JP2002147451A - Multiple-row rolling bearing - Google Patents

Multiple-row rolling bearing

Info

Publication number
JP2002147451A
JP2002147451A JP2000349254A JP2000349254A JP2002147451A JP 2002147451 A JP2002147451 A JP 2002147451A JP 2000349254 A JP2000349254 A JP 2000349254A JP 2000349254 A JP2000349254 A JP 2000349254A JP 2002147451 A JP2002147451 A JP 2002147451A
Authority
JP
Japan
Prior art keywords
rolling bearing
rings
preload
row rolling
pinion shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000349254A
Other languages
Japanese (ja)
Inventor
Yuji Nakano
裕司 中野
Makoto Maebotoke
誠 前佛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2000349254A priority Critical patent/JP2002147451A/en
Publication of JP2002147451A publication Critical patent/JP2002147451A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure capable of suppressing preload changes caused by changes in temperature in the rotation of driving. SOLUTION: An outer ring seat 20 is provided between a pair of outer rings 8a and 8b. Materials constituting the respective members are so selected that a relation βh>βs>βo is formed among a coefficient of linear expansion βs of a pinion shaft 2 and an inner ring seat 17, a coefficient of linear expansion βh of a support cylinder 13a, and a coefficient of linear expansion βo of the outer ring seat 20. Irrelevant to the changes in the driving state, this constitution can mutually offset an increase of preload based on the generation of the thermal expansion between the respective outer rings 8a and 8b and the respective inner rings 9a and 9b and a decrease in the preload based on the generation of the axial thermal expansion between the pinion shaft 2 and the inner ring seat 17 and between the pinion shaft 2 and the outer ring seat 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明に係る複列転がり軸
受装置は、例えば自動車のデファレンシャルギヤ(最終
減速機)を構成するピニオン軸をケーシング(デフケー
ス)の内側に回転自在に支持する為の複列円すいころ軸
受として実施する。
BACKGROUND OF THE INVENTION A double-row rolling bearing device according to the present invention is a double-row rolling bearing for rotatably supporting, for example, a pinion shaft constituting a differential gear (final reduction gear) of an automobile inside a casing (differential case). Implement as tapered roller bearings.

【0002】[0002]

【従来の技術】自動車の動力伝達系の途中に設けてプロ
ペラシャフトの回転を減速すると同時に回転方向を直角
に変換するデファレンシャルギヤは、図5に示す様に構
成される。ケーシング1の内側前寄り(図5の右寄り)
部分に、請求項に記載した内側部材である、ピニオン軸
2を配設している。このピニオン軸2の前端部(図5の
右端部)で上記ケーシング1の前端開口部から突出した
部分に固設した結合フランジ3には、図示しないプロペ
ラシャフトの後端部を連結自在である。又、上記ピニオ
ン軸2の後端部(図5の左端部)に減速小歯車4を固定
し、この減速小歯車4と減速大歯車5とを互いに噛合さ
せている。この減速大歯車5は、上記ケーシング1の後
部(図5の左部)内側に、回転のみ自在に支持してい
る。又、上記ピニオン軸2の中間部は、本発明の対象と
なる複列転がり軸受装置6により上記ケーシング1に対
し、回転自在に支持している。
2. Description of the Related Art A differential gear which is provided in the middle of a power transmission system of an automobile to reduce the rotation of a propeller shaft and convert the rotation direction into a right angle at the same time is configured as shown in FIG. Inside front of casing 1 (to the right in FIG. 5)
A pinion shaft 2, which is an inner member described in the claims, is disposed in the portion. A rear end of a propeller shaft (not shown) can be freely connected to a coupling flange 3 fixed at a front end (right end in FIG. 5) of the pinion shaft 2 at a portion protruding from a front end opening of the casing 1. A small reduction gear 4 is fixed to the rear end (left end in FIG. 5) of the pinion shaft 2, and the small reduction gear 4 and the large reduction gear 5 are meshed with each other. The reduction gear 5 is rotatably supported inside a rear portion (left portion in FIG. 5) of the casing 1. The intermediate portion of the pinion shaft 2 is rotatably supported on the casing 1 by a double-row rolling bearing device 6 to which the present invention is applied.

【0003】この複列転がり軸受装置6は、それぞれが
請求項に記載した第一の転がり軸受又は第二の転がり軸
受に相当する、前後1対の円すいころ軸受7a、7bを
軸方向(図5の左右方向)に互いに離隔した状態で配置
して成る。これら各円すいころ軸受7a、7bは、それ
ぞれ1個ずつの外輪8a、8b及び内輪9a、9bと、
それぞれが請求項に記載した転動体である複数個ずつの
円すいころ10a、10bとから構成されている。上記
各外輪8a、8bの内周面には円すい凹面状の外輪軌道
11a、11bが、上記各内輪9a、9bの外周面には
円すい凸面状の内輪軌道12a、12bが、それぞれ形
成されている。上記外輪8a、8bは上記ケーシング1
の一部に内嵌固定し、上記内輪9a、9bは上記ピニオ
ン軸2の中間部前後2個所位置に外嵌固定している。
In this double row rolling bearing device 6, a pair of front and rear tapered roller bearings 7a and 7b, which correspond to the first rolling bearing or the second rolling bearing, respectively, are described in the axial direction (FIG. 5). (Left and right directions). Each of these tapered roller bearings 7a and 7b has one outer ring 8a and 8b and one inner ring 9a and 9b, respectively.
It comprises a plurality of tapered rollers 10a and 10b, each of which is a rolling element described in the claims. Conical concave outer raceways 11a and 11b are formed on the inner peripheral surfaces of the outer rings 8a and 8b, and conical convex inner raceways 12a and 12b are formed on the outer peripheral surfaces of the inner races 9a and 9b, respectively. . The outer rings 8a and 8b are connected to the casing 1
And the inner rings 9a and 9b are externally fitted and fixed at two positions before and after the intermediate portion of the pinion shaft 2.

【0004】この状態で上記各外輪8a、8bの互いに
対向する端面は、上記ケーシング1内に設けた、請求項
に記載した外側部材に相当する支持筒部13の内周面に
形成した、係止段部14a、14bに突き当てている。
従って、上記1対の外輪8a、8bは上記支持筒部13
内に、互いに近づく方向への移動を阻止された状態で内
嵌固定されている。これに対して、上記各内輪9a、9
bの互いに反対側の端面は、前記結合フランジ3を設け
た嵌合筒部15の基端面(図5の左端面)又は前記減速
小歯車4の基端面(図5の右端面)に、直接又は間座1
6を介して突き当てている。従って、上記1対の内輪9
a、9bは、前記ピニオン軸2の周囲に、互いに離れる
方向の移動を阻止された状態で、外嵌固定されている。
尚、図示の例では、上記1対の内輪9a、9b同士の間
に内輪間座17を挟持して、これら両内輪9a、9bの
位置決めの確実性を図っている。又、この内輪間座17
は、中間部に曲がり部18を設ける事により、その全長
を弾性的に収縮自在としている。
In this state, the end faces of the outer races 8a and 8b facing each other are formed on the inner peripheral surface of a support cylindrical portion 13 provided in the casing 1 and corresponding to the outer member described in the claims. It abuts against the stop portions 14a and 14b.
Therefore, the pair of outer rings 8a and 8b is
Inside, it is fitted and fixed in a state where movement in the direction approaching each other is prevented. On the other hand, the inner rings 9a, 9
The end faces on the opposite side of b are directly connected to the base end face (left end face in FIG. 5) of the fitting cylindrical portion 15 provided with the coupling flange 3 or the base end face (right end face in FIG. 5) of the reduction pinion 4. Or spacer 1
6 through. Therefore, the pair of inner rings 9
Reference numerals a and 9b are externally fitted around the pinion shaft 2 in a state where movement in directions away from each other is prevented.
In the illustrated example, the inner race spacer 17 is sandwiched between the pair of inner races 9a and 9b to ensure the positioning of the inner races 9a and 9b. Also, this inner ring spacer 17
Is provided with a bent portion 18 at an intermediate portion so that the entire length can be elastically contracted.

