JP3642409B2 - Water quality maintenance device - Google Patents

Water quality maintenance device Download PDF

Info

Publication number
JP3642409B2
JP3642409B2 JP2000353463A JP2000353463A JP3642409B2 JP 3642409 B2 JP3642409 B2 JP 3642409B2 JP 2000353463 A JP2000353463 A JP 2000353463A JP 2000353463 A JP2000353463 A JP 2000353463A JP 3642409 B2 JP3642409 B2 JP 3642409B2
Authority
JP
Japan
Prior art keywords
water
tap water
tank
chlorine
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000353463A
Other languages
Japanese (ja)
Other versions
JP2002153875A (en
Inventor
健二 武藤
弘行 垣内
武司 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2000353463A priority Critical patent/JP3642409B2/en
Publication of JP2002153875A publication Critical patent/JP2002153875A/en
Application granted granted Critical
Publication of JP3642409B2 publication Critical patent/JP3642409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、ビルやマンションなどの貯水槽に貯留される水道水の遊離残留塩素濃度を維持するための水質維持装置に関する。
【0002】
【従来の技術】
一般にビルやマンションなどでは、地上の受水槽で受水した水道水を屋上の貯水槽(高置水槽)にポンプアップし、この貯水槽から各蛇口に水を供給するようにしている。一方、水道法では、水道の蛇口での遊離残留塩素濃度は0.1mg/l以上と定められているが、安全な水質を維持するためには0.3〜0.5mg/lの遊離残留塩素濃度が必要であるとされている。
【0003】
【発明が解決しようとする課題】
ところが、高置水槽は開放型のタンクであり、水道水の滞留時間が長くなると塩素が抜け、雑菌が繁殖しやすくなる。特に、夏場のように高温で紫外線をたくさん浴びる状況下や、帰省などで居住者が減り、使用水量が極端に落ちて水の滞留時間が長くなる場合には、遊離残留塩素濃度が著しく低下する。この遊離残留塩素濃度の低下は、水質悪化に直結する重要な問題である。
そこで、この発明の課題は、貯水槽内の水道水の遊離残留塩素濃度の低下を補い、有効な遊離残留塩素濃度を常に一定範囲に維持することにある。
【0004】
【課題を解決するための手段】
上記課題を解決するために、この発明は、水道水に含まれる塩素イオンを利用して塩素を発生させ、貯水槽の水質の維持を図るものである。すなわち、この発明の水質維持装置は、塩素イオンを含む水道水を電気分解して塩素を発生させる電解槽と、貯水槽に貯留された水道水を前記電解槽を通して循環させる循環ポンプ及び循環管路と、予め設定された時刻又は時間間隔で前記電解槽及び循環ポンプを起動する制御手段とを備え、前記貯水槽に貯留された水道水の遊離残留塩素濃度を一定範囲に維持するとともに
その際、前記制御手段は前記循環ポンプ起動してから、予め設定された時間経過後に前記電解槽を起動するものとする(請求項1)。これにより、循環水の流量及び水温が定常化してから、安定した電気分解を開始することができる。
【0005】
【発明の実施の形態】
図1はこの発明の実施の形態を示す水質維持装置のシステム構成図、図2は図1の装置の制御ブロック図である。また、図3は図1における電解槽を示し、(A)は一部分を破断した平面図、(B)はそのB−B線に沿う断面図である。まず、図1において、1はビルの屋上などに設置される貯水槽で、地上に設置された図示しない受水槽から図示しないポンプにより押し上げられた水道水が貯留されている。貯水槽1内の水道水は、水出口2から各蛇口に給水され、水位が下限レベルまで下がると図示しない水位センサの信号により上記ポンプが起動されて、受水槽の水道水が水入口3から上限レベルまで補給される。この貯水槽1内の水道水は塩素で殺菌されているが、すでに述べたように滞留時間の経過とともに次第に塩素が抜け、雑菌が繁殖しやすくなる。
【0006】
一方、貯水槽1と並んで水質維持装置4が設置され、貯水槽1の水道水は水質維持装置4を通して循環することにより、遊離残留塩素濃度の維持が図られている。水質維持装置4は、箱状の本体内に、塩素イオンを含む水道水を電気分解して塩素を発生させる電解槽5と、貯水槽1に貯留された水道水を電解槽5を通して循環させる循環ポンプ6及び循環管路7と、予め設定された時刻に電解槽5及び循環ポンプ6を起動する制御部8とが設置されている。循環管路7中には、循環ポンプ6の手前に漏水発生時に管路を遮断する漏水検知バルブ9が挿入されている。また、本体内には、凍結防止ヒータ10、この凍結防止ヒータ10を通して機内に空気を循環させる循環ファン11、機内の空気温度を検出する空気温センサ12、機内の空気を排出する排気ファン13、機内床面の水溜まりから漏水を検出する漏水検知器14などが設置されている。電解槽5は電解能力調節のために同一のものが4台設置され、それらは2台ずつが直列接続され、更にそれらが並列接続されている。
【0007】
図3により、電解槽5の構造を説明する。なお、図3(A)の破断部は、図3(B)におけるケース15及び上部電極7の陽極19を除いた状態を示している。電解槽5はケース15とカバー16とに分割されたモールド樹脂からなる容器内に、2組の電極17が仕切板18の両側に配置されている。各電極17は正負2枚の電極板19及び20からなり、これらの電極板19,20は薄い樹脂フィルムからなる額縁状のスペーサ21を挟んで対向配置され、各々の電極板19,20にはそれぞれ端子22が接合されている。電解槽容器の図3の左端には、2組の電極17に跨るように一端が閉じられた1本の入水路23が設けられている。また、右端には電極別の2本の出水路24が設けられ、その一端は入水路23と反対の側が閉じられている。図3(A)に示すように、入水路23の開口端には管継手25が装着され、出水路24の開口端には、2本の出水路24に跨る管継手26が装着されている。
【0008】
このような電解槽5において、端子22を介して2組の電極17の各々の電極板19,20に図示極性の直流電圧を印加し、入水路23から水道水を給水すると、この水道水は電極通過中に電気分解を受け、陽極で2Cl-→Cl2+2e-の反応により水道水中の塩素イオンが塩素に変換される。この塩素を含む水道水は、各電極別に図示矢印で示すように出水路24に集められ、更に管継手26で混合されて、循環管路7を構成する図示しないホースに導かれる。
【0009】
ここで、貯水槽1の貯水容量と単位時間当たりの予測使用水量とから、貯水槽1内での水道水の平均滞留時間が見込まれる。また、水道水の滞留時間による遊離残留塩素濃度の減少特性は実測から判明している。そこで、これら平均滞留時間、減少特性、更に原水の遊離残留塩素濃度、目標とする塩素濃度レベル及び貯水槽1の前記貯水容量などから、1日当たり必要な塩素発生量(mg/日)が推定される。一方、原水の水質検査(平均水温、塩素イオン濃度、電気伝導度など)から電解槽5での単位時間当りの塩素発生量(mg/分)が見積もられる。しかして、これらの必要塩素量(mg/日)と塩素発生量(mg/分)とから1日の運転時間(分)が算出され、更にこれから1日の運転回数(運転時刻)及び1回当りの運転時間(分)が決定される。
【0010】
この運転時刻(例えば、0時、4時、8時、12時、16時、20時の6回)及び運転時間(例えば20分)は設定値として、キーボード27から制御部8(図2)に予め設定入力される。そこで、図2において、制御部8は所定の時刻になると循環ポンプ6を起動して貯水槽1の水道水を電解槽5を通して循環させ、次いで、例えば75秒経過した後、電源28から極性切換リレー29を介して電解槽5に直流電圧を印加する。電解槽5及び循環ポンプ6の運転は、初回運転後、一定時間間隔、例えば4時間間隔とすることも可能である。これにより、電解槽5を通過する水道水中の塩素イオンは塩素に変換され、塩素リッチとなった水道水は貯水槽1に還流されて、滞留により失われた貯水槽1内の水道水の塩素の補充が行われる。そして、所定時間が経過すると、電解槽5及び循環ポンプ6の運転が停止される。この繰り返しにより、貯水槽1内の水道水の遊離残留塩素濃度は適正範囲、例えば0.5mg/l前後に維持される。
【0011】
制御部8はまた、空気温センサ12により機内の空気温を監視し、この空気温が一定値まで低下すると、凍結防止ヒータ10に通電するとともに循環ファン11を起動し、暖気を循環させて機内各部の凍結を防止する一方、空気温が一定値まで上昇すると排気ファン13を起動して機内空気を排出するとともに機外空気を導入し、機内の結露防止及び冷却を図る。更に、漏水検知器14により漏水を検知すると、漏水検知バルブ9を閉止して機内への水の漏出を停止させる。
【0012】
【発明の効果】
以上の通り、この発明によれば、貯水槽内の貯留水の遊離残留塩素を消毒効果に必要な濃度に自動的に維持し、雑菌の発生を抑えて常に安心できる水を提供することができる。また、水道水中に含まれる塩素イオンを利用し、薬剤は一切使用しないので維持・管理も容易である。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す水質維持装置のシステム構成図である。
【図2】図1の装置の制御ブロック図である。
【図3】図1における電解槽を示し、(A)は平面図、(B)はそのB−B線に沿う断面図である。
【符号の説明】
1 貯水槽
4 水質維持装置
5 電解槽
6 循環ポンプ
7 循環管路
17 電極
18 仕切板
19 電極板
20 電極板
21 スペーサ
22 端子
23 入水路
24 出水路
28 電源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water quality maintenance device for maintaining the free residual chlorine concentration of tap water stored in a water storage tank such as a building or a condominium.
[0002]
[Prior art]
In general, in buildings and condominiums, tap water received in a water receiving tank on the ground is pumped up to a water storage tank (elevated water tank), and water is supplied from the water storage tank to each faucet. On the other hand, in the Water Supply Law, the free residual chlorine concentration at the tap is set to 0.1 mg / l or more, but in order to maintain safe water quality, a free residual chlorine concentration of 0.3 to 0.5 mg / l is required. It is said that.
[0003]
[Problems to be solved by the invention]
However, the elevated water tank is an open-type tank, and when the residence time of tap water becomes longer, chlorine is released and germs are likely to propagate. In particular, the concentration of free residual chlorine is significantly reduced when exposed to a lot of ultraviolet rays at high temperatures, such as in summer, or when the number of residents is reduced due to homecoming, etc. . This reduction in free residual chlorine concentration is an important problem that directly leads to deterioration of water quality.
Accordingly, an object of the present invention is to compensate for the decrease in the free residual chlorine concentration of tap water in the water tank and to maintain the effective free residual chlorine concentration within a certain range at all times.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention aims to maintain the water quality of the water storage tank by generating chlorine using chlorine ions contained in tap water. That is, the water quality maintenance device of the present invention includes an electrolytic tank that electrolyzes tap water containing chlorine ions to generate chlorine, a circulation pump that circulates the tap water stored in the water storage tank through the electrolytic tank, and a circulation line. When, and control means for activating the electrolytic cell and the circulation pump at a preset time or time interval, while maintaining free residual chlorine concentration of tap water stored in the water tank within a predetermined range
In that case, the said control means shall start the said electrolysis tank after progress for the preset time after starting the said circulation pump (Claim 1). Thereby, stable electrolysis can be started after the flow rate and water temperature of the circulating water are stabilized.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a system configuration diagram of a water quality maintenance device showing an embodiment of the present invention, and FIG. 2 is a control block diagram of the device of FIG. 3 shows the electrolytic cell in FIG. 1, (A) is a plan view with a part broken away, and (B) is a sectional view taken along the line BB. First, in FIG. 1, 1 is a water storage tank installed on the rooftop of a building, and tap water pushed up by a pump (not shown) from a water receiving tank (not shown) installed on the ground is stored. The tap water in the water tank 1 is supplied to each faucet from the water outlet 2, and when the water level drops to the lower limit level, the pump is activated by a signal from a water level sensor (not shown), and the tap water in the water receiving tank is supplied from the water inlet 3. Replenished to the upper limit level. Although the tap water in the water tank 1 is sterilized with chlorine, as described above, the chlorine gradually disappears with the passage of the residence time, and various germs easily propagate.
[0006]
On the other hand, a water quality maintenance device 4 is installed along with the water storage tank 1, and the tap water in the water storage tank 1 is circulated through the water quality maintenance device 4 to maintain the free residual chlorine concentration. The water quality maintenance device 4 circulates in the box-shaped main body through the electrolytic bath 5 through an electrolytic bath 5 that electrolyzes tap water containing chlorine ions to generate chlorine, and the tap water stored in the water reservoir 1. A pump 6 and a circulation line 7 and a control unit 8 that activates the electrolytic cell 5 and the circulation pump 6 at a preset time are installed. In the circulation line 7, a water leakage detection valve 9 is inserted in front of the circulation pump 6 to block the line when water leakage occurs. Further, in the main body, an anti-freeze heater 10, a circulation fan 11 for circulating air through the anti-freeze heater 10, an air temperature sensor 12 for detecting the air temperature in the machine, an exhaust fan 13 for discharging the air in the machine, A water leak detector 14 for detecting water leak from a water pool on the floor of the machine is installed. Four electrolytic tanks 5 are installed for adjusting the electrolytic capacity, two of them are connected in series, and further, they are connected in parallel.
[0007]
The structure of the electrolytic cell 5 will be described with reference to FIG. In addition, the fracture | rupture part of FIG. 3 (A) has shown the state except the case 15 and the anode 19 of the upper electrode 7 in FIG. 3 (B). In the electrolytic cell 5, two sets of electrodes 17 are arranged on both sides of the partition plate 18 in a container made of a mold resin divided into a case 15 and a cover 16. Each electrode 17 is composed of two positive and negative electrode plates 19 and 20, and these electrode plates 19 and 20 are arranged opposite to each other with a frame-like spacer 21 made of a thin resin film interposed therebetween. Each terminal 22 is joined. At the left end of the electrolytic cell container in FIG. 3, a single water inlet 23 having one end closed so as to straddle the two sets of electrodes 17 is provided. In addition, two drainage channels 24 for each electrode are provided at the right end, and one end thereof is closed on the side opposite to the inlet channel 23. As shown in FIG. 3A, a pipe joint 25 is attached to the opening end of the water inlet 23, and a pipe joint 26 straddling the two water outlets 24 is attached to the opening end of the water outlet 24. .
[0008]
In such an electrolytic cell 5, when a direct current voltage of the illustrated polarity is applied to each of the electrode plates 19 and 20 of the two sets of electrodes 17 via the terminals 22 and tap water is supplied from the water inlet 23, the tap water is Electrolysis is performed while passing through the electrode, and chlorine ions in tap water are converted into chlorine by a reaction of 2Cl → Cl 2 + 2e − at the anode. The tap water containing chlorine is collected in the water discharge channel 24 for each electrode as shown by the arrows in the drawing, and further mixed by the pipe joint 26 and guided to a hose (not shown) constituting the circulation pipeline 7.
[0009]
