, even if the ambient temperature in the evaluation system is 15 ° C. higher than the actual fertilization condition, acceleration is at most about 4 to 5 times, and accuracy and reproducibility are higher at higher temperatures. descend. In the case of a granular coated fertilizer that has the highest social demand and has a dissolution period of about 100 days, at least about 20 days must be spent for evaluation, and it takes a very long time and labor.

【0009】この様な長期に渡る評価においては、評価
方法自体の問題に加え、評価対象の粒状肥料を製造後長
期間にわたって在庫として保存、管理する必要が生じ、
さらには不良品と分別された場合は良品の在庫不足を生
じる可能性があるという問題がある。
In such a long-term evaluation, in addition to the problem of the evaluation method itself, it becomes necessary to store and manage the granular fertilizer to be evaluated as a stock for a long time after production.
In addition, there is a problem that if the product is separated from the defective product, there is a possibility that a shortage of good products may occur.

【0010】本発明は、この様な状況に鑑み、従来と比
べて極めて短時間で且つ精度良く簡便に粒状肥料の品質
・機能を評価し分別が可能な粒状肥料の分別方法及び粒
状肥料の分別装置を提供することを目的とする。
[0010] In view of such circumstances, the present invention provides a method for separating granular fertilizer which can evaluate and separate the quality and function of granular fertilizer in a very short time and with high precision and accuracy as compared with the conventional method, and a method for separating granular fertilizer. It is intended to provide a device.

【0011】[0011]

【課題を解決するための手段】本発明の粒状肥料の分別
方法は、粒状肥料に波長の異なる電磁波を照射して反射
又は吸収スペクトル値を測定し、該スペクトル値により
肥料の分別を行うことを特徴とするものである。
According to the present invention, there is provided a method for separating granular fertilizer, comprising irradiating the granular fertilizer with electromagnetic waves having different wavelengths, measuring a reflection or absorption spectrum value, and separating the fertilizer based on the spectrum value. It is a feature.

【0012】本発明の粒状肥料の分別装置は、粒状肥料
に波長の異なる電磁波を照射する電磁波照射手段と、該
粒状肥料の該電磁波の反射又は吸収スペクトル値を測定
する測定手段と、測定されたスペクトル値により粒状肥
料の分別を行う分別手段とを有するものである。
The granular fertilizer sorting apparatus of the present invention includes an electromagnetic wave irradiating means for irradiating the granular fertilizer with electromagnetic waves having different wavelengths, and a measuring means for measuring the reflection or absorption spectrum value of the electromagnetic wave of the granular fertilizer. Separation means for separating the granular fertilizer based on the spectrum value.

【0013】本発明者は、粒状肥料に対して波長の異な
る電磁波を照射して得られる反射又は吸収スペクトルの
値によって、意外にも粒状肥料の品質や機能、とりわけ
被覆粒状肥料における溶出誘導時間及び/又は特定割合
溶出時間を把握することが可能であり、これによって粒
状肥料が簡易に精度良く分別可能であることを見出し
た。本発明は、かかる知見に基づくものである。
The present inventor has surprisingly found that the quality or function of the granular fertilizer, particularly the elution induction time and the elution time in the coated granular fertilizer, can be determined by the value of the reflection or absorption spectrum obtained by irradiating the granular fertilizer with electromagnetic waves having different wavelengths. It has been found that it is possible to grasp the specific ratio elution time and / or to separate the granular fertilizer easily and accurately. The present invention is based on such findings.

【0014】本発明では、好ましくは、得られたスペク
トル値をフーリエ変換してパワースペクトルとし、これ
を両対数の直線に近似的に回帰し、その直線の傾き及び
/又は切片の値を求め、これによって得られた直線の傾
き及び/又は切片の値を用いて肥料の分別を行う。
In the present invention, preferably, the obtained spectrum value is Fourier-transformed into a power spectrum, which is approximately regressed to a log-log line, and the slope and / or intercept value of the line is obtained. The fertilizer is separated using the values of the slope and / or intercept of the straight line thus obtained.

【0015】また、この傾きと切片の値を用いて、パー
セプトロン型ニューラルネットワーク及び/又は多次元
級補間法により得られた粒状肥料の溶出誘導時間及
び/又は特定割合溶出時間を求め、該溶出誘導時間及び
/又は特定割合溶出時間により肥料の分別を行うことが
好ましい。
Further, using the values of the slope and the intercept, the elution induction time and / or the specific ratio elution time of the granular fertilizer obtained by the perceptron type neural network and / or the multidimensional Ck class interpolation method are obtained. It is preferable to separate the fertilizer based on the elution induction time and / or the specific ratio elution time.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態につて
詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail.

【0017】本発明では粒状肥料に波長の異なる電磁波
を照射して、反射又は吸収スペクトル値を測定し、この
スペクトル値により肥料の分別を行う。具体的には例え
ば、予め品質や機能等が判明している粒状肥料から得ら
れる光学スペクトル値と、製造条件が異なる各製造ロッ
トから製造される粒状肥料の光学スペクトル値とを比較
して、その乖離具合から、製造された肥料が目的の品質
・性能を有しているか否か判断し、分別する。
In the present invention, the granular fertilizer is irradiated with electromagnetic waves having different wavelengths to measure the reflection or absorption spectrum value, and the fertilizer is separated based on the spectrum value. Specifically, for example, comparing the optical spectrum value obtained from the granular fertilizer whose quality and function are known in advance with the optical spectrum value of the granular fertilizer manufactured from each production lot having different production conditions, Based on the degree of divergence, it is determined whether or not the manufactured fertilizer has the desired quality and performance, and is separated.

【0018】粒状肥料に照射される電磁波の波長範囲は
任意であるが、電磁波波長の長波長部分、具体的には4
00〜25000nmの可視光〜赤外線領域範囲の電磁
波は物質を構成する分子骨格やその幾何学的特徴を反映
することから好ましく、中でも400〜4000nm、
更には800〜4000nm、特に1100〜2400
nmの波長を有する電磁波が好ましい。
Although the wavelength range of the electromagnetic wave applied to the granular fertilizer is arbitrary, a long wavelength portion of the electromagnetic wave wavelength, specifically 4
Electromagnetic waves in the visible to infrared region of from 00 to 25000 nm are preferable because they reflect the molecular skeleton constituting the substance and its geometrical characteristics.
Furthermore, 800 to 4000 nm, especially 1100 to 2400
Electromagnetic waves having a wavelength of nm are preferred.

