JP2002153878A - Water quality maintenance equipment - Google Patents

Water quality maintenance equipment

Info

Publication number
JP2002153878A
JP2002153878A JP2000353466A JP2000353466A JP2002153878A JP 2002153878 A JP2002153878 A JP 2002153878A JP 2000353466 A JP2000353466 A JP 2000353466A JP 2000353466 A JP2000353466 A JP 2000353466A JP 2002153878 A JP2002153878 A JP 2002153878A
Authority
JP
Japan
Prior art keywords
water
tap water
tank
chlorine
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000353466A
Other languages
Japanese (ja)
Other versions
JP3642410B2 (en
Inventor
Kenji Muto
健二 武藤
Hiroyuki Kakiuchi
弘行 垣内
Takeshi Kasai
武司 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000353466A priority Critical patent/JP3642410B2/en
Publication of JP2002153878A publication Critical patent/JP2002153878A/en
Application granted granted Critical
Publication of JP3642410B2 publication Critical patent/JP3642410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the free residual chlorine concentration of the tap water stored in water storage tanks (elevated water tanks) of buildings and condominiums from lowering. SOLUTION: The water quality maintenance equipment 4 having an electrolytic cell 5 for converting the chlorine ions included in the tap water by electrolyzing the tap water to chlorine is installed in juxtaposition with the water storage tank 1. The water in the water storage tank 1 is circulated through the electrolytic cell 5 by a circulating pump 6, by which the free residual chlorine concentration of the tap water stagnating in water storage tank 1 is maintained at a specified range. At this time, the water temperature is captured by a water temperature sensor 33 and the operating time per time is calculated from the temperature of the raw water and the previously measured chlorine ion concentration and the electrolytic cell 5 and the circulating pump are operated for the calculated time at the prescribed time plural times a day.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ビルやマンショ
ンなどの貯水槽に貯留される水道水の遊離残留塩素濃度
を維持するための水質維持装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water quality maintaining device for maintaining the concentration of free residual chlorine in tap water stored in a water tank of a building or an apartment.

【0002】[0002]

【従来の技術】一般にビルやマンションなどでは、地上
の受水槽で受水した水道水を屋上の貯水槽(高置水槽)
にポンプアップし、この貯水槽から各蛇口に水を供給す
るようにしている。一方、水道法では、水道の蛇口での
遊離残留塩素濃度は0.1mg/l以上と定められている
が、安全な水質を維持するためには0.3〜0.5mg/lの
遊離残留塩素濃度が必要であるとされている。
2. Description of the Related Art In general, in buildings and condominiums, tap water received by a water receiving tank on the ground is used as a water storage tank on a roof (an elevated water tank).
The water is supplied to each faucet from this water tank. On the other hand, the water supply law stipulates that the concentration of free residual chlorine at the tap of a water supply should be 0.1 mg / l or more, but the concentration of free residual chlorine of 0.3 to 0.5 mg / l is necessary to maintain safe water quality. It is supposed to be.

【0003】[0003]