【0005】上述の様な構成を有する前記複列転がり軸
受装置6には、所定の予圧を付与している。この為に図
示の例では、上記嵌合筒部15を上記ピニオン軸2の前
端部にスプライン係合させた状態で、この嵌合筒部15
の基端面により一方(図5の右方)の円すいころ軸受7
aの内輪9aを、他方(図5の左方)の円すいころ軸受
7bの内輪9bに向け押圧している。この様にして上記
複列転がり軸受6を構成する1対の円すいころ軸受7
a、7bに付与する予圧は、上記支持筒部13内に上記
ピニオン軸2をがたつきなく支持でき、しかも上記複列
転がり軸受6の回転抵抗が過大にならない範囲に設定す
る。因に、上記予圧が小さ過ぎると、上記ピニオン軸2
が上記支持筒部13内でがたつき、反対に大き過ぎる
と、上記複列転がり軸受6の回転抵抗が過大になって、
自動車の燃費性能が悪化するだけでなく、著しい場合に
は過度な温度上昇に基づく焼き付き発生の原因ともな
る。従って、上記予圧を適正範囲に規制する事は重要で
ある。
[0005] A predetermined preload is applied to the double-row rolling bearing device 6 having the above-described configuration. For this reason, in the illustrated example, the fitting tube portion 15 is spline-engaged with the front end of the pinion shaft 2, and
(The right side in FIG. 5) of the tapered roller bearing 7
The inner ring 9a is pressed toward the inner ring 9b of the other (left side in FIG. 5) tapered roller bearing 7b. Thus, a pair of tapered roller bearings 7 constituting the double row rolling bearing 6 is provided.
The preload applied to the a and 7b is set within a range in which the pinion shaft 2 can be supported in the support cylindrical portion 13 without rattling, and the rotational resistance of the double row rolling bearing 6 does not become excessive. If the preload is too small, the pinion shaft 2
However, if the backlash in the support cylindrical portion 13 is too large, the rotational resistance of the double row rolling bearing 6 becomes excessive,
Not only does the fuel efficiency of the vehicle deteriorate, but in severe cases it also causes burn-in due to excessive temperature rise. Therefore, it is important to regulate the preload within an appropriate range.

【0006】上述の様に構成される従来の複列転がり軸
受装置6の場合、温度変化に伴う予圧変化を少なく抑え
る事に就いて特に考慮していなかった。この為、使用条
件によっては、低温時から高温時まで、使用状態全般に
亙って好ましい特性(性能)を得る事はできなかった。
例えば、図5に示す様なデファレンシャルギヤの場合、
軽量化の為に、支持筒部13を含むケーシング1全体
を、軽量なアルミニウム合金により造る場合がある。こ
れに対して、ピニオン軸2は、必要とする強度及び剛性
を確保する為に、鉄系の合金により造る必要がある。
又、上記各円すいころ軸受7a、7bの構成各部材も、
軸受鋼等の鉄系の合金により造る事が一般的であり、稀
に一部の部材をセラミック製とする場合がある。
In the case of the conventional double-row rolling bearing device 6 configured as described above, no special consideration has been given to suppressing a change in preload due to a temperature change. For this reason, depending on the use conditions, favorable characteristics (performance) could not be obtained over the entire use state from a low temperature to a high temperature.
For example, in the case of a differential gear as shown in FIG.
In order to reduce the weight, the entire casing 1 including the support cylinder 13 may be made of a lightweight aluminum alloy. On the other hand, the pinion shaft 2 needs to be made of an iron-based alloy in order to secure required strength and rigidity.
In addition, the constituent members of the tapered roller bearings 7a and 7b are also
In general, it is made of an iron-based alloy such as bearing steel, and in rare cases, some members are made of ceramic.

【0007】温度上昇に伴う予圧変化に就いて、上記複
列転がり軸受6を取り出して示す概略図である、図6に
より説明する。支持筒部13がアルミニウム合金製であ
り、ピニオン軸2が鉄系合金製の場合に、使用に伴って
上記支持筒部13とピニオン軸2との温度が一様に上昇
したと仮定すると、アルミニウム合金と鉄系合金との間
に存在する線膨張率の相違に起因して、支持筒部13の
膨張量がピニオン軸2の膨張量よりも多くなる。そし
て、上記ピニオン軸2に、互いに離れる方向への移動を
阻止された状態で外嵌固定された、1対の内輪9a、9
b同士の間隔よりも、上記支持筒部13に互いに近づく
方向への変位を阻止された状態で内嵌固定された外輪8
a、8b同士の間隔が大きくなる傾向となる。この結
果、上記複列転がり軸受装置6の予圧量が増大する。
尚、温度上昇時には、上記ピニオン軸2の外径の増大量
よりも上記支持筒部13の内径の増大量が多くなるが、
上記各円すいころ軸受7a、7bの構成各部材が、何れ
も軸受鋼等の鉄系の合金により造られている為、これら
各円すいころ軸受7a、7bの構成各部材の温度上昇が
均一であれば、径方向の寸法変化が予圧量の変化に及ぼ
す影響は僅かである。言い換えれば、構成各部材の温度
上昇が均一の場合には、上記支持筒部13及びピニオン
軸2の、軸方向に関する熱膨張量の差が、予圧変化に対
しては支配的になる。
FIG. 6 is a schematic view showing the double-row rolling bearing 6 taken out of the double-row rolling bearing 6 with respect to the change of the preload accompanying the temperature rise. If the support cylinder 13 is made of an aluminum alloy and the pinion shaft 2 is made of an iron-based alloy, assuming that the temperature between the support cylinder 13 and the pinion shaft 2 uniformly rises with use, the aluminum Due to the difference in the coefficient of linear expansion existing between the alloy and the iron-based alloy, the amount of expansion of the support cylinder 13 becomes larger than the amount of expansion of the pinion shaft 2. A pair of inner rings 9a, 9 which are externally fitted and fixed to the pinion shaft 2 while being prevented from moving in the direction away from each other.
The outer ring 8 is fitted and fixed in a state where the displacement in the direction approaching the support cylinder portion 13 is prevented more than the interval between b.
The distance between a and 8b tends to increase. As a result, the amount of preload of the double row rolling bearing device 6 increases.
When the temperature rises, the amount of increase in the inner diameter of the support cylindrical portion 13 is larger than the amount of increase in the outer diameter of the pinion shaft 2, but
Since the constituent members of the tapered roller bearings 7a and 7b are all made of an iron-based alloy such as bearing steel, the temperature rise of the constituent members of the tapered roller bearings 7a and 7b is uniform. For example, the influence of the dimensional change in the radial direction on the change in the preload amount is small. In other words, when the temperature rises of the constituent members are uniform, the difference in the amount of thermal expansion between the support cylinder 13 and the pinion shaft 2 in the axial direction becomes dominant with respect to the change in preload.

【0008】上述の様な原因による予圧変化を抑えるべ
く、特開平10−220468号公報には、1対の外輪
が互いに近づく方向に変位するのを防止する為にこれら
1対の外輪の互いに対向する面同士の間に外輪間座を挟
持する構造を採用し、且つ、この外輪間座をピニオン軸
と同じ材質により造る技術が記載されている。この様な
従来技術によれば、温度上昇時に上記1対の外輪同士の
間隔が広がる量を低く抑える事ができるので、温度上昇
に伴う予圧量の増大を或る程度抑える事ができる。
In order to suppress a change in preload due to the above-described causes, Japanese Patent Application Laid-Open No. H10-220468 discloses that a pair of outer rings face each other in order to prevent the pair of outer rings from being displaced in a direction approaching each other. There is described a technique of adopting a structure in which an outer ring spacer is sandwiched between surfaces to be formed, and forming the outer ring spacer from the same material as the pinion shaft. According to such a conventional technique, the amount of expansion of the interval between the pair of outer rings at the time of temperature rise can be suppressed to a low level, so that an increase in the preload amount due to the temperature rise can be suppressed to some extent.