【0019】電磁波の照射方法は任意であるが、例えば
音響光学可変波長フィルタ等を用いて0.5nm刻みの
特定波長毎に5000点/秒の速度で走査回数を1〜1
00回、測定回数を1〜100回/サンプルで実施すれ
ばよい。この方法で波長1100〜2400nmの電磁
波を用いて測定した場合には、測定点数は2600点、
所要時間は約0.5秒強である。また走査回数を20回
とした際の所要時間は約10秒強である。
The method of irradiating the electromagnetic wave is arbitrary. For example, the number of scans is set to 1 to 1 at a speed of 5000 points / second for each specific wavelength of 0.5 nm using an acousto-optic tunable wavelength filter or the like.
The measurement may be performed at 00 times and the number of measurements is 1 to 100 times / sample. When measurement is performed using an electromagnetic wave having a wavelength of 1100 to 2400 nm by this method, the number of measurement points is 2600,
The required time is slightly over 0.5 seconds. The required time when the number of scans is set to 20 is slightly over 10 seconds.

【0020】粒状肥料に照射した電磁波が肥料を突き抜
ける場合でも、例えば測定対象肥料を保持するケース等
をセラミックとし、これに照射電磁波を反射させてスペ
クトルを得ることによりノイズ無く測定することができ
る。
Even when the electromagnetic waves radiated on the granular fertilizer penetrate the fertilizer, for example, the case for holding the fertilizer to be measured is made of ceramic, and the electromagnetic waves can be reflected on the case to obtain a spectrum and the measurement can be performed without noise.

【0021】粒状肥料としては任意の粒状肥料を対象と
することができ、例えば尿素肥料等の単成分粒状肥料、
窒素、燐酸及びカリウム等を含む化成肥料、更にこれら
の表面に固結防止処理や粉塵発生防止処理を施したも
の、更には高分子樹脂等を主成分とする皮膜で被覆した
被覆肥料などが挙げられる。
The granular fertilizer can be any granular fertilizer, for example, a single-component granular fertilizer such as urea fertilizer,
Chemical fertilizers containing nitrogen, phosphoric acid, potassium, etc., furthermore, those whose surfaces have been subjected to anti-caking treatment or dust generation prevention treatment, and furthermore, coated fertilizers coated with a film mainly composed of a polymer resin or the like. Can be

【0022】本発明においては、分別対象の粒状肥料と
して複数種の粒状肥料、例えば皮膜組成は同一で核とな
る粒状肥料成分が異なる被覆肥料などを用いてもよい。
但し、分別対象となる粒状肥料においては、例えば被覆
肥料等において核となる粒状肥料成分を統一するなど、
異なる因子の数が少ない程、分別を精度良く行えるので
好ましい。
In the present invention, a plurality of types of granular fertilizers such as a coated fertilizer having the same film composition but different core granular fertilizer components may be used as the granular fertilizer to be separated.
However, in the granular fertilizer to be separated, for example, the core granular fertilizer components in the coated fertilizer etc. are unified,
It is preferable that the number of different factors is small, because the separation can be performed with high accuracy.

【0023】例えば、被覆肥料の核となる粒状肥料成分
として尿素を用いた場合、尿素表面の表面処理法を同じ
にした方が、溶出特性を反映するスペクトルにノイズが
少なく、分別を精度良く行えるので好ましい。
For example, when urea is used as a granular fertilizer component as a core of a coated fertilizer, the same surface treatment method on the urea surface has less noise in the spectrum reflecting the elution characteristics and can be separated with high accuracy. It is preferred.

【0024】本発明ではこのような粒状肥料から得られ
る光学スペクトル情報によって粒状肥料を容易に品質や
機能で分別するが、この品質・機能としては例えば、肥
料の保証成分量、水分量、吸湿性、固結性、粒度分布、
浮上性、発塵性、溶出特性等が挙げられる。
In the present invention, the granular fertilizer is easily separated by quality and function based on the optical spectrum information obtained from the granular fertilizer. The quality and function include, for example, the guaranteed component amount of the fertilizer, the water content, and the hygroscopicity. , Caking, particle size distribution,
Examples include levitation, dust generation, and elution characteristics.

【0025】特に被覆肥料の場合には溶出特性は最も重
要な機能であり、本発明によって短時間で簡易に溶出特
性により分別できるので、効果が大きく特に有用であ
る。核となる肥料成分は任意であり、前述のような化成
肥料や尿素等を用いることができる。皮膜材料として
は、特に限定されるものではないが、ポリオレフィン系
樹脂、ウレタン系樹脂、アルキッド系樹脂等の高分子成
分を含んだものが好ましく、溶出誘導時間を含む、複雑
な溶出特性を有する被覆肥料も容易に分別できる。皮膜
の厚さは30〜200μm、特に50〜100μm程度
が好ましい。
Particularly, in the case of a coated fertilizer, the elution property is the most important function, and the present invention is particularly effective because it can be easily separated by the elution property in a short time in a short time. The core fertilizer component is optional, and the above-mentioned chemical fertilizer, urea, and the like can be used. The coating material is not particularly limited, but preferably contains a polymer component such as a polyolefin-based resin, a urethane-based resin, or an alkyd-based resin. Fertilizer can be easily separated. The thickness of the film is preferably 30 to 200 μm, particularly preferably about 50 to 100 μm.

【0026】粒状肥料の形状、大きさ等は任意である
が、中でも球状のものが好ましい。球状の際の直径は一
般的に1〜10mmであり、中でも3〜7mm、特に2
〜4mmであることが好ましい。
The shape, size and the like of the granular fertilizer are arbitrary, but among them, spherical one is preferable. The diameter of the sphere is generally 1 to 10 mm, especially 3 to 7 mm, particularly 2
It is preferably about 4 mm.

【0027】本発明に於いて、反射又は吸収スペクトル
のどちらを用いるかは任意であり、分別される粒状肥料
の状態や分別を必要とする状況により選択すればよい。
通常、反射スペクトルを用いる方が好ましく、またこれ
らを併用してもよい。
In the present invention, whether to use the reflection or absorption spectrum is optional, and may be selected according to the state of the granular fertilizer to be separated or the situation requiring separation.
Generally, it is preferable to use a reflection spectrum, and these may be used in combination.

【0028】本発明に於いては、予め品質・機能等が判
明している粒状肥料から得られる光学スペクトル情報を
元にして、製造条件が異なる各製造ロットから製造され
る粒状肥料の光学スペクトル情報を比較して品質・機能
を判断し、分別する。本発明においては、この光学スペ
クトル情報を1/f揺らぎ解析し、2個の変数(傾きと
切片)として光学スペクトル情報を把握することで、処
理がより容易になり、且つ分別の精度が向上するので好
ましい。
In the present invention, based on the optical spectrum information obtained from the granular fertilizer whose quality and function are known in advance, the optical spectrum information of the granular fertilizer produced from each production lot having different production conditions is used. Compare and judge the quality and function and separate them. In the present invention, this optical spectrum information is analyzed by 1 / f fluctuation, and the optical spectrum information is grasped as two variables (slope and intercept), so that the processing becomes easier and the accuracy of classification is improved. It is preferred.

