JP2002150508A - Composite integrated thin film magnetic head and its manufacturing method - Google Patents

Composite integrated thin film magnetic head and its manufacturing method

Info

Publication number
JP2002150508A
JP2002150508A JP2000378160A JP2000378160A JP2002150508A JP 2002150508 A JP2002150508 A JP 2002150508A JP 2000378160 A JP2000378160 A JP 2000378160A JP 2000378160 A JP2000378160 A JP 2000378160A JP 2002150508 A JP2002150508 A JP 2002150508A
Authority
JP
Japan
Prior art keywords
film
core
thin film
magnetic
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000378160A
Other languages
Japanese (ja)
Inventor
Akio Otsubo
秋雄 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000378160A priority Critical patent/JP2002150508A/en
Priority to PCT/JP2001/009698 priority patent/WO2002039432A1/en
Publication of JP2002150508A publication Critical patent/JP2002150508A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3967Composite structural arrangements of transducers, e.g. inductive write and magnetoresistive read
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3103Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0026Pulse recording
    • G11B2005/0029Pulse recording using magnetisation components of the recording layer disposed mainly perpendicularly to the record carrier surface

Abstract

PROBLEM TO BE SOLVED: To provide a ring type composite integrated thin-film magnetic head capable of achieving high density and high speed transfer of 100 bpsi and 1 Gbps or higher in combination with a single layer vertical medium having low noise. SOLUTION: Both rectangular plates of the longitudinal laminated layer thin film of a leading core, and the horizontal thin film of a trailing core constitute a T-shaped narrow gap ring head. A one-turn coil is wound on the tip of the leading core, and its Bs is high. Thus, a recording point is located at the gap edge thereof, and the slope is steep. This exhibits a high linear density vertical recording characteristic as a single pole ring head. The film forming layer of a main magnetic pole longitudinal laminated layer film directly becomes a sub-quarter micron precision width, achieving a high track density. Also, a high speed is obtained by eddy current reduction by the thin film, and the magnetic flux flow of only magnetization rotation by the laminated layer film. The T-shaped structure is made by the integrated thin film process of two stages orthogonal to each other. Then, lateral thin film cores, and for example, a shield type MR reader or the like are integrated on an embedded wafer formed by slicing a block obtained by integrating, stacking and glass-welding longitudinal laminated layer film cores on a virgin wafer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気抵抗効果型再生
ヘッド(以下MRリーダー)と誘導型記録ヘッドよりな
る複合型集積薄膜磁気ヘッドに関し、特に単層垂直媒体
との組合せに適した記録ヘッドの構造とその製造法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite integrated thin-film magnetic head comprising a magnetoresistive read head (hereinafter referred to as "MR reader") and an inductive write head, and more particularly to a write head suitable for combination with a single-layer perpendicular medium. It relates to the structure and its manufacturing method.

【0002】[0002]

【従来の技術】磁気記録の高密度化は急激に進み、数年
後には100Gbpsiの超高面密度とそれに伴う1G
bpsの高速転送レートを目指している。このような高
密度域においては、現行の長手記録方式は熱的不安定を
克服できず、垂直記録方式に移行せざるを得ないと考え
られている。
2. Description of the Related Art The density of magnetic recording has been rapidly increasing, and in a few years, an ultra-high areal density of 100 Gbps and the accompanying 1G
We aim for a high transfer rate of bps. In such a high-density region, it is considered that the current longitudinal recording method cannot overcome thermal instability and must be shifted to the perpendicular recording method.

【0003】第一の垂直記録方式は単磁極ヘッドと垂直
二層媒体を組合せたものである。磁束は主磁極コア直下
の記録層を貫き軟磁性裏打層に吸込まれ、その層内に拡
って離れたリターンパスコアに希薄な磁束密度で広く拡
って還流する。このようにして記録層に強い垂直磁界を
与えることができ、またその記録点は主磁極コアの媒体
流出側のポールエッジにあるがそこでの磁界勾配も急峻
である。図2(a)に示すこの垂直磁界分布特性により
既に600kbpi以上の高線記録密度が実証されてい
る。
The first perpendicular recording system is a combination of a single pole head and a perpendicular double-layer medium. The magnetic flux penetrates the recording layer immediately below the main magnetic pole core, is absorbed into the soft magnetic underlayer, and spreads widely with a low magnetic flux density to the return path core, which spreads apart in the layer and returns. In this way, a strong perpendicular magnetic field can be applied to the recording layer, and the recording point is at the pole edge of the main pole core on the medium outflow side, where the magnetic field gradient is steep. The perpendicular magnetic field distribution characteristic shown in FIG. 2A has already demonstrated a high linear recording density of 600 kbpi or more.

【0004】しかしながらこの方式では、マクロ面積の
比較的厚い軟磁性裏打層がヘッド磁路の一部として働い
ているため、高密度化とともにますます微細化する記録
ビット磁石からの信号磁束を、この裏打層からのノイズ
磁束がマスクするとゆう問題がある。また記録トラック
を一周する間、裏打層の超高周波での実効透磁率が高く
かつ均一である保証はなく、記録感度の均一性を保つこ
との困難性も予想される。
However, in this method, since the soft magnetic backing layer having a relatively large macro area functions as a part of the head magnetic path, the signal magnetic flux from the recording bit magnet, which is becoming increasingly finer with higher density, is There is a problem that noise magnetic flux from the backing layer is masked. Further, there is no guarantee that the effective magnetic permeability of the backing layer at ultrahigh frequency is high and uniform during one round of the recording track, and it is expected that it is difficult to maintain uniform recording sensitivity.

【0005】第二の垂直記録方式は対称的リングヘッド
と軟磁性裏打層のない単層垂直媒体とを組合せたもので
ある。第一の方式が提案された約20年前は、ヘッド媒
体間スペーシングも記録層厚も大であった。その条件下
での記録層位置でのリングヘッドの記録磁界は、強い長
手磁界成分に較べて垂直磁界成分は弱く、記録点での勾
配も急峻でないので、垂直方式にとってリングヘッドは
最善のものではないとされてきた。なおこの第二の方式
の媒体として、垂直記録特性向上を意図した垂直面内複
合媒体等もふくまれるものとする。何故ならその裏打層
(面内層)は、ヘッドコアの一部として働く厚く高透磁
率のものではないからである。
The second perpendicular recording system combines a symmetric ring head and a single-layer perpendicular medium without a soft magnetic underlayer. About 20 years before the first method was proposed, both the spacing between head media and the thickness of the recording layer were large. The recording magnetic field of the ring head at the recording layer position under that condition has a weak vertical magnetic field component compared to a strong longitudinal magnetic field component, and the gradient at the recording point is not steep, so the ring head is not the best for the vertical method. It has not been. It should be noted that the medium of the second type includes a vertical in-plane composite medium intended to improve the perpendicular recording characteristics. This is because the backing layer (in-plane layer) is not thick and has high magnetic permeability acting as a part of the head core.

【0006】しかし現在では、記録層厚は薄く(約25
nm)スペーシングはコンタクトスライダーにより約1
0nmが実現している。この条件下では図2(b)に示
すように対称的リングヘッドも十分強い垂直記録磁界H
yを有していると云える。それでも記録点の磁界勾配の
急峻性は不十分であるので、交流消磁的記録減磁が起
き、出力減と反転磁区ノイズとの原因となる。結局超高
線密度の垂直記録はこのままではできない。なお比較の
ため、長手記録用の長手磁場(Hx)は記録点(Hx=
Hc)で急峻であることが示されている。
However, at present, the recording layer is thin (about 25).
nm) The spacing is approximately 1 by the contact slider.
0 nm has been realized. Under this condition, the symmetrical ring head also has a sufficiently strong perpendicular recording magnetic field H as shown in FIG.
y. Even so, the steepness of the magnetic field gradient at the recording point is insufficient, so that AC demagnetizing recording demagnetization occurs, which causes a decrease in output and a reversal magnetic domain noise. As a result, perpendicular recording at an extremely high linear density cannot be performed as it is. For comparison, the longitudinal magnetic field (Hx) for longitudinal recording is calculated at the recording point (Hx =
Hc) shows that it is steep.

【0007】小野寺らは、単層媒体であるMEテープの
垂直配向のものと、非対称MIG型リングヘッドとの組
合せについて、高線密度記録の条件をコンピュータシミ
ュレーシヨンで調べた。(J.Mag.Soc.Jap
an:Suppl.2,1997)その結果リーディン
グコア側とトレーリングコア側に、飽和磁束密度Bsが
それぞれ2T(テスラ)と1Tの軟磁材を配置したヘッ
ドを使えば高密度垂直記録が可能なことがわかった。
[0007] Onodera et al. Examined the condition of high linear density recording of a combination of a vertically oriented ME tape as a single-layer medium and an asymmetric MIG type ring head by computer simulation. (J. Mag. Soc. Jap
an: Suppl. As a result, it was found that high-density perpendicular recording was possible by using a head in which soft magnetic materials having saturation magnetic flux densities Bs of 2T (tesla) and 1T were disposed on the leading core side and the trailing core side, respectively.

【0008】その動作を図2(c)に示す。リーデイン
グコアのギャップエッジ附近(記録点Hy=Hc)で書
込みが行なわれ、トレーリングコアでの再書込みはな
い。その記録点での勾配は狭ギャップのため急峻であり
記録減磁は起きない。この非対称リングヘッドでは、そ
のギャップエッジ直下で書込みが行なわれる高Bsのリ
ーディングコアは主磁極に、(媒体への書込みがない
程)希薄にかつ広く磁束を吸込み還流させる低Bsのト
レーリングコアはリターンパスコアにそれぞれ対応して
いる。従ってこの非対称ヘッドは機能的に云えば単磁極
的リングヘッドと呼ぶのが適切であろう。(ここで座標
の表示は慣行にならい、媒体進行(長手)方向をX、媒
体面に垂直方向をY、横手方向をZとする)
The operation is shown in FIG. Writing is performed near the gap edge of the reading core (recording point Hy = Hc), and there is no rewriting in the trailing core. The gradient at the recording point is steep due to the narrow gap, and no recording demagnetization occurs. In this asymmetric ring head, a high-Bs leading core in which writing is performed immediately below the gap edge has a main magnetic pole, and a low-Bs trailing core that dilutes and broadly absorbs and returns magnetic flux (to the extent that there is no writing to the medium) returns. It corresponds to each pass core. Thus, this asymmetric head would be appropriately functionally called a single pole ring head. (Here, the display of the coordinates is in accordance with a custom, and the medium traveling (longitudinal) direction is X, the direction perpendicular to the medium surface is Y, and the lateral direction is Z).

【0009】この「単磁極的リングヘッド」は後の手段
の項で述べるように本発明の重要なコンセプトの一つで
あるのでここでその説明をしておく。一般に対称的リン
グヘッドは双磁極であって両コアポール上にてそれぞれ
正負の|Hy|〉Hcの2ヶ所で垂直書き込みと再書き
込みが行われる。リングヘッドのHy〜X分布を非対称
にして、リーディングポール上でのみ|Hy|〉Hcと
すれば書き込みは一つのポール(単磁極、主磁極)のみ
で行われ、その記録点はギャップエッジにあり、その勾
配も急峻である。これによって単磁極ヘッドと同じよう
に垂直記録ができ、しかも(狭ギャップの)リングヘッ
ドであるので(ノイズ源ともなる)軟磁裏打層がなくて
も高記録感度である。厚さ170nmのMEテープに対
してこの単磁極的リングヘッドは高線密度を示したが、
厚さ25nm、垂直角形比0.98の現在の垂直ハード
ディスク媒体にコンタクト記録すればはるかに高い線密
度がえられるはずである。
The "single-pole ring head" is one of the important concepts of the present invention, as will be described later, and will be described here. In general, a symmetric ring head is a double magnetic pole, and vertical writing and rewriting are performed at two locations of positive and negative | Hy |> Hc on both core poles. If the Hy-X distribution of the ring head is made asymmetric and | Hy |> Hc only on the leading pole, writing is performed with only one pole (single magnetic pole, main magnetic pole), and the recording point is at the gap edge. , Its gradient is also steep. As a result, perpendicular recording can be performed in the same manner as a single pole head, and high recording sensitivity can be obtained without a soft magnetic underlayer (which also acts as a noise source) because the ring head is a (narrow gap) ring head. For a 170 nm thick ME tape, this single pole ring head showed high linear density,
Much higher linear densities should be obtained by contact recording on current vertical hard disk media with a thickness of 25 nm and a vertical squareness ratio of 0.98.

【0010】一般にHDD(ハードディスクドライブ)
の高密度化の殆んどはスケーリング則に則り達成された
ものである。垂直用の単磁極的リングヘッドも、バルク
MIGヘッドから小さな集積薄膜ヘッドにシフトして実
用化すべきであろう。しかし現行のパドル(パンケーキ
型)コア型薄膜ヘッドでさえ閉磁部のまわりに多数ター
ンのスパイラルコイル膜を配した構造では記録感度はあ
まり良くない。村岡らはマージド複合薄膜ヘッドにおい
て、図3に示すようにパドル型の主磁極先端に直接1.
5ターンのコイルを捲いて励磁することで画期的高記録
感度を得ている。(J.Mag.Soc.Japan,
Suppl−2,1997)
Generally, HDD (hard disk drive)
Most of the densification of has been achieved in accordance with the scaling law. The vertical single-pole ring head should also be put into practical use by shifting from a bulk MIG head to a small integrated thin film head. However, even with the current paddle (pancake type) core type thin film head, the recording sensitivity is not very good in a structure in which a spiral coil film having many turns is arranged around a closed magnetic portion. In the merged composite thin film head, as shown in FIG. 3, Muraoka et al.
An exciting high recording sensitivity is obtained by winding and exciting a 5-turn coil. (J. Mag. Soc. Japan,
Suppl-2, 1997)

【0011】100Gbpsiの高面密度達成にはサブ
クォタミクロンの超狭トラック幅の高トラック密度化が
必要である。パドルコア型薄膜ヘッドの主磁極コア先端
をここ迄狭トラック幅にすることは現行ホトリソグラフ
ィ技術の延長上では無理である。この超狭トラック幅化
に関しては、全体はバルク構造の単磁極ヘッドではある
が、中村らのDSMT(デイープサブミクロントラッ
ク)型単磁極ヘッドが構造的製法的に有望である。(図
4)これは基盤への製膜厚をそのまま長手膜コアのトラ
ック幅とするもので、超狭トラック幅を正確に製膜で
き、かつ次に述べる積層化も容易である。さらにこの長
手膜構造は垂直記録で重要なヘッド媒体相互作用をラー
ジポール効果的に強めている。(J.Mag.Soc.
Japan,Suppl.1,583、1994)
To achieve a high areal density of 100 Gbpsi, it is necessary to increase the track density with an ultra-narrow track width of sub-quarter microns. Making the tip of the main magnetic pole core of the paddle core type thin film head so narrow in track width is impossible with the extension of the current photolithography technology. Regarding the ultra-narrow track width, the whole is a single pole head having a bulk structure. However, a DSMT (deep submicron track) single pole head of Nakamura et al. Is promising in terms of structural manufacturing method. (FIG. 4) In this method, the film thickness on the substrate is directly used as the track width of the longitudinal film core, so that an ultra-narrow track width can be accurately formed and lamination described below is also easy. Further, this longitudinal film structure effectively enhances a large pole effect, which is an important head medium interaction in perpendicular recording. (J. Mag. Soc.
Japan, Suppl. 1,583, 1994)

【0012】超高速性(1Gbps以上)も超高面密度
とともに達成目標であるが、そのためにはリングコア磁
路を回る磁束流は異方性容易軸からの高速な磁化回転だ
けによるものでなければならない。その容易軸はパドル
型横手膜ではZ方向、DSMT長手膜ではX方向につけ
てある。しかしパドル型コア膜先端をを狭トラック化す
ると、両側エッジに出る還流磁区の割合が増しそこは高
速には動けない。還状磁区の出ない磁性膜コアを作るに
は、反平行の単磁区積層構造となるように非磁性中間層
をはさんだ積層膜構造にすれば良いことが知られてい
る。しかし仮にパドル型コアを積層化しても、それを超
狭トラック幅加工したものには大きい反磁場のため異方
性が膜面内(YZ面)につかないので無意味である。上
述のDSMT長手膜なら積層化(XY面)は有効であろ
う。
Ultra-high speed (1 Gbps or more) is also an object to be achieved together with ultra-high areal density. For that purpose, the magnetic flux flowing around the ring core magnetic path must be caused only by high-speed magnetization rotation from the easy anisotropic axis. No. The easy axis is provided in the Z direction in the paddle type lateral hand film and in the X direction in the DSMT longitudinal film. However, if the tip of the paddle-type core film is made narrower, the ratio of the return magnetic domains appearing on both side edges increases, and it cannot move at high speed. It is known that a magnetic film core having no return magnetic domains may be formed by a laminated film structure with a non-magnetic intermediate layer interposed therebetween so as to form an antiparallel single magnetic domain laminated structure. However, even if a paddle-type core is laminated, it is meaningless for an ultra-narrow track-width processed one because the anisotropy is not applied in the film plane (YZ plane) due to a large demagnetizing field. With the above-mentioned DSMT longitudinal film, lamination (XY plane) would be effective.

【0013】高速化、高周波化にはもう一つ別の問題が
ある。メタル磁膜内の渦電流によるオーバーライト劣化
と非線形シフト(NLTS)である。その対策として高
抵抗磁材の開発が強力に行なわれてきた。ただパドル型
コアの厚目の膜の代わりに、DSMT長手薄膜を使えば
渦電流は形状的理由で軽減されるので、多様な要請に応
えねばならないコア磁材の、抵抗率もふくめての選択の
幅は広がるであろう。
There is another problem in increasing the speed and increasing the frequency. Overwrite degradation and non-linear shift (NLTS) due to eddy currents in the metal magnetic film. As a countermeasure, the development of a high-resistance magnetic material has been strongly performed. However, if the DSMT longitudinal thin film is used instead of the thick paddle-type core film, the eddy current will be reduced for geometric reasons. Therefore, the selection of the core magnetic material, which must meet various requirements, including the resistivity, should be selected. Will expand.

【0014】長手記録ではビット境界面に体積磁荷が出
るのと対照的に、垂直記録ではビットパターンが摺動面
に面磁荷として出る。従って垂直方式の高密度実現に
は、媒体と軟磁性ヘッドコア間のコンタクト摺動記録が
必須である。幸い潤滑液体のメニスカス力を利用して安
定接触走行する3点パッドスライダーが開発されている
ので(柳沢,応用磁気学会誌,Vol2,1239,1
998)、偏磨耗しない高硬度の軟磁膜を主磁極に取込
むことができればコンタクト垂直記録の実現性は高まる
であろう。
In contrast to the longitudinal magnetic recording in which a volume magnetic charge appears at the bit boundary surface, in the perpendicular recording, the bit pattern appears as a surface magnetic charge on the sliding surface. Therefore, contact sliding recording between the medium and the soft magnetic head core is indispensable for realizing the high density of the vertical system. Fortunately, a three-point pad slider has been developed that performs stable contact running using the meniscus force of the lubricating liquid (Yanagisawa, Journal of the Japan Society of Applied Magnetics, Vol. 2, 1239, 1).
998), if a soft magnetic film of high hardness without uneven wear could be incorporated into the main pole, the feasibility of contact perpendicular recording would be enhanced.

【0015】単磁極的動作のリングヘッドの主磁極には
高Bs軟磁材が必要である。(0007,0008)
これに前述の高硬度を併せもつ材料として例えばFeT
aN(Bs1.6T、ビッカース硬度Hv1000)の
ような鉄系のナノ結晶軟磁材が既に開発されており、そ
の利用が可能である。しかしこの磁材は高温(550
℃)の熱処理を必要とするので、熱に弱いGMR或はT
MR再生部の製膜後に、(このFeTaN等をふくむ)
記録部を形成する現行の製造プロセスを使うことはでき
ない。録再部の逆配置構造の設計が望まれる。
The main magnetic pole of the ring head operating as a single magnetic pole requires a high Bs soft magnetic material. (0007,0008)
As a material having the above-mentioned high hardness, for example, FeT
Iron-based nanocrystalline soft magnetic materials such as aN (Bs1.6T, Vickers hardness Hv1000) have already been developed and can be used. However, this magnetic material has a high temperature (550
° C) heat treatment, so that GMR or T
After film formation of MR reproducing part (including this FeTaN etc.)
Current manufacturing processes for forming recordings cannot be used. It is desired to design a reverse arrangement structure of the recording / reproducing section.

【0016】高密度化達成には、高再生感度のシールド
型GMR或はTMRのようなMRリーダーによるところ
が大である。そのためにインダクテイブ録再の場合とち
がって高記録感度ヘッドを少数ターンで作ることもでき
た。(0010) 複合ヘツドでは、ロータリアクチュ
エータにおける録再ギャップ間のスキュー角差を小さく
するため録再間の両ギャップの間隔を狭める必要があ
り、コアの全部或いは一部を共用することが考えられて
いる。コアの一部を共用したマージ型が現在の主流とな
っている。新しいヘッドにおいてもなんらかのマージド
複合型も取入れることができるようなコア構造になって
いる必要がある。
In order to attain high density, an MR reader such as a shield type GMR or a TMR having a high reproduction sensitivity is largely used. Therefore, unlike the case of the inductive recording / reproduction, a high recording sensitivity head could be made in a few turns. [0010] In the composite head, it is necessary to reduce the gap between the gaps between the recording and reproducing in order to reduce the skew angle difference between the recording and reproducing gaps in the rotary actuator, and it is considered that all or a part of the core is shared. I have. The merge type, which shares a part of the core, is currently the mainstream. The new head must have a core structure that can incorporate some merged composite type.

【0017】[0017]

【発明が解決しようとする課題】以上の最近の進歩をま
とめると、高線密度化には単層垂直媒体と組合せた単磁
極的リングヘッド、高トラック密度化と高速転送化には
主磁極コアにDSMT長手積層薄膜(以上バルクヘッド
技術)、高記録感度化には複合集積ヘッドの主磁極薄膜
コア先端に1ターンコイルを巻き、かつリングコアを超
短磁路化することである。本発明は100Gbpsi、
1Gbpsを実現するため、これらの要素技術を集積薄
膜技術による複合ヘッドに予盾なく総合的に取込みなが
ら、その他すべての必要条件も充たすような新規な構造
とその製造法を第3の垂直実用化方式として提供しよう
とするものである。
To summarize the above recent advances, a single pole ring head combined with a single layer perpendicular medium is used for high linear density, and a main pole core is used for high track density and high speed transfer. In order to increase the recording sensitivity, a one-turn coil is wound around the tip of the main pole thin film core of the composite integrated head, and the ring core is made to have an ultra short magnetic path. The present invention provides 100 Gbpsi,
In order to realize 1 Gbps, a new structure that satisfies all other necessary conditions and a new manufacturing method that satisfies all other necessary conditions while integrating these element technologies into a composite head based on integrated thin film technology without any inconvenience will be introduced to the third vertical application. It is intended to be provided as a system.

【0018】[0018]

【課題を解決するための手段】単層垂直媒体へ高線密
度、高トラック密度、高速および高記録感度で記録を行
なうための単磁極的リングヘッドを、複合型集積薄膜磁
気ヘッドとして構成すると、図1に示すような構造とな
る。すなわち主磁極的動作の高Bsでサブクォタミクロ
ン厚の長手積層薄膜コアが1ターンコイル導体膜ととも
にコンタクトスライダーリア面にうめ込まれ、狭ギャッ
プをはさんでリターンパスコア的動作の低Bsの横手薄
膜コアとでT型のリングヘッドを構成している。複合化
として例えばその矩形状横手薄膜コアを共用してその上
にシールド型MRリーダーが形成される。以上アウトラ
インを次に詳述する。
Means for Solving the Problems When a single pole ring head for performing recording on a single layer perpendicular medium with high linear density, high track density, high speed and high recording sensitivity is constituted as a composite type integrated thin film magnetic head, The structure is as shown in FIG. That is, a long laminated thin-film core of high Bs and sub-quarter micron thickness of main pole operation is embedded in the rear surface of the contact slider together with the one-turn coil conductor film, and a low Bs of return path core operation is sandwiched across a narrow gap. The T-shaped ring head is constituted by the lateral thin film core. As a composite, for example, the shield type MR reader is formed on the rectangular horizontal thin film core in common. The outline is described in detail below.

【0019】サブクォタミクロンのトラック幅の長手積
層薄膜コアに主磁極的作用をもたせるため、第一にリー
ディングコアとしてスライダーリア面に直角にうめ込ま
れた形とする。但しそのプロセスは後述の製造法すなわ
ち直交する2段階の集積薄膜プロセスの前半によって行
なう。第二にこの長手コアに高Bs、高Hvの軟磁材を
用いるとともに1ターンの導体膜コイルをコア先端に巻
いた構造にする。精しくは、長手コアを中心にして、ア
ルミナ絶縁層をはさんで、コイル部とリード部からなる
コの字形の一対の導体膜を両側に配した簡単な3層構造
を作っておき、前述のプロセスの後半でコイル部を接続
して1ターンの周回コイルを完成させたものである。
In order to give the longitudinal laminated thin film core having a sub-quarter micron track width a main magnetic pole effect, first, it is formed as a leading core which is embedded at right angles to the rear surface of the slider. However, this process is carried out by the first half of a manufacturing method described later, that is, an integrated two-stage integrated thin film process. Secondly, a structure is used in which a soft magnetic material having a high Bs and a high Hv is used for the longitudinal core and a one-turn conductive film coil is wound around the tip of the core. To be precise, a simple three-layered structure in which a pair of U-shaped conductor films consisting of a coil part and a lead part are arranged on both sides with an alumina insulating layer sandwiched around the longitudinal core was made, In the latter half of the process, the coil portions are connected to complete a one-turn winding coil.

【0020】次にコイルの接続部を変形コの字型断面で
おおう形で、スロート部中間膜、バツク閉磁部中間膜お
よび主部の平坦矩形板状膜からなる低Bsの横手薄膜コ
アがスライダーリア面に適当に絶縁膜をはさんで成膜さ
れている。長手コアとこの横手コアとが狭ギャップをは
さんだT型のリングヘッドを形成しており、長手コアの
主磁極に対し、この横手コアがリターンパスコア的に働
いて単磁極的リングヘツドとなつている。
Next, the connecting portion of the coil is covered with a modified U-shaped cross section, and a low Bs transverse thin film core comprising a throat portion intermediate film, a back closed magnetic portion intermediate film, and a flat rectangular plate-like film of the main portion is formed by a slider. The insulating film is appropriately formed on the rear surface with an insulating film interposed therebetween. The longitudinal core and the lateral core form a T-shaped ring head with a narrow gap interposed therebetween. The lateral core acts as a return path core and forms a single-pole ring head with respect to the main pole of the longitudinal core. I have.

【0021】ヘツドの高速転送化には先ずメタルコア内
の渦電流軽減が必要である。サブクォタミクロン厚の長
手膜及びぜいぜいその2倍程度の厚さの横手膜厚(主部
矩形板部分)ならば数十マイクロオームcmの磁材を使
えばこの問題をクリアーできる。またリングコアの磁束
流は磁化回転によるものでなければならない。そのため
主磁極的長手薄膜コアでは数nmの非磁性中間層をはさ
んだ積層構造とし、コイルの起磁力方向(Y)と直角の
長手方向(X)に異方性Hkをつける。効率よく周回閉
磁路となるように、閉磁部で磁束流が2回45°づつ角
度を変えて進むように、非磁性膜で交換相互作用を遮断
し静磁結合にする。その間にはさまれた直角3角形部分
のHkをX方向から45°傾けて付けてある。
For high-speed head transfer, it is first necessary to reduce eddy currents in the metal core. This problem can be solved by using a magnetic material of several tens of micro-ohm cm if the longitudinal film has a sub-quarter micron thickness and the lateral film thickness (the main rectangular plate portion) is at most twice as thick. Also, the magnetic flux flow of the ring core must be due to magnetization rotation. Therefore, the main magnetic pole longitudinal thin film core has a laminated structure sandwiching a non-magnetic intermediate layer of several nm, and has anisotropy Hk in the longitudinal direction (X) perpendicular to the magnetomotive force direction (Y) of the coil. The exchange interaction is interrupted by the non-magnetic film so that the magnetic flux flows in the closed magnetic portion twice at an angle of 45 ° so as to form a magnetostatic coupling so that an orbital closed magnetic path is efficiently formed. Hk of the right-angled triangular portion sandwiched between them is inclined at 45 ° from the X direction.

【0022】横手薄膜コアではHkを横手方向(Z)に
つける。従って長手薄膜コアから境界面を通り流入した
磁束流は、横手コアのバック閉磁部中間膜でZ軸と直交
する磁化回転の磁束流となる。それは横手コア内に深く
入るにつれて徐々にY方向に向きを変える。磁束流はH
kに直角方向の磁化回転として横手コア内をY方向に流
れ、狭ギャップの内と外(記録洩れ磁界)をはさんで長
手コアへ戻り短いリングコア磁路は閉じている。積層化
に関しては、主磁極的長手コアでは主要実効磁路となる
ギャップ側に還状磁区が出ないよう積層化は必須であっ
た。しかし横手コアでは還状磁区は離れた両端に出るだ
けなので、積層化は実効的な高速磁束流にそれほど効目
がない。従って積層化の採否は高速性、磁材、製造プロ
セスもふくめて総合的に選択すればよい。
In the lateral thin film core, Hk is applied in the lateral direction (Z). Therefore, the magnetic flux flowing from the longitudinal thin film core through the boundary surface becomes a magnetic flux of magnetization rotation orthogonal to the Z axis in the back closed magnetic portion intermediate film of the horizontal core. It gradually turns in the Y direction as it goes deeper into the lateral core. Magnetic flux is H
It flows in the Y direction in the lateral core as the magnetization rotation in the direction perpendicular to k, returns to the longitudinal core with the inside and outside (recording leakage magnetic field) of the narrow gap closed, and the short ring core magnetic path is closed. Regarding lamination, lamination was essential so that return magnetic domains did not appear on the gap side serving as the main effective magnetic path in the main pole-like longitudinal core. However, in the Yokote core, the return magnetic domains only appear at the opposite ends, so lamination does not have much effect on the effective high-speed magnetic flux flow. Therefore, the adoption or non-adoption of lamination may be comprehensively selected, including the high speed, the magnetic material, and the manufacturing process.

【0023】集積薄膜リングヘッドを構成する2個のコ
ア半体の配置をインライン型でなくT型(長手コアと横
手コア)にした理由を構造と作用との関係について列挙
説明する。(a)精密な狭ギャップ形成が容易である。
(b)マージ型に適しており録再間のスキュー角差が極
めて小さくなる。またデリケートなMRリーダーを作り
やすい。(c)狭ギャップをはさんだ両コア半体間の洩
れ記録磁界におけるパーミアンスに関してT型の方が大
きい。(d)直交二段階集積薄膜プロセスにはバルクプ
ロセス(機械加工とガラス融着)がふくまれるため、エ
ムベツデッドウエハ(後述)の研磨面に現れるコイル付
き長手コアのマトリックスの縦配列間に非等間隔性、非
真直度は避けられない。従って第二段階において横手コ
アマトリックスをホトリソグラフィで一括露光する集積
プロセスにおいてトラック会わせ等における許容度の大
きいT型の方が生産性が高い。
The reason why the arrangement of the two core halves constituting the integrated thin film ring head is not an in-line type but a T-type (long core and lateral core) will be described in relation to the structure and operation. (A) A precise narrow gap can be easily formed.
(B) It is suitable for the merge type, and the skew angle difference between recording and reproduction is extremely small. In addition, it is easy to make a delicate MR reader. (C) The permeance in the leakage recording magnetic field between the two core halves sandwiching the narrow gap is larger in the T type. (D) Since the orthogonal two-stage integrated thin film process includes a bulk process (machining and glass fusion), there is a non-interval between the vertical arrangement of the matrix of coiled longitudinal cores appearing on the polished surface of an embedded wafer (described later). Equal spacing and non-straightness are inevitable. Therefore, in the integrated process of collectively exposing the horizontal core matrix by photolithography in the second stage, the T-type having higher tolerance in track alignment and the like has higher productivity.

【0024】高記録感度特性も重要である。(誘導型記
録ヘッドをライターと略称して)ライターLS1の小電
力化と高速化、コイルの発熱回避による高信頼性、コイ
ルの1ターン化と薄小化によるコアの短磁路化等をもた
らすからである。高感度化に寄与する構造の各要素をこ
こにまとめて列挙する。なおここでの記録感度はやや特
殊化して、コンタクト走行での薄い(約25nm)垂直
単層媒体に記録磁化するのに必要な電流に関するものと
する。(a)狭ギャップのリングヘッドではあるが、1
ターンコイルが主磁極的コア先端部を周回していること
と、長手コアが積層薄膜構造であることとによって、磁
化回転の高速(高周波)磁束流はHkに垂直のY方向を
向く。従って軟磁性裏打層がなくても、Hyが優勢であ
りサイドフリンジングも少なく、またギャップ間短絡も
減る。(b)その長手薄膜コアを周回するコイルの起磁
力による磁束が記録点であるギャップ側に効率よく集束
飽和する。(c)XY面薄膜の長手コアとYZ面薄膜の
横手コアに付けた異方性磁界Hk(それぞれX方向(主
に)とZ方向)は、それぞれの方向の反磁場が小さいの
で、かなり小さく設定できる。従ってそれらに関する磁
化回転の透磁率は大となり記録感度も大である。(d)
従来の長手記録の狭トラック化ではサイドフリンジング
軽減のためポールトリミングが必要で、そのための実効
的透磁率低下はさけられなかった。単磁極的T型リング
ヘッドによる垂直記録では(0009)に述べた理由で
リターンパスコアである横手コアではその必要がなく、
本来の高い透磁率を利用できる。(e)単磁極的リング
ヘツド記録では記録減磁がないので間接的に記録感度は
良くなる。
High recording sensitivity characteristics are also important. (The inductive recording head is abbreviated as a writer.) The writer LS1 achieves low power and high speed, high reliability by avoiding heat generation of the coil, and short magnetic path of the core by one-turn and thin coil. Because. Each element of the structure contributing to higher sensitivity is listed here. Note that the recording sensitivity here is somewhat specialized and relates to a current required for recording and magnetizing a thin (about 25 nm) perpendicular single-layer medium during contact traveling. (A) Although it is a ring head with a narrow gap,
The high-speed (high-frequency) magnetic flux of magnetization rotation is directed in the Y direction perpendicular to Hk, because the turn coil orbits the tip of the main magnetic pole core and the longitudinal core has a laminated thin film structure. Therefore, even if there is no soft magnetic underlayer, Hy is predominant, side fringing is small, and short circuit between gaps is reduced. (B) The magnetic flux due to the magnetomotive force of the coil circling the longitudinal thin film core is efficiently focused and saturated on the gap side, which is the recording point. (C) The anisotropic magnetic fields Hk (X direction (mainly) and Z direction, respectively) applied to the longitudinal core of the XY plane thin film and the lateral core of the YZ plane thin film are considerably small because the demagnetizing fields in each direction are small. Can be set. Therefore, the magnetic permeability of the magnetization rotation relating to them is large, and the recording sensitivity is also large. (D)
In conventional narrowing of longitudinal recording, pole trimming is required to reduce side fringing, and the effective magnetic permeability cannot be reduced. In the perpendicular recording with a single-pole T-ring head, the need for the horizontal core which is the return path core is unnecessary for the reason described in (0009).
The original high magnetic permeability can be used. (E) In single pole ring head recording, there is no recording demagnetization, so that the recording sensitivity is indirectly improved.

【0025】ライターとしてのT型リングヘッドの集積
後、例えばその平板状で高速高透磁率の横手薄膜コアを
共用してマージドシールド型TMR或はGMRリーダー
が形成される。従って従来のマージドヘッドとは録再の
関係が逆配置構造になっていて、ライターを後で形成す
る従来の場合に起こりがちだったMRリーダーへの熱ダ
メージが全くない。逆に云えばライターの主磁極的長手
コア材に高温熱処理の必要な高Bsでかつ高Hvのナノ
結晶磁材等を使うことも可能になり、垂直記録で重要な
コンタクト記録を偏摩粍なしに安定して実現することが
できる。
After the integration of the T-type ring head as a writer, a merged shield type TMR or GMR reader is formed, for example, by using the flat, high-speed, high-permeability transverse thin-film core. Therefore, the recording / reproducing relationship is reversed from that of the conventional merged head, and there is no thermal damage to the MR reader, which tends to occur in the conventional case where a writer is formed later. Conversely, it is possible to use high-Bs and high-Hv nanocrystalline magnetic materials, etc. that require high-temperature heat treatment for the main pole-like longitudinal core material of the writer. Can be realized stably.

【0026】以上述べた高密度、高速、高記録感度の単
磁極的T型リングヘツドの構造は、従来の方法では作る
ことができず、直交する2段階の集積薄膜プロセスから
なる新規な製造法によって可能となるものである。その
第一段階は主に(ヘッドになつた時の)XY面への集積
薄膜プロセスである。図5に示すように方形のバージン
ウエハ上に長手積層薄膜コアとコイル導体膜半体対のセ
ットのm×n個のマトリックスを適当に絶縁膜をはさん
で3層に成膜する。同様にl枚のウエハに成膜する。こ
れらをスタックしガラス融着してブロックにする。ここ
で薄膜コアがナノ結晶磁材の場合はそのための熱処理と
異方性付けを行う。ブロックをYZ面にそってn枚にス
ライスする。それらの片面を平坦研磨すると、長手コア
のギャップ壁面となるトラック幅断面、1ターンコイル
となる二つの導体膜半体のコイル部およびリード先端部
の膜厚断面からなるm×lセットのマトリックスが現れ
る。このようにしてエムベッデツドウエハがn枚えられ
る。
The above-described structure of a single pole T-ring with high density, high speed, and high recording sensitivity cannot be manufactured by a conventional method, but is realized by a novel manufacturing method including two orthogonal integrated thin film processes. It is possible. The first stage is mainly an integrated thin film process on the XY plane (when the head is formed). As shown in FIG. 5, m × n matrices of a set of a pair of longitudinally laminated thin film cores and coil conductor film halves are formed in three layers on a rectangular virgin wafer with an insulating film appropriately interposed therebetween. Similarly, a film is formed on one wafer. These are stacked and fused to form a block. Here, when the thin film core is a nanocrystalline magnetic material, heat treatment and anisotropy are performed for that purpose. The block is sliced into n pieces along the YZ plane. When these surfaces are polished flat, an m × l set matrix composed of a track width cross section serving as a gap wall surface of a longitudinal core, a coil section of two conductive film halves serving as a one-turn coil, and a film thickness cross section of a lead tip portion is obtained. appear. In this manner, n embedded wafers are obtained.

【0027】この製造方法は従来のものとちがって、サ
ブクォタミクロンのトラック幅の長手積層膜コアを、成
膜厚そのままで平滑性と精度良く得られる利点がある。
しかしその反面(0023)(d)にも述べたように、
エムベツデッドウエハの上の長手薄膜コアの縦配列(Y
方向)の真直度とそれらの等間隔性の高精度確保は困難
である。一括露光の集積薄膜プロセスのメリットを生か
すには、この困難を軽減する努力と工夫が特に必要であ
る。
This manufacturing method has an advantage that, unlike the conventional method, a long laminated core having a track width of sub-quarter micron can be obtained with high smoothness and high precision as it is.
However, as mentioned in (0023) (d),
Vertical arrangement of longitudinal thin film cores on an embedded wafer (Y
It is difficult to ensure the high accuracy of the straightness of the direction) and their uniformity. In order to take advantage of the integrated thin film process of the batch exposure, an effort and a device for reducing this difficulty are particularly necessary.

【0028】そのためのバージンウエハ集積プロセスに
おけるポイントを長手薄膜コアギャップ壁面となる成膜
バージンウエハのYZ断面を示す図6を使って説明す
る。等厚規格の(アルチック)ウエハ上に絶縁アルミナ
層をスパッタ成膜した後、コイル部とリード部から成る
コの字形の導体膜下層半体を銅のフレームメッキ法で形
成し、その上にまたアルミナを成膜する。生じた凹凸を
平坦化して第一の規定厚T1迄研磨する。その上に高B
s高Hvの長手コア積層膜を、後述の理由により図7に
示すような附加的部分のついた形状にホトリソグラフィ
とスパッタリングで成膜する。さらにその上にもう一度
アルミナを成膜し、その面上に導体膜上層半体をメッキ
する。その上にもう一度アルミナを成膜した後、平坦化
し第2の規定厚T2迄研磨する。その上にガラスを数十
nmスパッタして各バージンウエハの集積薄膜プロセス
は完結する。l枚のウエハのすべてにおけるこのT1と
T2の精度が真直度と等間隔性の鍵である。それでもな
お残る精度不十分による後のプロセスでのショート等を
避けるため、長手薄膜コアと導体膜間隔は約2ミクロン
とやや広く(アルミナ層を厚く)とり許容度をつけてお
く。
A point in the virgin wafer integration process for that purpose will be described with reference to FIG. 6 which shows a YZ cross section of a film-formed virgin wafer serving as a longitudinal thin film core gap wall surface. After an insulating alumina layer is sputter-deposited on an (altic) wafer of the same thickness standard, a U-shaped lower half of the conductor film composed of a coil portion and a lead portion is formed by a copper frame plating method. Alumina is formed. The generated irregularities are flattened and polished to a first specified thickness T1. High B on it
An s-high Hv longitudinal core laminated film is formed by photolithography and sputtering into a shape with additional portions as shown in FIG. Further, an alumina film is again formed thereon, and the upper half of the conductor film is plated on the surface. After again forming an alumina film thereon, it is planarized and polished to a second specified thickness T2. Glass is sputtered on it for several tens of nm to complete the integrated thin film process of each virgin wafer. The accuracy of T1 and T2 for all one wafer is the key to straightness and equal spacing. In order to avoid short-circuiting and the like in the subsequent process due to insufficient accuracy that still remains, the distance between the longitudinal thin film core and the conductor film is set to be slightly wider (about 2 μm thick) to allow for tolerance.

【0029】長手コア膜面内に一軸異方性Hkをつける
のにも工夫が必要である。(0021)に述べたように
Hkは主部ではX方向、さらに閉磁部では45°傾けて
つける。2方向のHkを同時に付けるためには図7に示
すように付加的磁膜(ヨーク)をつけた形とし、また非
磁性溝をつけることによって、中間方向の外部磁界をか
けても磁膜内の実効磁界が各Hk方向にかかるようにす
る。異方性付けはガラス融着してブロックにする時或は
その後で、ナノ結晶磁膜の熱処理と同時に行なう。なお
付加的磁膜部分は、エムベッデッドウエハにスライスす
る時の縦方向の切シロ(切除分)として、またローバー
にスライスする時の横方向の切シロとして、後ですべて
除去されることになる。
It is also necessary to devise a way to give the uniaxial anisotropy Hk in the plane of the longitudinal core film. As described in (0021), Hk is tilted in the X direction at the main portion and at 45 ° in the closed magnetic portion. In order to apply Hk in two directions at the same time, an additional magnetic film (yoke) is provided as shown in FIG. 7, and a non-magnetic groove is provided so that an external magnetic field in the intermediate direction can be applied to the magnetic film. Is applied in each Hk direction. The anisotropy is performed at the same time as the heat treatment of the nanocrystalline magnetic film when or after the glass is fused into blocks. The additional magnetic film portion will be removed later as a vertical cut when slicing into an embedded wafer and as a horizontal cut when slicing into a rover. Become.

【0030】同様にしてl枚の成膜したバージンウエハ
を得る。これは正確に(1)同サイズ方形の元のバージ
ンウエハ面上に、外縁に対し正確に(2)同じ位置に同
じマトリックス(m×n)を成膜したものである。さら
にこのl枚の外縁を正確に(3)揃えて熱圧着ガラス融
着してl×m×n個の素子(長手コア)をふくむブロッ
クを形成する。長手薄膜コアのギャップ面となる断面
(YZ面)が出るように、n枚にスライスする。長手薄
膜コア側表面を図8のレベルL1迄最精密平坦化研摩し
てl×m個の素子をふくむエムベッテッドウエハが出来
る。上記(1),(2),(3)の正確さへの配慮と
(0028)の等間隔性向上とにより、エムベッデッド
ウエハ上の導体膜対つき長手薄膜コアマトリックスはミ
クロンオーダー精度で縦方向および横方向配列の等間隔
性が保たれる。
Similarly, one virgin wafer on which a film is formed is obtained. This is obtained by exactly (1) depositing the same matrix (m × n) at the same position with respect to the outer edge on the original virgin wafer surface of the same size square. Further, the outer edges of the l sheets are aligned exactly (3), and then thermocompression-bonded with glass to form a block including l × m × n elements (longitudinal cores). The slice is sliced into n pieces so that a cross section (YZ plane) serving as a gap plane of the longitudinal thin film core appears. The surface on the side of the long thin film core is subjected to the most precise flattening and polishing to the level L1 in FIG. 8 to obtain an embedded wafer including 1 × m elements. By taking account of the accuracy of (1), (2) and (3) and improving the uniformity of (0028), the longitudinal thin-film core matrix with the conductor film pair on the embedded wafer is vertically aligned with micron order accuracy. Equal spacing of the directional and lateral arrangements is maintained.

【0031】第二段階の集積薄膜プロセスは、このエム
ベッデッドウエハ上に長手薄膜コア膜(XY面)に直交
する形でYZ面に成膜されるが、以下長手コア中央線を
通るXY断面を示す図8によって説明する。先ずギャッ
プ層と絶縁層を兼ねて全面にアルミナをスパッタする。
導体膜のコイル部およびリードターミナル部断面、およ
び長手薄膜コア閉磁部断面にスルーホールをあけるた
め、先ずポジレジストを塗付した後これらの断面部上に
広目のパターン露光、現像、エッチング、レジスト剥離
を行なう。次に図1に示すようなコの字折板状コイル接
続部と、一対のL字折板状のターミナルへのリード部と
を形成するため、ポジレジスト塗付、コイル部(上記2
断面とその間の面)と、リードターミナル部断面とそれ
に続くボンディングターミナル部へのリード部とにパタ
ーン露光、現像、銅膜のフレームメッキを行なう。フレ
ームレジストを溶去する。
In the integrated thin film process of the second stage, a film is formed on the YZ plane on the embedded wafer so as to be orthogonal to the longitudinal thin film core film (XY plane). This will be described with reference to FIG. First, alumina is sputtered on the entire surface as a gap layer and an insulating layer.
In order to make through holes in the cross section of the coil and lead terminals of the conductor film, and the cross section of the long thin-film core, first apply a positive resist and then apply a wide pattern exposure, development, etching, resist on these cross sections. Peel off. Next, in order to form a U-shaped plate-shaped coil connection portion as shown in FIG. 1 and a lead portion to a pair of L-shaped folded plate-shaped terminals, a positive resist is applied, and the coil portion (the above-mentioned 2) is formed.
Pattern exposure, development, and frame plating of a copper film are performed on the cross section of the lead terminal section and the subsequent lead section to the bonding terminal section. Remove the flame resist.

【0032】ポジレジストを塗付し、横手薄膜コアのス
ロート部とバック閉磁部をパターン露光現像し、低Bs
の軟磁性材をフレームメッキする。この時Z方向に磁場
をかけながらメッキして一軸異方性Hkをつける。ター
ミナルへのリード域のレジストを残してその他のレジス
トを溶去する。アルミナをスパッタし、スロート部とバ
ック閉磁部を所定高さ(レベルL2)迄平坦化研摩す
る。ポジレジスト塗付、パターン露光、現像によりスロ
ート部と閉磁部にかけてかぶせるように、矩形板状の横
手薄膜コア主部を磁場中(Z方向)フレームメッキし全
体で変形コの字状断面の横手薄膜コアを形成する。レジ
ストを溶去しアルミナをスパッタした後、磁膜上面がで
る迄(レベルL3)平坦化研摩して横手薄膜コアプロセ
スは終了、同時に誘導型記録ヘッドの製造は完結する。
After applying a positive resist, the throat portion and the back magnetic closed portion of the lateral thin film core were subjected to pattern exposure and development to obtain a low Bs
Frame-plated soft magnetic material. At this time, plating is performed while applying a magnetic field in the Z direction to give a uniaxial anisotropy Hk. The remaining resist is stripped away leaving the resist in the lead area to the terminal. Alumina is sputtered, and the throat portion and the back closed magnetic portion are flattened and polished to a predetermined height (level L2). The main part of the rectangular plate-shaped horizontal thin film core is frame-plated in a magnetic field (Z direction) so that it can be covered over the throat part and the closed magnetic part by applying a positive resist, pattern exposure, and development. Form the core. After the resist is removed and alumina is sputtered, flattening and polishing are performed until the upper surface of the magnetic film is exposed (level L3), and the horizontal thin film core process is completed. At the same time, the manufacture of the inductive recording head is completed.

【0033】横手薄膜コアの軟磁材を高温熱処理の必要
のないメッキ膜としたのは、前段階で付けた長手コアの
異方性をふくむ軟磁性を損わないためである。メッキ膜
では、ナノ結晶磁膜程の高いHvは得られないが、横手
コアはリタンパスコアなので主磁極的な長手コア程の耐
偏摩耗特性を必要としないのである。メッキ磁膜として
は、長手コアとくらべ低いBs、同程度かそれ以上の電
気抵抗、そしてパーマロイよりは高いHvのもの(例え
ばNiFeP系)を選ぶ。高周波特性をさらによくする
場合は、非磁性中間メタル層(例えばNiW等)との積
層メッキ膜とする。なお高温熱処理不要の軟磁材として
アモルファススパッタ膜を使うこともできる。
The reason why the soft magnetic material of the lateral thin film core is a plated film that does not require high-temperature heat treatment is that the soft magnetism including the anisotropy of the longitudinal core applied in the previous stage is not impaired. The plating film does not provide Hv as high as the nanocrystalline magnetic film, but the lateral core is a return-pass core and does not require uneven wear resistance as long as the main core. As the plating magnetic film, one having Bs lower than that of the longitudinal core, an electric resistance equal to or higher than that of the longitudinal core, and Hv higher than permalloy (for example, NiFeP) is selected. To further improve the high frequency characteristics, a laminated plating film with a non-magnetic intermediate metal layer (for example, NiW or the like) is used. Note that an amorphous sputtered film can be used as a soft magnetic material that does not require high-temperature heat treatment.

【0034】本発明はGMR或はTMRリーダーそのも
のに係るものではないのでその記述は省略し、複合ヘッ
ドとしてこのライターと関係する配置、構造について述
べる。ライターの平坦化されれた横手コアはマージ型録
再ヘッドの一方のシールドを兼ね、その上に熱的構造的
にデリケートな極薄多層膜構造のGMR或はTMR主要
部を具合よく集積することができる。特に録再間のサブ
クォタミクロンのトラック合せに関する部分は、エムベ
ッデッドウエハ上の長手薄膜コア配列の等間隔性の精度
不足のため一括露光ではやれない。それに対しては各縦
ラインごとのモニタを使い各個に電子ビーム或はイオン
ビームリソグラフィーで露光し成膜する。横手コアとほ
ぼ同形の同じ磁膜を上部シールドとしてフレームメッキ
法で一括成膜してMRリーダーの全プロセスは終了す
る。その上にアルミナ保護膜をスパッタする。
Since the present invention does not relate to the GMR or TMR reader itself, its description is omitted, and the arrangement and structure related to this writer as a composite head will be described. The flattened horizontal core of the writer also serves as one shield of the merged recording / playback head, on which the thermal structurally delicate ultra-thin multilayered structure of the GMR or TMR main part is well integrated. Can be. In particular, the portion relating to sub-quarter micron track alignment during recording / reproducing cannot be performed by batch exposure due to the lack of accuracy of equal spacing of the longitudinal thin film core arrangement on the embedded wafer. For this purpose, a monitor is provided for each vertical line, and each is exposed and formed by electron beam or ion beam lithography. The same magnetic film having substantially the same shape as the lateral core is formed as a top shield by a frame plating method, and the entire process of the MR reader is completed. An alumina protective film is sputtered thereon.

【0035】録再素子の集積膜プロセス終了後のエムベ
ッデツドウエハは、従来技術にならって(a)ウエハテ
スト、(b)ローバーにスライス、(c)ツーリングバ
ーに接着、そのままスライダーにカット、(d)3パッ
ドコンタクトスライダーへのABS加工、(e)スロー
トハイト微加工を経て、(f)スライダーに分離され
る。図9に逆配置マージ型T型リングヘッド(複合型集
積薄膜磁気ヘッド)のコンタクトスライダーの外観図を
示す。
After the integrated film process of the recording / reproducing element is completed, the embedding wafer is subjected to (a) a wafer test, (b) sliced on a row bar, (c) adhered to a tooling bar, and cut into a slider as it is according to the prior art. , (D) ABS processing on the 3-pad contact slider, and (e) fine processing on the throat height, and then the slider is separated into the (f) slider. FIG. 9 shows an external view of a contact slider of a reverse arrangement merge type T-ring head (composite integrated thin film magnetic head).

【0036】最後に将来のさらなる超高密度化に伴う微
細加工の困難増を考えて、図10に示す単純化ヘッド構
造を追加提供する。横手薄膜コアのスロート部中間膜を
除き、1ターン導体膜コイルが長手薄膜コアの先端の媒
体摺動面(ABS)迄達するようにする。ギャップ増に
よる記録磁界減はコイル位置のABSへの接近による磁
界増によって或程度補償し、また電気短絡はヘッド表面
のDLC保護膜の改良によって避ける。
Finally, in view of the difficulty of fine processing due to further ultra-high density in the future, a simplified head structure shown in FIG. 10 is additionally provided. Except for the throat portion intermediate film of the lateral thin film core, the one-turn conductive film coil is made to reach the medium sliding surface (ABS) at the tip of the long thin film core. The decrease in the recording magnetic field due to the increase in the gap is compensated to some extent by the increase in the magnetic field due to the proximity of the coil position to the ABS, and the electric short circuit is avoided by improving the DLC protective film on the head surface.

【0037】[0037]

【実施例】この発明は第3の垂直記録方式として構造、
製造法に広く新規性が取入れてあるので、その作用の理
解のために(手段)においてかなり具体的に詳細な説明
をした。従って実施例においては重複をさけて物質、数
値等を述べるにとどめる。目標の100Gbpsiを6
00kbpi×160ktpiとして、長手薄膜コアの
トラック幅(膜厚)は160nm、ポール長は5ミクロ
ン、ギャップ壁面長(高さ)は18ミクロン。その積層
膜構造は2.5nmの非磁性中間層(アルミナ或はシリ
カ)をはさんで、FeTaN(Bs1.6T、50マイ
クロオームcm、Hv1000)を40、80、40n
mの膜厚として積層スパッタしたものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention has a structure as a third perpendicular recording system,
Since the novelty is widely adopted in the production method, a rather specific detailed explanation is given in (Means) for understanding the action. Therefore, in the embodiments, only substances, numerical values, and the like are described without duplication. Target 100 Gbpsi is 6
Assuming that 00 kbpi × 160 ktpi, the track width (film thickness) of the longitudinal thin film core is 160 nm, the pole length is 5 μm, and the gap wall length (height) is 18 μm. The laminated film structure is composed of FeTaN (Bs 1.6 T, 50 micro ohm cm, Hv 1000) 40, 80, 40 n sandwiching a 2.5 nm non-magnetic intermediate layer (alumina or silica).
The layer was sputtered with a thickness of m.

【0038】横手薄膜コアは、幅(Z方向)は8ミクロ
ン、高さは18ミクロン、膜厚は主部と閉磁部中間層が
ともに0.5ミクロン、スロート部中間膜厚は0.35
ミクロン、スロートハイトは0.5〜2ミクロン。フレ
ームメッキする磁膜材はNi64Fe29(Bs
1.0T、85マイクロオームcm)、或はもっと低い
Bsのもの。コの字型導体膜の銅メッキ膜の幅は垂直部
と長手部ABS側で5ミクロン、長手部背面側で20ミ
クロン、膜厚は0.5ミクロン、YZ面となるコイル接
続部とボンディングターミナルへのリード部の膜厚はと
もに0.2ミクロンである。コイル接続部と長手薄膜コ
アとの間の絶縁層はギャップ層と同じ0.15ミクロン
となっている。l枚の4インチの方形ウエハからなるブ
ロックからナノスライダーがm×n×l個として数百万
個がとれる。
The horizontal thin film core has a width (Z direction) of 8 μm, a height of 18 μm, a thickness of 0.5 μm for both the main portion and the intermediate layer of the closed magnetic portion, and a thickness of 0.35 for the throat portion.
Micron, throat height 0.5-2 microns. The magnetic film material to be frame plated is Ni 64 Fe 29 P 7 (Bs
1.0T, 85 microohm cm) or lower Bs. The width of the copper plating film of the U-shaped conductor film is 5 μm on the vertical part and the longitudinal part on the ABS side, 20 μm on the back part of the longitudinal part, the film thickness is 0.5 μm, and the coil connection part and the bonding terminal have the YZ plane. The film thickness of the lead portion is 0.2 μm. The insulating layer between the coil connection and the longitudinal thin film core is 0.15 microns, the same as the gap layer. Millions of nano-sliders can be obtained as m × n × l nano-sliders from a block composed of one 4-inch square wafer.

【0039】[0039]

【発明の効果】直交する2段階の集積薄膜プロセスによ
り、サブクォタミクロントラック幅の高Bs長手積層薄
膜コアを、1ターン先端コイルとともにスライダーリア
面にリーディングコアとしてうめ込み、その上に低Bs
横手薄膜コアをのせてT型リングヘッドを形成すること
が可能となった。軟磁性裏打層ノイズを避けて単層垂直
媒体を用いこの単磁極的リングヘッドと組合せることに
より、高線密度垂直磁気記録と高トラック密度とが同時
に達成されて100Gbpsiが可能となり、さらにA
C消磁ノイズ(逆磁区ノイズ)も解消する。また積層構
造による磁化回転磁束流、コア膜の薄さによる渦電流減
少、1ターンコイル構造による短磁路化と薄さとによる
インダクタンス減少等により、1Gbpsの高速での高
記録感度化が得られる。
According to the integrated thin film process of two stages perpendicular to each other, a high Bs longitudinal laminated thin film core with a sub-quarter micron track width is embedded as a leading core on the slider rear surface together with a one-turn tip coil, and a low Bs
It has become possible to form a T-shaped ring head with a horizontal thin film core. By using a single-layer perpendicular medium while avoiding the soft magnetic backing layer noise and combining with this single-pole type ring head, high linear density perpendicular magnetic recording and high track density can be simultaneously achieved, and 100 Gbpsi can be achieved.
C degaussing noise (reverse magnetic domain noise) is also eliminated. In addition, high-speed and high-recording sensitivity of 1 Gbps can be obtained by the magnetization rotating magnetic flux flow due to the laminated structure, the eddy current reduction due to the thinness of the core film, and the inductance reduction due to the short magnetic path and the thinness due to the one-turn coil structure.

【図面の簡単な説明】[Brief description of the drawings]

【図 1】 本発明に係る複合型集積薄膜磁気ヘッドの
誘導型記録ヘッドの構造を示す斜視図である。横手薄膜
コアは半分のみが示されている。
FIG. 1 is a perspective view showing a structure of an inductive recording head of a composite integrated thin film magnetic head according to the present invention. Only half of the lateral thin film core is shown.

【図 2】 記録ヘッドの構造と磁界分布を示す説明図
である。(a)単磁極ヘッド、(b)対称的リングヘッ
ド、(c)非対称的(単磁極的)リングヘッド。
FIG. 2 is an explanatory diagram showing a structure of a recording head and a magnetic field distribution. (A) Single pole head, (b) Symmetric ring head, (c) Asymmetric (single pole) ring head.

【図 3】 主磁極先端コイルをもつマージド集積薄膜
単磁極ヘッド。
FIG. 3 is a merged integrated thin film single pole head having a main pole tip coil.

【図 4】 DSMT長手膜コア主磁極をもつ単磁極ヘ
ッド(バルク型)
Fig. 4 Single pole head (bulk type) with DSMT longitudinal film core main pole

【図 5】 本発明の製造法に係る直交する2段階の集
積薄膜プロセスの説明図である。
FIG. 5 is an explanatory view of an orthogonal two-stage integrated thin film process according to the manufacturing method of the present invention.

【図 6】 同じく、バージンウエハ上の長手薄膜コ
ア、導体膜等の集積を示すYZ断面図である。
FIG. 6 is a YZ sectional view showing the integration of a longitudinal thin film core, a conductive film, and the like on a virgin wafer.

【図 7】 同じく、バージンウエハ上の長手薄膜コア
のマトリックスの一部と異方性付けのための付加的磁膜
を示す説明図である。
FIG. 7 is also an explanatory view showing a part of a matrix of a longitudinal thin film core on a virgin wafer and an additional magnetic film for making anisotropy.

【図 8】 同じく、第2段階のエムベッデッドウエハ
上への集積プロセスを示すXY断面図である。
FIG. 8 is also an XY cross-sectional view showing a second-stage integration process on an embedded wafer.

【図 9】 本発明に係る逆配置型マージドヘッド(複
合型集積薄膜磁気ヘッド)をのせたコンタクトスライダ
ーの外観図である。
FIG. 9 is an external view of a contact slider on which an inverted arrangement type merged head (composite integrated thin film magnetic head) according to the present invention is mounted.

【図10】 本発明の誘導型記録部のスロート中間層コ
アを省いて単純化した構造のXY断面図である。
FIG. 10 is an XY cross-sectional view of a simplified structure in which the throat intermediate layer core of the inductive recording unit of the present invention is omitted.

【符号の説明】[Explanation of symbols]

10:長手薄膜コア,11:同主部,12:同閉磁部,
13:高Bs磁膜,14:非磁性中間層,15:付加的
磁膜,16:非磁性溝,20:横手薄膜コア,21:同
主部,22:同スロート部中間膜,23:同バック閉磁
部中間膜,24:低Bs磁膜,30:コイル導体膜,3
1:同コイル部,32:同コイル接続部,33:同リー
ド部,34:同ボンディングターミナルへのリード部,
40:MRリーダー,41:同シールドコア,50:ギ
ャップ(g),51:ギャップと同一面の絶縁層,6
0:ウエハーアルチック層,61:絶縁層,62:ガラ
ス層,70:バージンウエハ,71:エムベッデッドウ
エハ,72:ブロック,73:切シロ,80:垂直記録
層,81:軟磁性裏打層,90:単磁極ヘッド,91:
主磁極コア或いは主磁極的コア,92:リターンパスコ
ア或いはリターンパス的コア。
10: longitudinal thin film core, 11: main part, 12: closed magnetic part,
13: high Bs magnetic film, 14: non-magnetic intermediate layer, 15: additional magnetic film, 16: non-magnetic groove, 20: horizontal thin film core, 21: main part, 22: throat part intermediate film, 23: same Back magnetic section intermediate film, 24: low Bs magnetic film, 30: coil conductor film, 3
1: The same coil part, 32: The same coil connection part, 33: The same lead part, 34: The lead part to the same bonding terminal,
40: MR reader, 41: shield core, 50: gap (g), 51: insulating layer on the same plane as the gap, 6
0: Wafer Altic Layer, 61: Insulating Layer, 62: Glass Layer, 70: Virgin Wafer, 71: Embedded Wafer, 72: Block, 73: Cut White, 80: Perpendicular Recording Layer, 81: Soft Magnetic Underlayer , 90: single pole head, 91:
Main pole core or main pole core, 92: return path core or return path core.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】単層垂直媒体或いは垂直面内複合媒体等に
垂直記録する誘導型記録ヘッドと磁気抵抗効果型再生ヘ
ッド(以下MRリーダー)からなる複合型集積薄膜磁気
ヘッドにおいて、高Bs(飽和磁束密度)、高硬度の軟
磁材と非磁性中間層との積層膜構造を有し、そのサブク
ォタミクロンの膜厚がそのままトラック幅となる長手薄
膜コア(XY面)がその長手薄膜コア先端を周回する1
ターン導体膜コイルとともにコンタクトスライダーの素
子面(リア面、YZ面)に直角にうめ込まれている。低
Bs軟磁材の横手薄膜コア(YZ面)が、その長手薄膜
コアと直交する形で、ギャップをはさみバック閉磁部で
は接してT型リングヘッドを構成している。この誘導型
記録ヘッドと、その記録ヘッドとコアを共用するMRリ
ーダーとからなることを特徴とする複合型集積薄膜磁気
ヘッド。
A high integrated Bs (saturated) thin-film magnetic head composed of an inductive recording head and a magnetoresistive reproducing head (hereinafter referred to as an MR reader) for perpendicular recording on a single-layer perpendicular medium or a composite medium in a perpendicular plane. Magnetic flux density), a laminated film structure of a high-hardness soft magnetic material and a non-magnetic intermediate layer, and a longitudinal thin film core (XY plane) whose sub-quarter micron film thickness becomes the track width as it is is the tip of the longitudinal thin film core. Orbit 1
Along with the turn conductor film coil, it is embedded at right angles to the element surface (rear surface, YZ surface) of the contact slider. The transverse thin film core (YZ plane) of the low Bs soft magnetic material is perpendicular to the longitudinal thin film core and sandwiches a gap to contact the back closed magnetic portion to form a T-shaped ring head. A composite integrated thin-film magnetic head comprising the inductive recording head and an MR reader sharing a core with the recording head.
【請求項2】T型リングヘッドの1ターン導体膜コイル
の上端が、長手薄膜コアの先端の媒体摺動面(ABS)
迄達しており、横手薄膜コアのスロート部中間膜が省か
れている誘導型記録ヘッドの構造を特徴とする請求項1
の複合型集積薄膜磁気ヘッド。
2. The medium-sliding surface (ABS) at the tip of a longitudinal thin-film core is positioned at the upper end of a one-turn conductive film coil of a T-shaped ring head.
2. The structure of an inductive recording head, wherein the throat portion intermediate film of the lateral thin film core is omitted.
Composite integrated thin film magnetic head.
【請求項3】T型リングヘッドの横手薄膜コアをMRリ
ーダーのシールドの片方と共用したマージド型MRリー
ダーを構成要素とし、逆配置構造(MRリーダーがトレ
ーリング側)になっていることを特徴とする請求項1の
複合型集積薄膜磁気ヘッド。
3. A merged MR reader in which the lateral thin-film core of the T-shaped ring head is shared with one of the shields of the MR reader is a constituent element, and has an inverted arrangement structure (the MR reader is on the trailing side). The composite integrated thin film magnetic head according to claim 1, wherein
【請求項4】バージンウエハ上(XY面)にm×nのマ
トリックスを形成するように、長手薄膜コアと、それを
周回する1ターン導体薄膜コイルのコの字型の一対の導
体薄膜半体とを3層に集積成膜する。この集積バージン
ウエハのl枚を揃えて熱圧着ガラス融着してm×n×l
個の素子をふくむブロックを作る。このブロックを長手
薄膜コアのギャップ壁面となるYZ断面が出るようにス
ライスしてn枚のエムベッデッドウエハを得る。その上
にギャップ絶縁層膜を成膜し、コイル部の接続部および
リード部端からボンディングターミナルへのリードとな
る導体膜をメッキ成膜する。コイル部の接続部をまたい
で、長手薄膜コアとギャップをはさみバック閉磁部で接
してT字型リングヘッドコアを構成する形で、横手薄膜
コアをメッキ等で成膜する。以上の直交する2段階の集
積薄膜プロセスによって誘導型記録ヘッドを形成するこ
とを特徴とする複合型集積薄膜磁気ヘッドの製造法。
4. A pair of U-shaped conductive thin film halves of a longitudinal thin film core and a one-turn conductive thin film coil surrounding the core so as to form an m × n matrix on a virgin wafer (XY plane). Are integrated into three layers. One of the integrated virgin wafers is aligned and fused by thermocompression bonding to form a m × n × l
Make a block containing the individual elements. This block is sliced so that a YZ cross section serving as a gap wall surface of the longitudinal thin film core is obtained, thereby obtaining n embedded wafers. A gap insulating layer film is formed thereon, and a conductive film serving as a lead from the connection portion of the coil portion and the end of the lead portion to the bonding terminal is formed by plating. A transverse thin film core is formed by plating or the like so as to form a T-shaped ring head core by sandwiching the gap with the longitudinal thin film core and straddling the back closed magnetic portion across the connection portion of the coil portion. A method of manufacturing a composite-type integrated thin-film magnetic head, comprising forming an inductive recording head by the above-described orthogonal two-stage integrated thin-film process.
【請求項5】直交する2段階の集積薄膜プロセスによっ
て形成された誘導型記録ヘッドの横手薄膜コアを下部シ
ールドとして共用しその上にMRリーダーの多層膜素子
および上部シールド薄膜コアを集積することを特徴とす
る請求項4の複合型集積薄膜磁気ヘッドの製造法。
5. An inductive recording head formed by an orthogonal two-stage integrated thin-film process, wherein a lateral thin-film core is shared as a lower shield, on which a multilayer element of an MR reader and an upper shield thin-film core are integrated. 5. The method of manufacturing a composite integrated thin film magnetic head according to claim 4, wherein:
JP2000378160A 2000-11-07 2000-11-07 Composite integrated thin film magnetic head and its manufacturing method Pending JP2002150508A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000378160A JP2002150508A (en) 2000-11-07 2000-11-07 Composite integrated thin film magnetic head and its manufacturing method
PCT/JP2001/009698 WO2002039432A1 (en) 2000-11-07 2001-11-06 Composite integrated thin film head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000378160A JP2002150508A (en) 2000-11-07 2000-11-07 Composite integrated thin film magnetic head and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002150508A true JP2002150508A (en) 2002-05-24

Family

ID=18846779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000378160A Pending JP2002150508A (en) 2000-11-07 2000-11-07 Composite integrated thin film magnetic head and its manufacturing method

Country Status (2)

Country Link
JP (1) JP2002150508A (en)
WO (1) WO2002039432A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070698B2 (en) 2004-06-30 2006-07-04 Hitachi Global Storage Technologies Netherlands B.V. Methods of fabricating magnetic write heads with side and trailing shield structures
US8028399B2 (en) 2007-12-16 2011-10-04 Hitachi Global Storage Technologies Netherlands, B.V. Magnetic write pole fabrication

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10269533A (en) * 1997-03-19 1998-10-09 Minebea Co Ltd Perpendicular magnetic recording composite head
JPH11110717A (en) * 1997-10-02 1999-04-23 Sony Corp Thin film single magnetic pole head
JP2000182205A (en) * 1998-12-17 2000-06-30 Hitachi Ltd Magnetic disk device

Also Published As

Publication number Publication date
WO2002039432A1 (en) 2002-05-16

Similar Documents

Publication Publication Date Title
KR100319035B1 (en) Thin film magnetic head and recording reproducing separate type magnetic head, and magnetic recording reproducing apparatus using them
US7551395B2 (en) Main pole structure coupled with trailing gap for perpendicular recording
WO2010016296A1 (en) Magnetic recording head, magnetic head assembly and magnetic recording device
KR20080096463A (en) Magnetic element, magnetic recording head and magnetic recording device
JPH10334409A (en) Thin film magnetic head
US7054106B2 (en) Magnetic head and magnetic storage apparatus
JP2001176028A (en) Thin film magnetic head and method of producing the same
JP2004342164A (en) Magnetic head and magnetic disk unit mounting the same
US6977799B2 (en) Magnetic head comprising a multilayer magnetoresistive device and a yoke for introducing magnetic flux from a medium to the magnetoresistive device
JP2000113421A (en) Magnetic tunnel junction magneto-resistive head
KR100382865B1 (en) Recording head, recording head manufacturing method, combined head and magnetic recording/reproduction apparatus
US6687082B1 (en) Magnetic head and manufacturing method thereof and magnetic recording and reproducing apparatus
JP2002150508A (en) Composite integrated thin film magnetic head and its manufacturing method
JPH10241125A (en) Thin film magnetic head and recording/reproducing separation type magnetic head and magnetic recording/ reproducing apparatus using the same
JP2000293816A (en) Thin film magnetic head and its production
JPH10269523A (en) Magnetic head and magnetic recorder using it
JP2002032904A (en) Magnetic head and magnetic information recording/ reproducing device using the same
JP2002008209A (en) Composite thin film magnetic head
JP3660633B2 (en) Thin film magnetic head and manufacturing method thereof
JP2003059012A (en) Thin-film magnetic head
JP3474533B2 (en) Thin film magnetic head and method of manufacturing the same
JP3233115B2 (en) Magnetoresistive head and method of manufacturing the same
JPH11306513A (en) High-density recording and reproducing head and high track density magnetic recording and reproducing device
JP2001126216A (en) Magnetic recording head, and its manufacturing method
JPH103611A (en) Thin film magnetic head and magnetic recording/ reproducing device