【0009】[0009]

【発明が解決しようとする課題】温度上昇に伴う予圧量
増大の原因が、ハウジング1に設けた支持筒部13等の
外側部材と、ピニオン軸2等の内側部材との熱膨張量の
差だけであれば、上述した特開平10−220468号
公報に記載された従来技術によっても、温度変化に伴う
予圧量の変動を十分に低く抑える事ができる。但し、温
度変化に伴う予圧量の変動は、上記外側部材と内側部材
との熱膨張量の差だけではなく、各円すいころ軸受7
a、7bを構成する各外輪8a、8bと内輪9a、9b
との熱膨張量の差によっても生じる事が、本発明者の研
究により分かった。この為、使用条件によっては、上記
公報に記載された従来技術では、上記予圧量の変動を十
分に低く抑えられない可能性がある。
The cause of the increase in the preload due to the temperature rise is caused by the difference in the amount of thermal expansion between the outer member such as the support tube portion 13 provided on the housing 1 and the inner member such as the pinion shaft 2. Then, even with the conventional technique described in Japanese Patent Application Laid-Open No. H10-220468, the fluctuation of the preload amount due to the temperature change can be sufficiently suppressed. However, the change in the amount of preload due to the temperature change is caused not only by the difference in the amount of thermal expansion between the outer member and the inner member, but also by the tapered roller bearings 7.
a, 7b, the outer rings 8a, 8b and the inner rings 9a, 9b
It has been found from the study of the inventor that it also occurs due to the difference in the amount of thermal expansion from the above. For this reason, depending on the use conditions, the prior art described in the above publication may not be able to sufficiently suppress the fluctuation of the preload amount.

【0010】例えば、図5に示した様なデファレンシャ
ルギヤを構成するピニオン軸2を回転自在に支持する複
列転がり軸受装置6の場合、このピニオン軸2の回転継
続に伴う温度上昇は、放熱されにくい上記各内輪9a、
9bで大きく、外気に曝される上記ハウジング1に接触
している為放熱され易い上記各外輪8a、8bで小さく
なる。この結果、温度上昇時には、これら各外輪8a、
8bの内周面に形成した各外輪軌道11a、11bと上
記各内輪9a、9bの外周面に形成した各内輪軌道12
a、12bの径差が小さくなる傾向になる。この径差が
小さくなる事は、上記各円すいころ軸受7a、7bの予
圧量が増大する事に結び付く。上記特開平10−220
468号公報に記載された従来技術は、この様な上記各
外輪8a、8bと上記各内輪9a、9bとの間に生じる
温度差に基づく予圧量の増大に就いては考慮していない
為、上述の様に、予圧量の変動を十分に低く抑えられな
い可能性がある。本発明は、この様な事情に鑑みて、使
用時に、上記各外輪8a、8bの温度上昇に比べて上記
各内輪9a、9bの温度上昇が著しくなる様な用途で
も、温度変化に伴う予圧量の変動を十分に低く抑えられ
る複列転がり軸受装置を実現すべく発明したものであ
る。
For example, in the case of a double row rolling bearing device 6 rotatably supporting a pinion shaft 2 constituting a differential gear as shown in FIG. 5, the temperature rise accompanying the continuous rotation of the pinion shaft 2 is radiated. Each inner ring 9a which is difficult
9b, the outer rings 8a, 8b, which are large and easy to dissipate heat because they are in contact with the housing 1 exposed to the outside air, are small. As a result, when the temperature rises, each of these outer rings 8a,
8b, the outer raceways 11a, 11b formed on the inner peripheral surface and the inner raceways 12 formed on the outer peripheral surface of the inner races 9a, 9b.
The diameter difference between a and 12b tends to be small. Reducing the diameter difference leads to an increase in the preload amount of each of the tapered roller bearings 7a and 7b. JP-A-10-220
The prior art described in Japanese Patent No. 468 does not consider such an increase in the preload amount based on the temperature difference generated between the outer rings 8a and 8b and the inner rings 9a and 9b. As described above, there is a possibility that the fluctuation of the preload amount cannot be suppressed sufficiently low. In view of such circumstances, the present invention provides a preload amount that accompanies a temperature change even in an application in which the temperature rise of each of the inner rings 9a and 9b becomes remarkable as compared with the temperature rise of each of the outer rings 8a and 8b during use. It has been invented to realize a double-row rolling bearing device capable of sufficiently suppressing the fluctuation of the bearing.

【0011】[0011]

【課題を解決するための手段】本発明の複列転がり軸受
装置は、前述した従来から知られている複列転がり軸受
装置と同様に、内側部材と、この内側部材を構成する材
料の熱膨張率よりも大きな熱膨張率を有する材料により
造られた外側部材と、この外側部材の内周面と上記内側
部材の外周面との間で軸方向に離隔した2個所位置に設
けられてこれら外側部材と内側部材との相対回転を許容
する第一、第二の転がり軸受とを備える。これら第一、
第二の転がり軸受は、それぞれが内輪の外周面に設けた
内輪軌道と外輪の内周面に設けた外輪軌道との間に複数
個ずつの転動体を設けて成り、上記内輪と上記外輪との
間に加わるラジアル荷重及びアキシアル荷重を支承自在
なものである。又、上記第一、第二の転がり軸受を構成
する1対の内輪は上記内側部材に、互いに離れる方向に
移動するのを阻止した状態で外嵌固定されており、上記
第一、第二の転がり軸受を構成する1対の外輪は上記外
側部材に、互いに近づく方向に移動するのを阻止した状
態で内嵌固定されている。そして、上記内側部材及び上
記各内輪の温度よりも、上記外側部材及び上記各外輪の
温度が低い状態で使用される。特に、本発明の複列転が
り軸受装置に於いては、上記1対の外輪同士の間に、上
記内側部材を構成する材料よりも小さな熱膨張率を有す
る材料で造った外輪間座を挟持する事により、上記内側
部材と上記外側部材との間に生じる温度差に伴う、上記
第一、第二の転がり軸受の予圧の変化量を少なく抑えて
いる。
According to the double row rolling bearing device of the present invention, similarly to the above-described conventionally known double row rolling bearing device, the thermal expansion of the inner member and the material constituting the inner member is performed. An outer member made of a material having a coefficient of thermal expansion greater than a coefficient of thermal expansion; and an outer member provided at two axially spaced positions between an inner peripheral surface of the outer member and an outer peripheral surface of the inner member. The first and second rolling bearings allow relative rotation between the member and the inner member. These first,
The second rolling bearing is provided by providing a plurality of rolling elements between the inner raceway provided on the outer peripheral surface of the inner race and the outer raceway provided on the inner peripheral surface of the outer race, and the inner race and the outer race are provided. It can freely support the radial load and the axial load applied between them. Further, a pair of inner races constituting the first and second rolling bearings are externally fitted and fixed to the inner member in a state where the inner races are prevented from moving in directions away from each other. A pair of outer races constituting the rolling bearing are internally fitted and fixed to the outer member in a state where they are prevented from moving in a direction approaching each other. The temperature of the outer member and each of the outer rings is lower than the temperatures of the inner member and the respective inner rings. In particular, in the double row rolling bearing device of the present invention, an outer ring spacer made of a material having a smaller coefficient of thermal expansion than the material forming the inner member is sandwiched between the pair of outer rings. As a result, the amount of change in the preload of the first and second rolling bearings due to the temperature difference between the inner member and the outer member is reduced.

【0012】[0012]

【作用】上述の様に構成する本発明の複列転がり軸受装
置によれば、使用に伴う温度上昇時に、各転がり軸受の
外輪の熱膨張量が同じく内輪の熱膨張量よりも少なくな
り、その分、これら各転がり軸受の予圧が上昇する傾向
になる。一方、外輪間座の熱膨張量が内側部材の熱膨張
量よりも少なくなる事により、上記各転がり軸受の予圧
が低下する傾向になる。この結果、予圧変動に係る両方
の挙動が互いに相殺しあって、温度上昇に伴う上記各転
がり軸受の予圧変動を、小さく抑える事ができる。
According to the double-row rolling bearing device of the present invention configured as described above, when the temperature rises during use, the amount of thermal expansion of the outer ring of each rolling bearing becomes smaller than the amount of thermal expansion of the inner ring. Accordingly, the preload of each of these rolling bearings tends to increase. On the other hand, when the amount of thermal expansion of the outer race spacer is smaller than the amount of thermal expansion of the inner member, the preload of each rolling bearing tends to decrease. As a result, the two behaviors related to the preload fluctuation cancel each other, and the preload fluctuation of each of the rolling bearings due to the temperature rise can be suppressed to a small value.

【0013】[0013]

【発明の実施の形態】次に、本発明の実施の形態の1例
を説明しつつ、本発明により、各円すいころ軸受7a、
7bを構成する外輪8a、8bの温度上昇が、内輪9
a、9bの温度上昇よりも低い場合でも、予圧変動を低
く抑えられる理由に就いて説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a tapered roller bearing according to an embodiment of the present invention.
The temperature rise of the outer rings 8a and 8b constituting the inner ring 9b
The reason why the preload fluctuation can be kept low even when the temperature is lower than the temperature rises of a and 9b will be described.

【0014】先ず、図1は、本発明の複列転がり軸受装
置6aの概略図である。この複列転がり軸受装置6a
は、前述した従来構造の場合と同様に、それぞれが請求
項に記載した第一の転がり軸受又は第二の転がり軸受に
相当する、前後1対の円すいころ軸受7a、7bを軸方
向(図1の左右方向)に互いに離隔した状態で配置して
成る。これら各円すいころ軸受7a、7bは、それぞれ
1個ずつの外輪8a、8b及び内輪9a、9bと、それ
ぞれが請求項に記載した転動体である複数個ずつの円す
いころ10a、10bとから構成されている。上記各外
輪8a、8bの内周面には円すい凹面状の外輪軌道11
a、11bが、上記各内輪9a、9bの外周面には円す
い凸面状の内輪軌道12a、12bが、それぞれ形成さ
れている。上記外輪8a、8bはケーシング1の一部に
内嵌固定し、上記内輪9a、9bはピニオン軸2の中間
部前後2個所位置に外嵌固定している。
FIG. 1 is a schematic view of a double row rolling bearing device 6a according to the present invention. This double row rolling bearing device 6a
As in the case of the conventional structure described above, a pair of front and rear tapered roller bearings 7a and 7b, which correspond to the first rolling bearing or the second rolling bearing, respectively, are described in the axial direction (FIG. 1). (Left and right directions). Each of these tapered roller bearings 7a, 7b is composed of one outer ring 8a, 8b and one inner ring 9a, 9b, and a plurality of tapered rollers 10a, 10b, each of which is a rolling element described in the claims. ing. A conical concave outer raceway 11 is provided on the inner peripheral surface of each of the outer races 8a and 8b.
The inner rings 9a and 9b are formed on the outer peripheral surfaces of the inner rings 9a and 9b with conical convex inner ring tracks 12a and 12b, respectively. The outer rings 8a and 8b are fixedly fitted inside a part of the casing 1, and the inner rings 9a and 9b are fixedly fitted at two positions in front and rear of an intermediate portion of the pinion shaft 2.

【0015】この状態で上記各外輪8a、8bの互いに
対向する端面同士の間には、上記ケーシング1内に設け
た、請求項に記載した外側部材に相当する支持筒部13
aの内周面に形成した内向フランジ状の鍔部19と、円
筒状の外輪間座20とを、隙間なく挟持している。従っ
て、上記1対の外輪8a、8bは上記支持筒部13a内
に、互いに近づく方向への移動を阻止された状態で内嵌
固定されている。これに対して上記各内輪9a、9bの
互いに反対側の端面は、ピニオン軸2に固定した部材に
突き当てられている。従って、上記1対の内輪9a、9
bはこのピニオン軸2の周囲に、互いに離れる方向への
移動を阻止された状態で、外嵌固定されている。尚、図
示の例では、上記1対の内輪9a、9b同士の間に内輪
間座17を挟持して、これら両内輪9a、9bの位置決
めの確実性を図っている。
In this state, between the end faces of the outer races 8a and 8b facing each other, a support tubular portion 13 provided in the casing 1 and corresponding to an outer member according to the present invention.
A flange portion 19 having an inward flange shape formed on the inner peripheral surface of a and a cylindrical outer ring spacer 20 are sandwiched without any gap. Therefore, the pair of outer rings 8a and 8b are fixedly fitted in the support cylinder portion 13a in a state where the pair of outer rings 8a and 8b are prevented from moving toward each other. On the other hand, the end faces of the inner rings 9a and 9b opposite to each other abut against a member fixed to the pinion shaft 2. Therefore, the pair of inner rings 9a, 9
b is externally fitted and fixed around the pinion shaft 2 in a state where movement in directions away from each other is prevented. In the illustrated example, the inner race spacer 17 is sandwiched between the pair of inner races 9a and 9b to ensure the positioning of the inner races 9a and 9b.

【0016】特に、本発明の複列転がり軸受装置6aの
場合には、上記ピニオン軸2及び内輪間座17を、鋼
(線膨張率βs =12.5×10-6程度)等の、線膨張
率が中間の金属材により造っている。又、上記支持筒部
13aを、アルミニウム合金(線膨張率βh =23.5
×10-6程度)等の、線膨張率が大きな金属材により造
っている。更に、上記外輪間座20を、インバー(線膨
張率βo =1.2×10 -6程度)等の、線膨張率が小さ
な金属材料若しくはセラミック材料により造っている。
即ち、本発明の複列転がり軸受装置6aの場合には、上
記各部材2、17、13a、20の線膨張率βs 、β
h 、βo 同士の間に、βh >βs >βo の関係が成立す
る様に、これら各部材2、17、13a、20を構成す
る材料の選択を行なっている。尚、前記各円すいころ軸
受7a、7bを構成する、上記各外輪8a、8b、内輪
9a、9b及び円すいころ10a、10bは、何れも、
軸受鋼の如く、線膨張率が上記ピニオン軸2と同程度で
ある金属材料により造っている。
In particular, the double-row rolling bearing device 6a of the present invention
In this case, the pinion shaft 2 and the inner ring spacer 17 are made of steel.
(Linear expansion coefficient βs = 12.5 × 10-6Linear expansion)
It is made of metal material with an intermediate ratio. In addition, the support cylinder
13a was converted to an aluminum alloy (linear expansion coefficient βh = 23.5
× 10-6Metal) with a large coefficient of linear expansion
ing. Further, the outer ring spacer 20 is connected to an invar (linear expansion).
Tension βo = 1.2 × 10 -6Linear expansion coefficient is small.
It is made of a metallic or ceramic material.
That is, in the case of the double row rolling bearing device 6a of the present invention,
Linear expansion coefficient β of each member 2, 17, 13a, 20s , Β
h , Βo Between each other, βh > Βs > Βo Holds
These members 2, 17, 13a, and 20 are configured so that
We are selecting materials to be used. In addition, each tapered roller shaft
Each of the outer rings 8a, 8b and inner ring constituting the bearings 7a, 7b
9a, 9b and tapered rollers 10a, 10b are all
Like bearing steel, the coefficient of linear expansion is about the same as that of the above-mentioned pinion shaft 2.
It is made of a certain metal material.

【0017】上述の様に本発明の複列転がり軸受装置6
aの場合には、上記外輪間座20を線膨張率βo が小さ
な材料により造っている為、温度上昇に伴う上記各円す
いころ軸受7a、7bの予圧変動を、小さく抑える事が
できる。即ち、本発明の複列転がり軸受装置6aの場
合、使用時には上記ピニオン軸2及び上記各内輪9a、
9bの温度上昇が、前記支持筒部13a及び上記各外輪
8a、8bの温度上昇よりも著しくなり、各部の熱膨張
量に差が生じる。このうち、上記各外輪8a、8bの熱
膨張量よりも上記各内輪9a、9bの熱膨張量が多くな
る事は、上記各円すいころ軸受7a、7bの予圧を上昇
させる方向に作用する。これに対して、上記ピニオン軸
2の軸方向に関する熱膨張量に比べて上記外輪間座20
の軸方向に関する熱膨張量が少ない事は、上記予圧を低
下させる方向に作用する。従って、各部材の寸法及び材
質(線膨張率)を適切に規制すれば、次述する運転時の
各部位の温度上昇に関する条件を満たす限り、予圧変動
に係る両方(上昇と低下と)の挙動を互いに相殺させ
て、温度上昇に伴う上記各円すいころ軸受7a、7bの
予圧変動を、小さく抑える事ができる。
As described above, the double row rolling bearing device 6 of the present invention
In the case of a, for the linear expansion coefficient of said outer ring spacer 20 beta o is made by a small material, each tapered roller bearing 7a with increasing temperature, the preload variations in 7b, it is possible to suppress. That is, in the case of the double row rolling bearing device 6a of the present invention, the pinion shaft 2 and the inner rings 9a,
The temperature rise of 9b becomes more remarkable than the temperature rise of the support cylinder 13a and each of the outer rings 8a and 8b, and a difference occurs in the amount of thermal expansion of each part. Among them, the fact that the amount of thermal expansion of each of the inner rings 9a, 9b is larger than the amount of thermal expansion of each of the outer rings 8a, 8b acts in the direction of increasing the preload of each of the tapered roller bearings 7a, 7b. On the other hand, the outer ring spacer 20 is compared with the thermal expansion amount of the pinion shaft 2 in the axial direction.
The small amount of thermal expansion in the axial direction acts in the direction of decreasing the preload. Therefore, if the size and material (linear expansion coefficient) of each member are appropriately regulated, both of the behavior (increase and decrease) related to the preload fluctuation will be satisfied as long as the following condition regarding the temperature rise of each part during operation is satisfied. Can be offset from each other, and the preload fluctuation of each of the tapered roller bearings 7a and 7b due to the temperature rise can be suppressed to a small value.

【0018】尚、上述した運転時の各部位の温度上昇に
関する条件とは、次の様なものである。即ち、上述の様
に各外輪8a、8bと各内輪9a、9bとの間に熱膨張
量の差が生じる事に基づいて予圧が上昇する度合いは、
これら各外輪8a、8bと各内輪9a、9bとの間の温
度差△Tに比例して大きくなる。一方、上述の様にピニ
オン軸2と外輪間座20及び支持筒部13aとの間に軸
方向に関する熱膨張量の差が生じる事に基づいて予圧が
低下する度合いは、前記複列転がり軸受装置6a全体の
平均温度Tに比例して大きくなる。従って、運転時の温
度変化に拘らず、上記予圧変動に係る両方(上昇と低下
と)の挙動を互いに効果的に相殺させる為には、上記温
度差△Tと上記平均温度Tとの比△T/Tが、運転時に
大きく変化しない事が必要である。
The conditions relating to the temperature rise of each part during the operation described above are as follows. That is, as described above, the degree of increase in the preload based on the occurrence of the difference in the amount of thermal expansion between each outer ring 8a, 8b and each inner ring 9a, 9b is as follows.
The temperature difference ΔT between each of the outer rings 8a, 8b and each of the inner rings 9a, 9b increases in proportion to the temperature difference ΔT. On the other hand, as described above, the degree of decrease in the preload based on the difference in the amount of thermal expansion in the axial direction between the pinion shaft 2 and the outer ring spacer 20 and between the support cylinder portion 13a depends on the degree of the double-row rolling bearing device. It increases in proportion to the average temperature T of the whole 6a. Therefore, regardless of the temperature change during operation, in order to effectively cancel both the behavior (rise and fall) related to the preload fluctuation, the ratio of the temperature difference {T and the average temperature T} It is necessary that T / T does not change significantly during operation.

【0019】この様な条件に就いて、本発明者は、回転
速度と負荷されるアキシアル荷重の大きさとが互いに比
例する状態で運転される軸受装置の場合には、この様に
運転状態が変化する事に伴って、上記比△T/Tが大き
く変化すると考えた。これに対して、デファレンシャル
ギヤに組み込む複列転がり軸受装置6aの様に、回転速
度と負荷されるアキシアル荷重の大きさとが互いに大略
反比例する状態で運転される軸受装置の場合には、この
様に運転状態が変化した場合でも、上記比△T/Tが大
きく変化しないと考えた。
Under such conditions, the present inventor has found that in the case of a bearing device which is operated in a state where the rotational speed and the magnitude of the axial load to be applied are in proportion to each other, the operating state changes in this manner. It is considered that the ratio ΔT / T greatly changes with the operation. On the other hand, in the case of a bearing device that is operated in a state where the rotational speed and the magnitude of the axial load to be applied are substantially inversely proportional to each other, such as a double-row rolling bearing device 6a incorporated in a differential gear, It was considered that the ratio ΔT / T did not change significantly even when the operating state changed.

【0020】そこで、本発明者は、この様な推測が正し
い事を確認する為に実験を行なった。以下、この実験に
就いて説明する。この実験では、図2に示す様な実験装
置に、呼び番号HR30306(内径=30mm、外径=
72mm、全体の軸方向寸法=20.75mm、内輪の軸方
向寸法=19mm、外輪の軸方向寸法=14mm)である円
すいころ軸受7bと、別の支持用の円すいころ軸受7a
とを、互いに接触角を逆にした状態で組み合わせて複列
転がり軸受を構成し、この複列転がり軸受により、ハウ
ジング21内に回転軸22を支持した。そして、この回
転軸22を、低回転・高トルクから高回転・低トルクの
状態まで運転条件を変えつつ、上記円すいころ軸受7b
を構成する外輪8bの温度To と内輪9bの温度Ti
を測定した。又、複列転がり軸受装置全体の平均温度T
は、上記外輪8bの温度To (T=To )として測定し
た。この理由は、上記複列転がり軸受装置6aを構成す
る内輪9bの温度Ti と外輪8bの温度To とハウジン
グ21の温度Th との間には、Ti >To >Th の関係
があり、中間の温度である上記外輪8bの温度Toを、
上記複列転がり軸受装置全体の平均温度Tに近似できる
為である。
Therefore, the present inventor conducted an experiment to confirm that such a guess was correct. Hereinafter, this experiment will be described. In this experiment, an experimental device as shown in FIG. 2 was provided with a reference number HR30306 (inner diameter = 30 mm, outer diameter =
Tapered roller bearing 7b having a diameter of 72 mm, overall axial dimension = 20.75 mm, axial dimension of the inner ring = 19 mm, axial dimension of the outer ring = 14 mm), and another tapered roller bearing 7a for support.
Are combined in a state where the contact angles are reversed to form a double-row rolling bearing, and the rotating shaft 22 is supported in the housing 21 by the double-row rolling bearing. Then, while changing the operating condition of the rotating shaft 22 from low rotation / high torque to high rotation / low torque, the tapered roller bearing 7b
The temperature T i of the temperature T o and the inner ring 9b of the outer ring 8b constituting was measured. In addition, the average temperature T of the entire double row rolling bearing device
It was measured as the temperature T o of the outer ring 8b (T = T o). The reason for this is that the relationship of T i > T o > T h exists between the temperature T i of the inner ring 9b, the temperature T o of the outer ring 8b, and the temperature T h of the housing 21 constituting the double-row rolling bearing device 6a. There is, the temperature T o of the outer ring 8b is an intermediate temperature,
This is because the average temperature T of the entire double row rolling bearing device can be approximated.

【0021】尚、低回転・高トルクの運転状態とは、自
動車が変速機の減速比を大きくして低速走行する状態
に、高回転・低トルクの運転状態とは、自動車が減速比
を小さくして(或は増速比を大きくして)高速走行する
状態に、それぞれ対応する。デファレンシャルギヤに組
み込む複列転がり軸受装置6aの場合、このデファレン
シャルギヤを通じて伝達するトルクが大きくなる程、減
速小歯車4と減速大歯車5(図5)との噛合部からピニ
オン軸2(図1)に加わるアキシアル荷重が大きくな
る。そこで、上記実験では、上記回転軸22の低速回転
時に大きなアキシャル荷重を、同じく高速回転時に小さ
なアキシアル荷重を、それぞれ負荷した。より具体的に
は、実際の運転状態に適合させるべく、上記回転軸22
の回転速度を3600〜9500min-1 (r.p.m.)の範
囲で種々変化させると共に、これに合わせて、上記回転
軸22に負荷するアキシアル荷重を7100〜1370
0Nの範囲で変化させた。又、上記各内輪9a、9bの
温度を表す信号は、スリップリング23を通じて取り出
し自在とした。その他の試験条件は、以下の通りであ
る。 潤滑油 : ギヤ油(180cSt/40℃) 給油量 : 1000cc/min
The low-rotation / high-torque driving state refers to a state in which the vehicle is running at a low speed with a large reduction ratio of the transmission. The high-rotation / low-torque driving state refers to a state in which the vehicle has a small reduction ratio. (Or by increasing the speed increase ratio) to correspond to a high-speed running state. In the case of the double-row rolling bearing device 6a incorporated in the differential gear, as the torque transmitted through the differential gear increases, the pinion shaft 2 (FIG. 1) moves from the meshing portion of the reduction small gear 4 and the reduction gear 5 (FIG. 5). Axial load applied to the tire increases. Therefore, in the above experiment, a large axial load was applied when the rotating shaft 22 was rotating at a low speed, and a small axial load was applied when the rotating shaft 22 was rotating at a high speed. More specifically, in order to adapt to the actual operation state,
Is varied in the range of 3600 to 9500 min -1 (rpm), and the axial load applied to the rotating shaft 22 is adjusted to 7100 to 1370 in accordance with this.
It was changed in the range of 0N. Further, the signals representing the temperatures of the inner rings 9a and 9b can be taken out through the slip ring 23. Other test conditions are as follows. Lubricating oil: Gear oil (180 cSt / 40 ° C) Lubrication amount: 1000 cc / min

【0022】この様にして行なった実験の結果を、次の
表1及び図3に示す。
The results of the experiments performed in this way are shown in the following Table 1 and FIG.

【表1】 尚、図3(A)は、この表1に示した実験結果のうち、
回転速度を3600min-1 とし、且つ、負荷するアキシ
アル荷重を13700Nとした場合の実験結果を、同図
(B)は、回転速度を9500min-1 とし、且つ、負荷
するアキシアル荷重を7100Nとした場合の実験結果
を、それぞれ測定時のグラフにより示している。
[Table 1] FIG. 3A shows the results of the experiment shown in Table 1.
FIG. 3B shows the experimental results when the rotational speed was set to 3600 min -1 and the axial load to be applied was set to 13700 N. The figure (B) shows the case where the rotational speed was set to 9500 min -1 and the axial load applied was set to 7100 N. Are shown by graphs at the time of measurement.

【0023】上記表1及び図3に示した結果から明らか
な通り、上記外輪8a、8bと上記内輪9a、9bとの
間の温度差△T(=To −Ti )と、複列転がり軸受装
置6a全体の平均温度Tとの比△T/Tは、0.4〜
0.75(即ち、0.4≦△T/To ≦0.75)と、
狭い範囲でしか変化しない事を確認できた。従って、デ
ファレンシャルギヤに組み込む複列転がり軸受装置6a
の場合には、各部材の寸法及び材質(線膨張率)を適切
に規制すれば、運転状態の変化に拘らず、予圧変動に関
する両方(上昇と低下と)の挙動を互いに効果的に相殺
させて、温度上昇に伴う上記各円すいころ軸受7a、7
bの予圧変動を、小さく抑える事ができる。
As is clear from the results shown in Table 1 and FIG. 3, the temperature difference ΔT (= T o −T i ) between the outer rings 8a and 8b and the inner rings 9a and 9b, and double-row rolling The ratio ΔT / T to the average temperature T of the entire bearing device 6a is 0.4 to
0.75 (ie, 0.4 ≦ △ T / T o ≦ 0.75);
It could be confirmed that it changed only in a narrow range. Therefore, the double-row rolling bearing device 6a incorporated in the differential gear
In the case of (1), if the dimensions and materials (linear expansion coefficients) of the respective members are appropriately regulated, both of the behaviors (increase and decrease) related to the preload fluctuation can be effectively canceled each other regardless of the change in the operation state. The tapered roller bearings 7a, 7
The preload fluctuation of b can be suppressed to a small value.

【0024】そこで、次に、上述の様に各部材の寸法及
び材質(線膨張率)を適切に規制する方法に就いて、前
述の図1に加えて図4を参照しつつ説明する。先ず、上
記各外輪8a、8bと上記各内輪9a、9bとの間に温
度差△Tが生じ、これら各外輪8a、8bと各内輪9
a、9bとの間に熱膨張量の差が生じた場合に、上記各
円すいころ軸受7a、7bのラジアル隙間の減少量△r
は、 △r=Dβs △T −−−(1) で表される。尚、この式(1)中、 D : 上記各円すいころ軸受7a、7bの径寸法 βs : 上記外輪8a、8b及び内輪9a、9b(並び
に前記ピニオン軸2及び内輪間座17)の線膨張率 である。
Next, a method for appropriately regulating the dimensions and materials (linear expansion coefficients) of the respective members as described above will be described with reference to FIG. 4 in addition to FIG. First, a temperature difference ΔT is generated between the outer rings 8a, 8b and the inner rings 9a, 9b, and the outer rings 8a, 8b and the inner rings 9 are formed.
a, 9b, the amount of reduction Δr in the radial gap of each of the tapered roller bearings 7a, 7b when a difference in the amount of thermal expansion occurs.
Is represented by Δr = Dβ s ΔT --- (1) Incidentally, in the equation (1), D: the above tapered roller bearing 7a, diameter of 7b beta s: the outer ring 8a, 8b and the inner ring 9a, the linear expansion of 9b (and the pinion shaft 2 and the inner ring spacer 17) Rate.

【0025】又、上記複列転がり軸受装置6a全体の平
均温度Tが上昇し、上記ピニオン軸2及び内輪間座17
と前記外輪間座20及び支持筒部13aとの間に軸方向
に関する熱膨張量の差が生じた場合に、上記複列転がり
軸受装置のアキシアル隙間の増加量△aは、 △a={Lβs −(L−Lo )βh −Lo βo }T −−−(2) で表される。尚、この式(2)中、 L : 1対の外輪8a、8b同士の間の距離 Lo : 上記外輪間座20の軸方向寸法 βs : 上記ピニオン軸2及び内輪間座17(並びに上
記外輪8a、8b及び内輪9a、9b)の線膨張率 βh : 上記支持筒部13aの線膨張率 βo : 上記外輪間座20の線膨張率 である。
Further, the average temperature T of the entire double row rolling bearing device 6a rises, and the pinion shaft 2 and the inner race spacer 17 are increased.
When there is a difference in the amount of thermal expansion in the axial direction between the outer race spacer 20 and the support cylindrical portion 13a, the increase amount Δa of the axial gap of the double row rolling bearing device is represented by Δa = ΔLβ s - represented by (L-L o) β h -L o β o} T --- (2). In the equation (2), L: distance between the pair of outer rings 8a, 8b Lo : axial dimension of the outer ring spacer 20 βs : pinion shaft 2 and inner ring spacer 17 (and the above) The linear expansion coefficient β h of the outer rings 8a, 8b and the inner rings 9a, 9b): the linear expansion coefficient β o of the support cylinder 13a: the linear expansion coefficient of the outer ring spacer 20.

【0026】一方、上記各円すいころ軸受7a、7bの
接触角をαとすると、これら各円すいころ軸受7a、7
bのラジアル隙間の変化量△rとアキシアル隙間の変化
量△aとの間には、次の関係が成立する。 △a=△r・cotα −−−(3) 従って、上記ラジアル隙間の減少に伴う予圧の増加分と
上記アキシアル隙間の増加に伴う予圧の減少分とが互い
に相殺し合う為の条件式は、上記(1)〜(3)式よ
り、次の様に与えられる。
On the other hand, assuming that the contact angle between the tapered roller bearings 7a and 7b is α, these tapered roller bearings 7a and 7b
The following relationship holds between the variation Δr of the radial gap b and the variation Δa of the axial gap b. Δa = Δr · cotα (3) Accordingly, the conditional expression for canceling out the increase in the preload due to the decrease in the radial clearance and the decrease in the preload due to the increase in the axial clearance is as follows: From the above equations (1) to (3), it is given as follows.

【数1】 尚、この(4)式の左辺のxは、上記1対の外輪8a、
8b同士の間の距離Lと上記外輪間座20の軸方向寸法
o との比Lo /Lを表している。
(Equation 1) Note that x on the left side of the equation (4) represents the pair of outer rings 8a,
It represents the ratio L o / L of the axial dimension L o of 8b distance L and the outer ring spacer 20 between each other.