【0029】1/f揺らぎ解析の方法は任意であるが、
光学スペクトル情報をフーリエ変換してパワースペクト
ルを演算し、これを横軸(又は縦軸)が周波数成分、縦
軸(又は横軸)が成分強度の両対数にプロットしてこれ
を直線に近似的に回帰し、該直線の傾きと切片の2個の
変数値を求める方法が好ましい。なお、パワースペクト
ルは、関数の解析において、その関数の−TからTまで
のフーリエ(Fourier)変換の振幅の大きさの2
乗の集団平均を2πTでわったもののTが無限大に近づ
くときの極限である。この1/f揺らぎ解析はコンピュ
ータ等を使用すれば容易に行うことが出来る。
Although the method of 1 / f fluctuation analysis is arbitrary,
The optical spectrum information is Fourier-transformed to calculate a power spectrum, and the horizontal axis (or vertical axis) is plotted as a frequency component, and the vertical axis (or horizontal axis) is plotted as a logarithm of the component intensity. Is preferable, and two variables, ie, the slope of the straight line and the intercept, are obtained. In the analysis of the function, the power spectrum is the amplitude of the Fourier transform from -T to T of the function, which is 2 which is the magnitude of the amplitude.
This is the limit when T approaches infinity, obtained by dividing the group average of the power by 2πT. This 1 / f fluctuation analysis can be easily performed by using a computer or the like.

【0030】さらに、上述の様にして得られた粒状肥料
の光学スペクトル情報と、従来の方法で実測された該肥
料の品質・機能情報との定量的相関関係を求めてこれを
統計的に処理すると、極めて高い相関関係が見出され
た。従って、本発明に於いては、粒状肥料の光学スペク
トル情報を統計的処理したデータと、実測された該肥料
の品質・機能情報との定量的相関関係の乖離具合によっ
て粒状肥料を分別することによって、一層分別精度が向
上するので好ましい。
Further, a quantitative correlation between the optical spectrum information of the granular fertilizer obtained as described above and the quality / function information of the fertilizer actually measured by a conventional method is obtained and statistically processed. Then, an extremely high correlation was found. Therefore, in the present invention, the granular fertilizer is classified by separating the data obtained by statistically processing the optical spectrum information of the granular fertilizer and the quantitative correlation between the actually measured quality and function information of the fertilizer. This is preferable because the separation accuracy is further improved.

【0031】具体的には例えば、不規則分布二変数関数
データを補完し、滑らかな変数分布として粒状肥料の品
質・機能の分布を把握して粒状肥料の光学スペクトル情
報との定量的相関関係を求める。この方法としては、例
えば多次元関数フィッティング技術を用いるのが好まし
い。多次元関数フィッティング技術とは、任意の基底関
数の線形又は非線形結合によって相関関係を表現するこ
とである。本発明では任意の該技術方法が使用出来、中
でもシグモイド関数又はk乗の多項式を基底とするフィ
ッティング技術、具体的にはパーセプトロン型ニューラ
ルネットワーク及び/又は多次元Ck級補間法が、実測
された粒状肥料の品質・機能と光学スペクトル情報との
相関係数が高くなり好ましい。
Specifically, for example, the distribution of the quality and function of the granular fertilizer is grasped as a smooth variable distribution by complementing the irregular distribution bivariate function data, and the quantitative correlation with the optical spectrum information of the granular fertilizer is determined. Ask. As this method, for example, it is preferable to use a multidimensional function fitting technique. The multidimensional function fitting technique is to express a correlation by a linear or non-linear combination of arbitrary basis functions. In the present invention, any of the technical methods can be used. Among them, a fitting technique based on a sigmoid function or a k-th power polynomial, specifically, a perceptron type neural network and / or a multidimensional C k class interpolation method is actually measured. The correlation coefficient between the quality / function of the granular fertilizer and the optical spectrum information is increased, which is preferable.

【0032】例えばパーセプトロン型ニューラルネット
ワークは、NeuroSymm/Light plus
V.3.2(富士通株式会社製)のコンピュータソフ
トを用いれば、コンピュータ上で容易に定量的相関関係
を求めることができ、また多次元Ck級補間法も同様に
コンピュータを用いればよいが、処理としては二宮等の
方法(情報処理学会論文誌、第22巻,6号,581〜
588頁,1981年)によればよい。
For example, a perceptron-type neural network is a NeuroSymm / Light plus
V. If the computer software of 3.2 (manufactured by Fujitsu Limited) is used, a quantitative correlation can be easily obtained on a computer, and the computer can be used for the multi-dimensional C k class interpolation method as well. The method of Ninomiya et al. (Transactions of the Information Processing Society of Japan, Vol. 22, No. 6, 581-
588, 1981).

【0033】これら多次元関数フィッティング技術によ
り、例えば従来公知の方法で測定された品質・機能の値
(例えば80%溶出日数等の実測値)と、該肥料の光学
スペクトル情報から1/f揺らぎ解析で算出された、傾
きと切片の値の定量的相関関係を求め、これらふたつの
関係の乖離具合によって粒状肥料を容易に且つ精度良く
分別することができる。とりわけ、被覆肥料の機能であ
る溶出特性値を用いて分別を行った場合には、被覆肥料
を分別し、粒状肥料の製造条件や粒状肥料の機能管理に
おける時間短縮と管理の簡易化の面において、本発明は
効果が大きい。
With these multidimensional function fitting techniques, for example, 1 / f fluctuation analysis can be performed from quality / function values (for example, actual measurement values such as 80% elution days) measured by a conventionally known method and optical spectrum information of the fertilizer. A quantitative correlation between the slope and the value of the intercept calculated in step (1) is obtained, and the granular fertilizer can be easily and accurately separated based on the degree of difference between these two relationships. In particular, when the separation is performed using the elution characteristic value, which is a function of the coated fertilizer, the coated fertilizer is separated, and in terms of the production conditions of the granular fertilizer and the time reduction and simplified management of the function management of the granular fertilizer. The present invention has a great effect.

【0034】更に、この定量的相関関係を用いて、新た
に製造される粒状肥料の光学的スペクトル情報に対応す
る該肥料の品質・機能の回帰値を求めることが出来る。
また分別の信頼性を向上させるために、新たに製造され
た粒状肥料の光学的スペクトル情報と、それに対応する
肥料の新規の品質・機能情報を加えて相関関係を随時補
正すると、相関係数を高めることが出来るので好まし
い。
Further, using this quantitative correlation, a regression value of the quality and function of the fertilizer corresponding to the optical spectrum information of the newly manufactured granular fertilizer can be obtained.
In addition, to improve the reliability of sorting, the correlation coefficient is corrected as needed by adding the optical spectrum information of the newly manufactured granular fertilizer and the new quality and function information of the corresponding fertilizer as needed. It is preferable because it can be increased.

【0035】統計的処理の際に一般的に行われている様
に、本発明に於いても少数の異常値を除去してから統計
的処理する手法を用いてもよい。具体的には、測定ミス
や異物等による、少数の、極めて異なる値を示す測定対
象を除いて相関係数を求めるのが一般的な手法である。
As generally performed in the statistical processing, the present invention may employ a method of performing statistical processing after removing a small number of abnormal values. Specifically, it is a general method to obtain a correlation coefficient except for a small number of measurement objects having extremely different values due to measurement errors, foreign substances, and the like.

【0036】本発明による粒状肥料の分別に要する時間
は、測定対象数や光学スペクトル情報の処理条件によっ
て変わり、所望の分別の精度や速度等を設定することに
よって任意に変わりうるものである。例えば目的の品質
・機能を有する粒状肥料において、光学スペクトル情報
と品質・機能との定量的相関関係が明らであり、新たに
製造された粒状肥料の光学的スペクトルを測定した後、
これについての定量的相関関係により品質・機能の回帰
値を求めて品質・機能を管理する際に要する時間は、主
に光学スペクトル情報の測定時間と該情報の1/f揺ら
ぎ解析及び回帰値の算出等の数値処理を行うコンピュー
タ処理時間との和に相当し、通常数分以内で行われる。
The time required for the separation of the granular fertilizer according to the present invention varies depending on the number of objects to be measured and the processing conditions of the optical spectrum information, and can be arbitrarily changed by setting the desired accuracy and speed of the separation. For example, in the granular fertilizer having the target quality / function, the quantitative correlation between the optical spectrum information and the quality / function is clear, and after measuring the optical spectrum of the newly manufactured granular fertilizer,
The time required for managing the quality / function by obtaining the regression value of the quality / function by the quantitative correlation for this is mainly the measurement time of the optical spectrum information and the 1 / f fluctuation analysis of the information and the regression value of the regression value. This corresponds to the sum of the computer processing time for performing numerical processing such as calculation, and is usually performed within several minutes.

【0037】本発明の粒状肥料の分別方法は、例えば製
造と並行して品質・機能が分別される様な工程管理とし
て実施しても、また製造後に品質・機能を分別する様な
出荷管理や品質・機能確認(評価)としても用いること
が出来る。
The method for separating granular fertilizer of the present invention can be carried out, for example, as a process control in which quality and function are separated in parallel with the production, and also in a shipping management and the like in which quality and function are separated after production. It can also be used for quality / function confirmation (evaluation).

【0038】本発明による肥料の分別装置に特に制限は
無いが、例えば肥料の製造の中間又は採取段階におい
て、検体の光学的スペクトル情報が得られる構造あるい
はシステムになっていればよい。
There is no particular limitation on the fertilizer separation apparatus according to the present invention, but any structure or system that can obtain optical spectrum information of a specimen during, for example, the intermediate or collection stage of fertilizer production may be used.

【0039】[0039]

【実施例】以下に実施例を示し、本発明を更に具体的に
説明するが、本発明はその要旨を超えない限り、以下の
実施例に限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited to the following Examples unless it exceeds the gist of the invention.

【0040】(1)被覆肥料の調製 表1に示す各種組成の皮膜材料にて被覆肥料を調製し
た。これら各々の被覆材料について、これをテトラクロ
ロエチレンに溶解又は分散した溶液(皮膜成分濃度5重
量%、90℃)2kgを調製し、これを尿素粒(マレー
シア、ASEANBINTULU FERTILIZE
R社製)1kgに対して噴流式コーティング装置を使用
して被覆した。乾燥流動風温度を90℃、風量100N
/時間として噴霧被覆し、被覆肥料1〜12を得
た。
(1) Preparation of Coated Fertilizer Coated fertilizers were prepared using film materials having various compositions shown in Table 1. For each of these coating materials, 2 kg of a solution (film component concentration of 5% by weight, 90 ° C.) prepared by dissolving or dispersing the same in tetrachloroethylene was prepared, and this was mixed with urea granules (ASEANBINTULU FERTILEZE, Malaysia).
(R company) was coated using a jet-type coating apparatus on 1 kg. Dry flowing air temperature 90 ° C, air flow 100N
Spray coating was performed at m 3 / hour to obtain coated fertilizers 1 to 12.

【0041】(2)被覆肥料の溶出特性評価法 (1)で得られた被覆肥料1〜12を個々に7.0gを
200ccの水に投入して25℃の恒温層内で静置し、
1〜3週間毎に溶出された尿素量を測定し、溶出特性値
を得た。溶出誘導日数(実質的に溶出が開始するまでの
日数)及び80%溶出日数の測定結果を表1に示す。
(2) Evaluation method of dissolution characteristics of coated fertilizer 7.0 g of coated fertilizers 1 to 12 obtained in (1) were individually poured into 200 cc of water, and allowed to stand in a thermostat at 25 ° C.
The amount of urea eluted was measured every 1 to 3 weeks to obtain an elution characteristic value. Table 1 shows the measurement results of the elution induction days (substantially the number of days until the start of elution) and the 80% elution days.

【0042】なお、表1中の記号は次の内容を示してい
る。 SAA;界面活性剤、ポリオキシエチレンノニルフェニ
ルエーテル(東邦化学社製、HLB=14.1) A;高密度ポリエチレン(密度=0.958、MFR=2
0、融点=133℃) B;エチレン酢酸ビニル共重合体(MFR=2.0、V
Ac=15重量%) C;低密度ポリエチレン(密度=0.923、MFR=
4.0、融点=111℃) D;直鎖状低密度ポリエチレン(密度=0.925、M
FR=20、融点=125℃) E;低分子量ポリエチレン(平均分子量700) F;低分子量ポリエチレン(平均分子量500)
The symbols in Table 1 indicate the following contents. SAA: surfactant, polyoxyethylene nonylphenyl ether (manufactured by Toho Chemical Co., HLB = 14.1) A: high density polyethylene (density = 0.958, MFR = 2)
B; ethylene vinyl acetate copolymer (MFR = 2.0, V
Ac = 15% by weight) C; low density polyethylene (density = 0.923, MFR =
4.0, melting point = 111 ° C.) D; linear low density polyethylene (density = 0.925, M
FR = 20, melting point = 125 ° C.) E: low molecular weight polyethylene (average molecular weight 700) F: low molecular weight polyethylene (average molecular weight 500)

【0043】[0043]

【表1】 [Table 1]

【0044】(3)光学的スペクトル情報の測定 (1)で得られた被覆粒状肥料1〜12につき、以下の
方法で、光学スペクトル情報として光学的スペクトル情
報を測定した。 使用機器;近赤外線分光分析プラスチック種類判別計
(オプト技研(株)製)、商品名:プラスキャン 波長範囲;1100nm〜2400nm、設定条件;約
0.5秒/走査×20回走査、0.5nm刻み 測定法;6cm径のシャーレに肥料層の厚みが約1cm
程度になるように肥料を投入する。
(3) Measurement of Optical Spectrum Information Optical spectral information was measured as the optical spectrum information for the coated granular fertilizers 1 to 12 obtained in (1) by the following method. Equipment used: Near infrared spectroscopy plastic type discriminator (Opto Giken Co., Ltd.), trade name: plastic scan wavelength range: 1100 nm to 2400 nm, setting conditions: about 0.5 sec / scan × 20 scans, 0.5 nm Step Measurement method: Petri dish with 6cm diameter, fertilizer layer thickness about 1cm
Add fertilizer to the extent.

【0045】測定装置の照射部を肥料層の上面に接触さ
せて、反射光を測定する。
The reflected light is measured by bringing the irradiation part of the measuring device into contact with the upper surface of the fertilizer layer.

【0046】その際、光が突き抜けないようにシャーレ
の底にセラミック板を敷く。
At this time, a ceramic plate is laid on the bottom of the petri dish so that light does not penetrate.

【0047】図1に被覆肥料1〜7の近赤外線反射スペ
クトルを示す。
FIG. 1 shows the near-infrared reflection spectra of the coated fertilizers 1 to 7.

【0048】横軸は測定した波長(×1000nm)を
示し、縦軸は反射スペクトル強度を示している。試料毎
に示されるスペクトルに差があり、これを予め品質・機
能が判明している粒状肥料(目的とする粒状肥料)のそ
れと比較することで、新たに製造される被覆粒状肥料の
分別が可能である。
The horizontal axis represents the measured wavelength (× 1000 nm), and the vertical axis represents the reflection spectrum intensity. There is a difference in the spectrum shown for each sample, and by comparing this with that of a granular fertilizer of which quality and function are known in advance (the target granular fertilizer), it is possible to separate newly produced coated granular fertilizer. It is.

【0049】(4)1/f揺らぎ解析 (3)で得られた反射スペクトル情報をフーリエ変換し
て得られたパワースペクトルを両対数の近似的直線へ回
帰し、この直線の傾きと切片を求めた結果を表2に示
す。また、図2に傾きと切片の相関関係を示した。
(4) 1 / f fluctuation analysis The power spectrum obtained by Fourier transforming the reflection spectrum information obtained in (3) is regressed to an approximate log-log line, and the slope and intercept of this line are obtained. The results are shown in Table 2. FIG. 2 shows the correlation between the slope and the intercept.

【0050】図2の通り、1/f揺らぎ解析した傾きと
切片の相関関係は次の通りである。 回帰直線y=−1.5728x−5.4517 相関係数R=−0.9956
As shown in FIG. 2, the correlation between the slope obtained by the 1 / f fluctuation analysis and the intercept is as follows. Regression line y = -1.5728x-5.4517 Correlation coefficient R = -0.9956

【0051】得られた相関係数R=−0.9956を検
定すると、R表(生物統計学入門、培風館、昭和58年
11月30日初版第11刷、262ページ)よりR(1
0,0.001)=0.823であり、算出された相関
係数の絶対値の方が高く、有意水準0.1%で相関関係
がある。よってこれを用いて新たに製造される肥料の分
別が精度良く行えることは明白である。つまり、新たに
製造する粒状肥料から得られる光学スペクトル情報値を
この相関関係表に当てはめて、相関関係からの乖離具合
によって、目的の機能を有しているか否かを容易に分別
することが出来る。
When the obtained correlation coefficient R = −0.9956 was tested, R (1) was obtained from the R table (Introduction to Biostatistics, Baifukan, first edition, 11th edition, November 30, 1983, page 262, page 262).
(0, 0.001) = 0.823, and the calculated absolute value of the correlation coefficient is higher, indicating a correlation at the significance level of 0.1%. Therefore, it is clear that the fertilizer newly manufactured using this can be accurately separated. In other words, the optical spectrum information value obtained from the newly manufactured granular fertilizer is applied to this correlation table, and it is possible to easily determine whether or not it has the intended function by the degree of deviation from the correlation. .

【0052】[0052]

【表2】 [Table 2]

【0053】(5)被覆粒状肥料における光学的スペク
トル情報と品質・機能との定量的相関関係 (5―1)パーセプトロン型ニューラルネットワーク 表1に示した溶出誘導日数及び80%溶出日数の実測値
と、表2に示した1/f揺らぎ解析で得られた傾きと切
片を用いて求めた両日数の予測値の定量的相関関係をパ
ーセプトロン型ニューラルネット法で明らかにし、表3
及び図3、4に示した。
(5) Quantitative correlation between optical spectrum information and quality / function of coated granular fertilizer (5-1) Perceptron type neural network Actually measured values of elution induction days and 80% elution days shown in Table 1 The quantitative correlation between the slope obtained by the 1 / f fluctuation analysis shown in Table 2 and the predicted value of both days obtained using the intercept was clarified by the perceptron-type neural net method.
3 and 4.

【0054】具体的には、パーセプトロン型ニューラル
ネットワークに粒状肥料の品質・機能値を学習させて溶
出誘導日数と80%溶出日数に対する1/f揺らぎ解析
で得られた回帰直線の傾きと切片の関係の自動抽出を行
った。実際には、表1に示したデータのうち一つを除い
たデータの組を学習したパーセプトロン型ニューラルネ
ットを用いて、除いたデータを予測すること、すなわち
leave−one−outにより検討した。
Specifically, the relation between the slope and intercept of the regression line obtained by 1 / f fluctuation analysis with respect to the number of days of elution induction and the number of days of 80% elution by making a perceptron type neural network learn the quality and function values of the granular fertilizer. Was automatically extracted. In practice, prediction was performed by using a perceptron-type neural network that learned a data set from which one of the data shown in Table 1 was removed, that is, leave-one-out was examined.

【0055】パーセプトロン型のニューラルネットワー
クのネットワーク構造は、入力データとして傾き、切
片、溶出誘導日数、80%溶出時間、促進パラメータ
(常に1.0)の5つに対応する入力層ニューロ5、中
間層ニューロン8、出力層ニューロン1とした。学習誤
差のしきい値は、0.0008である。表3には、溶出
誘導日数及び80%溶出日数の実測値、両日数のニュー
ラルネットワークによる推定値を示した。また図3、4
には、溶出誘導時間と80%溶出時間の推測値と実測値
の相関関係を示した。推測値は小数点以下第2位で四捨
五入した。
The network structure of the perceptron type neural network is such that the input layer neuro 5 corresponding to the gradient, the intercept, the number of days of elution induction, the 80% elution time, and the acceleration parameter (always 1.0) as input data, Neuron 8 and output layer neuron 1 were used. The threshold value of the learning error is 0.0008. Table 3 shows the measured values of the number of days of elution induction and the number of days of 80% elution, and the estimated values of both days by a neural network. 3 and 4
Shows the correlation between the estimated value and the actually measured value of the elution induction time and the 80% elution time. Estimated values are rounded to the first decimal place.

【0056】[0056]

【表3】 [Table 3]

【0057】図3における溶出誘導日数の実測値と推測
値の相対関係は次の通りである。 回帰直線y=0.9223+3.5517 相関係数R=0.8283
The relative relationship between the actually measured value and the estimated value of the number of days of elution induction in FIG. 3 is as follows. Regression line y = 0.9223 + 3.5517 Correlation coefficient R = 0.8283

【0058】図4における80%溶出日数の実測値と推
測値の相対関係は次の通りである。 回帰直線y=0.9539x+6.294 相関係数R=0.9283
The relative relationship between the measured value and the estimated value of the 80% elution days in FIG. 4 is as follows. Regression line y = 0.9539x + 6.294 Correlation coefficient R = 0.9283

【0059】図3の回帰直線を公知文献(生物統計学入
門、培風館、昭和58年11月30日初版第11刷、2
06〜210ページ及び付表17)に基づき検定する。
回帰直線勾配の有意性調査の為の分散比は21.86で
あり、第1自由度1・第2自由度10・α=0.001
の値は21.04なので分散比の方が大きく、よって図
3の回帰直線は0.1%水準で有意であることが明白で
ある。同様に図4に示した回帰直線も検定すると、回帰
直線勾配の有意性調査の為の分散比は62.32であ
り、第1自由度1・第2自由度10・α=0.001の
値は21.04なので分散比の方が大きい。よって図4
の回帰直線も0.1%水準で有意であることが明白であ
る。よってこれを用いて新たに製造される肥料の分別が
精度良く行えることは明白であり、新たに製造する粒状
肥料から得られる光学スペクトル情報値をこの相関関係
表に当てはめて、相関関係からの乖離具合によって、目
的の機能を有しているか否かを容易に分別することが出
来る。
The regression line shown in FIG. 3 was compared with a known document (Introduction to Biostatistics, Baifukan, Nov. 30, 1983, First Edition, No. 11, 2nd Edition).
Test based on pages 06-210 and Appendix 17).
The variance ratio for investigating the significance of the regression linear gradient was 21.86, and the first degree of freedom, the second degree of freedom, and 10.alpha. = 0.001.
Is 21.04, the variance ratio is larger, and it is therefore clear that the regression line in FIG. 3 is significant at the 0.1% level. Similarly, when the regression line shown in FIG. 4 is also tested, the variance ratio for investigating the significance of the gradient of the regression line is 62.32, and the first degree of freedom, the second degree of freedom, 10 · α = 0.001. Since the value is 21.04, the dispersion ratio is larger. Therefore, FIG.
Is also significant at the 0.1% level. Therefore, it is clear that this can be used to accurately separate newly manufactured fertilizer, and the optical spectrum information value obtained from the newly manufactured granular fertilizer is applied to this correlation table, and the deviation from the correlation is determined. Depending on the condition, it can be easily determined whether or not it has a desired function.

【0060】(5−2)Ck級補間法 ニューラルネットワークは非線形の多次元フィッティン
グとそれによる補間である。そこで線形の多次元フィッ
ティングと比較するために、現在コンピュータグラフィ
ックスなどで広く用いられている、先述した二宮らの不
規則分布二変数関数データに対するCk級補間法をn次元
に拡張してこれを本発明に用いた。具体的には、佐藤と
二宮らの不規則分布二変数関数データに対するCk級補間
法は、不規則に分布したN個の2変数データ(x,y
), f=f(x,y), (i=1,N)に対
し、各データ点を頂点とする三角メッシュの作成と各デ
ータ点におけるk階までの偏微分値の算出とを経て、定
義域全体にわたってCk級となる補間関数を各三角要素ご
とに設定し、定義域内の補間を行う。但し定義域外の点
の補間は、(k−1)次多項式を用いた最小自乗法によ
って補間値を求める。本実施例ではこれをn次元に拡張
して溶出誘導時間と80%溶出時間の推定を行った。た
だし本実施例の場合、3次元の問題で、そのサンプル数
が12であるため、k=3とした。
(5-2) C k Class Interpolation Method A neural network is a non-linear multi-dimensional fitting and an interpolation based thereon. Therefore in order to compare the linear multidimensional fitting, which extends is currently used widely in computer graphics, C k grade interpolation for random distribution bivariate function data described above were Ninomiya et al to n-dimensional Was used in the present invention. Specifically, Sato and C k Class interpolation for random distribution bivariate function data of Ninomiya et al., Randomly distributed the N 2 variable data (x i, y
i), f i = f ( x i, y i), (i = 1, N) to the calculation of the partial derivatives up to k floor in creation and each data point of the triangular meshes having vertices each data point After that, an interpolation function of C k class is set for each triangular element over the entire domain, and interpolation is performed within the domain. However, for interpolation of a point outside the defined area, an interpolation value is obtained by a least square method using a (k-1) -order polynomial. In this example, this was extended to n dimensions to estimate the elution induction time and 80% elution time. However, in the case of the present embodiment, since the number of samples is 12 due to a three-dimensional problem, k = 3.

【0061】Ck級補間法を用いた結果を表4に示す。
推測値は小数点以下第2位で四捨五入した。試料6を除
けば、学習定義域外の点の外挿となっている。試料3の
データの推定が極端に悪いことを除けば、ニューラルネ
ットによる予測にほぼ同程度の誤差で推定ができてい
る。
Table 4 shows the results obtained by using the C k class interpolation method.
Estimated values are rounded to the first decimal place. Excluding the sample 6, the extrapolation is for points outside the learning definition area. Except that the estimation of the data of the sample 3 is extremely bad, the estimation can be made with almost the same error as the prediction by the neural network.

【0062】[0062]

【表4】 [Table 4]

【0063】図5、6に試料3のデータを除いた相関関
係を示した。
FIGS. 5 and 6 show the correlations except for the data of the sample 3. FIG.

【0064】図5のCk級補間法による溶出誘導日数の
実測値と推測値の相対関係(試料3除外)は次の通りで
ある。 回帰直線y=1.3694x−20.977 相関係数R=0.8433
[0064] The relative relationship of the measured values of the eluted induction days by C k class interpolation of Figure 5 and estimated value (Sample 3 exclusion) is as follows. Regression line y = 1.3694x-20.977 Correlation coefficient R = 0.8433

【0065】図6のCk級補間法による80%溶出日数
の実測値と推測値の相対関係(試料3除外)は次の通り
である。 回帰直線y=0.8161x+27.625 相関係数R=0.8050
The relative relationship between the actually measured value and the estimated value of the 80% elution days by the Ck class interpolation method shown in FIG. 6 (excluding sample 3) is as follows. Regression line y = 0.161x + 27.625 Correlation coefficient R = 0.850

【0066】図5の回帰直線を前述の図3におけるそれ
と同様に検定すると、回帰直線勾配の有意性調査の為の
分散比は24.62であり、第1自由度1・第2自由度
9・α=0.001の値は22.86なので分散比の方
が大きい。よって図5の回帰直線も0.1%水準で有意
であることが明白である。同様に図6の回帰直線も検定
すると、回帰直線勾配の有意性調査の為の分散比は1
8.41であり、第1自由度1・第2自由度9・α=
0.005での値は13.61であるので、分散比の方
が大きい。よって図6での回帰直線は0.5%水準で有
意であることが明白である。
When the regression line in FIG. 5 is tested in the same manner as in FIG. 3, the variance ratio for investigating the significance of the regression line gradient is 24.62, and the first and second degrees of freedom are 9 and 9. -Since the value of α = 0.001 is 22.86, the dispersion ratio is larger. Therefore, it is clear that the regression line in FIG. 5 is also significant at the 0.1% level. Similarly, when the regression line in FIG. 6 is also tested, the variance ratio for investigating the significance of the regression line gradient is 1
8.41, the first degree of freedom 1 / the second degree of freedom 9 · α =
Since the value at 0.005 is 13.61, the dispersion ratio is larger. Therefore, it is clear that the regression line in FIG. 6 is significant at the 0.5% level.

【0067】以上のことより、パーセプトロン型ニュー
ラルネット法と同様にCk級補間法を用いて新たに製造
される肥料の分別が精度良く行えることは明白であり、
新たに製造する粒状肥料から得られる光学スペクトル情
報値をこの相関関係表に当てはめて、相関関係からの乖
離具合によって、目的の機能を有しているか否かを容易
に分別することが出来る。
From the above, it is clear that the newly manufactured fertilizer can be accurately separated by using the C k class interpolation method as in the case of the perceptron-type neural network method.
The optical spectrum information value obtained from the newly manufactured granular fertilizer is applied to this correlation table, and it is possible to easily determine whether or not the fertilizer has a desired function depending on the degree of deviation from the correlation.

【0068】[0068]

【発明の効果】以上の通り、本発明によると、粒状肥料
に波長の異なる電磁波を照射して得られる反射もしくは
吸収スペクトル値を測定し、このスペクトル値により簡
便に且つ短時間に肥料を分別できる。特に、反射もしく
は吸収スペクトル値をフーリエ変換して得られるパワー
スペクトルを両対数の直線に近似的に回帰した直線の傾
き及び/又は切片の値と溶出特性値の関係を、パーセプ
トロン型ニューラルネットワーク及び/又は多次元C
級補間法にて把握し、新スペクトル情報より簡便で且つ
短時間で溶出特性高精度にて推定できる。
As described above, according to the present invention, the reflection or absorption spectrum value obtained by irradiating the granular fertilizer with electromagnetic waves having different wavelengths is measured, and the fertilizer can be separated easily and in a short time based on the spectrum value. . In particular, the relationship between the slope and / or intercept value and the elution characteristic value of a line obtained by approximately regressing a power spectrum obtained by Fourier transforming a reflection or absorption spectrum value into a log-log line is expressed by a perceptron-type neural network and / or Or multidimensional C k
It can be grasped by the class interpolation method, and it can be easily and quickly estimated from the new spectrum information with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】被覆肥料の近赤外線反射スペクトルを示す。FIG. 1 shows the near-infrared reflection spectrum of a coated fertilizer.

【図2】反射スペクトル値をフーリエ変換して得られた
パワースペクトルを両対数の近似的直線へ回帰し、この
直線の傾きと切片の相関関係を示す。
FIG. 2 shows a correlation between a slope and an intercept of a power spectrum obtained by performing a Fourier transform on a reflection spectrum value and regressing the power spectrum onto an approximate log-log line.

【図3】溶出誘導日数及び80%溶出日数の実測値と、
1/f揺らぎ解析で得られた傾きと切片を用いて求めた
両日数の予測値の定量的相関関係を示す。
FIG. 3 shows measured values of the days of elution induction and the days of 80% elution,
The quantitative correlation between the slope obtained by the 1 / f fluctuation analysis and the predicted value of both days calculated using the intercept is shown.

【図4】溶出誘導日数及び80%溶出日数の実測値と、
1/f揺らぎ解析で得られた傾きと切片を用いて求めた
両日数の予測値の定量的相関関係を示す。
FIG. 4 shows measured values of the number of days of elution induction and the number of days of 80% elution,
The quantitative correlation between the slope obtained by the 1 / f fluctuation analysis and the predicted value of both days calculated using the intercept is shown.

【図5】Ck級補間法による溶出誘導日数及び80%溶出
日数の実測値と予測値との相関図である。
FIG. 5 is a correlation diagram between measured values and predicted values of the number of days of elution induction and 80% of days of elution by the C k class interpolation method.

【図6】Ck級補間法による溶出誘導日数及び80%溶出
日数の実測値と予測値との相関図である。
FIG. 6 is a correlation diagram between actually measured values and predicted values of the number of days of elution induction and 80% of days of elution by the C k class interpolation method.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G059 AA05 BB09 DD01 EE01 EE02 EE12 HH01 HH02 HH06 JJ02 MM01 MM02 3F079 AB00 CA09 CB25 CB33 CB34 CB35 4H061 AA02 AA03 DD01 DD18 EE35 FF08 GG62 GG70 HH02 LL06 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G059 AA05 BB09 DD01 EE01 EE02 EE12 HH01 HH02 HH06 JJ02 MM01 MM02 3F079 AB00 CA09 CB25 CB33 CB34 CB35 4H061 AA02 AA03 DD01 DD18 EE35 FF08 GG62GG

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 粒状肥料に波長の異なる電磁波を照射し
て反射又は吸収スペクトル値を測定し、該スペクトル値
により肥料の分別を行うことを特徴とする粒状肥料の分
別方法。
1. A method for separating granular fertilizer, comprising irradiating the granular fertilizer with electromagnetic waves having different wavelengths, measuring a reflection or absorption spectrum value, and separating the fertilizer based on the spectrum value.
【請求項2】 請求項1において、反射又は吸収スペク
トル値をフーリエ変換してパワースペクトルを演算し、
これを両対数の直線に近似的に回帰し、この直線の傾き
及び/又は切片の値により肥料の分別を行うことを特徴
とする粒状肥料の分別方法。
2. The power spectrum according to claim 1, wherein a reflection or absorption spectrum value is Fourier-transformed to calculate a power spectrum.
A method for separating granular fertilizer, comprising regressing this approximately into a log-log line and separating the fertilizer based on the slope and / or intercept value of the line.
【請求項3】 請求項2において、傾き及び/又は切片
の値を用いて、パーセプトロン型ニューラルネットワー
ク及び/又は多次元C級補間法により得られた、粒状
肥料の溶出誘導時間及び/又は特定割合溶出時間を用い
て粒状肥料の分別を行うことを特徴とする粒状肥料の分
別方法。
3. The elution induction time and / or identification of a granular fertilizer according to claim 2, which is obtained by a perceptron-type neural network and / or a multi-dimensional Ck class interpolation method using values of a slope and / or an intercept. A method for separating a granular fertilizer, comprising separating a granular fertilizer using a ratio elution time.
【請求項4】 請求項1ないし3のいずれか1項におい
て、波長が400〜4000nmの電磁波を照射するこ
とを特徴とする粒状肥料の分別方法。
4. The method for separating particulate fertilizer according to claim 1, wherein the electromagnetic wave having a wavelength of 400 to 4000 nm is irradiated.
【請求項5】 請求項1ないし4のいずれか1項におい
て、粒状肥料が高分子樹脂を含む皮膜で被覆された被覆
肥料であることを特徴とする粒状肥料の分別方法。
5. The method for separating granular fertilizer according to claim 1, wherein the granular fertilizer is a coated fertilizer coated with a film containing a polymer resin.
【請求項6】 粒状肥料に波長の異なる電磁波を照射す
る電磁波照射手段と、該粒状肥料の該電磁波の反射又は
吸収スペクトル値を測定する測定手段と、測定されたス
ペクトル値により粒状肥料の分別を行う分別手段とを有
する粒状肥料の分別装置。
6. An electromagnetic wave irradiating means for irradiating the granular fertilizer with electromagnetic waves having different wavelengths, a measuring means for measuring a reflection or absorption spectrum value of the electromagnetic wave of the granular fertilizer, and separating the granular fertilizer based on the measured spectrum value. An apparatus for separating granular fertilizer, comprising:
【請求項7】 請求項6において、該分別手段は、得ら
れたスペクトル値をフーリエ変換してパワースペクトル
を演算し、これを両対数の直線に近似的に回帰し、その
直線の傾き及び/又は切片の値を求め、この直線の傾き
及び/又は切片の値により肥料の分別を行うものである
ことを特徴とする粒状肥料の分別装置。
7. The method according to claim 6, wherein the classification means calculates a power spectrum by performing a Fourier transform on the obtained spectrum value, approximately regresses the power spectrum on a log-log line, and calculates the slope and / or the slope of the line. Alternatively, a granular fertilizer separation apparatus is characterized in that a value of an intercept is obtained, and the fertilizer is separated based on a slope of the straight line and / or an intercept value.
【請求項8】 請求項7において、該分別手段は、傾き
と切片の値を用いてパーセプトロン型ニューラルネット
ワーク及び/又は多次元C級補間法により得られた粒
状肥料の溶出誘導時間及び/又は特定割合溶出時間を求
める手段を有し、肥料の分別手段が該溶出誘導時間及び
/又は特定割合溶出時間により肥料の分別を行うもので
あることを特徴とする粒状肥料の分別装置。
8. The method according to claim 7, wherein the separation means comprises a time period for inducing elution of the granular fertilizer obtained by a perceptron-type neural network and / or a multidimensional Ck- class interpolation method using the values of the slope and the intercept. An apparatus for separating granular fertilizer, comprising means for determining a specific ratio elution time, wherein the means for separating fertilizers separates fertilizer based on the elution induction time and / or the specific ratio elution time.
JP2000288974A 2000-09-07 2000-09-22 Classifying method for granular fertilizer and classifying equipment for granular fertilizer Pending JP2002154888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000288974A JP2002154888A (en) 2000-09-07 2000-09-22 Classifying method for granular fertilizer and classifying equipment for granular fertilizer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000271864 2000-09-07
JP2000-271864 2000-09-07
JP2000288974A JP2002154888A (en) 2000-09-07 2000-09-22 Classifying method for granular fertilizer and classifying equipment for granular fertilizer

Publications (1)

Publication Number Publication Date
JP2002154888A true JP2002154888A (en) 2002-05-28

Family

ID=26599448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000288974A Pending JP2002154888A (en) 2000-09-07 2000-09-22 Classifying method for granular fertilizer and classifying equipment for granular fertilizer

Country Status (1)

Country Link
JP (1) JP2002154888A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112996A (en) * 2004-10-18 2006-04-27 Yokogawa Electric Corp Near-infrared spectroscopic analyzer
CN101493404B (en) * 2008-01-21 2011-08-10 安徽帝元生物科技有限公司 Method for detecting loss-controlling rate of fertiliser nutrient loss-controlling agent agent
CN110479636A (en) * 2019-07-19 2019-11-22 深圳市微蓝智能科技有限公司 Method and device based on neural network automatic sorting tobacco leaf

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112996A (en) * 2004-10-18 2006-04-27 Yokogawa Electric Corp Near-infrared spectroscopic analyzer
CN101493404B (en) * 2008-01-21 2011-08-10 安徽帝元生物科技有限公司 Method for detecting loss-controlling rate of fertiliser nutrient loss-controlling agent agent
CN110479636A (en) * 2019-07-19 2019-11-22 深圳市微蓝智能科技有限公司 Method and device based on neural network automatic sorting tobacco leaf

Similar Documents

Publication Publication Date Title
CN105324839B (en) The metering system of parameter tracking is optimized
JP3245157B2 (en) Measurement and correction of spectral data
Ignat et al. Forecast of apple internal quality indices at harvest and during storage by VIS-NIR spectroscopy
Westerhaus et al. Quantitative analysis
WO2004079347A1 (en) Method of analysis of nir data
CN106932015B (en) Real-time characterization of coated drug tablets using raman spectroscopy
JP7412559B2 (en) Measurement recipe optimization and physical realization based on probabilistic domain knowledge
Xiao et al. Discrimination of organic and conventional rice by chemometric analysis of NIR spectra: a pilot study
JP2013228241A (en) Measuring apparatus, method, program, and recording medium
CN105223140A (en) The method for quickly identifying of homology material
Lestander et al. Selection of near infrared wavelengths using genetic algorithms for the determination of seed moisture content
JP2002154888A (en) Classifying method for granular fertilizer and classifying equipment for granular fertilizer
Brunt et al. Design, construction, and testing of an automated NIR in-line analysis system for potatoes. Part II. Development and testing of the automated semi-industrial system with in-line NIR for the characterization of potatoes
Scheibelhofer et al. Spatially resolved spectral powder analysis: experiments and modeling
Hadiwijaya et al. Water content prediction of ‘crystal’guava using visible-near infrared spectroscopy and chemometrics approach
Lim et al. Measurement of cross link densities of prevulcanized natural rubber latex and latex products using low-cost near infrared spectrometer
Martínez et al. Effect of sample heterogeneity on near infrared meat analysis: the use of the RMS statistic
EP4071461A1 (en) Photoresist characteristics analysis method and characteristics analysis device
Connell et al. The Prediction of the Yield of Greasy Wool by Near-Infrared Reflectance Spectroscopy: Part I: Principles and Washed Wool1
Gu et al. Multiscale physical characterization of an outdoor-exposed polymeric coating system
Gonzalez et al. Contamination by larger particles of two almost-uniform latices: analysis by combined dynamic light scattering and turbidimetry
Callanan et al. CMZoom III: Spectral line data release
CN106018328A (en) Method for differentiating true and false edible bird's nests
JP2014211413A (en) Surface state determination device, surface state determination method, surface state determination system and program
US20230393117A1 (en) Biological information measurement device, biological information measurement method, and computer-readable recording medium