【発明が解決しようとする課題】ところが、高置水槽は
開放型のタンクであり、水道水の滞留時間が長くなると
塩素が抜け、雑菌が繁殖しやすくなる。特に、夏場のよ
うに高温で紫外線をたくさん浴びる状況下や、帰省など
で居住者が減り、使用水量が極端に落ちて水の滞留時間
が長くなる場合には、遊離残留塩素濃度が著しく低下す
る。この遊離残留塩素濃度の低下は、水質悪化に直結す
る重要な問題である。そこで、この発明の課題は、貯水
槽内の水道水の遊離残留塩素濃度の低下を補い、有効な
遊離残留塩素濃度を常に一定範囲に維持することにあ
る。
However, the elevated water tank is an open tank, and when the residence time of tap water is prolonged, chlorine is released, and germs easily propagate. In particular, when there is a lot of ultraviolet rays at high temperatures like in summer or when the number of residents decreases due to returning home, the amount of water used drops extremely and the residence time of water becomes longer, the concentration of free residual chlorine drops significantly. . This decrease in the concentration of free residual chlorine is an important problem that directly leads to deterioration of water quality. Therefore, an object of the present invention is to compensate for a decrease in the concentration of free residual chlorine in tap water in a water storage tank and always maintain an effective concentration of free residual chlorine in a certain range.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、この発明は、水道水に含まれる塩素イオンを利用し
て塩素を発生させ、貯水槽の水質の維持を図るものであ
る。すなわち、この発明の水質維持装置は、塩素イオン
を含む水道水を電気分解して塩素を発生させる電解槽
と、貯水槽に貯留された水道水を前記電解槽を通して循
環させる循環ポンプ及び循環管路と、前記電解槽及び循
環ポンプを運転し、前記貯水槽内の水道水を循環させな
がら電気分解する制御手段とを備え、前記貯水槽に貯留
された水道水の遊離残留塩素濃度を一定範囲に維持する
るものである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention aims to maintain the water quality of a water storage tank by generating chlorine using chlorine ions contained in tap water. That is, the water quality maintaining device of the present invention comprises an electrolytic cell that electrolyzes tap water containing chlorine ions to generate chlorine, a circulation pump and a circulation pipe that circulate the tap water stored in the water storage tank through the electrolytic cell. And a control means for operating the electrolytic cell and the circulating pump to perform electrolysis while circulating the tap water in the water tank, so that the concentration of free residual chlorine in the tap water stored in the water tank is within a certain range. To maintain.

【0005】しかして、前記水質維持装置の前記制御手
段は、前記貯水槽内の水道水の塩素イオン濃度に応じて
運転時間を調整するものとする(請求項1)。更に、前
記水質維持装置は前記貯水槽又は循環管路内の水道水の
水温を検出する水温センサを備え、前記制御手段は前記
水温センサで検出した水温に応じて運転時間を調整する
ものとする(請求項2)。更にまた、前記水質維持装置
の前記制御手段は、前記貯水槽の容量に応じて運転時間
を調整するものとする(請求項3)。更にまた、前記水
質維持装置は前記貯水槽又は循環管路内の水道水の水温
を検出する水温センサを備え、前記制御手段は前記貯水
槽内の水道水の塩素イオン濃度、前記水温センサで検出
した水温及び前記貯水槽の容量に応じて運転時間を調整
するものとする(請求項4)。
[0005] The control means of the water quality maintaining device adjusts the operation time in accordance with the chlorine ion concentration of tap water in the water storage tank. Further, the water quality maintaining device includes a water temperature sensor that detects a temperature of tap water in the water storage tank or the circulation pipe, and the control unit adjusts an operation time according to the water temperature detected by the water temperature sensor. (Claim 2). Furthermore, the control means of the water quality maintaining device adjusts the operation time according to the capacity of the water storage tank (claim 3). Furthermore, the water quality maintaining device includes a water temperature sensor for detecting a temperature of tap water in the water storage tank or the circulation pipe, and the control unit detects the chlorine ion concentration of the tap water in the water storage tank and detects the water temperature sensor using the water temperature sensor. The operation time is adjusted according to the water temperature and the capacity of the water storage tank (claim 4).

【0006】[0006]

【発明の実施の形態】図1はこの発明の実施の形態を示
す水質維持装置のシステム構成図、図2は図1の装置の
制御ブロック図である。また、図3は図1における電解
槽を示し、(A)は一部分を破断した平面図、(B)は
そのB−B線に沿う断面図である。まず、図1におい
て、1はビルの屋上などに設置される貯水槽で、地上に
設置された図示しない受水槽から図示しないポンプによ
り押し上げられた水道水が貯留されている。貯水槽1内
の水道水は、水出口2から各蛇口に給水されて、水位が
下限レベルまで下がると図示しない水位センサの信号に
より上記ポンプが起動され、受水槽の水道水が水入口3
から上限レベルまで補給される。この貯水槽1内の水道
水は塩素で殺菌されているが、すでに述べたように滞留
時間の経過とともに次第に塩素が抜け、雑菌が繁殖しや
すくなる。
FIG. 1 is a system configuration diagram of a water quality maintenance device showing an embodiment of the present invention, and FIG. 2 is a control block diagram of the device of FIG. 3A and 3B show the electrolytic cell in FIG. 1, wherein FIG. 3A is a partially cutaway plan view, and FIG. 3B is a sectional view taken along the line BB. First, in FIG. 1, reference numeral 1 denotes a water storage tank installed on the roof of a building or the like, which stores tap water pushed up by a pump (not shown) from a water receiving tank (not shown) installed on the ground. Tap water in the water storage tank 1 is supplied to each faucet from the water outlet 2 and when the water level falls to the lower limit level, the pump is started by a signal from a water level sensor (not shown), and the tap water in the water receiving tank is supplied to the water inlet 3.
It is replenished from to the maximum level. The tap water in the water storage tank 1 is sterilized with chlorine, but as described above, chlorine gradually escapes as the residence time elapses, and germs easily propagate.