Here, the average residence time of tap water in the water tank 1 is estimated from the water storage capacity of the water tank 1 and the predicted amount of water used per unit time. Moreover, the decrease characteristic of the free residual chlorine concentration by the residence time of tap water is known from actual measurement. Therefore, the required amount of chlorine generated per day (mg / day) is estimated from these average residence time, reduction characteristics, free residual chlorine concentration of raw water, target chlorine concentration level, and the water storage capacity of the water tank 1. The On the other hand, the chlorine generation amount (mg / min) per unit time in the electrolytic cell 5 is estimated from the water quality inspection (average water temperature, chlorine ion concentration, electrical conductivity, etc.) of the raw water. Accordingly, the daily operation time (minute) is calculated from the necessary chlorine amount (mg / day) and the chlorine generation amount (mg / minute), and further, the number of daily operation (operation time) and 1 time. The driving time per minute (min) is determined.
[0010]
The operation time (for example, 6 times of 0:00, 4, 8:00, 12:00, 16:00, and 20:00) and the operation time (for example, 20 minutes) are set from the keyboard 27 to the control unit 8 (FIG. 2). Is preset and input. Therefore, in FIG. 2, the control unit 8 activates the circulation pump 6 at a predetermined time to circulate the tap water in the water storage tank 1 through the electrolysis tank 5, and then switches the polarity from the power source 28 after 75 seconds, for example. A DC voltage is applied to the electrolytic cell 5 via the relay 29. The operation of the electrolytic cell 5 and the circulation pump 6 can be performed at a constant time interval, for example, a 4-hour interval after the initial operation. As a result, chlorine ions in the tap water passing through the electrolytic cell 5 are converted to chlorine, and the chlorine-rich tap water is returned to the water tank 1 and lost in the water in the water tank 1 due to the retention. Is replenished. And when predetermined time passes, the operation of the electrolytic cell 5 and the circulation pump 6 is stopped. By repeating this, the free residual chlorine concentration of the tap water in the water tank 1 is maintained within an appropriate range, for example, around 0.5 mg / l.
[0011]
The control unit 8 also monitors the air temperature in the machine by the air temperature sensor 12, and when the air temperature falls to a certain value, the control unit 8 energizes the anti-freezing heater 10 and activates the circulation fan 11 to circulate the warm air. While preventing the freezing of each part, when the air temperature rises to a certain value, the exhaust fan 13 is activated to discharge the in-machine air and introduce the outside air to prevent condensation in the machine and to cool it. Further, when water leakage is detected by the water leakage detector 14, the water leakage detection valve 9 is closed to stop the leakage of water into the machine.
[0012]
【The invention's effect】
As described above, according to the present invention, it is possible to automatically maintain the free residual chlorine of the stored water in the water tank at a concentration necessary for the disinfection effect, and to provide water that can always be relieved by suppressing the generation of germs. . In addition, since chlorine ions contained in tap water are used and no chemicals are used, maintenance and management are easy.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of a water quality maintenance device showing an embodiment of the present invention.
FIG. 2 is a control block diagram of the apparatus of FIG.
3 shows the electrolytic cell in FIG. 1, (A) is a plan view, and (B) is a sectional view taken along the line BB. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Water storage tank 4 Water quality maintenance apparatus 5 Electrolysis tank 6 Circulation pump 7 Circulation line 17 Electrode 18 Partition plate 19 Electrode plate 20 Electrode plate 21 Spacer 22 Terminal 23 Inlet channel 24 Outlet channel 28 Power supply

Claims (1)

塩素イオンを含む水道水を電気分解して塩素を発生させる電解槽と、貯水槽に貯留された水道水を前記電解槽を通して循環させる循環ポンプ及び循環管路と、予め設定された時刻又は時間間隔で前記電解槽及び循環ポンプを起動する制御手段とを備え、前記貯水槽に貯留された水道水の遊離残留塩素濃度を一定範囲に維持するとともに、その際、前記制御手段は前記循環ポンプ起動してから、予め設定された時間経過後に前記電解槽を起動することを特徴とする水質維持装置。An electrolyzer that electrolyzes tap water containing chlorine ions to generate chlorine, a circulation pump and a circulation line that circulates the tap water stored in the water tank through the electrolyzer, and a preset time or time interval And control means for starting up the electrolytic cell and the circulation pump, and maintaining the free residual chlorine concentration of tap water stored in the water storage tank within a certain range , at which time the control means starts up the circulation pump The water quality maintenance device is characterized in that the electrolytic cell is started after a preset time has elapsed .
JP2000353463A 2000-11-20 2000-11-20 Water quality maintenance device Expired - Fee Related JP3642409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000353463A JP3642409B2 (en) 2000-11-20 2000-11-20 Water quality maintenance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000353463A JP3642409B2 (en) 2000-11-20 2000-11-20 Water quality maintenance device

Publications (2)

Publication Number Publication Date
JP2002153875A JP2002153875A (en) 2002-05-28
JP3642409B2 true JP3642409B2 (en) 2005-04-27

Family

ID=18826223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000353463A Expired - Fee Related JP3642409B2 (en) 2000-11-20 2000-11-20 Water quality maintenance device

Country Status (1)

Country Link
JP (1) JP3642409B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4604664B2 (en) * 2004-11-08 2011-01-05 富士電機リテイルシステムズ株式会社 Chlorine generator
JP2009285576A (en) * 2008-05-29 2009-12-10 Shinmaywa Industries Ltd Apparatus for managing residual chlorine concentration by injection into water pipe

Also Published As

Publication number Publication date
JP2002153875A (en) 2002-05-28

Similar Documents

Publication Publication Date Title
US6627053B2 (en) Water treatment device
KR100437308B1 (en) Water treatment apparatus
KR101430678B1 (en) Method of purifying water and apparatus therefor
AU2017225104A1 (en) Device for manufacturing sodium hypochlorite or hypochlorous acid and water treatment system in general
KR101717109B1 (en) Method for sterilizing a water supply apparatus
KR20130108546A (en) Electrolytic on-site generator
TW200925120A (en) Electrolyzed water producing method and apparatus
CN101511740A (en) Water softening method and water softener
KR102150050B1 (en) Scale-free boiler and scale-free water heating device
KR101772527B1 (en) System for circulation sterilization
JP3642409B2 (en) Water quality maintenance device
JP3642410B2 (en) Water quality maintenance device
CA2955135C (en) An electrochlorination apparatus
JP2006150188A (en) Hydrogen water production device
JP3530452B2 (en) Water treatment equipment
JP2002153877A (en) Water quality maintenance equipment
JP2002153882A (en) Water quality maintenance equipment
JP2627258B2 (en) Electrolytic disinfection equipment for stored water
JP3620441B2 (en) Water quality maintenance device
JP3398103B2 (en) Water treatment equipment
JP3353498B2 (en) Concentrated free chlorine water generation system for sterilization, its cleaning method and cooling tower system
JP2002153884A (en) Water quality maintenance equipment
JP2005350716A (en) Electrolytic sterilization device for tank
JP3611106B2 (en) Water quality maintenance device
JPH1129962A (en) Storage type water supply device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees