JP2002151096A - Production process of fuel cell separator - Google Patents

Production process of fuel cell separator

Info

Publication number
JP2002151096A
JP2002151096A JP2000338247A JP2000338247A JP2002151096A JP 2002151096 A JP2002151096 A JP 2002151096A JP 2000338247 A JP2000338247 A JP 2000338247A JP 2000338247 A JP2000338247 A JP 2000338247A JP 2002151096 A JP2002151096 A JP 2002151096A
Authority
JP
Japan
Prior art keywords
separator
processing
electrode
base material
separator base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000338247A
Other languages
Japanese (ja)
Inventor
Ryuta Kimata
竜太 木全
Masanori Matsukawa
政憲 松川
Yohei Kuwabara
陽平 桑原
Kenji Dewaki
謙治 出分
Shinji Dewaki
伸二 出分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Nippon Chemical Denshi Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Nippon Chemical Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd, Nippon Chemical Denshi Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP2000338247A priority Critical patent/JP2002151096A/en
Publication of JP2002151096A publication Critical patent/JP2002151096A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a production process of a fuel cell separator, by which a gas passage-integrated separator can be efficiently produced with high working precision. SOLUTION: A conductive separator base B is vertically arranged between a pair of working electrodes 30 provided on left and right sides. An architrave- like shielding material 40 is arranged between a surface of the separator base B to be worked an each working electrode 30. The shielding material 40 shields entering of electric lines of force derived from a difference in form or area between the surface of the separator base B to be worked and the working electrode 30 to form a parallel electric field between their opposing surfaces. Electricity is fed to the working electrodes 30 and separator base B in a state that an electrolyte has been sprayed and fed between the opposing surfaces thereof, thereby electrolytically working recesses for forming gas passages in the surfaces of the separator base B to be worked.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス流路一体型の
燃料電池セパレータの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a fuel cell separator having an integrated gas flow path.

【0002】[0002]

【従来の技術】燃料ガスの供給を受けて発電を行う燃料
電池は一般に、複数の電池セルを積層して構成される。
隣り合う電池セル間には、両者を分離するためのセパレ
ータが介在され、このセパレータは各セルに燃料ガス等
を供給するガス流路を形成するための流路構成材として
の役割も担っている。かかるガス流路一体型のセパレー
タにガス流路となる凹部(溝や凹み)を形成する手法の
一つに、セパレータ基材となる金属板に電解エッチング
を施す電解加工法がある。
2. Description of the Related Art In general, a fuel cell that generates power by receiving a supply of fuel gas is formed by stacking a plurality of battery cells.
A separator for separating the two is interposed between the adjacent battery cells, and this separator also plays a role as a flow path component for forming a gas flow path for supplying a fuel gas or the like to each cell. . One of the techniques for forming a concave portion (a groove or a concave portion) serving as a gas flow path in such a gas flow path-integrated separator is an electrolytic processing method in which a metal plate serving as a separator base material is subjected to electrolytic etching.

【0003】従来の電解加工法では、電解液等のエッチ
ング液を満たした槽内において、セパレータ基材となる
金属板と、ガス流路のパターン形状に対応する凹凸形状
を備えた加工電極とが対向配置される。そして、金属板
と加工電極との間に電解液を介在させた状態で、金属板
を正極とし加工電極を負極としてこれらに給電すること
で、金属板の一部を電解溶出させて加工電極の凹凸形状
に対応したガス流路パターンを金属板に彫り込んでい
る。
In a conventional electrolytic processing method, a metal plate serving as a separator base material and a processing electrode having a concavo-convex shape corresponding to a pattern shape of a gas flow path are formed in a tank filled with an etching solution such as an electrolytic solution. They are arranged facing each other. Then, in a state where the electrolytic solution is interposed between the metal plate and the processing electrode, the metal plate is used as a positive electrode and the processing electrode is used as a negative electrode to supply power to the metal plate and a part of the metal plate is electrolytically eluted to form a processing electrode. The gas flow pattern corresponding to the uneven shape is engraved on the metal plate.

【0004】[0004]

【発明が解決しようとする課題】ところで、例えば図1
0に示すように、相対向する二つの電極51,52の形
状及び面積が同じ状況下で、正電極51と負電極52と
の間に電圧を印加した場合を考える。このとき両電極5
1,52間には両者間の距離に応じた電界が形成される
が、その電界内の電気力線のほぼ全てが互いに平行であ
り、電気力線の分布にも偏在はない。つまり、両電極5
1,52の対向面間に発生する平行電界の大きさは均一
化されている。
By the way, for example, FIG.
It is assumed that a voltage is applied between the positive electrode 51 and the negative electrode 52 under the condition that the shape and area of the two opposing electrodes 51 and 52 are the same as shown in FIG. At this time, both electrodes 5
An electric field corresponding to the distance between the two is formed between the first and second electric fields 52. However, almost all of the electric lines of force in the electric field are parallel to each other, and there is no uneven distribution of the electric lines of force. That is, both electrodes 5
The magnitude of the parallel electric field generated between the opposing surfaces 1 and 52 is made uniform.

【0005】他方、図11に示すように、相対向する二
つの電極51,52は相似形であるが面積が異なる状況
下で、正電極51と負電極52との間に電圧を印加した
場合を考える。このとき、電界内の電気力線は、各電極
の中央部ではほぼ平行となるが、各電極の周辺部(又は
端部)では双方の周辺部同士をつなぐような形で電気力
線が湾曲する。その結果、各電極において中央部と周辺
部とで電気力線の分布密度(即ち電界の大きさ)が異な
ってくる。より具体的には、図11に示す面積の小さい
正電極51にあっては、その中央部よりも周辺部におい
て電気力線の密度が高まる。
On the other hand, as shown in FIG. 11, when a voltage is applied between the positive electrode 51 and the negative electrode 52 in a situation where the two opposing electrodes 51 and 52 have similar shapes but different areas. think of. At this time, the lines of electric force in the electric field are substantially parallel at the center of each electrode, but the lines of electric force are curved at the peripheral portion (or end) of each electrode so as to connect both peripheral portions. I do. As a result, the distribution density of electric lines of force (that is, the magnitude of the electric field) differs between the central part and the peripheral part in each electrode. More specifically, in the positive electrode 51 having a small area shown in FIG. 11, the density of lines of electric force is higher in the peripheral part than in the central part.

【0006】さて、仮に燃料電池用セパレータ基材の電
解加工において、図11に示すような状況が生じたなら
ばどうなるであろうか。例えば図11の負電極52が加
工電極であり正電極51が電解加工を受ける金属板であ
ると仮定する。すると、金属板の周辺部はその中央部よ
りも相対的に強い電界内に置かれることになる。電解液
のエッチング活性は電界の強さに依拠することを考慮す
ると、金属板の周辺部が中央部よりも相対的に深彫り傾
向となることは間違いない。実際、このような傾向性は
後述の試作実験でも確認されている(図8の比較例参
照)。このため、セパレータ基材と加工電極とで形状又
は面積が異なる場合には、被加工物であるセパレータ基
材において、凹部の加工精度(特に周辺部又は端部での
彫り深さの精度)が低下するという問題がある。
Now, what happens if the situation shown in FIG. 11 occurs in the electrolytic processing of the fuel cell separator base material? For example, it is assumed that the negative electrode 52 in FIG. 11 is a processing electrode and the positive electrode 51 is a metal plate to be subjected to electrolytic processing. Then, the peripheral portion of the metal plate is placed in an electric field that is relatively stronger than the central portion. Considering that the etching activity of the electrolytic solution depends on the strength of the electric field, there is no doubt that the peripheral portion of the metal plate tends to be deeper than the central portion. In fact, such a tendency is confirmed in a prototype experiment described later (see a comparative example in FIG. 8). Therefore, when the shape or the area is different between the separator base material and the processing electrode, the processing accuracy of the concave portion (especially, the accuracy of the engraving depth at the peripheral portion or the end portion) is reduced in the separator base material to be processed. There is a problem of lowering.

【0007】尚、セパレータ基材の周辺部における電気
力線の集中を回避又は緩和するために、セパレータ基材
と加工電極との間の距離を大きく確保することも考えら
れるが、距離の増大に伴い電界が弱くなると、電解加工
の効率が悪くなり生産性が低下する。又、両極間の距離
が開いて極間電気抵抗が大きい状態では、電解加工の効
率を上げるために両極への電力供給量を増やすと、セパ
レータ基材での発熱が顕著となり熱変形という新たな問
題を生じてしまう。燃料電池セパレータは益々薄肉化が
求められる傾向にあり、熱変形し易い極薄のセパレータ
基材を用いざるを得ない事情がある。
In order to avoid or reduce the concentration of the lines of electric force in the peripheral portion of the separator substrate, it is conceivable to secure a large distance between the separator substrate and the processing electrode. Accordingly, when the electric field is weakened, the efficiency of electrolytic processing is deteriorated, and the productivity is reduced. Also, in a state where the distance between the poles is wide and the electric resistance between the poles is large, if the amount of power supply to the poles is increased to increase the efficiency of electrolytic processing, heat generation in the separator base material becomes remarkable and a new phenomenon called thermal deformation occurs. It creates problems. Fuel cell separators are increasingly required to be thinner, and there is a situation in which an extremely thin separator substrate that is easily deformed by heat must be used.

【0008】本発明の目的は、ガス流路一体型セパレー
タを高い加工精度で効率的に生産することが可能な燃料
電池セパレータの製造方法を提供することにある。加え
て、セパレータ基材と加工電極との間の距離を極力小さ
く設定することを可能ならしめることを目的とする。
An object of the present invention is to provide a method of manufacturing a fuel cell separator capable of efficiently producing a gas flow path integrated type separator with high processing accuracy. In addition, it is an object of the present invention to make it possible to set the distance between the separator substrate and the processing electrode as small as possible.

【0009】[0009]

【課題を解決するための手段】請求項1の発明はガス流
路一体型の燃料電池セパレータの製造方法であって、加
工電極に対し、その加工電極とは形状又は面積の異なる
導電性のセパレータ基材の被加工面を所定間隔を隔てて
対向させる工程と、前記加工電極と前記セパレータ基材
の被加工面との形状又は面積の相違に由来する電気力線
の回り込みを遮って両者の対向面間に平行電界を形成す
るための遮蔽材を、加工電極とセパレータ基材との間に
配置する工程と、前記セパレータ基材及び加工電極の対
向面間に電解液を介在させた状態で両者に給電すること
により、該セパレータ基材の被加工面にガス流路構成用
凹部を電解加工する工程とを備えたことを特徴とする。
According to the first aspect of the present invention, there is provided a method of manufacturing a fuel cell separator having a gas flow path, wherein a conductive separator having a shape or an area different from that of the processed electrode is provided. Opposing the processing surfaces of the base material at a predetermined interval, and opposing the processing electrodes and the separator base material by blocking the wraparound of lines of electric force resulting from the difference in shape or area between the processing surfaces of the separator base material. A step of arranging a shielding material for forming a parallel electric field between the surfaces between the processing electrode and the separator base, and a step of disposing the electrolyte between the facing surfaces of the separator base and the processing electrode. And a step of electrolytically processing the concave portion for forming the gas flow passage on the surface to be processed of the separator base material by supplying power to the separator substrate.

【0010】この方法によれば、電解加工における一方
の電極である加工電極と、他方の電極である導電性セパ
レータ基材の被加工面との間で形状又は面積が異なる場
合でも、両者間に配置される遮蔽材により、形状又は面
積の相違に由来する電気力線の回り込みを遮って両者の
対向面間に平行電界を形成することが可能となる。この
ため、セパレータ基材被加工面の電解加工部位におい
て、局部的に電流密度が高まる等の電気エネルギー分布
の偏在を回避し、電解加工の均一性保持による加工精度
の向上を図ることが可能となる。
According to this method, even if the processing electrode as one electrode in electrolytic processing and the surface to be processed of the conductive separator base material as the other electrode are different in shape or area, even if they are different from each other. With the shielding material arranged, it is possible to form a parallel electric field between the opposing surfaces by blocking the wraparound of the lines of electric force resulting from the difference in shape or area. For this reason, it is possible to avoid uneven distribution of electric energy distribution such as locally increasing current density in the electrolytically processed portion of the surface to be processed of the separator base material, and to improve processing accuracy by maintaining uniformity of electrolytic processing. Become.

【0011】ちなみに、この着想を視覚化したのが図1
2である。図12では便宜上、正極側を小面積とし負極
側を大面積として描いているが、面積関係を逆転させて
も事情は同じである。正負両極間に配置された遮蔽材
は、正極側及び負極側で相対向する露出面の形状及び面
積を一致させ、正負両極間での電界形成に関する限り図
10の場合と等価な状況を作り出す。それ故、導電性セ
パレータ基材の被加工面の周辺部又は端部に電気力線が
集中する事態を回避することができる。
By the way, FIG. 1 visualizes this idea.
2. In FIG. 12, for convenience, the positive electrode side is illustrated as a small area and the negative electrode side is illustrated as a large area. However, the situation is the same even if the area relationship is reversed. The shielding material disposed between the positive and negative electrodes matches the shape and area of the exposed surfaces facing each other on the positive electrode side and the negative electrode side, and creates a situation equivalent to that of FIG. 10 as far as the electric field is formed between the positive and negative electrodes. Therefore, it is possible to avoid a situation where the lines of electric force are concentrated on the peripheral portion or the end portion of the processing surface of the conductive separator base material.

【0012】尚、前記遮蔽材の厚さを、加工電極とセパ
レータ基材との間隔(離間長)にほぼ対応するように設
定することは好ましい。この場合には、電気力線の回り
込みを効果的に阻止して前記平行電界の形成をより確実
なものとする。
It is preferable that the thickness of the shielding material is set so as to substantially correspond to the distance (separation length) between the processing electrode and the separator base material. In this case, the formation of the parallel electric field is made more reliable by effectively preventing the wraparound of the lines of electric force.

【0013】請求項2の発明は、請求項1に記載の燃料
電池セパレータの製造方法において、前記遮蔽材は電気
絶縁材料で構成されていることを特徴とする。
According to a second aspect of the present invention, in the method of manufacturing a fuel cell separator according to the first aspect, the shielding member is made of an electrically insulating material.

【0014】遮蔽材が電気絶縁材料で構成されること
で、当該遮蔽材が占拠する空間における電界形成が阻止
され、あるいはその占拠空間での電界が極端に弱められ
る。この意味で、使用する電気絶縁材料の電気抵抗値は
小さいほど好ましい。尚、電解加工時には遮蔽材も電解
液にさらされることから、当該遮蔽材が耐腐食性及び耐
熱性を合わせ持つ材料で構成されることは更に好まし
い。
Since the shielding member is made of an electrically insulating material, the formation of an electric field in the space occupied by the shielding member is prevented, or the electric field in the occupied space is extremely weakened. In this sense, the smaller the electric resistance value of the electric insulating material used, the more preferable. Since the shielding material is also exposed to the electrolytic solution during the electrolytic processing, it is more preferable that the shielding material is made of a material having both corrosion resistance and heat resistance.

【0015】請求項3の発明は、請求項1又は2に記載
の燃料電池セパレータの製造方法において、前記遮蔽材
は、前記セパレータ基材の被加工面と前記加工電極の対
向面とが同形状で同面積となるような対向関係を構築し
得るように、加工電極とセパレータ基材との間に介在さ
れることを特徴とする。
According to a third aspect of the present invention, in the method of manufacturing a fuel cell separator according to the first or second aspect, the shielding member has the same shape as the surface to be processed of the separator base material and the surface facing the processed electrode. It is characterized in that it is interposed between the processing electrode and the separator base material so that an opposing relationship having the same area can be established.

【0016】これは、前記図12のような状況を想定し
て、セパレータ基材の被加工面と加工電極の対向面との
間で平行電界が形成されるための一条件を明示したもの
である。但し、セパレータ基材の被加工面と加工電極の
対向面とが同形状で同面積となるような対向関係を構築
し得る遮蔽材とは、当該遮蔽材が図12に示すような額
縁形状に限定されることを意味するものではない。
This clarifies one condition for forming a parallel electric field between the surface to be processed of the separator base material and the opposite surface of the processing electrode, assuming the situation as shown in FIG. is there. However, a shielding material capable of establishing an opposing relationship in which the surface to be processed of the separator base material and the opposing surface of the processing electrode have the same shape and the same area means that the shielding material has a frame shape as shown in FIG. It is not meant to be limited.

【0017】請求項4の発明は、請求項1〜3のいずれ
か一項に記載の燃料電池セパレータの製造方法におい
て、前記セパレータ基材の被加工面に対する電解加工
は、前記加工電極に沿って前記セパレータ基材及び前記
遮蔽材を同期移動させながら行われることを特徴とす
る。
According to a fourth aspect of the present invention, in the method for manufacturing a fuel cell separator according to any one of the first to third aspects, the electrolytic processing on the surface to be processed of the separator base material is performed along the processed electrode. The method is performed while the separator base material and the shielding material are synchronously moved.

【0018】これは、多数のセパレータ基材に対する電
解加工を流れ作業的にこなす生産方式に関するものであ
る。加工電極に沿ってセパレータ基材を移動させながら
電解加工を行う生産方式にあっては、加工電極がセパレ
ータ基材の移動方向に延設されていることが前提とな
る。その際の電解加工においては特に、セパレータ基材
の被加工面の移動方向前側部及び後側部における電気力
線の集中を回避する必要があり、その回避手段としてセ
パレータ基材と同期移動する遮蔽材の必要性が存在す
る。請求項4の内容の技術的意義については、後述する
発明の実施の形態で更に明らかとなる。
This relates to a production system in which electrolytic processing of a large number of separator substrates is carried out in a flowable manner. In a production system in which electrolytic processing is performed while moving the separator base material along the processing electrode, it is assumed that the processing electrode extends in the moving direction of the separator base material. In the electrolytic processing at that time, in particular, it is necessary to avoid the concentration of the lines of electric force at the front side and the rear side in the moving direction of the surface to be processed of the separator base material. There is a need for lumber. The technical significance of the contents of claim 4 will be further clarified in embodiments of the invention described later.

【0019】請求項5の発明は、請求項1〜4のいずれ
か一項に記載の燃料電池セパレータの製造方法におい
て、前記セパレータ基材の被加工面にマスキングを部分
的に施すとともに、前記電解加工工程では、マスキング
されたセパレータ基材の被加工面に対してその略直角方
向から電解液を噴射供給して前記被加工面と加工電極と
の間に電解液を介在させ、前記被加工面の非マスキング
部を電解してガス流路構成用凹部を形成することを特徴
とする。
According to a fifth aspect of the present invention, in the method of manufacturing a fuel cell separator according to any one of the first to fourth aspects, the surface to be processed of the separator substrate is partially subjected to masking and the electrolytic process is performed. In the processing step, an electrolytic solution is jetted and supplied from a direction substantially perpendicular to the processed surface of the masked separator base material to interpose an electrolytic solution between the processed surface and the processing electrode, and Is characterized in that the non-masking portion is electrolyzed to form a gas flow path forming concave portion.

【0020】この方法によれば、部分的にマスキングが
施されたセパレータ基材の被加工面に対しその略直角方
向から電解液が噴射供給されるため、被加工面と加工電
極との間の領域に電解液を即座に行き渡らせ、被加工面
の全体を満遍なく電解液で覆うことができる。特に電解
液の供給方向が被加工面に対して略直角方向であること
から、被加工面の中心領域にも直接電解液を送り込むこ
とが可能となり、電解液の供給効率が極めてよい。この
ため、電解液の噴射供給作用ともあいまって、被加工面
と加工電極との間には十分な量の新鮮な電解液が次々と
供給されると共に、不要な電解生成物が被加工面上から
外へ押し流され、被加工面の非マスキング部における電
気化学反応が促進される。従って、被加工面の非マスキ
ング部には、高いエネルギー効率でもって比較的短時間
のうちに所望のガス流路構成用凹部が形成される。
According to this method, since the electrolytic solution is jetted and supplied from a direction substantially perpendicular to the processing surface of the partially masked separator substrate, the distance between the processing surface and the processing electrode is reduced. The electrolytic solution can be immediately spread over the region, and the entire surface to be processed can be uniformly covered with the electrolytic solution. In particular, since the supply direction of the electrolytic solution is substantially perpendicular to the surface to be processed, it is possible to directly feed the electrolytic solution also into the central region of the surface to be processed, and the supply efficiency of the electrolytic solution is extremely high. For this reason, a sufficient amount of fresh electrolytic solution is supplied one after another between the surface to be processed and the processing electrode in combination with the injection and supply of the electrolytic solution, and unnecessary electrolytic products are formed on the surface to be processed. To promote the electrochemical reaction in the non-masked portion of the work surface. Therefore, in the non-masking portion of the surface to be processed, a desired recess for forming a gas flow path is formed in a relatively short time with high energy efficiency.

【0021】尚、セパレータ基材上のマスキングとは、
単に電解液の接触を防止するために被加工面の一部に被
覆又は貼着される素材又は部材をいう。それ故、電気力
線の回り込みを遮るための前記遮蔽材と、セパレータ基
材上のマスキングとは技術的意義を異にしており、両者
は明確に区別されるべきである。
The masking on the separator substrate is as follows.
It simply refers to a material or member that is coated or adhered to a part of the surface to be processed in order to prevent contact with the electrolytic solution. Therefore, the shielding material for blocking the wraparound of the electric field lines and the masking on the separator substrate have different technical significances, and both should be clearly distinguished.

【0022】[0022]

【発明の実施の形態】以下、本発明の一実施形態を図面
を参照して説明する。 (燃料電池セパレータの製造装置の概要)図1に示すよ
うに、燃料電池セパレータの製造装置の下部には、電解
液の貯留槽11が設けられている。この貯留槽11に
は、空冷式又は水冷式の温度調節装置(図示せず)が付
属しており、貯留槽11に貯留される電解液はほぼ所望
温度に保持される。貯留槽11の上方には二重槽式の回
収槽12が設けられ、回収槽12の底壁部中央には、回
収槽12から貯留槽11に電解液を戻すための垂直連通
路13が設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. (Outline of Fuel Cell Separator Manufacturing Apparatus) As shown in FIG. 1, an electrolyte storage tank 11 is provided below the fuel cell separator manufacturing apparatus. The storage tank 11 is provided with an air-cooled or water-cooled temperature controller (not shown), and the electrolyte stored in the storage tank 11 is maintained at a substantially desired temperature. A double tank type recovery tank 12 is provided above the storage tank 11, and a vertical communication path 13 for returning the electrolyte from the recovery tank 12 to the storage tank 11 is provided in the center of the bottom wall of the recovery tank 12. Have been.

【0023】図1及び図2に示すように、回収槽12に
は左右一対のスパージャボックス14,15が並設され
ている。これらのスパージャボックス14,15は同じ
高さに位置するものの水平方向には互いに距離を隔てて
配置され、各々の対向部位には加工電極としての電極兼
用ノズル30(以下「電極ノズル」という)が設けられ
ている。電極ノズル30の詳細な構造については後述す
るが、図4に示すように電解液を噴射するためのスリッ
ト状噴射口31が複数設けられている。各スパージャボ
ックス14,15内には、下から上へ電解液を導くため
の内部通路16が形成され、この内部通路16は前記ス
リット状噴射口31の各々に連通している。更に、スパ
ージャボックス14,15の内部通路16はそれぞれ、
途中にポンプP(好ましくはケミカルポンプ)及びフィ
ルタFを備えた供給通路17を介して貯留槽11に接続
されている。そして、ポンプPの作用により貯留槽11
に貯留されている電解液が汲み上げられ、供給通路17
及び内部通路16を介して電極ノズル30の各スリット
状噴射口31に供給される。フィルタFは、電解液に混
入した不純物や不要な電解生成物を取り除く。なお、貯
留槽11、供給通路17及びポンプPは電解液の供給手
段を構成し、回収槽12および垂直連通路13は電解液
の回収手段を構成する。
As shown in FIGS. 1 and 2, a pair of left and right sparger boxes 14 and 15 are arranged in the collection tank 12 in parallel. Although these sparger boxes 14 and 15 are located at the same height, they are arranged at a distance from each other in the horizontal direction, and electrode-facing nozzles 30 (hereinafter, referred to as “electrode nozzles”) as processing electrodes are provided at opposing portions. Is provided. Although the detailed structure of the electrode nozzle 30 will be described later, as shown in FIG. 4, a plurality of slit-shaped injection ports 31 for injecting the electrolytic solution are provided. Inside each of the sparger boxes 14 and 15, an internal passage 16 for guiding the electrolytic solution from below to above is formed, and this internal passage 16 communicates with each of the slit-shaped injection ports 31. Further, the internal passages 16 of the sparger boxes 14 and 15 respectively
It is connected to the storage tank 11 via a supply passage 17 provided with a pump P (preferably a chemical pump) and a filter F on the way. The storage tank 11 is operated by the action of the pump P.
The electrolyte stored in the supply passage 17 is pumped up.
And, it is supplied to each slit-shaped injection port 31 of the electrode nozzle 30 through the internal passage 16. The filter F removes impurities mixed in the electrolytic solution and unnecessary electrolytic products. In addition, the storage tank 11, the supply passage 17, and the pump P constitute an electrolyte supply means, and the recovery tank 12 and the vertical communication path 13 constitute an electrolyte recovery means.

【0024】スパージャボックス14,15の上方に
は、図1に示すように紙面と直交する方向に延びるガイ
ドレール21が設けられている。このガイドレール21
には、ワークホルダ22が往復動可能に設けられてい
る。図3に示すように、ワークホルダ22は、無限軌道
状のチェーン又はワイヤ23の一部に固定されており、
駆動モータ24によるチェーン又はワイヤ23の正方向
又は逆方向への移送に乗じてガイドレール21上を往復
動することができる。図1及び図2に示すようにワーク
ホルダ22は、平板状ワークとしてのセパレータ基材B
の一端(上端)を把持し、鉛直方向に吊り下げる格好で
該セパレータ基材Bを保持する。ワークホルダ22に保
持されたセパレータ基材Bは、左右一対の電極ノズル3
0の対向面間のほぼ中央に配置され、ワークホルダ22
の移動に伴って両電極ノズル30間を移動する。つま
り、ガイドレール21、チェーン又はワイヤ23及び駆
動モータ24は、ワークホルダ22と作動連結された搬
送手段を構成する。
A guide rail 21 is provided above the sparger boxes 14 and 15 so as to extend in a direction perpendicular to the plane of the drawing, as shown in FIG. This guide rail 21
, A work holder 22 is provided so as to be able to reciprocate. As shown in FIG. 3, the work holder 22 is fixed to a chain or a part of a wire 23 having an endless track,
It is possible to reciprocate on the guide rail 21 by multiplying the transfer of the chain or wire 23 in the forward or reverse direction by the drive motor 24. As shown in FIGS. 1 and 2, the work holder 22 is a separator base material B as a flat work.
, And hold the separator base material B in such a manner that it is suspended in the vertical direction. The separator base material B held by the work holder 22 includes a pair of left and right electrode nozzles 3.
0 is disposed substantially at the center between opposing surfaces of the work holder 22.
Move between the two electrode nozzles 30 with the movement of the nozzle. That is, the guide rail 21, the chain or the wire 23, and the drive motor 24 constitute a transfer unit operatively connected to the work holder 22.

【0025】図1に示すように当該製造装置は、給電手
段としての直流電源26を備えている。直流電源26の
正極は、フレキシブルな給電線27を介してワークホル
ダ22に接続されている。他方、直流電源26の負極
は、2本のフレキシブルな給電線28を介してそれぞれ
対応する電極ノズル30の上端に接続されている。直流
電源26からの給電によって電極ノズル30とセパレー
タ基材Bとの間には電位差が付与され、セパレータ基材
Bの被加工面と各電極ノズル30の対向面との間には電
界が形成される。
As shown in FIG. 1, the manufacturing apparatus includes a DC power supply 26 as a power supply. The positive electrode of the DC power supply 26 is connected to the work holder 22 via a flexible power supply line 27. On the other hand, the negative electrode of the DC power supply 26 is connected to the upper ends of the corresponding electrode nozzles 30 via two flexible power supply lines 28. An electric potential is applied between the electrode nozzle 30 and the separator base material B by the power supply from the DC power supply 26, and an electric field is formed between the processing surface of the separator base material B and the opposing surface of each electrode nozzle 30. You.

【0026】図4は、セパレータ基材Bの被加工面に対
し所定間隔を隔てて対向する面対向型の電極ノズル30
の概略を示す。図4に示すように、各電極ノズル30の
対向面32には、複数条のスリット状噴射口31(本例
では9条)が形成されている。各スリット状噴射口31
は鉛直方向に延び、且つ、その鉛直方向長さhは、セパ
レータ基材Bの被加工部位の高さh(図2参照)に一致
している。各スリット状噴射口31の幅は0.5mm〜
2.5mmの範囲、好ましくは約1.5mmに設定され
ている。前述のように各スリット状噴射口31は、対応
するスパージャボックスの内部通路16と連通してい
る。その内部通路16を経由して各噴射口31に供給さ
れる以外に電解液が他に漏洩することがないように高い
シール性でもって、電極ノズル30はスパージャボック
スに取り付けられている。又、各電極ノズル30の対向
面32には隣り合うスリット状噴射口31間において、
逃がし溝33が設けられている。これら複数の逃がし溝
33は、電解液が各スリット状噴射口31からセパレー
タ基材Bに向けて噴射されたときに、逃げ場を求めて左
右に流れた電解液を捕らえて回収槽12内への円滑な排
出を促進する。尚、本例では、逃がし溝33の深さは約
20mmに設定されている。
FIG. 4 shows a surface-facing electrode nozzle 30 which faces the surface to be processed of the separator base material B at a predetermined interval.
The outline of is shown. As shown in FIG. 4, a plurality of slit-shaped injection ports 31 (in this example, nine) are formed on the facing surface 32 of each electrode nozzle 30. Each slit-shaped injection port 31
Extend in the vertical direction, and the length h in the vertical direction matches the height h (see FIG. 2) of the processed portion of the separator base material B. The width of each slit-shaped injection port 31 is 0.5 mm or more.
It is set in the range of 2.5 mm, preferably about 1.5 mm. As described above, each slit-shaped injection port 31 communicates with the internal passage 16 of the corresponding sparger box. The electrode nozzle 30 is attached to the sparger box with a high sealing property so that the electrolytic solution does not leak to the other than the supply to the injection ports 31 via the internal passages 16. Also, between the slit-shaped injection ports 31 adjacent to the facing surface 32 of each electrode nozzle 30,
An escape groove 33 is provided. The plurality of escape grooves 33 captures the electrolyte flowing to the left and right in search of an escape spot when the electrolyte is injected from each of the slit-shaped injection ports 31 toward the separator base material B, and enters the recovery tank 12. Promote smooth discharge. In this example, the depth of the escape groove 33 is set to about 20 mm.

【0027】各電極ノズル30の対向面32にあって、
各スリット状噴射口31の上端縁をつなぐ仮想ラインか
ら上の領域(図4に斜線で示す上部領域)および各スリ
ット状噴射口31の下端縁をつなぐ仮想ラインから下の
領域(図4に斜線で示す下部領域)には、それぞれ薄膜
状のマスキング34,35が施されている。これらのマ
スキング34,35は、ワークとしてのセパレータ基材
Bとの間に電界を形成する必要のない領域を極力封鎖し
て、スリット状噴射口31に沿った露出領域(実質的な
負極)がセパレータ基材Bの被加工面(実質的な正極)
と対向した場合に両者間に形成される電界を最適化する
ためのものである。
On the facing surface 32 of each electrode nozzle 30,
A region above an imaginary line connecting the upper edges of the slit-shaped nozzles 31 (an upper region indicated by oblique lines in FIG. 4) and a region below the imaginary line connecting the lower edges of the slit-shaped nozzles 31 (shaded lines in FIG. 4) (Lower regions indicated by) are provided with thin masks 34 and 35, respectively. These masks 34 and 35 seal as much as possible a region in which an electric field does not need to be formed between the separator base material B as a work, and an exposed region (substantially a negative electrode) along the slit-shaped injection port 31 is formed. Work surface of separator base material B (substantially positive electrode)
This is for optimizing the electric field formed between them when they face each other.

【0028】電極ノズル30は、導電性と耐腐食性とを
兼ね備えた材料で構成されており、そのような電極構成
材料としては例えば、白金、グラファイト、又は、ステ
ンレス鋼もしくはチタン系金属の表面に白金メッキを施
したものがあげられる。尚、マスキング34の上辺位置
には、複数のワークガイド36が水平方向横一列に配列
され、マスキング35の下辺位置には、水平方向に延び
るワークガイド37が設けられている。これらのワーク
ガイド36,37は、電解エッチング加工時にワークの
表面に接触してワークの移動をガイドすると共に、ワー
クを側方から支えてそのぐらつきを防止する。本例で
は、ワークガイド36,37は電極ノズル30上に設け
られているが、これらは電極としての機能には全く関与
しない。
The electrode nozzle 30 is made of a material having both conductivity and corrosion resistance. Examples of such an electrode constituent material include platinum, graphite, and stainless steel or titanium-based metal. One that has been subjected to platinum plating is given. A plurality of work guides 36 are arranged in a row in the horizontal direction at an upper side position of the masking 34, and a work guide 37 extending in the horizontal direction is provided at a lower side position of the masking 35. These work guides 36 and 37 come into contact with the surface of the work during electrolytic etching to guide the movement of the work and also support the work from the side to prevent the work from wobbling. In this example, the work guides 36 and 37 are provided on the electrode nozzle 30, but they have no relation to the function as an electrode.

【0029】なお、実際に燃料電池セパレータの製造ラ
インを構築する際には、上述のような左右一対のスパー
ジャボックス14,15を一組として同様のスパージャ
ボックス対を複数組準備し、それらを直列に配置するこ
とでセパレータ基材Bを搬送する直線状経路を設定す
る。そして、その直線状経路に沿ってガイドレール21
を設け、その上に複数のワークホルダ22を走らせる。
こうすることで、多数のセパレータ基材Bを一方向に搬
送しながら電解エッチングを流れ作業的にこなすことが
可能となる。
When actually constructing a fuel cell separator manufacturing line, a plurality of similar sparger box pairs are prepared by using the above-mentioned pair of left and right sparger boxes 14 and 15 as a set, and they are connected in series. , A straight path for transporting the separator base material B is set. Then, along the linear path, the guide rail 21
And a plurality of work holders 22 are run thereon.
By doing so, it becomes possible to carry out the electrolytic etching while conveying a large number of separator base materials B in one direction, and to perform the work in an operative manner.

【0030】(燃料電池セパレータの製造手順)次に、
上記製造装置を用いてガス流路一体型の燃料電池セパレ
ータを製造する手順について説明する。なお、以下の説
明では、燃料電池用セパレータを製造する際の周知・慣
用の手順については、説明を省略するか極めて簡潔に述
べるにとどめる。
(Procedure for Manufacturing Fuel Cell Separator)
A procedure for manufacturing a fuel cell separator integrated with a gas flow path using the above manufacturing apparatus will be described. In the following description, well-known and commonly used procedures for manufacturing a fuel cell separator will not be described or will be described only briefly.

【0031】(準備工程)ガス流路一体型の燃料電池セ
パレータを形成するための出発材料たるセパレータ基材
Bは、例えば金属板材をカッティングすることにより準
備される。セパレータ基材Bは導電性材料で構成され
る。使用可能な導電性材料としては、例えばアルミニウ
ム系、ステンレス鋼系、チタン系、銅系の金属又は合金
があげられる。セパレータ基材Bは、好ましくは平板状
の金属板材である。本例では、セパレータ基材Bとし
て、厚さ1.5mm、幅300mm、高さ430mmの
ステンレス鋼板(SUS304)を採用した。セパレー
タ基材Bの被加工面(表面及び裏面)には、脱脂洗浄等
の前処理の後、マスキングを施した。図1、図2及び図
5に示すように、セパレータ基材B上のマスキングM
は、ガス流路を形成する際に凸部又は陸部として残す部
位(即ち非エッチング部位)に施される。基材B用のマ
スキング材料としては、電界又は無電界メッキ用の一般
的なマスキング材料を用いることができる。マスク形成
にあたっては例えば、耐酸性エッチレジストを所定の希
釈溶剤で薄めて適度な粘度とし、これをセパレータ基材
Bの各被加工面にスクリーン印刷後乾燥するという手法
や、マスキングテープを貼り付けるという手法がとられ
る。なお、前記耐酸性エッチレジストに代えてUV硬化
型レジストを用いてもよい。
(Preparation Step) A separator base material B as a starting material for forming a fuel cell separator integrated with a gas flow path is prepared, for example, by cutting a metal plate material. The separator substrate B is made of a conductive material. Examples of usable conductive materials include aluminum-based, stainless steel-based, titanium-based, and copper-based metals or alloys. The separator base material B is preferably a flat metal plate material. In this example, a stainless steel plate (SUS304) having a thickness of 1.5 mm, a width of 300 mm, and a height of 430 mm was used as the separator base material B. The processing surfaces (front and back surfaces) of the separator base material B were subjected to masking after pretreatment such as degreasing and washing. As shown in FIG. 1, FIG. 2 and FIG.
Is applied to a portion (that is, a non-etched portion) that is left as a convex portion or a land portion when forming a gas flow path. As the masking material for the base material B, a general masking material for electric field or electroless plating can be used. In forming the mask, for example, a method of diluting an acid-resistant etch resist with a predetermined diluting solvent to have an appropriate viscosity, drying the screen on each processing surface of the separator substrate B after screen printing, or attaching a masking tape. An approach is taken. Note that a UV-curable resist may be used instead of the acid-resistant etch resist.

【0032】更に、図2、図5及び図6に示すように、
マスキングMが施されたセパレータ基材Bの各被加工面
に対し、電界遮蔽用の遮蔽材40を両面テープ等を用い
て貼着固定した。この遮蔽材40は額縁のような全体形
状をなし、ワークの搬送方向に対する前側部40a、後
側部40b、上側部40c及び下側部40dを備えてい
る。遮蔽材40の中央には略方形状の開口41が存在す
る。この開口41を区画する遮蔽材40の内周縁42
は、セパレータ基材Bの非マスキング部N(即ちエッチ
ング対象となる露出部位)の外周縁に対応している。こ
のため、セパレータ基材Bの各被加工面に対し遮蔽材4
0を貼着した場合には、各被加工面における非マスキン
グ部Nの全体がそのまま遮蔽材40の開口41から露出
することになる。
Further, as shown in FIGS. 2, 5 and 6,
An electric field shielding material 40 was adhered and fixed to each surface to be processed of the separator substrate B to which the masking M was applied, using a double-sided tape or the like. The shielding member 40 has an overall shape like a frame, and includes a front side portion 40a, a rear side portion 40b, an upper side portion 40c, and a lower side portion 40d in the work conveyance direction. At the center of the shielding member 40, there is an opening 41 having a substantially square shape. Inner peripheral edge 42 of shielding material 40 defining this opening 41
Corresponds to the outer peripheral edge of the non-masking portion N (that is, the exposed portion to be etched) of the separator base material B. For this reason, the shielding material 4
When 0 is stuck, the entire non-masking portion N on each processing surface is exposed from the opening 41 of the shielding member 40 as it is.

【0033】各遮蔽材40の厚みは、図6に示すよう
に、セパレータ基材Bと電極ノズル30との対向面間の
距離にほぼ匹敵するように設定されている。つまり遮蔽
材40は、被加工面上の非マスキング部Nを包囲した状
態でセパレータ基材Bと電極ノズル30との間の空間を
ほぼ埋め尽くす。なお、この場合でも、遮蔽材40を電
極ノズル30の対向面32に非接触とすることが好まし
いが、電極ノズル30に沿ったセパレータ基材B及び遮
蔽材40の同期移動(又は一体移動)に支障が生じない
限り、遮蔽材40を電極ノズル30の対向面32に接触
させてもよい。
As shown in FIG. 6, the thickness of each shielding member 40 is set to be substantially equal to the distance between the facing surfaces of the separator base material B and the electrode nozzle 30. That is, the shielding material 40 almost completely fills the space between the separator base material B and the electrode nozzle 30 in a state surrounding the non-masking portion N on the processing surface. Also in this case, it is preferable that the shielding member 40 is not in contact with the opposing surface 32 of the electrode nozzle 30, but it is necessary to synchronize (or move integrally) the separator base material B and the shielding member 40 along the electrode nozzle 30. The shielding member 40 may be brought into contact with the facing surface 32 of the electrode nozzle 30 as long as no trouble occurs.

【0034】遮蔽材40は、正負両電極間に形成される
電界を部分的に遮蔽するための部材としての役目を担う
ため、電気絶縁材料で構成される。使用する電気絶縁材
料としては、体積固有抵抗率が1014(Ω・cm)以上
の材料が好ましく、例えば耐熱性のポリ塩化ビニル(P
VC)があげられる。このようにして準備されたマスキ
ングM及び遮蔽材40付きセパレータ基材Bは、その上
端部がワークホルダ22に把持された状態で鉛直方向に
吊り下げられる。
The shielding member 40 is made of an electrically insulating material to serve as a member for partially shielding the electric field formed between the positive and negative electrodes. As the electric insulating material to be used, a material having a volume resistivity of 10 14 (Ω · cm) or more is preferable. For example, heat-resistant polyvinyl chloride (P
VC). The masking M thus prepared and the separator base material B with the shielding member 40 are suspended in the vertical direction with the upper end portions being held by the work holder 22.

【0035】他方、貯留槽11内には、電解エッチング
加工用の処理液たる電解液が用意される。電解液として
は、電解エッチング処理液として一般に知られているも
のが使用でき、例えば、エッチング対象となる金属材料
の種類に応じて、硝酸、フッ化水素酸、リン酸、塩酸及
び硫酸からなる群より複数種の酸を選択・混合して混酸
溶液を作り、そこへエッチング速度等を調整するための
添加剤を少量(混酸溶液1リットルに対し添加剤を0.
1〜0.5ミリリットル程度)加えたものが推奨され
る。あるいは電解液として、硝酸ナトリウム溶液を用い
てもよい。電解液の温度は、30℃〜65℃の範囲で任
意に選択できるが、温度がエッチング処理に与える影響
は大きいため、電解エッチング中は極力一定の温度に保
つことが好ましい。
On the other hand, in the storage tank 11, an electrolytic solution, which is a processing solution for electrolytic etching, is prepared. As the electrolytic solution, those generally known as electrolytic etching treatment solutions can be used. For example, a group consisting of nitric acid, hydrofluoric acid, phosphoric acid, hydrochloric acid, and sulfuric acid depending on the type of metal material to be etched. More than one kind of acid is selected and mixed to prepare a mixed acid solution, and a small amount of an additive for adjusting an etching rate or the like is added thereto.
(About 1-0.5 ml) is recommended. Alternatively, a sodium nitrate solution may be used as the electrolyte. The temperature of the electrolytic solution can be arbitrarily selected in the range of 30 ° C. to 65 ° C., but since the temperature greatly affects the etching process, it is preferable to keep the temperature as constant as possible during electrolytic etching.

【0036】(電解加工工程)ワークホルダ22に保持
されたマスキングM及び遮蔽材40付きセパレータ基材
Bは、駆動モータ24の駆動に伴い、両スパージャボッ
クス14,15に設けられた一対の電極ノズル30間に
搬送される(図1、図5及び図6参照)。セパレータ基
材Bが二つの電極ノズル30間に配置されたとき、セパ
レータ基材Bの各被加工面と電極ノズルの対向面32と
の間隔は、好ましくは0.05mm〜30mm(より好
ましくは0.1〜0.5mm)に設定されている。この
間隔が0.05mm未満であると、セパレータ基材Bと
電極ノズル30との間でスパークを生じ易くなり却って
加工精度が低下する。他方、前記間隔が30mmを超え
ると、電気抵抗が増大して電解エッチング効率が著しく
低下する。
(Electrochemical Machining Step) The masking M and the separator base material B with the shielding material 40 held by the work holder 22 are driven by the drive motor 24 so that the pair of electrode nozzles provided in the sparger boxes 14 and 15 are disposed. 30 (see FIGS. 1, 5 and 6). When the separator base material B is disposed between the two electrode nozzles 30, the distance between each processing surface of the separator base material B and the facing surface 32 of the electrode nozzle is preferably 0.05 mm to 30 mm (more preferably 0 mm to 30 mm). .1 to 0.5 mm). If this interval is less than 0.05 mm, sparks are likely to occur between the separator base material B and the electrode nozzles 30, and the processing accuracy is rather reduced. On the other hand, if the distance exceeds 30 mm, the electrical resistance increases, and the electrolytic etching efficiency decreases significantly.

【0037】セパレータ基材Bが両電極ノズル30間に
進入するときには、各電極ノズル30からセパレータ基
材Bの各被加工面に対して電解液が噴射供給されると共
に、直流電源26によってセパレータ基材B及び電極ノ
ズル30に電流が供給される。電解エッチング時に直流
電源26から供給される直流電流の電流密度は、好まし
くは0.5〜100.0A/cm2(より好ましくは1
0〜45A/cm2)である。給電時間(つまり、セパ
レータ基材Bが両電極ノズル30間に存在する時間)
は、電流密度や所望の溝深さに応じて適宜変更される。
When the separator base material B enters between the two electrode nozzles 30, the electrolyte solution is sprayed and supplied from each electrode nozzle 30 to each surface to be processed of the separator base material B, and the DC power source 26 supplies the separator base material. Electric current is supplied to the material B and the electrode nozzle 30. The current density of the DC current supplied from the DC power supply 26 during electrolytic etching is preferably 0.5 to 100.0 A / cm 2 (more preferably 1 to 10 A / cm 2 ).
0 to 45 A / cm 2 ). Power supply time (that is, the time during which the separator base material B exists between the two electrode nozzles 30)
Is appropriately changed according to the current density and the desired groove depth.

【0038】電極ノズル30からの電解液の噴射圧及び
噴射流量は、ポンプPの圧送能力を調節することにより
任意設定可能である。電解液は、電極ノズル30の各々
のスリット状噴射口31から、セパレータ基材Bの被加
工面に対しほぼ直角方向(図1では水平方向)に噴射さ
れる。この噴射は、左右二つの電極ノズル30から一斉
に行われる。図4及び図5に示すように各スリット状噴
射口31は垂直方向に延びており、しかも水平方向(セ
パレータ基材Bの搬送方向)に所定間隔を隔てて複数個
設けられている。このため、各スリット状噴射口31か
ら噴射された電解液の多くは、被加工面にぶつかるとそ
のまま下に流れ落ちるよりも逃げ場を求めて左右に広が
り、逃がし溝33に進入する。逃がし溝33に進入した
電解液はその逃がし溝33に沿って垂直に流れ落ち、回
収槽12内に回収される。
The injection pressure and the injection flow rate of the electrolyte from the electrode nozzle 30 can be arbitrarily set by adjusting the pumping capacity of the pump P. The electrolyte is injected from each slit-shaped injection port 31 of the electrode nozzle 30 in a direction substantially perpendicular to the surface to be processed of the separator base material B (the horizontal direction in FIG. 1). This injection is performed simultaneously from the two left and right electrode nozzles 30. As shown in FIGS. 4 and 5, each slit-shaped injection port 31 extends in the vertical direction, and a plurality of slit-shaped injection ports 31 are provided at predetermined intervals in the horizontal direction (the direction of transport of the separator base material B). Therefore, most of the electrolyte injected from each of the slit-shaped injection ports 31 spreads right and left in search of an escape place rather than flowing down as it hits the surface to be processed, and enters the escape groove 33. The electrolyte that has entered the escape groove 33 flows vertically down the escape groove 33 and is collected in the collection tank 12.

【0039】このように、左右の電極ノズル30からセ
パレータ基材Bの左右の被加工面に噴射供給された電解
液は、即座に(又は極めて短時間のうちに)各被加工面
の全体に満遍なく行き渡り電解エッチング加工に供され
る。又、電解エッチングによって生じた電解生成物も、
次々と電極ノズル30から噴射供給される電解液によっ
て押し流され、被加工面と電極ノズル30との間にとど
まることがない。それ故、電解液による被加工面の電解
エッチング及び電解研磨が高効率でもって遂行される。
As described above, the electrolytic solution jetted and supplied from the left and right electrode nozzles 30 to the left and right surfaces to be processed of the separator substrate B immediately (or in a very short time) spreads over the entire surface to be processed. It is widely used for electrolytic etching. Also, electrolytic products generated by electrolytic etching,
It is swept away by the electrolytic solution injected and supplied from the electrode nozzle 30 one after another, and does not stay between the surface to be processed and the electrode nozzle 30. Therefore, electrolytic etching and electrolytic polishing of the surface to be processed with the electrolytic solution are performed with high efficiency.

【0040】(後処理工程)電解エッチング加工後、セ
パレータ基材Bはワークホルダ22から取り外されて、
あるいはライン上を給電されないワークホルダ22に装
着されたままで、付着した電解液除去のための洗浄が行
われ、更に遮蔽材40及びマスキングMを除去するため
の処理が行われる。マスキングMを除去した後のセパレ
ータ基材Bには、非マスキング部位において所望深さの
凹部(溝や凹み)が形成されて、所望形態が付与された
流路一体型セパレータとなる。前記凹部の底面には優れ
た光沢が観察され、所期の電解エッチングと同時に、底
面その他の露出面に対する電解研磨が併せて施された。
なお、このようにして得られた流路一体型セパレータに
対しては、最終的に形を整えるためのプレス加工等が必
要に応じて施される。
(Post-Processing Step) After the electrolytic etching, the separator base material B is removed from the work holder 22,
Alternatively, while the line is mounted on the work holder 22 to which power is not supplied, cleaning for removing the attached electrolytic solution is performed, and further, processing for removing the shielding member 40 and the masking M is performed. After the masking M has been removed, a concave portion (a groove or a concave portion) having a desired depth is formed in the non-masking portion of the separator base material B, thereby providing a flow path integrated type separator having a desired form. Excellent gloss was observed on the bottom surface of the concave portion, and the bottom surface and other exposed surfaces were subjected to electrolytic polishing simultaneously with the intended electrolytic etching.
The thus obtained separator integrated with a flow path is subjected to press working or the like for finally adjusting its shape, if necessary.

【0041】図7は、本件方法を用いて製造される燃料
電池セパレータの一例を示す。図7に示すように、燃料
電池セパレータの周辺部には、多数のセパレータを積層
したときにその積層方向に貫通する複数のガスマニホー
ルド51A,51B,52A,52Bが設けられてい
る。又、図7のセパレータの正面中央領域には、相互に
離間した一対のガスマニホールド51A及び51Bを連
通させるべくS字状に蛇行したガス流路を構成する溝パ
ターン53が設けられている。このガス流路構成用凹部
としての溝パターン53が前述のような電解加工によっ
て形成される。
FIG. 7 shows an example of a fuel cell separator manufactured using the present method. As shown in FIG. 7, a plurality of gas manifolds 51A, 51B, 52A, 52B that penetrate in the stacking direction when a large number of separators are stacked are provided around the fuel cell separator. Further, a groove pattern 53 forming a gas flow path meandering in an S-shape is provided in the front central region of the separator of FIG. 7 so as to communicate a pair of gas manifolds 51A and 51B separated from each other. The groove pattern 53 as the gas flow path forming concave portion is formed by the electrolytic processing as described above.

【0042】(電解加工における遮蔽材40の作用等)
図5及び図6に示すように、上記電解加工工程において
は常時、セパレータ基材Bと一体移動する額縁状の遮蔽
材40が、各被加工面の非マスキング部Nと直に向き合
うことになる電極ノズル対向面32の一部領域(図6の
領域R)よりも周囲の領域をほぼ覆い隠す。つまり、セ
パレータ基材Bと電極ノズル30との間の離間長相当の
厚みを有する遮蔽材40が両者間に介在することで、各
被加工面の非マスキング部Nに直に向き合うことになる
電極ノズル対向面32の一部領域Rの形状及び面積が、
遮蔽材40の開口41から露出される非マスキング部N
の形状及び面積に一致する状況が生まれる。このため、
額縁状遮蔽材40の内側空間における電界は、電気力線
(図6に矢印で示す)のほぼ全てが被加工面及び電極ノ
ズル対向面32に対し直交してなる平行電界の様相を呈
する。少なくとも、非マスキング部Nの周辺部と、電極
ノズル30の前記領域R以外の領域とをつなぐような電
気力線の回り込みはほとんど生じない。従って、電極ノ
ズル30の前記領域Rと1対1の対応関係で対向する非
マスキング部Nにあっては、その周辺部又は端部におけ
る電流密度の偏在は無く、ほぼ全面において電流密度が
均一化される。このため、非マスキング部Nに対し電解
加工が施されても、場所による溝深さのバラツキは生じ
ない。
(Effects of Shielding Material 40 in Electrochemical Processing)
As shown in FIGS. 5 and 6, in the above-described electrolytic processing step, the frame-shaped shielding member 40 that moves integrally with the separator base material B always directly faces the non-masking portion N of each processing surface. An area surrounding the electrode nozzle facing surface 32 is more nearly covered than a partial area (area R in FIG. 6). That is, since the shielding member 40 having a thickness equivalent to the separation length between the separator base material B and the electrode nozzle 30 is interposed therebetween, the electrode directly faces the non-masking portion N of each processing surface. The shape and area of the partial region R of the nozzle facing surface 32 are
Non-masking portion N exposed from opening 41 of shielding material 40
A situation that matches the shape and area of the For this reason,
The electric field in the inner space of the frame-shaped shielding member 40 has a form of a parallel electric field in which almost all lines of electric force (indicated by arrows in FIG. 6) are orthogonal to the surface to be processed and the electrode nozzle facing surface 32. At least, there is almost no wraparound of the lines of electric force connecting the peripheral portion of the non-masking portion N and the region other than the region R of the electrode nozzle 30. Therefore, in the non-masking portion N facing the region R of the electrode nozzle 30 in a one-to-one correspondence, there is no uneven distribution of the current density in the peripheral portion or the end portion, and the current density is made uniform over almost the entire surface. Is done. Therefore, even if the non-masking portion N is subjected to electrolytic processing, the groove depth does not vary depending on the location.

【0043】この点に関しては、試作実験により遮蔽材
40の有効性を確認している。試作実験では、SUS3
04のステンレス鋼板に対し、上記製造装置を用い且つ
上記遮蔽材40を用いて電解加工を行った場合(実施
例)と、上記遮蔽材40を用いずに電解加工を行った場
合(比較例)とについて電解加工により得られる溝(凹
部)の深さを測定した。つまり遮蔽材40の有無以外の
加工条件は両者とも全く同一にした。尚、試作実験での
加工条件は、正負両極間の距離を2.7mm、電流密度
を5.0A/cm2、給電時間を20分間とした。測定
した溝の深さとは、図9に示すように加工前のステンレ
ス鋼板の本来の表面(基準面)から、電解加工によって
形成された溝の底面までの垂直距離をいう。測定点は図
9に示すa〜fの6点であり、測定点aはマスキングM
の端に位置する。残りの測定点b,c,d,e及びf
は、測定点aから所定間隔(約2mm間隔)置きに選定
した。
Regarding this point, the effectiveness of the shielding member 40 has been confirmed by trial production experiments. In the prototype experiment, SUS3
The case where electrolytic processing was performed on the stainless steel sheet No. 04 using the above-mentioned manufacturing apparatus and the above-mentioned shielding material 40 (Example), and the case where electrolytic processing was performed without using the above-mentioned shielding material 40 (Comparative Example) The depths of the grooves (recesses) obtained by electrolytic processing were measured for and. That is, the processing conditions other than the presence or absence of the shielding material 40 were exactly the same for both. The processing conditions in the trial production experiment were as follows: the distance between the positive and negative electrodes was 2.7 mm, the current density was 5.0 A / cm 2 , and the power supply time was 20 minutes. The measured groove depth refers to the vertical distance from the original surface (reference surface) of the stainless steel plate before processing to the bottom surface of the groove formed by electrolytic processing as shown in FIG. The measurement points are six points a to f shown in FIG.
Located at the end of The remaining measurement points b, c, d, e and f
Was selected at predetermined intervals (approximately 2 mm intervals) from the measurement point a.

【0044】図8のグラフは、実施例及び比較例におけ
る溝深さの測定結果を測定点ごとにプロットしたもので
ある。図8から分かるように、遮蔽材40を用いた実施
例にあっては、いずれの測定点においてもほぼ目標値
(本例では0.38mm)通りの深さとすることができ
た。実施例における6つの測定点a〜fでの溝深さのバ
ラツキは前記目標値に対して2%以内にとどまり、位置
による溝深さの相違はほとんど見られなかった。これに
対し、遮蔽材40を用いなかった比較例では、マスキン
グMの端に近づくほど深彫りになる傾向がみられ、位置
によって溝深さの分布にバラツキが生じた。
FIG. 8 is a graph in which the measurement results of the groove depth in the example and the comparative example are plotted for each measurement point. As can be seen from FIG. 8, in the example using the shielding member 40, the depth could be almost the target value (0.38 mm in this example) at any of the measurement points. The variation in the groove depth at the six measurement points a to f in the example was within 2% of the target value, and the difference in the groove depth depending on the position was hardly observed. On the other hand, in the comparative example in which the shielding material 40 was not used, there was a tendency that the depth of the groove became deeper toward the end of the masking M, and the distribution of the groove depth varied depending on the position.

【0045】なお、本実施形態において、遮蔽材40を
セパレータ基材Bに貼着固定することでセパレータ基材
Bと遮蔽材40とを同期移動可能としたことの意義は、
セパレータ基材Bを電極ノズル30に沿って搬送しなが
ら電解加工を行うという事情と密接に関連する。つま
り、仮に電極ノズル30側に電界遮蔽効果のある部材を
設けるとしても、図4及び図5に示すマスキング34,
35のようにセパレータ基材Bの搬送方向に沿った方向
に延びるような態様で、セパレータ基材被加工面の非マ
スキング部Nよりも上側部位及び下側部位に対向させて
設けるしかない。即ち、セパレータ基材Bの搬送方向に
対して直交する方向(垂直方向)に延びる遮蔽材を電極
ノズル30側に設けることは、水平方向に搬送しながら
の電解加工を阻害することになるからである。それ故、
被加工面の非マスキング部Nよりも搬送方向前側部及び
後側部における電界遮蔽は、セパレータ基材Bに固着さ
れた遮蔽材40の前側部40a及び後側部40bに頼る
しかない。このように、電極ノズル30の対向面32が
セパレータ基材Bの搬送方向に沿って延びる連続した露
出面であることが、セパレータ基材Bと同期移動する額
縁状遮蔽材40の存在を意義あるものとしている。
In the present embodiment, the meaning that the shielding member 40 is attached and fixed to the separator substrate B so that the separator substrate B and the shielding member 40 can be moved synchronously is as follows.
This is closely related to the fact that electrolytic processing is performed while transporting the separator base material B along the electrode nozzle 30. That is, even if a member having an electric field shielding effect is provided on the electrode nozzle 30 side, the masking 34 shown in FIGS.
There is no other way but to extend in the direction along the transport direction of the separator base material B, such as 35, to face the upper and lower parts of the non-masking part N of the processed surface of the separator base material. That is, providing the shielding material extending in the direction (vertical direction) orthogonal to the transport direction of the separator base material B on the electrode nozzle 30 side would hinder electrolytic processing while transporting in the horizontal direction. is there. Therefore,
Electric field shielding at the front side and the rear side in the transport direction relative to the non-masking portion N of the processed surface depends only on the front side 40a and the rear side 40b of the shielding member 40 fixed to the separator base material B. As described above, the fact that the opposing surface 32 of the electrode nozzle 30 is a continuous exposed surface extending along the transport direction of the separator base material B means the presence of the frame-shaped shielding member 40 that moves synchronously with the separator base material B. It is assumed.

【0046】(効果)本実施形態によれば以下のような
効果を得ることができる。 ・加工電極としての電極ノズル30とセパレータ基材B
との間に遮蔽材40を配置することにより、遮蔽材40
の開口41から露出するセパレータ基材Bの被加工面
と、それに直に向き合う電極ノズル対向面32とが、同
形状で同面積となる対向関係が構築され、その結果、両
対向面間には全ての電気力線が平行となる平行電界が形
成される。それ故、電解加工対象となる面の周辺部や端
部に電気力線が集中する事態が回避され、当該周辺部及
び端部の過剰加工を防止又は緩和することができ、セパ
レータ基材Bに対する溝加工の精度を向上させることが
できる。燃料電池セパレータに関しては益々薄肉化の要
求が強まる傾向にあり、本件方法による溝加工精度の向
上は、燃料電池セパレータの更なる薄肉化の実現に大き
く貢献する。
(Effects) According to the present embodiment, the following effects can be obtained. -Electrode nozzle 30 as processing electrode and separator substrate B
The shielding material 40 is disposed between the
The surface to be processed of the separator base material B exposed from the opening 41 and the electrode nozzle opposing surface 32 directly facing the same are constructed in an opposing relationship in which the same shape and the same area are formed. As a result, between the opposing surfaces, A parallel electric field is formed in which all lines of electric force are parallel. Therefore, the situation where the lines of electric force are concentrated on the peripheral portion and the end portion of the surface to be subjected to the electrolytic processing is avoided, and the excessive processing of the peripheral portion and the end portion can be prevented or mitigated. The accuracy of the groove processing can be improved. With regard to fuel cell separators, there is a tendency for demands for thinner walls to increase more and more, and the improvement of the groove machining accuracy according to the present method greatly contributes to the realization of further thinner fuel cell separators.

【0047】・上述のようにワークの周辺部や端部での
過剰加工の心配がないので、電極ノズル30(負極)と
セパレータ基材Bの被加工面(正極)との間の距離を極
力小さく設定して両極間の電気抵抗を低減することがで
きる。このことは、電解加工におけるエネルギー損失を
少なくし、加工効率の向上や加工時間の短縮をもたら
す。
As described above, since there is no fear of excessive processing at the peripheral portion and the end portion of the work, the distance between the electrode nozzle 30 (negative electrode) and the surface to be processed (positive electrode) of the separator base material B should be minimized. By setting a small value, the electric resistance between the two electrodes can be reduced. This reduces energy loss in electrolytic processing, improves processing efficiency and shortens processing time.

【0048】・正負両極間の電気抵抗が小さくなること
でワークとしてのセパレータ基材Bでの発熱が少なくな
り、電解加工中におけるセパレータ基材Bの熱変形(反
り)を防止できる。仮にスパージャボックス14,15
間を搬送中にセパレータ基材Bが熱変形したならば、反
り返った基材が電極ノズル30にぶち当たって搬送不能
となるであろう。この点、本実施形態によれば、セパレ
ータ基材Bが熱変形する可能性は極めて少なく、上述の
ような事故を心配するに及ばない。
Heat generation on the separator substrate B as a work is reduced by reducing the electric resistance between the positive and negative electrodes, and thermal deformation (warpage) of the separator substrate B during electrolytic processing can be prevented. Temporarily sparger boxes 14, 15
If the separator base material B is thermally deformed during the transfer, the warped base material will hit the electrode nozzle 30 and cannot be transferred. In this regard, according to this embodiment, the possibility that the separator base material B is thermally deformed is extremely small, and there is no need to worry about the above-described accident.

【0049】・電解エッチング加工時には電解液を、マ
スク付きセパレータ基材Bの各被加工面に対してその直
角方向から噴射供給するため、電解液は即座に被加工面
の全体に満遍なく行き渡り、金属イオン溶出等の電気化
学反応に有効利用される。つまり、被加工面には必要に
して十分な量と濃度の電解液が常に供給される。このた
め、流路一体型セパレータの加工精度を低下させること
なく、低コストで効率的に燃料電池セパレータを製造す
ることができる。
At the time of electrolytic etching, since the electrolytic solution is jetted and supplied to the respective surfaces of the separator substrate B with the mask in a direction perpendicular to the surface, the electrolytic solution immediately spreads all over the surface to be processed, and the It is effectively used for electrochemical reactions such as ion elution. That is, the necessary and sufficient amount and concentration of the electrolyte are always supplied to the surface to be processed. Therefore, the fuel cell separator can be efficiently manufactured at low cost without lowering the processing accuracy of the flow path integrated type separator.

【0050】・電解エッチング加工時に被加工面と電極
ノズル30との隙間領域で電解生成物が生じても、噴射
の勢いによって電解生成物は電解液と共に回収槽12に
押し流される。それ故、被加工面の近傍には、電解エッ
チングの効率を低下させる電解生成物が滞留することが
なく、電極ノズル30と被加工面との間隔を小さく設定
することが可能となる。
Even if an electrolytic product is generated in the gap region between the surface to be processed and the electrode nozzle 30 during the electrolytic etching, the electrolytic product is flushed with the electrolytic solution into the recovery tank 12 by the force of the injection. Therefore, an electrolytic product that reduces the efficiency of electrolytic etching does not stay near the surface to be processed, and the distance between the electrode nozzle 30 and the surface to be processed can be set small.

【0051】・本件方法を用いて製造された流路一体型
のセパレータには、最終製品として次のような特徴又は
長所がある。プレス成型品と比べて、歪みが極めて少な
く凹部の深さも均一に仕上がる。このため、電池セルと
して組立てたときのガス流れ特性や、ガス流路内での水
蒸気の結露現象の防止対策を設計者の意図した通りのも
のとし易く、電池性能が向上する。また、歪みがほとん
どないため、電池セルを多数積層した場合でも歪みの累
積によるシール性低下を生じない。更に、電池セル内に
おいてプロトン透過性の固体高分子膜を挟装する電極に
対し、セパレータが均等な面圧を及ぼすことができるた
め、当該電極の局部損傷等を未然に回避でき、電池性能
を向上させることができる。
The separator integrated with the flow channel manufactured by using the present method has the following features or advantages as a final product. Compared with the press-formed product, the distortion is extremely small and the depth of the concave portion is uniform. For this reason, the gas flow characteristics when assembled as a battery cell and the measures for preventing the dew condensation phenomenon of water vapor in the gas flow path are easily made as intended by the designer, and the battery performance is improved. In addition, since there is almost no distortion, even when a large number of battery cells are stacked, a decrease in sealing performance due to accumulation of distortion does not occur. Furthermore, since the separator can apply an equal surface pressure to the electrode sandwiching the proton-permeable solid polymer membrane in the battery cell, local damage to the electrode can be avoided beforehand, and the battery performance can be improved. Can be improved.

【0052】(変更例)上記実施形態を以下のように変
更してもよい。上記実施形態では、セパレータ基材Bの
被加工面上に遮蔽材40を貼着固定したが、セパレータ
基材Bと遮蔽材40とが搬送方向に同期移動することが
できる限り、セパレータ基材Bに遮蔽材40を固着(一
体化)する必要はない。例えば、各遮蔽材40をワーク
ホルダ22に懸架することでセパレータ基材Bと遮蔽材
40とを同期移動可能としてもよい。また、額縁状の遮
蔽材40を用いる限り、各電極ノズル30におけるマス
キング34,35を省略してもよい。
(Modification) The above embodiment may be modified as follows. In the above embodiment, the shielding member 40 is adhered and fixed on the surface to be processed of the separator substrate B. However, as long as the separator substrate B and the shielding member 40 can move synchronously in the transport direction, the separator substrate B It is not necessary to fix (integrally) the shielding member 40 to the first. For example, by suspending each shielding member 40 on the work holder 22, the separator base material B and the shielding member 40 may be moved synchronously. Further, as long as the frame-shaped shielding member 40 is used, the masking 34, 35 in each electrode nozzle 30 may be omitted.

【0053】上記実施形態では、セパレータ基材Bを鉛
直方向に立てて保持したが、セパレータ基材Bを水平に
寝かせて保持してもよい。この場合、電解液の噴射供給
方向は垂直方向となる。又、上記実施形態では、セパレ
ータ基材Bを一方向にのみ搬送したが、電解加工中にお
いてワークホルダ22を周期的に往復動させ、セパレー
タ基材Bに一対の電極ノズル30間を前後に行ったり来
たりさせてもよい。
In the above embodiment, the separator base material B is held upright in the vertical direction. However, the separator base material B may be laid horizontally and held. In this case, the direction of injection and supply of the electrolyte is vertical. Further, in the above embodiment, the separator base material B is conveyed only in one direction, but the work holder 22 is periodically reciprocated during the electrolytic processing to move the separator base material B between the pair of electrode nozzles 30 back and forth. You may make them come and go.

【0054】上記実施形態において、セパレータ基材B
の一方の面(被加工面)には図2に示すように一部にの
みマスキングMを施し、他方の面(非加工面)にはその
全体にマスキングMを施す。そして、前記実施形態と同
様、そのセパレータ基材Bの両面に対して左右から電解
液を同時噴射することにより、一部にのみマスキングM
を施した面(被加工面)のみに対して電解加工を施して
もよい。
In the above embodiment, the separator substrate B
As shown in FIG. 2, the masking M is applied only to a part of one surface (worked surface), and the entire surface is applied to the other surface (non-processed surface). Then, in the same manner as in the above-described embodiment, by simultaneously injecting the electrolytic solution from both sides onto both surfaces of the separator substrate B, the masking M
Electrolytic machining may be performed only on the surface (worked surface) on which.

【0055】尚、本明細書において「電解加工」とは、
電解エッチング加工を含めた広義の電解加工を意味する
ものであり、狭義の電解加工のみを指すものではない。
In this specification, “electrolytic processing” means
This means electrolytic processing in a broad sense including electrolytic etching processing, and does not mean only electrolytic processing in a narrow sense.

【0056】以下に、各請求項に記載した以外の本件方
法のポイントを列挙する。 (イ)請求項1〜5のいずれか一項に記載の燃料電池セ
パレータの製造方法において、前記加工電極として、前
記セパレータ基材の被加工面に対してその略直角方向か
ら電解液を噴射供給可能な面対向型の電極兼用ノズルを
用いること。
The points of the present method other than those described in each claim are listed below. (A) In the method for manufacturing a fuel cell separator according to any one of claims 1 to 5, an electrolyte is injected and supplied from the direction substantially perpendicular to a surface to be processed of the separator substrate as the processing electrode. Use a surface-facing type electrode / nozzle that is possible.

【0057】(ロ)請求項5に記載の燃料電池セパレー
タの製造方法において、前記セパレータ基材は平板状を
なすとともにその両面共に被加工面となっており、前記
電解加工工程では、これら両被加工面に対し各々の略直
角方向から電解液を同時に噴射供給すること。又、更に
好ましくは、前記セパレータ基材をほぼ鉛直方向に保持
し、鉛直方向に延びる被加工面に対して電解液を略水平
方向から噴射供給すること。
(B) In the method of manufacturing a fuel cell separator according to claim 5, the separator substrate has a flat plate shape and both surfaces thereof are surfaces to be processed. Simultaneous injection and supply of electrolyte from each direction substantially perpendicular to the processing surface. More preferably, the separator base material is held in a substantially vertical direction, and an electrolytic solution is jetted and supplied from a substantially horizontal direction to a work surface extending in the vertical direction.

【0058】[0058]

【発明の効果】以上詳述したように本発明によれば、前
記遮蔽材の使用により、加工電極とセパレータ基材の被
加工面との間の形状又は面積の相違に由来する電気力線
の回り込みを遮って両者の対向面間に平行電界を形成す
ることが可能となるため、前記被加工面に対する電解加
工の精度を向上させることができる。加えて本発明によ
れば、加工電極とセパレータ基材との間の距離を極力小
さく設定することが可能となり、電解加工効率を向上さ
せることができると共に、セパレータ基材での発熱を抑
制してセパレータ基材の熱変形を回避することが可能と
なる。
As described in detail above, according to the present invention, the use of the shielding material reduces the lines of electric force caused by the difference in shape or area between the processing electrode and the surface to be processed of the separator substrate. Since it is possible to form a parallel electric field between the opposing surfaces by blocking the wraparound, it is possible to improve the accuracy of the electrolytic processing on the surface to be processed. In addition, according to the present invention, the distance between the processing electrode and the separator substrate can be set as small as possible, and the electrolytic processing efficiency can be improved, and the heat generation in the separator substrate is suppressed. It is possible to avoid thermal deformation of the separator substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】燃料電池セパレータの製造装置の概要を示す縦
断面図。
FIG. 1 is a longitudinal sectional view showing an outline of an apparatus for manufacturing a fuel cell separator.

【図2】セパレータ基材、遮蔽材及び製造装置の一部を
示す斜視図。
FIG. 2 is a perspective view showing a part of a separator base material, a shielding material, and a manufacturing apparatus.

【図3】ワークホルダの搬送系の概略を示す平面図。FIG. 3 is a plan view schematically showing a transfer system of a work holder.

【図4】電極ノズルの対向面の概要を示す正面図。FIG. 4 is a front view showing an outline of a facing surface of an electrode nozzle.

【図5】搬送時のセパレータ基材と電極ノズルとの関係
を示す正面図。
FIG. 5 is a front view showing a relationship between a separator base material and an electrode nozzle during transportation.

【図6】搬送時のセパレータ基材と電極ノズルとの関係
を示す横断面図。
FIG. 6 is a cross-sectional view showing a relationship between a separator base material and an electrode nozzle during transportation.

【図7】最終製品としての燃料電池セパレータの一例を
示す平面図。
FIG. 7 is a plan view showing an example of a fuel cell separator as a final product.

【図8】試作試験での測定点と溝深さとの関係を示すグ
ラフ。
FIG. 8 is a graph showing a relationship between a measurement point and a groove depth in a prototype test.

【図9】試作試験における測定点の選択方法の概要を示
す断面図。
FIG. 9 is a cross-sectional view showing an outline of a method of selecting a measurement point in a prototype test.

【図10】二電極間での電気力線の発生状況を示す正面
図及び側面図。
FIGS. 10A and 10B are a front view and a side view showing a state of generation of lines of electric force between two electrodes.

【図11】二電極間での電気力線の発生状況を示す正面
図及び側面図。
FIGS. 11A and 11B are a front view and a side view showing a state of generation of lines of electric force between two electrodes. FIGS.

【図12】本発明の着想を説明するための正面図及び側
面図。
FIG. 12 is a front view and a side view for explaining an idea of the present invention.

【符号の説明】[Explanation of symbols]

30…電極兼用ノズル(加工電極)、32…対向面、4
0…遮蔽材、53…溝パターン(ガス流路構成用凹
部)、B…セパレータ基材、M…セパレータ基材上のマ
スキング、N…非マスキング部。
30 ... electrode combined nozzle (working electrode), 32 ... facing surface, 4
0: shielding material, 53: groove pattern (recess for gas flow path configuration), B: separator substrate, M: masking on separator substrate, N: non-masking portion.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松川 政憲 愛知県豊田市高丘新町天王1番地 アイシ ン高丘株式会社内 (72)発明者 桑原 陽平 愛知県豊田市高丘新町天王1番地 アイシ ン高丘株式会社内 (72)発明者 出分 謙治 愛知県尾張旭市下井町前の上1658番地の1 日本ケミカル電子株式会社内 (72)発明者 出分 伸二 愛知県尾張旭市下井町前の上1658番地の1 日本ケミカル電子株式会社内 Fターム(参考) 3C059 AA02 AB01 HA01 HA03 5H026 BB00 CC03 CX04 EE02 HH02 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masanori Matsukawa 1st Tenno, Takaokashinmachi, Toyota City, Aichi Prefecture Aisin Takaoka Co., Ltd. (72) Inventor Yohei Kuwahara 1st, Takaokashinmachi, Toyota City, Aichi Prefecture Aisin Takaoka Corporation (72) Inventor Kenji Izumi 1658-1, Shimomachi-cho, Oita-Asahi City, Aichi Prefecture Nippon Chemical Electronics Co., Ltd. (72) Inventor Shinji Idebu 1658-1, Shimoi-cho, Owariasahi City, Aichi Prefecture Japan F term in Chemical Electronics Co., Ltd. (reference) 3C059 AA02 AB01 HA01 HA03 5H026 BB00 CC03 CX04 EE02 HH02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ガス流路一体型の燃料電池セパレータの製
造方法であって、 加工電極に対し、その加工電極とは形状又は面積の異な
る導電性のセパレータ基材の被加工面を所定間隔を隔て
て対向させる工程と、 前記加工電極と前記セパレータ基材の被加工面との形状
又は面積の相違に由来する電気力線の回り込みを遮って
両者の対向面間に平行電界を形成するための遮蔽材を、
加工電極とセパレータ基材との間に配置する工程と、 前記セパレータ基材及び加工電極の対向面間に電解液を
介在させた状態で両者に給電することにより、該セパレ
ータ基材の被加工面にガス流路構成用凹部を電解加工す
る工程とを備えたことを特徴とする燃料電池セパレータ
の製造方法。
1. A method of manufacturing a fuel cell separator having an integrated gas flow path, wherein a processing surface of a conductive separator base material having a shape or an area different from that of the processing electrode is spaced apart from the processing electrode by a predetermined distance. And forming a parallel electric field between the opposing surfaces by blocking the wraparound of lines of electric force resulting from the difference in shape or area between the processing electrode and the surface to be processed of the separator base material. Shielding material,
A step of arranging between the processing electrode and the separator substrate; and supplying power to both the separator substrate and the processing electrode in a state where an electrolytic solution is interposed between the facing surfaces of the processing electrode, whereby the surface to be processed of the separator substrate is processed. Further comprising the step of electrolytically processing the gas flow passage forming recess.
【請求項2】前記遮蔽材は電気絶縁材料で構成されてい
ることを特徴とする請求項1に記載の燃料電池セパレー
タの製造方法。
2. The method for manufacturing a fuel cell separator according to claim 1, wherein said shielding member is made of an electrically insulating material.
【請求項3】前記遮蔽材は、前記セパレータ基材の被加
工面と前記加工電極の対向面とが同形状で同面積となる
ような対向関係を構築し得るように、加工電極とセパレ
ータ基材との間に介在されることを特徴とする請求項1
又は2に記載の燃料電池セパレータの製造方法。
3. The processing electrode and the separator base are arranged so that the processing surface of the separator base material and the opposing surface of the processing electrode have the same shape and the same area. 2. The device according to claim 1, wherein the material is interposed between the material and the material.
Or the method for producing a fuel cell separator according to item 2.
【請求項4】前記セパレータ基材の被加工面に対する電
解加工は、前記加工電極に沿って前記セパレータ基材及
び前記遮蔽材を同期移動させながら行われることを特徴
とする請求項1〜3のいずれか一項に記載の燃料電池セ
パレータの製造方法。
4. The method according to claim 1, wherein the electrolytic processing of the surface of the separator substrate is performed while the separator substrate and the shielding member are synchronously moved along the processing electrode. A method for producing the fuel cell separator according to any one of the preceding claims.
【請求項5】前記セパレータ基材の被加工面にマスキン
グを部分的に施すとともに、前記電解加工工程では、マ
スキングされたセパレータ基材の被加工面に対してその
略直角方向から電解液を噴射供給して前記被加工面と加
工電極との間に電解液を介在させ、前記被加工面の非マ
スキング部を電解してガス流路構成用凹部を形成するこ
とを特徴とする請求項1〜4のいずれか一項に記載の燃
料電池セパレータの製造方法。
5. A process for masking a part of the surface of the separator substrate, and spraying an electrolyte from the masked surface of the separator substrate in a direction substantially perpendicular to the surface of the separator substrate. An electrolytic solution is supplied and interposed between the processing surface and the processing electrode, and a non-masking portion of the processing surface is electrolyzed to form a gas flow path forming concave portion. 5. The method for producing a fuel cell separator according to any one of items 4 to 5.
JP2000338247A 2000-11-06 2000-11-06 Production process of fuel cell separator Pending JP2002151096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000338247A JP2002151096A (en) 2000-11-06 2000-11-06 Production process of fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000338247A JP2002151096A (en) 2000-11-06 2000-11-06 Production process of fuel cell separator

Publications (1)

Publication Number Publication Date
JP2002151096A true JP2002151096A (en) 2002-05-24

Family

ID=18813484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000338247A Pending JP2002151096A (en) 2000-11-06 2000-11-06 Production process of fuel cell separator

Country Status (1)

Country Link
JP (1) JP2002151096A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101013872B1 (en) 2008-10-22 2011-02-14 현대자동차주식회사 Manufacturing method for metallic separator using incrementally synchronized rapid rubber forming process
JP2011245617A (en) * 2010-05-25 2011-12-08 General Electric Co <Ge> Metal cutting system and method
CN111263996A (en) * 2017-10-25 2020-06-09 杰富意钢铁株式会社 Method for producing stainless steel sheet for separator of fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101013872B1 (en) 2008-10-22 2011-02-14 현대자동차주식회사 Manufacturing method for metallic separator using incrementally synchronized rapid rubber forming process
JP2011245617A (en) * 2010-05-25 2011-12-08 General Electric Co <Ge> Metal cutting system and method
CN111263996A (en) * 2017-10-25 2020-06-09 杰富意钢铁株式会社 Method for producing stainless steel sheet for separator of fuel cell
US11618967B2 (en) 2017-10-25 2023-04-04 Jfe Steel Corporation Production method for stainless steel sheet for fuel cell separators

Similar Documents

Publication Publication Date Title
US5985123A (en) Continuous vertical plating system and method of plating
JP4560181B2 (en) Method and apparatus for manufacturing fuel cell separator
US20130186852A1 (en) Device and method for producing targeted flow and current density patterns in a chemical and/or electrolytic surface treatment
CN101469437B (en) Anodizing apparatus
US5804052A (en) Method and device for continuous uniform electrolytic metallizing or etching
US4482440A (en) Electrochemical cell and process for manufacturing temperature sensitive solutions
KR100729973B1 (en) Method and device for the electrolytic treatment of electrically conducting surfaces of mutually isolated sheet and foil material pieces
CN116837431A (en) Method and device for horizontal electroplating of battery piece
MX2007000707A (en) Method and device for descaling metals.
JP2002151096A (en) Production process of fuel cell separator
JP6539390B2 (en) Distribution system for surface treatment of at least one of chemistry and electrolysis
CN202610379U (en) Continuous electrolytic polishing device for nickel tungsten alloy strip
CN109786800B (en) Thermal regeneration ammonia battery adopting foam nickel-based copper-plated electrode and preparation method
DE10043817C2 (en) Arrangement and method for goods to be treated electrochemically
JPS5915997B2 (en) Strip proximity electrolyzer
EP4056736A1 (en) Distribution system for a process fluid for chemical and/or electrolytic surface treatment of a substrate
CN220265895U (en) Sheet metal belt pulley transmission clamping processing tool
CN220767211U (en) Electroplating equipment for reducing electroplating liquid residue on surface of substrate
CN218969409U (en) Electroplating machine and electroplating system
CN217485469U (en) Battery piece soaks formula film removing device
JP3054860U (en) Roll feeder type electroplating equipment
KR200358908Y1 (en) Uniform plating apparatus for one side curved solid base metal
MXPA04009447A (en) Conveyorized plating line and method for electrolytically metal plating a workpiece.
JP4326099B2 (en) Power supply device for surface treatment
JPH09291396A (en) Vertical electroplating device and chromium electroplating method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019