【0007】一方、貯水槽1と並んで水質維持装置4が
設置され、貯水槽1の水道水は水質維持装置4を通して
循環することにより、遊離残留塩素濃度の維持が図られ
ている。水質維持装置4は、箱状の本体内に、水道水を
電気分解して塩素イオンから塩素を発生させる電解槽5
と、貯水槽1に貯留された水道水を電解槽5を通して循
環させる循環ポンプ6及び循環管路7と、予め設定され
た時刻に電解槽1及び循環ポンプ6を起動する制御部8
とが設置されている。循環管路7中には、循環ポンプ6
の手前に漏水発生時に管路を遮断する漏水検知バルブ9
が挿入され、また電解槽5の手前には水道水の水温を検
出する水温センサ33が挿入されている。更に、本体内
には、凍結防止ヒータ10、この凍結防止ヒータ10を
通して機内に空気を循環させる循環ファン11、機内の
空気温度を検出する空気温センサ12、機内の空気を排
出する排気ファン13、機内床面の水溜まりから漏水を
検出する漏水検知器14などが設置されている。電解槽
5は電解能力調節のために同一のものが4台設置され、
それらは2台ずつが直列接続され、更にそれらが並列接
続されている。
On the other hand, a water quality maintenance device 4 is installed alongside the water storage tank 1, and tap water in the water storage tank 1 is circulated through the water quality maintenance device 4 to maintain the free residual chlorine concentration. The water quality maintaining device 4 includes an electrolytic cell 5 that electrolyzes tap water to generate chlorine from chlorine ions in a box-shaped main body.
And a circulating pump 6 and a circulating pipe 7 for circulating tap water stored in the water tank 1 through the electrolytic tank 5, and a control unit 8 for activating the electrolytic tank 1 and the circulating pump 6 at a preset time.
And is installed. A circulation pump 6 is provided in the circulation line 7.
Leak detection valve 9 that shuts off the pipe line when water leaks before
A water temperature sensor 33 for detecting the temperature of tap water is inserted in front of the electrolytic cell 5. Further, inside the main body, an antifreeze heater 10, a circulation fan 11 for circulating air inside the machine through the antifreeze heater 10, an air temperature sensor 12 for detecting the air temperature inside the machine, an exhaust fan 13 for discharging air inside the machine, A water leak detector 14 and the like for detecting water leak from a water pool on the floor inside the machine are installed. The same four electrolyzers 5 are installed to adjust the electrolysis capacity.
They are connected in series two by two, and furthermore, they are connected in parallel.

【0008】図3により、電解槽5の構造を説明する。
なお、図3(A)の破断部は、図3(B)におけるケー
ス15及び上部電極7の陽極19を除いた状態を示して
いる。図3において、電解槽5はケース15とカバー1
6とに分割されたモールド樹脂からなる容器内に、2組
の電極17が仕切板18の両側に配置されている。各電
極17は正負2枚の電極板19及び20からなり、これ
らの電極板19,20は薄い樹脂フィルムからなる額縁
状のスペーサ21を挟んで対向配置され、各々の電極板
19,20にはそれぞれ端子22が接合されている。電
解槽容器の図3の左端には、2組の電極17に跨るよう
に一端が閉じられた1本の入水路23が設けられてい
る。また、右端には、電極別の2本の出水路24が設け
られ、その一端は入水路23と反対の側が閉じられてい
る。図3(A)に示すように、入水路23の開口端には
管継手25が装着され、出水路24の開口端には、2本
の出水路に跨る管継手26が装着されている。
The structure of the electrolytic cell 5 will be described with reference to FIG.
3A shows a state in which the case 15 and the anode 19 of the upper electrode 7 in FIG. 3B are removed. In FIG. 3, the electrolytic cell 5 includes a case 15 and a cover 1.
6, two sets of electrodes 17 are arranged on both sides of a partition plate 18 in a container made of a molded resin divided into six parts. Each of the electrodes 17 is composed of two positive and negative electrode plates 19 and 20. These electrode plates 19 and 20 are arranged to face each other with a frame-shaped spacer 21 made of a thin resin film therebetween. Each terminal 22 is joined. At the left end of FIG. 3 of the electrolytic cell container, one water inlet 23 having one end closed so as to straddle two sets of electrodes 17 is provided. Further, at the right end, two water outlet channels 24 for each electrode are provided, and one end thereof is closed on the side opposite to the water inlet channel 23. As shown in FIG. 3A, a pipe joint 25 is attached to an open end of the water inlet channel 23, and a pipe joint 26 spanning the two water outlet channels is attached to an open end of the water outlet channel 24.