【0027】一方、実際には、前述の実験結果(表1)
に示した様に、運転状態が変化する事に伴って、上記外
輪8a、8bと上記内輪9a、9bとの間の温度差△T
と、前記複列転がり軸受装置6a全体の平均温度Tとの
比△T/Tは、狭い範囲(0.4≦△T/To ≦0.7
5)で変化する。そこで、上記(4)式の右辺に、この
比△T/Tの変化の範囲(0.4≦△T/To ≦0.7
5)を代入する事により、実際の運転状況に則した、次
の関係式を得る事ができる。
On the other hand, actually, the above experimental results (Table 1)
As shown in FIG. 5, the temperature difference ΔT between the outer wheels 8a, 8b and the inner wheels 9a, 9b is changed with the change of the driving state.
When the ratio △ T / T and the average temperature T of the entire double row rolling bearing device 6a is a narrow range (0.4 ≦ △ T / T o ≦ 0.7
It changes in 5). Therefore, the range of change of the ratio ΔT / T (0.4 ≦ ΔT / T o ≦ 0.7
By substituting 5), the following relational expression can be obtained in accordance with the actual driving situation.

【数2】 従って、この(5)式を満たす様に、各部材の寸法L、
o 、D、α及び材質(線膨張率βs 、βh 、βo )を
決定すれば、運転状態の変化に拘らず、上記ラジアル隙
間の減少に伴う予圧の増加分と上記アキシアル隙間の増
加に伴う予圧の減少分とを、互いに効果的に相殺させる
事ができる。そして、温度上昇に伴う前記各円すいころ
軸受7a、7bの予圧変動を、小さく抑える事ができ
る。
(Equation 2) Therefore, the dimension L of each member is set so as to satisfy the equation (5).
If L o , D, α and the materials (linear expansion coefficients β s , β h , β o ) are determined, the increase in the preload due to the decrease in the radial gap and the axial gap can be determined irrespective of the change in the operating state. The decrease in the preload due to the increase can be effectively offset each other. And the preload fluctuation of each of the tapered roller bearings 7a and 7b due to the temperature rise can be suppressed small.

【0028】尚、本発明を実施する場合、実際には、上
記各部材の寸法L、Lo 、D、α及び材質(線膨張率β
s 、βh 、βo )のうち、上記1対の外輪8a、8b同
士の間の距離Lと、上記各円すいころ軸受7a、7bの
径寸法D及び接触角αと、上記外輪8a、8b及び内輪
9a、9b及びピニオン軸2及び内輪間座17の線膨張
率βs と、前記支持筒部13aの線膨張率βh とは、そ
れぞれデファレンシャルギヤに組み込む複列転がり軸受
装置6aの設計の初期段階で決定される事が多い。従っ
て、本発明を実施する多くの場合には、この様に既知と
なった各値L、D、α、βs 、βh に対して、上記
(5)式を満たす様に、上記外輪間座20の軸方向寸法
o 及び材質(線膨張率βo )を決定する。
When the present invention is carried out, the dimensions L, Lo , D, α and the materials (linear expansion coefficient β)
s , β h , β o ), the distance L between the pair of outer rings 8a, 8b, the diameter D and the contact angle α of each of the tapered roller bearings 7a, 7b, and the outer rings 8a, 8b The linear expansion coefficient β s of the inner rings 9 a and 9 b, the pinion shaft 2 and the inner ring spacer 17, and the linear expansion coefficient β h of the support cylindrical portion 13 a are respectively determined by the design of the double row rolling bearing device 6 a to be incorporated in the differential gear. Often determined at an early stage. Therefore, in many cases where the present invention is implemented, for each of the known values L, D, α, β s , and β h , the distance between the outer rings is determined so as to satisfy the above equation (5). The axial dimension Lo and the material (linear expansion coefficient βo ) of the seat 20 are determined.

【0029】尚、前述した(4)式中、右辺のD/L・
△T/T・cotαの値は、実際に使用される可能性の
ある、諸元(これら径寸法D、距離L、接触角αの各大
きさ)の異なる複数種類の複列転がり軸受装置6aに就
いて計算する事により、所定の範囲内に収まる事を確認
する事ができる。そこで、この様に実際に使用される可
能性のある、諸元の異なる4種類の複列転がり軸受装置
6aに就いて、上記D/L・△T/T・cotαの値を
計算した結果を、次の表2に示す。
In the above equation (4), D / L ·
The value of ΔT / T · cotα is a plurality of types of double row rolling bearing devices 6a having different specifications (each of the diameter D, the distance L, and the contact angle α) which may be actually used. By calculating, it can be confirmed that the value falls within a predetermined range. Thus, for four types of double-row rolling bearing devices 6a having different specifications that may be actually used in this way, the result of calculating the value of D / L △ ΔT / T ・ cotα is shown below. Are shown in Table 2 below.

【表2】 [Table 2]

【0030】この表2に示す様に、上記D/L・△T/
T・cotαの値は、0.4〜2.41の範囲に収まっ
た。そこで、上記(4)式の右辺に、このD/L・△T
/T・cotαの範囲(0.4≦D/L・△T/T・c
otα≦2.41)を代入する事により、次の関係式が
得られる。
As shown in Table 2, the D / L · ΔT /
The value of T · cotα was in the range of 0.4 to 2.41. Therefore, this D / L △ T
/ T ・ cotα range (0.4 ≦ D / L △ T / T ・ c
otα ≦ 2.41), the following relational expression is obtained.

【数3】 (Equation 3)

【0031】この(6)式の意味する処は、上述した
(5)式の場合と同様である。但し、この(6)式を使
用する場合には、上記径寸法D、距離L、接触角αの各
大きさを、上記外輪間座20の軸方向寸法Lo 及び材質
(線膨張率βo )を決定する際の計算時に考慮する必要
がなくなる。この為、この外輪間座20の軸方向寸法L
o 及び材質(線膨張率βo )を決定する為の計算が容易
になる。
The meaning of the equation (6) is as described above.
This is the same as in the case of equation (5). However, this equation (6) is used.
When using, each of the above diameter D, distance L, and contact angle α
The size is determined by the axial dimension L of the outer ring spacer 20.o And material
(Linear expansion coefficient βo ) Must be taken into account when calculating when determining
Disappears. Therefore, the axial dimension L of the outer race spacer 20
o And material (linear expansion coefficient βo Easy calculation to determine
become.

【0032】尚、本発明の複列転がり軸受装置の適用範
囲は、上述した様な自動車のデファレンシャルギヤに組
み込んで使用する複列転がり軸受装置には限られない。
本発明の複列転がり軸受装置は、回転速度と負荷される
荷重との大きさが互いに大略反比例する状態で使用され
る等により、内外輪の温度差△Tと全体の平均温度Tと
の比△T/Tが運転時に大きく変化しない、総ての複列
転がり軸受装置に適用可能である。従って、例えば、工
作機械の変速機に組み込んで使用する複列転がり軸受装
置にも適用可能である。又、本発明の複列転がり軸受装
置を実施する場合、第一、第二の転がり軸受としては、
上述した例の様な円すいころ軸受に限らず、例えば、ア
ンギュラ型玉軸受、深溝型玉軸受等、定位置予圧方式で
使用できる各種軸受を採用できる。又、第一、第二の各
転がり軸受の種類、各部の寸法等は、これら両転がり軸
受同士で異ならせる事もできる。更には、互いに異なる
種類の転がり軸受を2個組み合わせて実施する場合で
も、上述した例と同様の効果が得られる。
The applicable range of the double-row rolling bearing device of the present invention is not limited to the double-row rolling bearing device used by being incorporated in the differential gear of the automobile as described above.
The double row rolling bearing device of the present invention is used in a state where the rotational speed and the magnitude of the applied load are substantially inversely proportional to each other, and the ratio between the temperature difference ΔT between the inner and outer rings and the average temperature T of the entirety. The present invention is applicable to all double row rolling bearing devices in which ΔT / T does not change significantly during operation. Therefore, for example, the present invention can also be applied to a double-row rolling bearing device used by being incorporated in a transmission of a machine tool. Further, when implementing the double row rolling bearing device of the present invention, as the first and second rolling bearings,
The present invention is not limited to the tapered roller bearing as in the above-described example, and various types of bearings that can be used in the fixed position preloading system, such as an angular ball bearing and a deep groove ball bearing, can be employed. Further, the types of the first and second rolling bearings, the dimensions of the respective portions, and the like can be different between these two rolling bearings. Furthermore, even when two different types of rolling bearings are combined and implemented, the same effect as in the above-described example can be obtained.

【0033】[0033]

【発明の効果】本発明は、以上に述べた通り構成され作
用するので、運転時に於ける予圧変化を小さく抑えられ
る複列転がり軸受装置を実現して、デファレンシャルギ
ヤ等、回転支持部分を有する各種機械装置の性能並びに
信頼性の向上を図れる。
Since the present invention is constructed and operates as described above, a double-row rolling bearing device capable of suppressing a change in preload during operation to a small extent is realized. The performance and reliability of the mechanical device can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の1例を概略的に示す、半
部断面図。
FIG. 1 is a half sectional view schematically showing an example of an embodiment of the present invention.

【図2】運転時の温度変化の様子を確認する為の実験装
置の断面図。
FIG. 2 is a cross-sectional view of an experimental device for confirming a state of a temperature change during operation.

【図3】実験結果の一部を示す測定グラフ。FIG. 3 is a measurement graph showing a part of an experimental result.

【図4】内部隙間の大きさを誇張して示す、円すいころ
軸受の半部断面図。
FIG. 4 is a half sectional view of a tapered roller bearing, in which the size of an internal gap is exaggerated.

【図5】従来構造の1例を組み込んだ、デファレンシャ
ルギヤの断面図。
FIG. 5 is a sectional view of a differential gear incorporating one example of a conventional structure.

【図6】従来構造の1例を概略的に示す、半部断面図。FIG. 6 is a half sectional view schematically showing an example of a conventional structure.

【符号の説明】[Explanation of symbols]

1 ケーシング 2 ピニオン軸 3 結合フランジ 4 減速小歯車 5 減速大歯車 6、6a 複列転がり軸受装置 7a、7b 円すいころ軸受 8a、8b 外輪 9a、9b 内輪 10a、10b 円すいころ 11a、11b 外輪軌道 12a、12b 内輪軌道 13、13a 支持筒部 14a、14b 係止段部 15 嵌合筒部 16 間座 17 内輪間座 18 曲がり部 19 鍔部 20 外輪間座 21 ハウジング 22 回転軸 23 スリップリング DESCRIPTION OF SYMBOLS 1 Casing 2 Pinion shaft 3 Coupling flange 4 Reduction gear 5 Reduction large gear 6 and 6a Double row rolling bearing device 7a, 7b Tapered roller bearing 8a, 8b Outer ring 9a, 9b Inner ring 10a, 10b Tapered roller 11a, 11b Outer ring track 12a, 12b Inner ring raceway 13, 13a Supporting tube portion 14a, 14b Locking step portion 15 Fitting tube portion 16 Spacer 17 Inner ring spacer 18 Bent portion 19 Flange portion 20 Outer ring spacer 21 Housing 22 Rotating shaft 23 Slip ring

フロントページの続き Fターム(参考) 3J012 AB11 BB03 CB10 DB14 FB12 HB02 3J101 AA16 AA25 AA42 AA54 AA62 BA77 EA51 FA41 Continued on the front page F term (reference) 3J012 AB11 BB03 CB10 DB14 FB12 HB02 3J101 AA16 AA25 AA42 AA54 AA62 BA77 EA51 FA41

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内側部材と、この内側部材を構成する材
料の熱膨張率よりも大きな熱膨張率を有する材料により
造られた外側部材と、この外側部材の内周面と上記内側
部材の外周面との間で軸方向に離隔した2個所位置に設
けられてこれら外側部材と内側部材との相対回転を許容
する第一、第二の転がり軸受とを備え、これら第一、第
二の転がり軸受は、それぞれが内輪の外周面に設けた内
輪軌道と外輪の内周面に設けた外輪軌道との間に複数個
ずつの転動体を設けて成り、上記内輪と上記外輪との間
に加わるラジアル荷重及びアキシアル荷重を支承自在な
ものであり、上記第一、第二の転がり軸受を構成する1
対の内輪は上記内側部材に、互いに離れる方向に移動す
るのを阻止した状態で外嵌固定されており、上記第一、
第二の転がり軸受を構成する1対の外輪は上記外側部材
に、互いに近づく方向に移動するのを阻止した状態で内
嵌固定されており、上記内側部材及び上記各内輪の温度
よりも上記外側部材及び上記各外輪の温度が低い状態で
使用される複列転がり軸受装置に於いて、上記1対の外
輪同士の間に、上記内側部材を構成する材料よりも小さ
な熱膨張率を有する材料で造った外輪間座を挟持する事
により、上記内側部材と上記外側部材との間に生じる温
度差に伴う、上記第一、第二の転がり軸受の予圧の変化
量を少なく抑えた事を特徴とする複列転がり軸受装置。
1. An inner member, an outer member made of a material having a higher coefficient of thermal expansion than a material forming the inner member, an inner peripheral surface of the outer member, and an outer periphery of the inner member. First and second rolling bearings provided at two positions axially separated from the surface and permitting relative rotation between the outer member and the inner member, and the first and second rolling bearings are provided. The bearing is provided by providing a plurality of rolling elements between an inner raceway provided on the outer peripheral surface of the inner race and an outer raceway provided on the inner peripheral surface of the outer race, and is provided between the inner race and the outer race. It is capable of supporting radial loads and axial loads, and constitutes the first and second rolling bearings.
The pair of inner rings are externally fitted and fixed to the inner member in a state where they are prevented from moving in the direction away from each other,
The pair of outer rings constituting the second rolling bearing are internally fitted and fixed to the outer member in a state where they are prevented from moving in a direction approaching each other. In the double row rolling bearing device used in a state where the temperature of the member and each of the outer rings is low, a material having a smaller coefficient of thermal expansion than the material forming the inner member between the pair of outer rings. By sandwiching the manufactured outer ring spacer, the amount of change in the preload of the first and second rolling bearings due to the temperature difference between the inner member and the outer member is reduced. Double row rolling bearing device.
JP2000349254A 2000-11-16 2000-11-16 Multiple-row rolling bearing Pending JP2002147451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000349254A JP2002147451A (en) 2000-11-16 2000-11-16 Multiple-row rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000349254A JP2002147451A (en) 2000-11-16 2000-11-16 Multiple-row rolling bearing

Publications (1)

Publication Number Publication Date
JP2002147451A true JP2002147451A (en) 2002-05-22

Family

ID=18822694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000349254A Pending JP2002147451A (en) 2000-11-16 2000-11-16 Multiple-row rolling bearing

Country Status (1)

Country Link
JP (1) JP2002147451A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097655A (en) * 2007-10-18 2009-05-07 Aisin Ai Co Ltd Bearing support structure for transmission
WO2012031871A1 (en) * 2010-09-11 2012-03-15 Schaeffler Technologies Gmbh & Co. Kg Rolling bearing having diagonally oriented rolling elements and thermal expansion compensation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097655A (en) * 2007-10-18 2009-05-07 Aisin Ai Co Ltd Bearing support structure for transmission
WO2012031871A1 (en) * 2010-09-11 2012-03-15 Schaeffler Technologies Gmbh & Co. Kg Rolling bearing having diagonally oriented rolling elements and thermal expansion compensation

Similar Documents

Publication Publication Date Title
JP4058241B2 (en) Car transfer
US7726884B2 (en) Support structure for rotation body
US20060013519A1 (en) Four-point contact ball bearing
JP2000170774A (en) Conical roller bearing and gear shaft support device for vehicle
JP4813062B2 (en) Sliding constant velocity universal joint
JP2011094716A (en) Thrust roller bearing
US20060018582A1 (en) Bearing having thermal compensating capability
JP2002147451A (en) Multiple-row rolling bearing
JP2000161369A (en) Roller bearing
JPH09291942A (en) Radial rolling bearing
JP2009203846A (en) Ball bearing arrangement for turbocharger
JP2005214330A (en) Four-point contact ball bearing and manufacturing method thereof
JP2003314542A (en) Tapered roller bearing
JP2006300079A (en) Roller bearing
JP2000161349A (en) Gear shaft support device for vehicle
JP2007218292A (en) Bearing apparatus for wheel
JP2008196570A (en) Rolling bearing device
EP1312835B1 (en) Bearing device used for transmission in automobiles
JP4223209B2 (en) Pinion shaft support bearing unit
JP2009216112A (en) Radial needle roller bearing
JP2005299761A (en) Multi-row ball bearing
JP2007333024A (en) Deep groove ball bearing for transmission
JP4904980B2 (en) Axle bearing device
JP2001336603A (en) Pinion shaft supporting bearing unit
JP4206715B2 (en) Tapered roller bearing