JP2002153750A - Pollutant decomposition method and apparatus - Google Patents

Pollutant decomposition method and apparatus

Info

Publication number
JP2002153750A
JP2002153750A JP2000351667A JP2000351667A JP2002153750A JP 2002153750 A JP2002153750 A JP 2002153750A JP 2000351667 A JP2000351667 A JP 2000351667A JP 2000351667 A JP2000351667 A JP 2000351667A JP 2002153750 A JP2002153750 A JP 2002153750A
Authority
JP
Japan
Prior art keywords
decomposition
ultraviolet
pollutant
decomposing
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000351667A
Other languages
Japanese (ja)
Inventor
Akira Kuriyama
朗 栗山
Kinya Kato
欽也 加藤
Masahiro Kawaguchi
正浩 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000351667A priority Critical patent/JP2002153750A/en
Publication of JP2002153750A publication Critical patent/JP2002153750A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a pollutant decomposition method by ultraviolet radiation capable of efficiently carrying out decomposition at a low operation and initial cost and provide an apparatus suitable for the method. SOLUTION: The pollutant decomposition method comprises at least a step of decomposing a pollutant contained in a polluted gas, a gas containing the pollutant, by radiating ultraviolet rays from an ultraviolet ray radiation means. In the method, a decomposition treatment route having an introduction region for the polluted gas and a discharge region is formed, the polluted gas is passed through the decomposition treatment route, and an occupation region (a) of the ultraviolet ray radiation means and a non-occupation region (b) are arranged in this order from the upstream to the downstream side in the polluted gas flow direction in the decomposition treatment route so as to decompose the pollutant in the occupation region a and the non-occupation region b of the ultraviolet ray radiation means. The invention also provides a pollutant decomposition apparatus for the method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、汚染物質、例えば
有機ハロゲン化合物、特には有機塩素化合物などの分解
方法、及び、それに用いる分解装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing contaminants, for example, organic halogen compounds, especially organic chlorine compounds, and a decomposer used for the method.

【0002】[0002]

【従来の技術】近年までの産業技術の発展に伴い、有機
塩素化合物(例えば塩素化エチレン、塩素化メタン等)
が膨大に使用され、その廃棄処理は深刻な問題となって
きている。また、使用済みのこれらの汚染物質が自然環
境を汚染するという環境問題が生じており、その解決に
多大な努力が払われている。
2. Description of the Related Art With the recent development of industrial technology, organic chlorine compounds (eg, chlorinated ethylene, chlorinated methane, etc.)
, And its disposal is becoming a serious problem. In addition, there is an environmental problem that these used pollutants pollute the natural environment, and great efforts have been made to solve the problem.

【0003】これらを処理する方法として、例えば、塩
素化エチレンを酸化剤や触媒を用いて分解する方法が有
り、具体的には、オゾンで分解する方法(特開平3−3
8297号)、過酸化水素の存在下で紫外線を照射する
方法(特開昭63−218293号)等が知られてい
る。また、次亜塩素酸ナトリウムを酸化剤として用いる
ことも示唆されており(米国特許5525008号、同
5611642号)、次亜塩素酸ナトリウムと紫外線照
射とを組み合わせる手法も提案されている(米国特許5
582741号)。更には、酸化チタン等の酸化物半導
体微粒子からなる光触媒と液状の塩素化エチレンとをア
ルカリ条件下で懸濁して、光照射により分解する方法も
知られている(特開平7−144137号)。
As a method for treating these, there is, for example, a method of decomposing chlorinated ethylene using an oxidizing agent or a catalyst.
No. 8297) and a method of irradiating ultraviolet rays in the presence of hydrogen peroxide (JP-A-63-218293). It has also been suggested to use sodium hypochlorite as an oxidizing agent (US Pat. Nos. 5,525,008 and 5,611,642), and a method of combining sodium hypochlorite with ultraviolet irradiation has been proposed (US Pat.
No. 582741). Furthermore, a method is also known in which a photocatalyst composed of oxide semiconductor fine particles such as titanium oxide and liquid chlorinated ethylene are suspended under alkaline conditions and decomposed by light irradiation (Japanese Patent Application Laid-Open No. 7-14137).

【0004】また上記以外にも、酸化剤を用いずに気相
で紫外線を照射する光分解法が既に試みられている。例
えば、有機ハロゲン化合物を含む排ガスを紫外線照射処
理して酸性の分解ガスとした後、アルカリで洗浄して無
害化処理する方法(特開昭62−191025号)、有
機ハロゲン化合物を含有する排水を曝気処理し、排出さ
れるガスを紫外線照射した後、アルカリ洗浄する装置
(特開昭62−191095号)等が提案されている。
また、鉄粉による塩素化エチレンの分解も知られており
(特開平8−257570号)、この場合、おそらく還
元分解が生じていると推測されている。また、シリコン
微粒子を用いたテトラクロロエチレン(以下、PCEと
略記)の分解については還元分解も報告されている。
[0004] In addition to the above, a photolysis method of irradiating ultraviolet rays in a gas phase without using an oxidizing agent has already been attempted. For example, an exhaust gas containing an organic halogen compound is subjected to ultraviolet irradiation treatment to make it into an acidic decomposition gas, then washed with an alkali and detoxified (JP-A-62-191025). A device for performing aeration treatment, irradiating the discharged gas with ultraviolet rays, and then washing with alkali (Japanese Patent Application Laid-Open No. 62-191095) has been proposed.
Decomposition of chlorinated ethylene by iron powder is also known (Japanese Patent Application Laid-Open No. 8-257570), and in this case, it is presumed that probably reductive decomposition has occurred. As for the decomposition of tetrachloroethylene (hereinafter abbreviated as PCE) using silicon fine particles, reductive decomposition has also been reported.

【0005】また、トリクロロエチレン(以下、TCE
と略記)やPCEなどの塩素化脂肪族炭化水素は、微生
物により好気的あるいは嫌気的に分解されることが知ら
れており、このような工程を利用して、分解あるいは浄
化を行うことも試みられている。
In addition, trichloroethylene (hereinafter, TCE)
It is known that chlorinated aliphatic hydrocarbons such as PCE and chlorinated aliphatic hydrocarbons are decomposed aerobically or anaerobically by microorganisms. Attempted.

【0006】[0006]

【発明が解決しようとしている課題】このような技術の
うち、紫外線照射により汚染物質を分解する方法が有用
な技術の一つであると考えられるが、紫外線照射に関わ
るコストの点で改善の余地があった。
Among such techniques, a method of decomposing contaminants by ultraviolet irradiation is considered to be one of useful techniques, but there is room for improvement in the cost associated with ultraviolet irradiation. was there.

【0007】本発明の目的は、紫外線を照射することで
汚染物質の分解をする方法において、効率的に分解がで
き、紫外線照射に関わる電力消費量を低減できる方法及
びこの方法のための効率的な汚染物質分解装置を提供す
ることにある。また同時に装置費用の低減を図ることも
本発明の目的である。
An object of the present invention is to provide a method for decomposing contaminants by irradiating ultraviolet rays, which can be decomposed efficiently and which can reduce the power consumption related to ultraviolet irradiation, and an efficient method for this method. It is an object of the present invention to provide an apparatus for decomposing pollutants. It is also an object of the present invention to reduce the cost of the apparatus at the same time.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意検討を行なったところ、紫外線照射型
分解装置の装置価格の中で大きな比重を占める紫外線ラ
ンプの本数を減らし、石英ガラス製の紫外線透過部分を
小型にし、更に紫外線照射型分解装置のランニングコス
トの大部分を占める電力消費量を半減させる為には、反
応場の全部ではなく、その一部に紫外線を照射すること
が重要であることを見出し、本発明に至った。
Means for Solving the Problems The inventors of the present invention have made intensive studies to achieve the above object, and have found that the number of ultraviolet lamps, which occupy a large part of the price of an ultraviolet irradiation type decomposition apparatus, has been reduced. In order to reduce the size of the quartz glass UV-transmitting part and reduce the power consumption, which accounts for a large part of the running cost of the UV irradiation type decomposition device, by half, not all but the entire reaction field is irradiated with ultraviolet rays. It was found that this was important, and led to the present invention.

【0009】すなわち本発明は、少なくとも汚染物質を
含む気体である汚染ガスに対して紫外線照射手段からの
紫外線を照射することによって該汚染物質を分解する工
程を有する汚染物質分解方法において、前記汚染ガスの
導入領域と排出領域を有する分解処理経路を形成し、該
分解処理経路中に該汚染ガスを流し、かつ該分解処理経
路中に該汚染ガスの流れ方向の上流から下流に向かって
前記紫外線照射手段の設置領域aと非設置領域bとをこ
の順に設け、該設置領域aと該非設置領域bにおいて前
記汚染物質の分解を行うことを特徴とする汚染物質分解
方法である。
That is, the present invention provides a method for decomposing contaminants, comprising the step of irradiating a contaminant gas, which is a gas containing at least contaminants, with ultraviolet light from ultraviolet irradiation means to decompose the contaminants. Forming a decomposition treatment path having an introduction area and a discharge area, flowing the contaminated gas through the decomposition treatment path, and irradiating the ultraviolet rays from upstream to downstream in the flow direction of the contaminant gas in the decomposition treatment path. A contaminant decomposing method characterized in that an installation area a and a non-installation area b of the means are provided in this order, and the contaminant is decomposed in the installation area a and the non-installation area b.

【0010】本発明は、上記汚染物質分解方法を行うた
めの装置も含む。
[0010] The present invention also includes an apparatus for performing the above contaminant decomposition method.

【0011】すなわち本発明は、少なくとも汚染物質を
含む気体である汚染ガスに対して紫外線照射手段からの
紫外線を照射することによって該汚染物質を分解するた
めの汚染物質分解装置において、前記汚染ガスを流すた
めの、該汚染ガスの導入領域と排出領域を有する分解処
理経路を形成する容器と、紫外線照射手段とを有し、該
分解処理経路中に、汚染ガスの流れ方向の上流から下流
に向かって前記紫外線照射手段の設置領域aと非設置領
域bがこの順に設けられたことを特徴とする汚染物質分
解装置である。
That is, the present invention provides a pollutant decomposition apparatus for decomposing a pollutant gas, which is a gas containing at least a pollutant gas, by irradiating the pollutant gas with ultraviolet rays from an ultraviolet irradiation means. A container for forming a decomposition treatment path having an introduction region and a discharge region of the contaminated gas for flowing, and an ultraviolet irradiation means; and in the decomposition treatment passage, from the upstream to the downstream in the flow direction of the contaminated gas. The installation region a and the non-installation region b of the ultraviolet irradiation means are provided in this order.

【0012】紫外線照射手段は人工の紫外線発生装置あ
るいは太陽光集光装置を用いることができる。
As the ultraviolet irradiation means, an artificial ultraviolet generator or a sunlight condensing device can be used.

【0013】分解処理経路はその中に汚染ガスを流すた
めに容器で形成され、汚染ガスを導入する導入領域を有
する。導入領域は、容器に外部から汚染ガスを供給する
場合には容器の開口部で形成できる。汚染物質を含む気
体以外の物質(例えば液、スラリーあるいは固体)を外
部から容器内に供給し、これに空気等の気体を接触させ
て汚染ガスを得る場合は、容器中のこの気体以外の物質
からなる領域と、気相(汚染ガス)領域との境界が導入
領域となる。排出領域は分解処理経路から汚染ガスを排
出するためのもので、容器の開口部で形成できる。
[0013] The decomposition treatment path is formed by a container for flowing the contaminated gas therein, and has an introduction area for introducing the contaminated gas. The introduction region can be formed by an opening of the container when a contaminated gas is supplied to the container from the outside. When a substance other than gas containing pollutants (for example, liquid, slurry or solid) is supplied into the container from the outside, and a gas such as air is brought into contact with the substance to obtain a pollutant gas, the substance other than the gas in the container is used. The boundary between the region composed of and the gas phase (contaminated gas) region is the introduction region. The discharge area is for discharging pollutant gas from the decomposition treatment path, and can be formed by an opening of the container.

【0014】紫外線照射手段の設置領域は、分解処理経
路紫外線照射手段が沿設された領域であり、ここに紫外
線が照射される。紫外線照射手段の非設置領域は、分解
処理経路の紫外線照射手段が沿設されていない領域であ
り、ここは完全に紫外線が遮断されていてもよいが、遮
断されていなくても良く、紫外線照射手段から漏れてく
る紫外線、本装置あるいはその周囲から散乱してくる紫
外線あるいは自然光に含まれる紫外線が当たることは許
容される。
The installation area of the ultraviolet irradiation means is an area where the ultraviolet irradiation means is disposed along the decomposition treatment path, and ultraviolet rays are irradiated here. The non-installation area of the ultraviolet irradiation means is an area where the ultraviolet irradiation means in the decomposition treatment path is not provided, and may or may not be completely shielded from ultraviolet light. Ultraviolet rays leaking from the means, ultraviolet rays scattered from the apparatus or its surroundings, or ultraviolet rays included in natural light are allowed to hit.

【0015】分解処理経路中に、上記設置領域および非
設置領域をこの順に一つずつ設けてそれぞれaおよびb
とする場合、設置領域aの分解処理経路に占める体積割
合を1/6〜1/2とすることが好ましく、1/4〜1
/3とすることがさらに好ましい。なぜなら、設置領域
aの割合が大きすぎると、全体に光を照射する一般的な
分解処理装置との差が小さくなる上、光照射手段の消費
電力量によっては効率が低くなるという点で不利だから
である。また、逆に設置領域aの割合が小さすぎると、
狭い領域に強力な光を照射する必要が生じ、特殊な光源
を用意する必要が生じ本発明の利点を上回る問題が生じ
てしまう可能性もあるという点で不利だからである。
In the disassembly processing path, the installation area and the non-installation area are provided one by one in this order, and a and b are respectively provided.
In this case, it is preferable that the volume ratio of the installation area a in the decomposition process path be 1/6 to 1/2, and 1/4 to 1
/ 3 is more preferable. This is because if the ratio of the installation area a is too large, the difference from a general decomposition processing apparatus that irradiates light to the whole becomes small, and the efficiency is reduced depending on the power consumption of the light irradiation unit, which is disadvantageous. It is. On the other hand, if the proportion of the installation area a is too small,
This is because it is disadvantageous in that it is necessary to irradiate intense light to a narrow area, a special light source needs to be prepared, and a problem exceeding the advantages of the present invention may occur.

【0016】また、分解処理経路中に、上記非設置領域
bのさらに下流に光照射手段の設置領域a’を設けるこ
とができ、この場合、光照射領域aおよびa’の合計の
分解処理経路に占める体積割合を1/6〜1/2とする
ことが好ましく、1/4〜1/3とすることがさらに好
ましい。
Further, an installation area a 'of the light irradiation means can be provided further downstream of the non-installation area b in the decomposition processing path. In this case, the total decomposition processing path of the light irradiation areas a and a' Is preferably 1/6 to 1/2, more preferably 1/4 to 1/3.

【0017】さらに、分解処理経路中に、前記光照射手
段の設置領域と非設置領域とを交互にそれぞれ複数設け
ることもできる。つまり、上記設置部分a’の下流に、
さらに非設置部分b’を設けることができ、さらに設置
部分、非設置部分を交互に設けることができる。いずれ
にせよ、光照射領域の合計の分解処理経路に占める体積
割合を1/6〜1/2とすることが好ましく、1/4〜
1/3とすることがさらに好ましい。
Further, a plurality of areas where the light irradiating means are installed and areas where the light irradiating means are not installed may be provided alternately in the decomposition processing path. That is, downstream of the installation part a ′,
Further, a non-installed portion b 'can be provided, and an installed portion and a non-installed portion can be alternately provided. In any case, it is preferable that the volume ratio of the light irradiation area in the total decomposition processing path be 1/6 to 1/2, and 1/4 to 1/2.
More preferably, it is set to 1/3.

【0018】本発明によれば、分解対象物質(汚染物
質)を含む空気等の汚染ガスを反応容器内に移動させ、
紫外線を照射することによって分解対象物質を分解する
装置で、紫外線を反応場全体に均一に照射するのではな
く容器の汚染ガスが流入する最初の部分に比較的強力な
紫外線を照射するか、反応容器の複数箇所に紫外線を照
射することによって、反応場全体に均一に紫外線を当て
るより少ない電力で同等の分解率を得ることができる。
According to the present invention, a contaminant gas such as air containing a substance to be decomposed (contaminant) is moved into the reaction vessel,
A device that decomposes substances to be decomposed by irradiating ultraviolet rays.Instead of irradiating ultraviolet rays uniformly to the entire reaction field, instead of irradiating relatively strong ultraviolet rays to the first part of the container where contaminated gas flows, By irradiating a plurality of portions of the container with ultraviolet rays, an equivalent decomposition rate can be obtained with less power than uniformly irradiating the entire reaction field with ultraviolet rays.

【0019】その作用は次の通りである。The operation is as follows.

【0020】紫外線照射によるハロゲン化脂肪族化合物
の分解は、これらの化合物が185nmまたは254n
mを中心波長とする紫外線を吸収して励起されて不安定
になり脱ハロゲン反応を起こし、ハロゲンラジカルが生
成する反応と、生成したラジカルが更に他のハロゲン化
脂肪族化合物を攻撃して起こる反応の2つから成る。一
般的な紫外線照射分解反応容器内ではこの2反応が同時
に起こっているのであるが、前者の紫外線励起による脱
ハロゲン反応と後者の分解反応が常に同じ場所で起こる
必要はない。
Decomposition of halogenated aliphatic compounds by irradiation with ultraviolet light is caused by the fact that these compounds are 185 nm or 254 nm.
A reaction in which ultraviolet rays having a central wavelength of m are excited and excited to become unstable and cause a dehalogenation reaction, thereby generating a halogen radical, and a reaction in which the generated radical attacks another halogenated aliphatic compound. It consists of two. Although these two reactions occur simultaneously in a general ultraviolet irradiation decomposition reaction vessel, the former dehalogenation reaction by ultraviolet excitation and the latter decomposition reaction need not always occur in the same place.

【0021】これら2つの反応は順次起こるのであるか
ら、後者の分解反応が起こる領域全体に紫外線を照射し
ても無駄で、むしろ後者の分解反応が始まる前に強力に
紫外線を照射してより多くのハロゲンラジカルを生成さ
せた方が効率がいいのである。
Since these two reactions occur sequentially, it is useless to irradiate the entire region in which the latter decomposition reaction occurs with ultraviolet light, but rather irradiate the ultraviolet light more strongly before the latter decomposition reaction starts. It is more efficient to generate halogen radicals of

【0022】また、一度紫外線を照射して塩素ラジカル
を生成させ続いて分解反応を行い、反応に寄与できるハ
ロゲンラジカルが減少してきた領域に、再び紫外線を照
射して再度ハロゲンラジカルを生成させ続いて分解反応
を行なったほうが効率がいいのである。 [実施形態1]図1には、ガス状の汚染物質分解装置の
実施形態の基本構成が示されている。
In addition, once ultraviolet rays are irradiated to generate chlorine radicals and subsequently a decomposition reaction is carried out, the regions where the halogen radicals that can contribute to the reaction have been reduced are again irradiated with ultraviolet rays to generate halogen radicals again. Performing the decomposition reaction is more efficient. [Embodiment 1] FIG. 1 shows a basic configuration of an embodiment of a gaseous pollutant decomposition apparatus.

【0023】図1において、101は石英ガラス等の紫
外線を透過する素材で作られ、分解処理経路をなす容器
である分解処理槽であり、汚染ガスは汚染ガス供給管1
03から分解処理槽に供給され、排気ガス管104から
排出される。分解処理槽内の全域が気相領域である。こ
こでは容器の汚染ガス供給管への開口部が汚染ガスの導
入領域であり、排気ガス管への開口部が排出領域であ
る。分解処理槽の下部側面に沿って設置した紫外線照射
手段106で処理槽内を紫外線照射し、分解処理槽10
1内を上昇していく気相領域中の分解対象物質(汚染物
質)を分解する。
In FIG. 1, reference numeral 101 denotes a decomposition tank, which is a vessel made of a material that transmits ultraviolet light such as quartz glass and forms a decomposition processing path.
From 03, it is supplied to the decomposition treatment tank and discharged from the exhaust gas pipe 104. The whole area in the decomposition tank is a gas phase area. Here, the opening to the contaminated gas supply pipe of the container is an introduction area of the contaminated gas, and the opening to the exhaust gas pipe is a discharge area. The inside of the processing tank is irradiated with ultraviolet rays by ultraviolet irradiation means 106 installed along the lower side surface of the decomposition processing tank,
Decompose substances (contaminants) in the gas phase region that rises in the gas phase region 1.

【0024】図1では、紫外線照射手段106は分解処
理槽101の外部に設置されているが、分解処理槽10
1内部に紫外線照射手段が設置されていても良い。また
同様に、紫外線照射手段106がリング状でその中心に
分解処理槽101が設置され分解処理槽101の下部を
全方位から照射するような形式でも良い。逆に、分解処
理槽101が螺旋状のカラムでその一部を紫外線照射手
段106で照射するような形式でも良い。
In FIG. 1, the ultraviolet irradiation means 106 is installed outside the decomposition treatment tank 101,
Ultraviolet irradiation means may be provided inside 1. Similarly, the ultraviolet irradiation means 106 may have a ring shape, and a decomposition treatment tank 101 may be provided at the center thereof to irradiate the lower part of the decomposition treatment tank 101 from all directions. Conversely, a type in which the decomposition treatment tank 101 is a spiral column and a part thereof is irradiated by the ultraviolet irradiation means 106 may be used.

【0025】また、図1のように紫外線照射手段106
が外部に設置されている場合、本体の強度や規模によっ
ては、分解処理槽101全体が石英ガラス等の紫外線を
透過する素材で作られている必要はなく、紫外線が照射
される部分のみ石英ガラス等の窓になっていて他の部分
は金属のような不透明な素材で作られていても良い。
Also, as shown in FIG.
Is installed outside, depending on the strength and scale of the main body, the entire decomposition treatment tank 101 does not need to be made of a material that transmits ultraviolet light such as quartz glass, and only the portion irradiated with ultraviolet light is made of quartz glass. The other part may be made of an opaque material such as metal.

【0026】分解対象物質を含む空気を分解処理槽10
1に送気した直後、すなわち分解処理経路の最上流部分
(図1のA区画)に紫外線照射手段106から紫外線を
照射し、すなわちここを紫外線照射手段の設置領域aと
し、その下流の部分(図1中ではB、CおよびD区画)
は非設置領域bとし、これにより分解対象物質を分解す
る。
The air containing the substance to be decomposed is decomposed into
Immediately after the air is supplied to the first, that is, the most upstream part (section A in FIG. 1) of the decomposition treatment path is irradiated with ultraviolet rays from the ultraviolet irradiation means 106, that is, this area is set as the installation area a of the ultraviolet irradiation means, and the downstream part ( (Blocks B, C and D in FIG. 1)
Is a non-installation area b, thereby decomposing the substance to be decomposed.

【0027】紫外線を照射するA区画の体積、および紫
外線の強度は、リアクタ全体にまんべんなく紫外線を照
射する均一照射の場合と比べて、容積で6分の1から2
分の1、さらには4分の1から3分の1が好ましい(つ
まり残りの部分は、リアクタの紫外線は照射されないが
分解に寄与する部分)、紫外線の単位面積あたりの強度
で1.5倍以上、さらには2倍以上が好ましい。こうす
ることにより均一照射の場合に比べ、少ない電力消費量
でも、同等以上の分解効果が得ることができる。 [実施形態2]本実施形態では、分解対象物質を含む空
気を101に送気した直後の部分(図1中のA区画)に
紫外線照射手段を沿設して設置領域aとし、リアクタ全
体にまんべんなく紫外線を照射する均一照射の場合と同
じ強度の紫外線をここに照射する。A区画の下流の図1
におけるB区画には紫外線照射手段を沿設せず、すなわ
ち紫外線照射手段の非設置領域bを設け、ここでは汚染
ガスは紫外線照射を受けない。B区画の下流の図1にお
けるC区画には不図示の紫外線照射手段を沿設して紫外
線照射手段の設置領域a'とし、汚染ガスに再び同じ強
度の紫外線を照射する。C区画の下流の図1におけるD
区画には、紫外線照射手段を沿設せず、すなわちここを
紫外線照射手段の非設置領域b'とし、汚染ガスは再び
紫外線が当たらない領域を通過する。
The volume of the section A for irradiating the ultraviolet rays and the intensity of the ultraviolet rays are 1/6 to 2 times smaller than the case of the uniform irradiation for uniformly irradiating the entire reactor with the ultraviolet rays.
One-fourth, more preferably one-fourth to one-third is preferable (that is, the remaining portion is not irradiated with ultraviolet rays of the reactor but contributes to decomposition), and the intensity of ultraviolet rays per unit area is 1.5 times. Above, more preferably twice or more. By doing so, the same or better decomposition effect can be obtained with less power consumption than in the case of uniform irradiation. [Embodiment 2] In this embodiment, an ultraviolet irradiation means is provided along a portion (section A in FIG. 1) immediately after air containing a substance to be decomposed is supplied to 101, and the installation area a is provided. Ultraviolet rays of the same intensity as in the case of uniform irradiation in which ultraviolet rays are evenly irradiated are applied here. Figure 1 downstream of Section A
In section B, no ultraviolet irradiation means is provided alongside, that is, an area b where no ultraviolet irradiation means is provided. Here, the contaminant gas is not irradiated with ultraviolet light. In the section C in FIG. 1 downstream of the section B, an ultraviolet irradiating means (not shown) is arranged along the ultraviolet ray irradiating section, and an ultraviolet ray of the same intensity is again irradiated on the contaminated gas. D in FIG. 1 downstream of section C
No ultraviolet irradiation means is provided along the section, that is, this area is a non-installation area b 'of the ultraviolet irradiation means, and the contaminated gas passes again through the area not irradiated with ultraviolet light.

【0028】この形態でも、実施形態1と同様に、均一
照射の場合の半分の電力消費量で均一照射の場合とほぼ
同等の分解率を得られる。
In this embodiment, as in the case of the first embodiment, a decomposition rate substantially equal to that in the case of uniform irradiation can be obtained with half the power consumption in the case of uniform irradiation.

【0029】なお、D区画は必ずしも必要ではなく、紫
外線照射されるAおよびC区画と、その間に位置し、紫
外線照射されないB区画があるだけでもよい。
It is to be noted that the section D is not always necessary, and there may be only the sections A and C to be irradiated with ultraviolet rays and the section B located between them and not irradiated with ultraviolet rays.

【0030】本発明の分解方法においては、分解能の観
点から185nmまたは254nmを中心波長とする紫
外線を用いることが好ましいため、分解反応槽101の
紫外線を透過させる部分は、一般的なガラスより、石英
ガラスや透明テフロン(登録商標)製が好ましい。 (処理対象分解対象物質)本発明の分解処理対象となる
汚染物質としては、ハロゲン化脂肪族炭化水素、特には
塩素化脂肪族炭化水素、具体例としてはクロロエチレ
ン、1,1−ジクロロエチレン、cis−1,2−ジク
ロロエチレン、trans−1,2−ジクロロエチレ
ン、トリクロロエチレン、テトラクロロエチレン、クロ
ロメタン、ジクロロメタン、トリクロロメタンおよび
1,1,1−トリクロロエタンなどの有機塩素化合物を
挙げることができる。 (紫外線照射手段)本発明において照射する紫外線は、
殺菌効果の高い185nmまたは254nmを中心波長
とする紫外線を用いることが好ましい。このような紫外
線を発生する光源としては高圧および低圧の水銀灯、キ
セノンランプ、ハロゲンランプ、エキシマランプ、重水
素ランプ、メタルハライドランプを用いることができ
る。これらの中で、低圧水銀ランプが紫外線照射効率が
高く、特に好適に用いることが出来る。また太陽光を用
いることで消費エネルギーを節約することができる。
In the decomposition method of the present invention, it is preferable to use ultraviolet rays having a center wavelength of 185 nm or 254 nm from the viewpoint of resolution. Glass or transparent Teflon (registered trademark) is preferred. (Decomposition target substances) The pollutants to be decomposed in the present invention include halogenated aliphatic hydrocarbons, particularly chlorinated aliphatic hydrocarbons, and specific examples include chloroethylene, 1,1-dichloroethylene, and cis. Organic chlorine compounds such as -1,2-dichloroethylene, trans-1,2-dichloroethylene, trichloroethylene, tetrachloroethylene, chloromethane, dichloromethane, trichloromethane and 1,1,1-trichloroethane can be exemplified. (Ultraviolet irradiation means)
It is preferable to use ultraviolet rays having a central wavelength of 185 nm or 254 nm, which has a high sterilizing effect. As a light source that generates such ultraviolet rays, a high-pressure and low-pressure mercury lamp, a xenon lamp, a halogen lamp, an excimer lamp, a deuterium lamp, and a metal halide lamp can be used. Among these, a low-pressure mercury lamp has a high ultraviolet irradiation efficiency and can be particularly preferably used. In addition, energy consumption can be reduced by using sunlight.

【0031】紫外線の照射量としては、照射される気相
領域のもっとも光源に近い部分において10μW/cm
2〜10mW/cm2、さらには50μW/cm2〜5m
W/cm2が好ましい。
The irradiation amount of the ultraviolet rays is 10 μW / cm in the portion of the gas phase region to be irradiated which is closest to the light source.
2 to 10 mW / cm 2 , further 50 μW / cm 2 to 5 m
W / cm 2 is preferred.

【0032】[0032]

【実施例】以下、実施例により本発明を詳述するが、こ
れらは本発明を何ら限定するものではない。
EXAMPLES The present invention will be described in detail with reference to the following Examples, which do not limit the present invention in any way.

【0033】[実施例1]ガス、254nm、初期紫外
線照射 図1の分解装置を準備した。
Example 1 Gas, 254 nm, Initial UV Irradiation The decomposition apparatus shown in FIG. 1 was prepared.

【0034】分解処理槽101は、高さ40cm、容積
500mLの石英ガラス製密封容器である。
The decomposition bath 101 is a sealed container made of quartz glass having a height of 40 cm and a volume of 500 mL.

【0035】この分解処理槽101に、紫外線照射手段
106として、253.7nmの紫外線を照射する殺菌
ランプ(東芝ライテック(株)製GL4、4W)により
紫外線を照射した。ただし、このランプは管長が13.
5cmであるのに対して、ここでは照射領域を10cm
としたいため、ランプの上下約2cmずつをアルミ箔1
07で覆い、ランプ管長10cmの殺菌ランプとした。
この時の照射光量は、分解処理槽101の表面で光照射
手段106に最も近いところでは0.2〜0.3mW/
cm2であることを確かめた。
The decomposition treatment tank 101 was irradiated with ultraviolet rays as ultraviolet irradiation means 106 using a sterilizing lamp (GL4, 4W, manufactured by Toshiba Lighting & Technology Corp.) which irradiates ultraviolet rays of 253.7 nm. However, this lamp has a tube length of 13.
In contrast to 5 cm, here the irradiation area is 10 cm.
About 2 cm above and below the lamp by aluminum foil 1
07 and a germicidal lamp with a lamp tube length of 10 cm.
At this time, the irradiation light amount is 0.2 to 0.3 mW / at the position closest to the light irradiation means 106 on the surface of the decomposition treatment tank 101.
cm 2 .

【0036】紫外線の照射と同時に、汚染ガス供給管1
03から、パーミエータ(ガステック社製)で生成した
汚染土壌から真空吸引した汚染空気に見立てた、TCE
とPCEとをそれぞれ100ppm含む空気を100m
L/minの流量で送気した。
Contaminated gas supply pipe 1
03, TCE, which was regarded as contaminated air sucked from contaminated soil generated by a permeator (Gastec)
100 m of air containing 100 ppm each of
Air was supplied at a flow rate of L / min.

【0037】この装置の分解処理を開始してから定期的
に排気ガス管104からの排気ガスをガスタイトシリン
ジでサンプリングし、TCEおよびPCE濃度をガスク
ロマトグラフィー(商品名:GC−14B(FID検出
器付);島津製作所(株)社製)で測定した。
Exhaust gas from the exhaust gas pipe 104 is periodically sampled with a gas tight syringe after the decomposition process of this apparatus is started, and the TCE and PCE concentrations are analyzed by gas chromatography (trade name: GC-14B (FID detection). Instrument); Shimadzu Corporation).

【0038】この分解処理槽101を下から10cmご
とに区切って、それぞれA区画、B区画、C区画、D区
画とし、様々な区画に1個または2個のランプで紫外線
照射して、5分後、10分後、15分後の排気ガス中の
TCEおよびPCE濃度を測定し、平均分解率を調べ
た。 [実験1]全区画1個ずつ計4個(紫外線均一照射=比
較実験) 分解処理槽101のA,B、C,D全区画に各1個ずつ
計4個の殺菌ランプを設置し紫外線を照射した。このと
きの平均分解率は98.8%であった。
This decomposition treatment tank 101 is divided into 10 cm sections from the bottom to form A section, B section, C section, and D section, and each section is irradiated with ultraviolet light by one or two lamps for 5 minutes. After 10 minutes and 15 minutes, the concentrations of TCE and PCE in the exhaust gas were measured, and the average decomposition rate was determined. [Experiment 1] A total of 4 germicidal lamps were installed in each of the compartments, and a total of 4 germicidal lamps were installed in each of the compartments A, B, C, and D of the decomposition treatment tank 101. Irradiated. The average decomposition rate at this time was 98.8%.

【0039】[実験2]A区画1個 分解処理槽101のA区画以外をアルミ箔で覆ってA区
画のみに紫外線が当たるようにした上で、A区画の横に
殺菌ランプを1個設置し紫外線を照射した。このときの
平均分解率は97.1%であった。
[Experiment 2] One section A One section of the decomposition treatment tank 101 was covered with aluminum foil so that only section A was exposed to ultraviolet rays, and one germicidal lamp was placed beside section A. Irradiated with ultraviolet light. The average decomposition rate at this time was 97.1%.

【0040】[実験3]A区画2個 分解処理槽101のA区画以外をアルミ箔で覆ってA区
画のみに紫外線が当たるようにした上で、A区画の横に
殺菌ランプを2個設置し紫外線を照射した。このときの
平均分解率は98.9%であった。
[Experiment 3] Two compartments A Two compartments other than compartment A of the decomposition tank 101 were covered with aluminum foil so that only compartment A was exposed to ultraviolet rays, and two germicidal lamps were installed beside compartment A. Irradiated with ultraviolet light. The average decomposition rate at this time was 98.9%.

【0041】[実験4]B区画1個 分解処理槽101のB区画以外をアルミ箔で覆ってB区
画のみに紫外線が当たるようにした上で、B区画の横に
殺菌ランプを1個設置し紫外線を照射した。このときの
平均分解率は94.4%であった。
[Experiment 4] One section B One section of the decomposition tank 101 was covered with aluminum foil so that only section B was exposed to ultraviolet rays, and one germicidal lamp was set up next to section B. Irradiated with ultraviolet light. The average decomposition rate at this time was 94.4%.

【0042】[実験5]B区画2個 分解処理槽101のB区画以外をアルミ箔で覆ってB区
画のみに紫外線が当たるようにした上で、B区画の横に
殺菌ランプを2個設置し紫外線を照射した。このときの
平均分解率は98.1%であった。
[Experiment 5] Two B compartments The other than the B compartment of the decomposition tank 101 was covered with aluminum foil so that only the B compartment was exposed to ultraviolet rays, and two sterilizing lamps were installed beside the B compartment. Irradiated with ultraviolet light. The average decomposition rate at this time was 98.1%.

【0043】[実験6]C区画1個 分解処理槽101のC区画以外をアルミ箔で覆ってC区
画のみに紫外線が当たるようにした上で、C区画の横に
殺菌ランプを1個設置し紫外線を照射した。このときの
平均分解率は90.5%であった。
[Experiment 6] One C section The other than the C section of the decomposition tank 101 was covered with aluminum foil so that only the C section was irradiated with ultraviolet rays, and one germicidal lamp was installed beside the C section. Irradiated with ultraviolet light. The average decomposition rate at this time was 90.5%.

【0044】[実験7]C区画2個 分解処理槽101のC区画以外をアルミ箔で覆ってC区
画のみに紫外線が当たるようにした上で、C区画の横に
殺菌ランプを2個設置し紫外線を照射した。このときの
平均分解率は94.6%であった。
[Experiment 7] Two C compartments The other than the C compartment of the decomposition treatment tank 101 was covered with aluminum foil so that only the C compartment was irradiated with ultraviolet rays, and two sterilizing lamps were installed beside the C compartment. Irradiated with ultraviolet light. The average decomposition rate at this time was 94.6%.

【0045】[実験8]D区画1個 分解処理槽101のD区画以外をアルミ箔で覆ってD区
画のみに紫外線が当たるようにした上で、D区画の横に
殺菌ランプを1個設置し紫外線を照射した。このときの
平均分解率は71.2%であった。
[Experiment 8] One D section The other than the D section of the decomposition tank 101 was covered with aluminum foil so that only the D section was irradiated with ultraviolet rays, and one germicidal lamp was installed beside the D section. Irradiated with ultraviolet light. The average decomposition rate at this time was 71.2%.

【0046】[実験9]D区画2個 分解処理槽101のD区画以外をアルミ箔で覆ってD区
画のみに紫外線が当たるようにした上で、D区画の横に
殺菌ランプを2個設置し紫外線を照射した。このときの
平均分解率は77.6%であった。
[Experiment 9] Two compartments D Two parts of the decomposition tank 101 were covered with aluminum foil so that only the D compartment was exposed to ultraviolet rays, and two germicidal lamps were installed beside the D compartment. Irradiated with ultraviolet light. The average decomposition rate at this time was 77.6%.

【0047】[実験10]1区画容器、1個 長さが1区画分(10cm)である他は分解処理槽10
1と同様の分解処理槽を用い、分解理槽の横に殺菌ラン
プを1個設置し紫外線を照射した。このときの平均分解
率は69.5%であった。
[Experiment 10] Decomposition tank 10 except for one compartment and one compartment (10 cm) in length.
Using the same decomposition treatment tank as in Example 1, one sterilization lamp was installed beside the decomposition treatment tank and irradiated with ultraviolet rays. The average decomposition rate at this time was 69.5%.

【0048】[実験11]1区画容器、2個 長さが1区画分(10cm)である他は分解処理槽10
1と同様の分解処理槽を用い、分解処理槽の横に殺菌ラ
ンプを2個設置し紫外線を照射した。このときの平均分
解率は75.3%であった。実験2、4、6、8の比較
および実験3、5、7、9の比較より、分解処理槽の異
なる位置に紫外線を照射すると、同じ紫外線量であって
も装置全体の分解率が異なることがわかった。またこれ
らと実験10、11との比較から、TCEおよびPCE
を含む空気に紫外線を照射た後に(下流に)紫外線の照
射されない分解反応領域を設けることが好ましいことが
わかった。
[Experiment 11] Decomposition tank 10 except for one compartment and two compartments (10 cm) in length.
Using the same decomposition treatment tank as in No. 1, two sterilization lamps were installed beside the decomposition treatment tank and were irradiated with ultraviolet rays. The average decomposition rate at this time was 75.3%. Comparison of Experiments 2, 4, 6, and 8 and Comparison of Experiments 3, 5, 7, and 9 show that when different positions of the decomposition treatment tank are irradiated with ultraviolet light, the decomposition rate of the entire device differs even with the same amount of ultraviolet light. I understood. From comparison of these with Experiments 10 and 11, TCE and PCE
It has been found that it is preferable to provide a decomposition reaction region in which the ultraviolet ray is not irradiated (downstream) after irradiating the ultraviolet ray containing air with the ultraviolet ray.

【0049】更に、実験1と2,3の比較より、均一照
射の場合と比較して、紫外線の照射領域が4分の1の場
合、紫外線の総照射量が4分の1で単位面積あたりの照
射量では同等の紫外線を照射するだけでは装置全体の分
解率は1%近く低下するが、紫外線の総照射量が2分の
1で単位面積あたりの照射量では2倍の紫外線を照射す
ればほぼ同等の分解率が得られることがわかった。
Further, according to the comparison between Experiments 1 and 2 and 3, the total irradiation amount of the ultraviolet rays is 1/4 and the unit irradiation area is 1/4 when the irradiation area of the ultraviolet rays is 1/4 as compared with the case of the uniform irradiation. Irradiating the same amount of UV light alone reduces the decomposition rate of the entire apparatus by almost 1%, but the total amount of UV light is halved and twice the amount of UV light per unit area is required. It was found that almost the same decomposition rate could be obtained.

【0050】以上の結果より、分解対象物質を含む空気
が流れる分解処理槽の初期4分の1の領域に、分解処理
槽全体にまんべんなく紫外線を当てた均一照射の場合と
比較して、紫外線の総照射量が2分の1で単位面積あた
りの照射量では2倍の紫外線を照射すれば、紫外線照射
装置が消費する電力が半分で同等の装置分解効率が得ら
れる事がわかった。 [実施例2]ガス、185nm、初期紫外線照射 253.7nmの紫外線を照射する殺菌ランプの代わり
に、184.9nmと253.7nmの紫外線を照射す
る低圧水銀ランプ(ウシオ電機(株)UL0−6DQ、
6W)と230nm以上の光を透過しないフィルタを用
いて、分解処理装置101を184.9nmの紫外線で
照射した以外、実施例1と同様の実験を行い、排気ガス
中のTCEおよびPCE濃度を測定し平均分解率を調べ
た。
From the above results, compared with the case of uniform irradiation in which the entirety of the decomposition treatment tank is uniformly irradiated with ultraviolet light, the first quarter of the decomposition treatment tank through which air containing the substance to be decomposed flows flows. It has been found that, when the total irradiation amount is one half and the irradiation amount per unit area is twice as large as that of the ultraviolet irradiation, the power consumption of the ultraviolet irradiation device is half and the same device decomposition efficiency can be obtained. [Example 2] Low pressure mercury lamp irradiating ultraviolet rays of 184.9 nm and 253.7 nm instead of a germicidal lamp irradiating ultraviolet rays of 185 nm and 253.7 nm instead of gas, 185 nm, initial ultraviolet ray (Ushio Electric Co., Ltd. UL0-6DQ ,
6W) and using a filter that does not transmit light of 230 nm or more, the same experiment as in Example 1 was performed except that the decomposition treatment apparatus 101 was irradiated with ultraviolet light of 184.9 nm, and the concentrations of TCE and PCE in the exhaust gas were measured. The average decomposition rate was examined.

【0051】その結果、実施例1とほぼ同様の結果が得
られ184.9nmの紫外線であっても、分解処理槽全
体にまんべんなく紫外線を当てた場合に比べて、初期に
2倍の強度の紫外線を照射することで紫外線照射装置が
消費する電力が半分で同等の装置分解効率が得られる事
がわかった。 [実施例3]ガス、254nm、部分紫外線照射 分解処理槽101のBおよびD区画をアルミ箔で覆って
AおよびC区画のみに紫外線が当たるようにした上で、
AおよびC区画の横に殺菌ランプを1個ずつ計2個設置
し紫外線を照射し、実施例1と同様の実験を行った。こ
のときの平均分解率は98.7%であった。
As a result, almost the same results as in Example 1 were obtained, and even if the ultraviolet light of 184.9 nm was used, the ultraviolet light having twice the initial intensity was compared to the case where the ultraviolet light was evenly applied to the entire decomposition treatment tank. It was found that by irradiating, the power consumed by the ultraviolet irradiation device was reduced to half and the same device decomposition efficiency was obtained. [Example 3] Gas, 254 nm, partial ultraviolet irradiation The B and D sections of the decomposition tank 101 were covered with aluminum foil so that only the A and C sections were exposed to ultraviolet rays.
The same experiment as in Example 1 was performed by arranging two sterilizing lamps one by one next to the sections A and C and irradiating ultraviolet rays. The average decomposition rate at this time was 98.7%.

【0052】この結果と実施例1の実験1とを比較する
ことにより、分解対象物質を含む空気が流れる分解処理
槽の初期4分の1の領域および3つ目の4分の1の領域
に、分解処理槽全体にまんべんなく紫外線を当てた場合
に比べて、紫外線の総照射量が2分の1で単位面積あた
りの照射量ではそれぞれ同等の紫外線を照射すれば、紫
外線照射装置が消費する電力が半分で同等の装置分解効
率が得られる事がわかった。 [実施例4]ガス、254nm、部分紫外線照射 分解処理槽101のBおよびC区画をアルミ箔で覆って
AおよびD区画のみに紫外線が当たるようにした上で、
AおよびD区画の横に殺菌ランプを1個ずつ計2個設置
し紫外線を照射し、実施例1と同様の実験を行った。こ
のときの平均分解率は98.3%であった。
By comparing this result with the experiment 1 of Example 1, the first quarter region and the third quarter region of the decomposition treatment tank through which the air containing the substance to be decomposed flows. In comparison with the case where ultraviolet rays are evenly applied to the entire decomposition tank, if the total amount of ultraviolet rays is halved and the same amount of ultraviolet light is irradiated per unit area, the power consumed by the ultraviolet irradiation device is reduced. It was found that the same device decomposition efficiency was obtained in half. [Example 4] Gas, 254 nm, partial ultraviolet irradiation The B and C sections of the decomposition tank 101 were covered with aluminum foil so that only the A and D sections were exposed to ultraviolet rays.
The same experiment as in Example 1 was performed by installing two germicidal lamps one by one next to the A and D compartments and irradiating them with ultraviolet rays. The average decomposition rate at this time was 98.3%.

【0053】この結果と実施例1の実験1とを比較する
ことにより、分解対象物質を含む空気が流れる分解処理
槽の初期4分の1の領域および4つ目の4分の1の領域
に、分解処理槽全体にまんべんなく紫外線を当てた場合
に比べて、紫外線の総照射量が2分の1で単位面積あた
りの照射量ではそれぞれ同等の紫外線を照射すれば、紫
外線照射装置が消費する電力が半分で同等の装置分解効
率が得られる事がわかった。
By comparing this result with Experiment 1 of Example 1, it was found that the first quarter region and the fourth quarter region of the decomposition treatment tank through which the air containing the substance to be decomposed flows. In comparison with the case where ultraviolet rays are evenly applied to the entire decomposition tank, if the total amount of ultraviolet rays is halved and the same amount of ultraviolet light is irradiated per unit area, the power consumed by the ultraviolet irradiation device is reduced. It was found that the same device decomposition efficiency was obtained in half.

【0054】[0054]

【発明の効果】本発明によれば、紫外線を照射すること
で汚染物質の分解をする方法において、分解紫外線照射
に係わる電力消費量を低減、したがってランニングコス
トを低減でき、同時に紫外線照射に係わる装置費用の低
減を図ることもできる、効率的な汚染物質分解方法及び
汚染物質分解装置が提供される。
According to the present invention, in a method of decomposing pollutants by irradiating ultraviolet rays, the power consumption associated with the decomposed ultraviolet rays can be reduced, and thus the running cost can be reduced. Provided is an efficient pollutant decomposition method and a pollutant decomposition apparatus that can reduce costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施態様にかかる分解装置の概略図
である。
FIG. 1 is a schematic view of a decomposition apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

101:分解処理槽 103:汚染ガス供給管 104:排気ガス管 106:紫外線照射手段 107:殺菌ランプ上下遮光用アルミ箔 101: Decomposition treatment tank 103: Contaminated gas supply pipe 104: Exhaust gas pipe 106: Ultraviolet irradiation means 107: Aluminum foil for sterilizing lamp upper and lower light shielding

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 19/05 C07C 19/05 21/04 21/04 21/073 21/073 21/10 21/10 21/12 21/12 (72)発明者 川口 正浩 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 Fターム(参考) 2E191 BA15 BD11 BD17 4G075 AA03 AA37 BA01 BA04 BA05 BD04 CA32 CA33 DA01 EA01 EB21 EB31 EE31 FB02 FB06 FC04 4H006 AA05 AC13 BA95 BC13 BC18 EA02 EA03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C07C 19/05 C07C 19/05 21/04 21/04 21/073 21/073 21/10 21/10 21 / 12 21/12 (72) Inventor Masahiro Kawaguchi 3-30-2 Shimomaruko, Ota-ku, Tokyo F-term in Canon Inc. (reference) 2E191 BA15 BD11 BD17 4G075 AA03 AA37 BA01 BA04 BA05 BD04 CA32 CA33 DA01 EA01 EB21 EB31 EE31 FB02 FB06 FC04 4H006 AA05 AC13 BA95 BC13 BC18 EA02 EA03

Claims (26)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも汚染物質を含む気体である汚
染ガスに対して紫外線照射手段からの紫外線を照射する
ことによって該汚染物質を分解する工程を有する汚染物
質分解方法において、前記汚染ガスの導入領域と排出領
域を有する分解処理経路を形成し、該分解処理経路中に
該汚染ガスを流し、かつ該分解処理経路中に該汚染ガス
の流れ方向の上流から下流に向かって前記紫外線照射手
段の設置領域aと非設置領域bとをこの順に設け、該設
置領域aと該非設置領域bにおいて前記汚染物質の分解
を行うことを特徴とする汚染物質分解方法。
1. A method for decomposing contaminants, comprising the step of irradiating a contaminant gas, which is a gas containing at least contaminants, with ultraviolet light from an ultraviolet irradiation means to decompose said contaminants, wherein said contaminant gas introduction region Forming a decomposition treatment path having a discharge area and discharging the contaminated gas in the decomposition treatment path, and installing the ultraviolet irradiation means in the decomposition treatment path from upstream to downstream in the flow direction of the contaminant gas. A method for decomposing a contaminant, comprising: providing an area a and a non-installation area b in this order, and decomposing the contaminant in the installation area a and the non-installation area b.
【請求項2】 該設置領域aの分解処理経路に占める体
積割合を1/6〜1/2とする請求項1に記載の汚染物
質分解方法。
2. The method for decomposing pollutants according to claim 1, wherein the volume ratio of the installation area a in the decomposition process path is 1/6 to 1/2.
【請求項3】 該体積割合が1/4〜1/3である請求
項2に記載の汚染物質分解方法。
3. The method according to claim 2, wherein the volume ratio is 1/4 to 1/3.
【請求項4】 該非設置領域bのさらに下流に前記紫外
線照射手段の設置領域a’を設け、該設置領域a’にお
いても前記汚染物質の分解を行う請求項1に記載の汚染
物質分解方法。
4. The method for decomposing pollutants according to claim 1, wherein an installation area a ′ for the ultraviolet irradiation means is provided further downstream of the non-installation area b, and the contaminants are also decomposed in the installation area a ′.
【請求項5】 該設置領域aおよびa’の分解処理経路
に占める合計の体積割合を1/6〜1/2とする請求項
4に記載の汚染物質分解方法。
5. The method for decomposing pollutants according to claim 4, wherein the total volume ratio of the installation areas a and a ′ in the decomposition process path is 1/6 to 1/2.
【請求項6】 前記紫外線照射手段の設置領域と非設置
領域とを交互にそれぞれ複数設ける請求項1に記載の汚
染物質分解方法。
6. The method for decomposing contaminants according to claim 1, wherein a plurality of areas where the ultraviolet irradiation means are installed and a plurality of areas where the ultraviolet light is not installed are alternately provided.
【請求項7】 該紫外線が、波長185nmの波長の紫
外線を含む請求項1〜6のいずれかに記載の汚染物質分
解方法。
7. The method for decomposing contaminants according to claim 1, wherein the ultraviolet rays include ultraviolet rays having a wavelength of 185 nm.
【請求項8】 該紫外線が、波長254nmの紫外線を
含む請求項1〜7のいずれかに記載の汚染物質分解方
法。
8. The method for decomposing pollutants according to claim 1, wherein the ultraviolet rays include ultraviolet rays having a wavelength of 254 nm.
【請求項9】 該紫外線の照射量が10μW/cm2
10mW/cm2である請求項1〜8のいずれかに記載
の汚染物質分解方法。
9. The irradiation amount of the ultraviolet light is 10 μW / cm 2 or more.
Pollutant decomposition method according to claim 1 which is 10 mW / cm 2.
【請求項10】 該紫外線の照射量が50μW/cm2
〜5mW/cm2である請求項9に記載の汚染物質分解
方法。
10. An irradiation amount of the ultraviolet ray is 50 μW / cm 2.
Pollutant decomposition method according to claim 9 is ~5mW / cm 2.
【請求項11】 該汚染物質がハロゲン化脂肪族炭化水
素である請求項1〜10のいずれかに記載の汚染物質分
解方法。
11. The method for decomposing pollutants according to claim 1, wherein said pollutants are halogenated aliphatic hydrocarbons.
【請求項12】 該ハロゲン化脂肪族炭化水素が塩素化
脂肪族炭化水素である請求項11に記載の汚染物質分解
方法。
12. The method according to claim 11, wherein the halogenated aliphatic hydrocarbon is a chlorinated aliphatic hydrocarbon.
【請求項13】 該塩素化脂肪族炭化水素がクロロエチ
レン、1,1−ジクロロエチレン、cis−1,2−ジ
クロロエチレン、trans−1,2−ジクロロエチレ
ン、トリクロロエチレン、テトラクロロエチレン、クロ
ロメタン、ジクロロメタン、トリクロロメタンおよび
1,1,1−トリクロロエタンからなる群より選ばれる
1種以上の化合物である請求項12記載の汚染物質分解
方法。
13. The chlorinated aliphatic hydrocarbon is chloroethylene, 1,1-dichloroethylene, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, trichloroethylene, tetrachloroethylene, chloromethane, dichloromethane, trichloromethane and 13. The method for decomposing pollutants according to claim 12, which is at least one compound selected from the group consisting of 1,1,1-trichloroethane.
【請求項14】 少なくとも汚染物質を含む気体である
汚染ガスに対して紫外線照射手段からの紫外線を照射す
ることによって該汚染物質を分解するための汚染物質分
解装置において、前記汚染ガスを流すための、該汚染ガ
スの導入領域と排出領域を有する分解処理経路を形成す
る容器と、紫外線照射手段とを有し、該分解処理経路中
に、汚染ガスの流れ方向の上流から下流に向かって前記
紫外線照射手段の設置領域aと非設置領域bがこの順に
設けられたことを特徴とする汚染物質分解装置。
14. A pollutant decomposing apparatus for decomposing a pollutant gas, which is a gas containing at least a pollutant gas, by irradiating the pollutant gas with ultraviolet rays from an ultraviolet ray irradiating means. A container forming a decomposition treatment path having an introduction region and a discharge region of the contaminated gas, and an ultraviolet irradiation means, wherein the ultraviolet light is supplied from the upstream to the downstream in the flow direction of the contaminant gas in the decomposition treatment passage. A contaminant decomposing apparatus, wherein an installation area a and a non-installation area b of the irradiation unit are provided in this order.
【請求項15】 該設置領域aの分解処理経路に占める
体積割合が1/6〜1/2である請求項14に記載の汚
染物質分解装置。
15. The contaminant decomposition apparatus according to claim 14, wherein a volume ratio of the installation area a to the decomposition processing path is 1/6 to 1/2.
【請求項16】 該体積割合が1/4〜1/3である請
求項15に記載の汚染物質分解装置。
16. The contaminant decomposition apparatus according to claim 15, wherein the volume ratio is 1/4 to 1/3.
【請求項17】 該非設置領域bのさらに下流に前記紫
外線照射手段の設置領域a’が設けられた請求項14に
記載の汚染物質分解装置。
17. The pollutant decomposer according to claim 14, wherein an installation area a ′ of said ultraviolet irradiation means is provided further downstream of said non-installation area b.
【請求項18】 該設置領域aおよびa’の分解処理経
路に占める合計の体積割合が1/6〜1/2である請求
項17に記載の汚染物質分解装置。
18. The contaminant decomposition apparatus according to claim 17, wherein the total volume ratio of the installation areas a and a ′ to the decomposition processing path is 1/6 to 1/2.
【請求項19】 前記紫外線照射手段の設置領域と非設
置領域とが交互にそれぞれ複数設けられた請求項14に
記載の汚染物質分解装置。
19. The contaminant decomposing apparatus according to claim 14, wherein a plurality of the installation areas and the non-installation areas of the ultraviolet irradiation means are provided alternately.
【請求項20】 該紫外線が、波長185nmの波長の
紫外線を含む請求項14〜19のいずれかに記載の汚染
物質分解装置。
20. The pollutant decomposer according to claim 14, wherein the ultraviolet light includes ultraviolet light having a wavelength of 185 nm.
【請求項21】 該紫外線が、波長254nmの紫外線
を含む請求項14〜20のいずれかに記載の汚染物質分
解装置。
21. The pollutant decomposer according to claim 14, wherein the ultraviolet light includes ultraviolet light having a wavelength of 254 nm.
【請求項22】 該紫外線の照射量が10μW/cm2
〜10mW/cm2である請求項14〜21のいずれか
に記載の汚染物質分解装置。
22. An irradiation amount of the ultraviolet light is 10 μW / cm 2.
Pollutant decomposition apparatus according to any one of claims 14 to 21 is ~10mW / cm 2.
【請求項23】 該紫外線の照射量が50μW/cm2
〜5mW/cm2である請求項22に記載の汚染物質分
解装置。
23. An irradiation amount of the ultraviolet light is 50 μW / cm 2.
23. The pollutant decomposer according to claim 22, wherein the power is 55 mW / cm 2 .
【請求項24】 該汚染物質がハロゲン化脂肪族炭化水
素である請求項14〜23のいずれかに記載の汚染物質
分解装置。
24. The pollutant decomposition apparatus according to claim 14, wherein the pollutant is a halogenated aliphatic hydrocarbon.
【請求項25】 該ハロゲン化脂肪族炭化水素が塩素化
脂肪族炭化水素である請求項24に記載の汚染物質分解
装置。
25. The apparatus according to claim 24, wherein the halogenated aliphatic hydrocarbon is a chlorinated aliphatic hydrocarbon.
【請求項26】 該塩素化脂肪族炭化水素がクロロエチ
レン、1,1−ジクロロエチレン、cis−1,2−ジ
クロロエチレン、trans−1,2−ジクロロエチレ
ン、トリクロロエチレン、テトラクロロエチレン、クロ
ロメタン、ジクロロメタン、トリクロロメタンおよび
1,1,1−トリクロロエタンからなる群より選ばれる
1種以上の化合物である請求項25記載の汚染物質分解
装置。
26. The chlorinated aliphatic hydrocarbon is chloroethylene, 1,1-dichloroethylene, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, trichloroethylene, tetrachloroethylene, chloromethane, dichloromethane, trichloromethane and The pollutant decomposition device according to claim 25, which is one or more compounds selected from the group consisting of 1,1,1-trichloroethane.
JP2000351667A 2000-11-17 2000-11-17 Pollutant decomposition method and apparatus Pending JP2002153750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000351667A JP2002153750A (en) 2000-11-17 2000-11-17 Pollutant decomposition method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000351667A JP2002153750A (en) 2000-11-17 2000-11-17 Pollutant decomposition method and apparatus

Publications (1)

Publication Number Publication Date
JP2002153750A true JP2002153750A (en) 2002-05-28

Family

ID=18824683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000351667A Pending JP2002153750A (en) 2000-11-17 2000-11-17 Pollutant decomposition method and apparatus

Country Status (1)

Country Link
JP (1) JP2002153750A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022236303A1 (en) * 2021-05-06 2022-11-10 The Regents Of The University Of California Apparatus and method for gaseous hydrocarbon self-catalyzation, reforming, and solid carbon deposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022236303A1 (en) * 2021-05-06 2022-11-10 The Regents Of The University Of California Apparatus and method for gaseous hydrocarbon self-catalyzation, reforming, and solid carbon deposition

Similar Documents

Publication Publication Date Title
JP3825959B2 (en) Pollutant decomposition method and apparatus
Oppenländer Mercury-free sources of VUV/UV radiation: application of modern excimer lamps (excilamps) for water and air treatment
JPH0899082A (en) Treating device for flowable body by ultraviolet ray
JP2007167807A (en) Fluid purification device and method
US6462250B1 (en) Method for decomposing halogenated aliphatic hydrocarbon compounds having adsorption process and apparatus for decomposition having adsorption means
KR950006684B1 (en) Process and apparatus for the decomposition of organochlorine solvent contained in water
US6238628B1 (en) Photolytic device for breakdown of organic chlorine compounds
JP3954647B2 (en) Method and apparatus for purifying gas and liquid
JP3858326B2 (en) Accelerated oxidation treatment equipment using ozone and photocatalyst
JPH1133567A (en) Ozone decomposing method and apparatus
JP3825993B2 (en) Pollutant decomposition method and apparatus
JP2004028550A (en) Separation method for separating each substance from mixed gas containing plural substance, and device therefor
JPH06277660A (en) Water treatment apparatus
JP2002153750A (en) Pollutant decomposition method and apparatus
KR100509400B1 (en) System for decomposing organic compound
JPH0824629A (en) Photo-catalytic reaction tank
JP2006272034A (en) Contamination gas treatment device and method using photocatalyst
JPH08243351A (en) Decomposition method of organic chlorine compound
JP3699055B2 (en) Equipment for decomposing gaseous organic compounds
JP2001113162A (en) Decomposing device for organic compound
JP2003001237A (en) Method for decomposing organic environmental pollutant
JP3576474B2 (en) Decomposition method of dioxins
JP2001240559A (en) Decomposition method of organic chlorine compounds and decomposition apparatus therefor
JP2001170204A (en) Contaminant decomposition device and contaminant decomposition method
JP2005235607A (en) Optical processor