【0009】このような電解槽5において、端子22を
介して2組の電極17の各々の電極板19,20に図示
極性の直流電圧を印加し、入水路23から水道水を給水
すると、この水道水は電極通過中に電気分解を受け、陽
極で2Cl-→Cl2+2e-の反応により水道水中の塩
素イオンが塩素に変換される。この塩素を含む水道水
は、各電極別に図示矢印で示すように出水路24に集め
られ、更に管継手26で混合されて、循環管路を構成す
る図示しないホースに導かれる。
In such an electrolytic cell 5, when a DC voltage having the illustrated polarity is applied to each of the electrode plates 19 and 20 of the two sets of electrodes 17 via the terminals 22 and tap water is supplied from the water inlet channel 23, Tap water undergoes electrolysis while passing through the electrode, and chlorine ions in the tap water are converted to chlorine by a reaction of 2Cl → Cl 2 + 2e − at the anode. The tap water containing chlorine is collected in the water discharge passage 24 for each electrode as shown by arrows in the drawings, further mixed by the pipe joint 26, and led to a hose (not shown) constituting a circulation pipeline.

【0010】ここで、制御部8の制御動作について次に
述べる。まず、貯水槽1内の貯留水の塩素濃度の低下は
水温の影響を受け、水温が低いと低下は少なく、水温が
高いと低下が大きい。そこで、水温をいくつかの段階に
分け、各段階別に貯留水の電気分解による遊離残留塩素
濃度の目標上昇値を定めておく。表1はその一例を示す
ものである。
The control operation of the control section 8 will be described next. First, the decrease in the chlorine concentration of the stored water in the water storage tank 1 is affected by the water temperature. The decrease is small when the water temperature is low, and is large when the water temperature is high. Therefore, the water temperature is divided into several stages, and a target increase value of the free residual chlorine concentration due to the electrolysis of the stored water is determined for each stage. Table 1 shows one example.

【0011】[0011]

【表1】 [Table 1]

【0012】次に、水道水の電気分解による単位時間当
りの塩素発生量(mg/分)は、原水の塩素イオン濃度
(mg/l)に略比例する。従って、原水の水質により
発生塩素量が異なるが、発明者らの実験によれば、この
比例関係は水温約10℃で変化し、それ以上の領域では塩
素発生量が減少することが判明した。塩素イオン濃度B
による塩素発生量Lの近似式を例示すると、K0,K1
2を比例定数として下記のようになる。 0<B<10 塩素発生量L(mg/分)=K1×B 10≦B 塩素発生量L(mg/分)=K2×B+K0
Next, the amount of chlorine generated per unit time (mg / min) by electrolysis of tap water is substantially proportional to the concentration of chlorine ions (mg / l) in raw water. Therefore, although the amount of generated chlorine varies depending on the quality of the raw water, according to experiments performed by the inventors, it has been found that this proportional relationship changes at a water temperature of about 10 ° C., and the chlorine generation decreases in a higher temperature range. Chloride ion concentration B
As an example of the approximate expression of the amount L of chlorine generated by K, K 0 , K 1 ,
Assuming that K 2 is a proportional constant, the following is obtained. 0 <B <10 Chlorine generation amount L (mg / min) = K 1 × B 10 ≦ B Chlorine generation amount L (mg / min) = K 2 × B + K 0

【0013】また、塩素発生量は原水の水温によっても
左右される。発明者らの実験によれば、塩素発生量は水
温が低くても高くても少なく、中間領域で多いことが判
明した。従って、塩素発生量Lは水温(℃)により補正
する必要があり、その補正はM1,M2を比例定数として
次の式で近似される。
The amount of chlorine generated also depends on the temperature of the raw water. According to experiments performed by the inventors, it has been found that the amount of chlorine generated is small even when the water temperature is low or high, and is large in the intermediate region. Therefore, the chlorine generation amount L needs to be corrected by the water temperature (° C.), and the correction is approximated by the following equation using M 1 and M 2 as proportional constants.

【0014】上記Lは電解槽1個当りの塩素発生量であ
り、電解槽5を4個含む図示実施の形態の水質維持装置
では、稼動させる電解槽5の個数により、塩素発生量L
は次の通り補正される。 電解槽 2個 塩素発生量L=L×2 電解槽 4個 塩素発生量L=L×4
L is the amount of chlorine generated per electrolytic cell. In the water quality maintaining apparatus of the illustrated embodiment including four electrolytic cells 5, the amount of chlorine generated L depends on the number of electrolytic cells 5 to be operated.
Is corrected as follows. Electrolyzer 2 Chlorine generation L = L × 2 Electrolyzer 4 Chlorine generation L = L × 4

【0015】以上より、貯水槽1の容量をA(t)とし
て、1日の運転時間T(分)を算出すると、 D<10 1日の運転時間T(分)=A×1000×0.05÷L=50×A÷L 10≦D<20 1日の運転時間T(分)=A×1000×0.1÷L=100×A÷L 20≦D<30 1日の運転時間T(分)=A×1000×0.2÷L=200×A÷L 30≦D 1日の運転時間T(分)=A×1000×0.3÷L=300×A÷L となる。そこで、1日当りの運転回数をC(回/日)と
すると、1回当りの運転時間T1(分/回)はT/Cと
なる。表2に図示実施の形態における運転時間例を示
す。
From the above, when the capacity of the water storage tank 1 is A (t) and the daily operation time T (minutes) is calculated, D <10 1 day operation time T (minutes) = A × 1000 × 0.05 ÷ L = 50 × A ÷ L 10 ≦ D <20 One-day operation time T (minutes) = A × 1000 × 0.1 ÷ L = 100 × A ÷ L 20 ≦ D <30 One-day operation time T (minutes) = A × 1000 × 0.2 ÷ L = 200 × A ÷ L 30 ≦ D One-day operation time T (minutes) = A × 1000 × 0.3 ÷ L = 300 × A ÷ L. Therefore, assuming that the number of operations per day is C (times / day), the operation time T1 (minutes / times) per operation is T / C. Table 2 shows an example of operation time in the illustrated embodiment.

【0016】[0016]

【表2】 [Table 2]

【0017】図2において、上記した貯水槽容量A、塩
素イオン濃度B、運転回数C、運転時刻、電解槽数等
は、キーボード27から制御部8内に予め設定入力され
る。そこで、制御部8は水温センサ33から水温データ
を取り込み、1回当りの運転時間T1を算出する。そし
て、所定の運転時刻、例えば1日の運転回数が6回であ
れば0時、4時、8時、12時、16時、20時に、電
源28から極性切換リレー29を介して電解槽5に直流
電圧を印加するとともに、循環ポンプ6を起動し、貯水
槽1の水道水を電解槽5を通して循環させる。これによ
り、電解槽5を通過する水道水中の塩素イオンは塩素に
変換され、塩素リッチとなった水道水は貯水槽1に還流
されて、滞留により失われた貯水槽1内の水道水の塩素
の補充が行われる。所定時間が経過すると、電解槽5及
び循環ポンプ6の運転が停止される。この繰り返しによ
り、貯水槽1内の水道水の遊離残留塩素濃度は適正範
囲、例えば0.5mg/l前後に維持される。
In FIG. 2, the water tank capacity A, the chloride ion concentration B, the number of operations C, the operation time, the number of electrolytic cells and the like are previously set and input into the control unit 8 from the keyboard 27. Therefore, the control unit 8 takes in the water temperature data from the water temperature sensor 33 and calculates the operation time T1 per operation. Then, at a predetermined operation time, for example, at 0, 4, 8, 12, 12, 16 and 20 o'clock if the number of operations per day is 6, the electrolytic cell 5 is supplied from the power supply 28 via the polarity switching relay 29. , A circulating pump 6 is activated, and the tap water in the water storage tank 1 is circulated through the electrolytic tank 5. As a result, the chlorine ions in the tap water passing through the electrolytic tank 5 are converted into chlorine, and the tap water which has become rich in chlorine is returned to the water tank 1, and the chlorine in the tap water in the water tank 1 lost due to the stagnation. Is replenished. When the predetermined time has elapsed, the operations of the electrolytic cell 5 and the circulation pump 6 are stopped. By this repetition, the free residual chlorine concentration of the tap water in the water storage tank 1 is maintained in an appropriate range, for example, around 0.5 mg / l.

【0018】制御部8はまた、空気温センサ12により
機内の空気温を監視し、この空気温が一定値まで低下す
ると、凍結防止ヒータ10に通電するとともに循環ファ
ン11を起動し、暖気を循環させて機内各部の凍結を防
止する一方、空気温が一定値まで上昇すると排気ファン
13を起動して機内空気を排出するとともに機外空気を
導入し、機内の冷却を図る。更に、漏水検知器14によ
り漏水を検知すると、漏水検知バルブ9を閉止して機内
への水の漏出を停止させる。
The control unit 8 also monitors the air temperature inside the machine by the air temperature sensor 12, and when the air temperature drops to a certain value, energizes the antifreeze heater 10 and starts the circulation fan 11 to circulate the warm air. While the various parts in the machine are prevented from freezing, when the air temperature rises to a certain value, the exhaust fan 13 is started to exhaust the machine air and to introduce the outside air to cool the inside of the machine. Further, when a water leak is detected by the water leak detector 14, the water leak detection valve 9 is closed to stop the water from leaking into the machine.

【0019】[0019]

【発明の効果】以上の通り、この発明によれば、貯水槽
内の貯留水の遊離残留塩素を消毒効果に必要な濃度に自
動的に維持し、雑菌の発生を抑えて常に安心できる水を
提供することができる。また、水道水中に含まれる塩素
イオンを利用し、薬剤は一切使用しないので維持・管理
も容易である。
As described above, according to the present invention, free residual chlorine in the storage water in the water storage tank is automatically maintained at a concentration required for the disinfection effect, and the generation of germs is suppressed to provide water that is always safe. Can be provided. In addition, maintenance and management are easy because chlorine ions contained in tap water are used and no chemical is used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態を示す水質維持装置のシ
ステム構成図である。
FIG. 1 is a system configuration diagram of a water quality maintenance device showing an embodiment of the present invention.

【図2】図1の装置の制御ブロック図である。FIG. 2 is a control block diagram of the apparatus of FIG.

【図3】図1における電解槽を示し、(A)は平面図、
(B)はそのB−B線に沿う断面図である。
3 shows the electrolytic cell in FIG. 1, (A) is a plan view,
(B) is a cross-sectional view along the line BB.

【符号の説明】[Explanation of symbols]

1 貯水槽 4 水質維持装置 5 電解槽 6 循環ポンプ 7 循環管路 17 電極 18 仕切板 19 電極板 20 電極板 21 スペーサ 22 端子 23 入水路 24 出水路 28 電源 33 水温センサ DESCRIPTION OF SYMBOLS 1 Water storage tank 4 Water quality maintenance device 5 Electrolysis tank 6 Circulation pump 7 Circulation pipe 17 Electrode 18 Partition plate 19 Electrode plate 20 Electrode plate 21 Spacer 22 Terminal 23 Water inlet 24 Water outlet 28 Power supply 33 Water temperature sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 550 C02F 1/50 550H 560 560F 1/76 1/76 A (72)発明者 笠井 武司 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 4D050 AA04 AB06 BB04 BD06 CA10 4D061 DA03 DB10 EA02 EB02 EB04 EB33 EB37 EB39 GA05 GA09 GA30 GC15 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/50 550 C02F 1/50 550H 560 560F 1/76 1/76 A (72) Inventor Takeshi Kasai Kanagawa 1-1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-ku, Japan F-term in Fuji Electric Co., Ltd. (reference) 4D050 AA04 AB06 BB04 BD06 CA10 4D061 DA03 DB10 EA02 EB02 EB04 EB33 EB37 EB39 GA05 GA09 GA30 GC15

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】塩素イオンを含む水道水を電気分解して塩
素を発生させる電解槽と、貯水槽に貯留された水道水を
前記電解槽を通して循環させる循環ポンプ及び循環管路
と、前記電解槽及び循環ポンプを運転し、前記貯水槽内
の水道水を循環させながら電気分解する制御手段とを備
え、この制御手段は前記貯水槽内の水道水の塩素イオン
濃度に応じて運転時間を調整し、前記貯水槽に貯留され
た水道水の遊離残留塩素濃度を一定範囲に維持すること
を特徴とする水質維持装置。
1. An electrolytic cell for electrolyzing tap water containing chlorine ions to generate chlorine, a circulation pump and a circulation line for circulating tap water stored in a water storage tank through said electrolytic tank, and said electrolytic tank. And a control means for operating a circulation pump and performing electrolysis while circulating the tap water in the water storage tank.The control means adjusts the operation time according to the chlorine ion concentration of the tap water in the water storage tank. A water quality maintaining device for maintaining the concentration of free residual chlorine in tap water stored in the water storage tank within a certain range.
【請求項2】塩素イオンを含む水道水を電気分解して塩
素を発生させる電解槽と、貯水槽に貯留された水道水を
前記電解槽を通して循環させる循環ポンプ及び循環管路
と、前記貯水槽又は循環管路内の水道水の水温を検出す
る水温センサと、前記電解槽及び循環ポンプを運転し、
前記貯水槽内の水道水を循環させながら電気分解する制
御手段とを備え、この制御手段は前記水温センサで検出
した水温に応じて運転時間を調整し、前記貯水槽に貯留
された水道水の遊離残留塩素濃度を一定範囲に維持する
ことを特徴とする水質維持装置。
2. An electrolytic cell for electrolyzing tap water containing chlorine ions to generate chlorine, a circulation pump and a circulation line for circulating tap water stored in the water tank through the electrolytic tank, and the water tank. Or, a water temperature sensor that detects the temperature of tap water in the circulation pipeline, and operates the electrolytic cell and the circulation pump,
Control means for performing electrolysis while circulating the tap water in the water tank, the control means adjusts the operation time according to the water temperature detected by the water temperature sensor, the tap water stored in the water tank A water quality maintenance device characterized by maintaining a free residual chlorine concentration within a certain range.
【請求項3】塩素イオンを含む水道水を電気分解して塩
素を発生させる電解槽と、貯水槽に貯留された水道水を
前記電解槽を通して循環させる循環ポンプ及び循環管路
と、前記電解槽及び循環ポンプを運転し、前記貯水槽内
の水道水を循環させながら電気分解する制御手段とを備
え、この制御手段は前記貯水槽の容量に応じて運転時間
を調整し、前記貯水槽に貯留された水道水の遊離残留塩
素濃度を一定範囲に維持することを特徴とする水質維持
装置。
3. An electrolytic cell for electrolyzing tap water containing chlorine ions to generate chlorine, a circulation pump and a circulation line for circulating tap water stored in a water storage tank through said electrolytic tank, and said electrolytic cell. And a control means for operating a circulation pump and performing electrolysis while circulating tap water in the water storage tank.The control means adjusts an operation time according to the capacity of the water storage tank, and stores the water in the water storage tank. A water quality maintaining device for maintaining the concentration of free residual chlorine in tap water within a certain range.
【請求項4】塩素イオンを含む水道水を電気分解して塩
素を発生させる電解槽と、貯水槽に貯留された水道水を
前記電解槽を通して循環させる循環ポンプ及び循環管路
と、前記貯水槽又は循環管路内の水道水の水温を検出す
る水温センサと、前記電解槽及び循環ポンプを運転し、
前記貯水槽内の水道水を循環させながら電気分解する制
御手段とを備え、この制御手段は前記貯水槽内の水道水
の塩素イオン濃度、前記水温センサで検出した水温及び
前記貯水槽の容量に応じて運転時間を調整し、前記貯水
槽に貯留された水道水の遊離残留塩素濃度を一定範囲に
維持することを特徴とする水質維持装置。
4. An electrolytic cell for generating chlorine by electrolyzing tap water containing chlorine ions, a circulation pump and a circulation line for circulating tap water stored in a water tank through said electrolytic tank, and said water tank. Or, a water temperature sensor that detects the temperature of tap water in the circulation pipeline, and operates the electrolytic cell and the circulation pump,
Control means for performing electrolysis while circulating tap water in the water tank, the control means controlling the chlorine ion concentration of the tap water in the water tank, the water temperature detected by the water temperature sensor, and the capacity of the water tank. A water quality maintenance device, wherein an operation time is adjusted in accordance therewith to maintain the concentration of free residual chlorine in tap water stored in the water storage tank within a certain range.
JP2000353466A 2000-11-20 2000-11-20 Water quality maintenance device Expired - Fee Related JP3642410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000353466A JP3642410B2 (en) 2000-11-20 2000-11-20 Water quality maintenance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000353466A JP3642410B2 (en) 2000-11-20 2000-11-20 Water quality maintenance device

Publications (2)

Publication Number Publication Date
JP2002153878A true JP2002153878A (en) 2002-05-28
JP3642410B2 JP3642410B2 (en) 2005-04-27

Family

ID=18826226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000353466A Expired - Fee Related JP3642410B2 (en) 2000-11-20 2000-11-20 Water quality maintenance device

Country Status (1)

Country Link
JP (1) JP3642410B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288358A (en) * 2004-03-31 2005-10-20 Chugoku Electric Power Co Inc:The Electrolytic wastewater treatment system, electrolytic control device, electrolytic wastewater treatment method, program and storage medium
CN115404492A (en) * 2022-09-26 2022-11-29 云南电网有限责任公司电力科学研究院 Wind-solar power supply hydrogen production device and hydrogen production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288358A (en) * 2004-03-31 2005-10-20 Chugoku Electric Power Co Inc:The Electrolytic wastewater treatment system, electrolytic control device, electrolytic wastewater treatment method, program and storage medium
JP4518826B2 (en) * 2004-03-31 2010-08-04 中国電力株式会社 Electrolytic wastewater treatment system, electrolysis control device, electrolytic wastewater treatment method, program, and storage medium
CN115404492A (en) * 2022-09-26 2022-11-29 云南电网有限责任公司电力科学研究院 Wind-solar power supply hydrogen production device and hydrogen production method thereof

Also Published As

Publication number Publication date
JP3642410B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
AU2017225104B2 (en) Device for manufacturing sodium hypochlorite or hypochlorous acid and water treatment system in general
US9656896B2 (en) Method for sterilizing water supply apparatus
JPS6320496A (en) Automated chlorine generator
JP2009072659A (en) Electrolyzed water producing method and apparatus
KR20130108546A (en) Electrolytic on-site generator
MXPA06009611A (en) Gas drive electrolytic cell.
KR101772527B1 (en) System for circulation sterilization
JP2005081169A (en) Water treatment apparatus
AU2015288950B2 (en) An electrochlorination apparatus
JP2002153878A (en) Water quality maintenance equipment
JP3642409B2 (en) Water quality maintenance device
JP2002153882A (en) Water quality maintenance equipment
JP2002153877A (en) Water quality maintenance equipment
JP3398103B2 (en) Water treatment equipment
JP2004283662A (en) Residual chlorine concentration maintaining device
JP2004113873A (en) Water treatment apparatus
JP2002153884A (en) Water quality maintenance equipment
JPH06238281A (en) Sterilization system for water tank
JP3620441B2 (en) Water quality maintenance device
JPH08117757A (en) Sterilization of legionella bacteria in cooling column
JP2001293476A (en) Water treatment device
JP2002153883A (en) Water quality maintenance equipment
US20210238066A1 (en) Disinfection device and method for performing disinfection cycles
JPH07108273A (en) Method and apparatus for sterilizing circulating water channel
JP2003275764A (en) Sterilization apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees