JP2002141595A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JP2002141595A
JP2002141595A JP2000333103A JP2000333103A JP2002141595A JP 2002141595 A JP2002141595 A JP 2002141595A JP 2000333103 A JP2000333103 A JP 2000333103A JP 2000333103 A JP2000333103 A JP 2000333103A JP 2002141595 A JP2002141595 A JP 2002141595A
Authority
JP
Japan
Prior art keywords
light
receiving element
light receiving
semiconductor laser
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000333103A
Other languages
Japanese (ja)
Other versions
JP3735528B2 (en
Inventor
Hiroshi Hamazaki
浩史 濱崎
Hideto Furuyama
英人 古山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000333103A priority Critical patent/JP3735528B2/en
Publication of JP2002141595A publication Critical patent/JP2002141595A/en
Application granted granted Critical
Publication of JP3735528B2 publication Critical patent/JP3735528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problem in a semiconductor laser device comprising a light receiving element for front APC disposed at the rear part of an optical path conversion reflector that the intensity of incident light from a light emitting element increases stepwise, when DVD-ROM and DVD-RAM are implemented by identical light emitting elements as the light source of an optical pickup, to cause significant variation in the output current level of the light receiving element and thereby an external control circuit for APC driving requires a very large dynamic range. SOLUTION: A variable light attenuator 4 is provided between a reflector (translucent film) 25 and a light receiving element 3 disposed in the rear thereof. Furthermore, a groove 29 is made in a light receiving element part disposed in the rear of the reflector substantially in perpendicular to the optical path in order to split the light receiving element optically in series. When the intensity of incident light is high, a light receiving element at the prestage is turned off and used as a light absorbing layer, and an output current from a post-stage light receiving element is used for control. When the intensity of incident light is low, both front and rear light receiving element are used for control.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信や光伝送技
術および光情報記録技術における光源として用いられる
半導体レーザ装置に関する。
The present invention relates to a semiconductor laser device used as a light source in optical communication, optical transmission technology and optical information recording technology.

【0002】[0002]

【従来の技術】現在、光通信や光伝送および光情報記録
などの分野では出射光のコヒーレンシーや高速動作が可
能であること、あるいは非常に小型であることから光源
として半導体レーザ素子が広く用いられている。半導体
レーザ素子は、外部から電流を注入することにより誘導
放出光を出力することと、熱変動に対して光強度が敏感
に変化するため放熱路を確保するなどの理由により、リ
ードフレームやメタルブロックなどの金属部材に実装さ
れているが、金属と半導体レーザ素子を構成する半導体
材料との熱膨張係数の違いを緩和するために、SiやA
lNなどからなるサブマウントと呼ばれる基材に実装さ
れた後、金属部材に実装される。
2. Description of the Related Art At present, in the fields of optical communication, optical transmission, and optical information recording, semiconductor laser devices are widely used as light sources because of the coherency of emitted light and high-speed operation, or because they are very small. ing. A semiconductor laser device emits stimulated emission light by injecting current from the outside, and the light intensity changes sensitively to heat fluctuations. However, in order to reduce the difference in the coefficient of thermal expansion between the metal and the semiconductor material constituting the semiconductor laser device, Si or A is used.
After being mounted on a substrate called a submount made of 1N or the like, it is mounted on a metal member.

【0003】また、半導体レーザ素子は、複数の反射鏡
から成る共振器中に増幅率1以上の媒質を挟み込むこと
により実現されているが、共振器の反射鏡に結晶のへき
かい面を利用でき、増幅媒質を通過する距離を長く取れ
る、端面出射型の半導体レーザの開発が主流に成ってい
る。一部には、半導体や誘電体多層膜等を用いて高反射
鏡を作り基板の法線方向に出射光を出す面発光レーザ素
子も実用化されているが、実用化の技術が十分ではな
く、材料つまり出射光波長によってはいまだ研究段階の
レベルに有る物が多いなど課題が多い。このことから、
製品に用いられているほとんどの半導体レーザ素子から
なる光源は端面出射型が用いられている。
A semiconductor laser device is realized by sandwiching a medium having an amplification factor of 1 or more in a resonator consisting of a plurality of reflectors. However, the reflector of the resonator can use a cleavage plane of a crystal. Development of an edge-emitting type semiconductor laser that can take a long distance to pass through an amplification medium has become mainstream. In some cases, surface-emitting laser devices that make high-reflection mirrors using semiconductors or dielectric multilayer films and emit light in the normal direction of the substrate have been put into practical use, but the technology for practical use is not sufficient. However, there are many problems such as many materials, which are still at the research stage depending on the material, that is, the wavelength of the emitted light. From this,
An edge emission type light source is used as a light source composed of most semiconductor laser elements used in products.

【0004】一方、半導体レーザ素子は、環境温度変化
により敏感に光出力が変動する。そのため、半導体レー
ザ素子および実装基板の両方を一括して温度制御可能な
素子、例えばペルチェ素子などの上に実装される。しか
し、実装基板やサブマウントにも小さいながらも熱容量
が有るため、精密な光出力制御が必要な場合、実際の出
力光をモニタして駆動電流回路にフィードバック制御を
行わせる方法が取られる。これを自動光出力制御(Au
tomatic Power Control:AP
C)と呼ぶ。端面出射型の半導体レーザ素子はへきかい
面などで形成される両端面を共振器ミラーとして用いて
いるが、端面の反射率を特別に制御しない限りは前後方
向に対称に出力光が出射される。この後方より出力した
光を受光素子などでモニタすることで、上記のAPCを
構成可能であるが、モニタされた光は信号としては寄与
しないため、光の利用効率は下がる。そのため、高出力
化や高効率化が必要なシステムにおいては、後方の端面
の反射率を誘電体多層膜などで高めることで出来るだけ
光の利用効率を上げる方法が取られる。このような場合
には、モニタに利用できる後方からの出射光は、小さく
なりSN比が劣化して精密なAPCがかけられなくな
る。そのため、前方からの光(=信号光)の一部をモニ
タする必要が生じ、この制御方式をフロントAPC(以
下、FAPCと記す)と呼ぶ。
On the other hand, the light output of a semiconductor laser device fluctuates sensitively due to a change in environmental temperature. Therefore, both the semiconductor laser element and the mounting board are mounted on an element capable of controlling the temperature collectively, such as a Peltier element. However, since the mounting substrate and the submount also have a small but heat capacity, when precise optical output control is required, a method of monitoring the actual output light and causing the drive current circuit to perform feedback control is adopted. This is called automatic light output control (Au
tomatic Power Control: AP
C). The end face emission type semiconductor laser element uses both end faces formed of a cleavage plane or the like as resonator mirrors, but output light is emitted symmetrically in the front-rear direction unless the reflectivity of the end face is specifically controlled. The above-described APC can be configured by monitoring the light output from behind with a light receiving element or the like, but the monitored light does not contribute as a signal, and thus the light use efficiency is reduced. Therefore, in a system that requires high output and high efficiency, a method of increasing the light use efficiency as much as possible by increasing the reflectance of the rear end face with a dielectric multilayer film or the like is adopted. In such a case, the light emitted from the rear that can be used for the monitor becomes small, the SN ratio deteriorates, and precise APC cannot be performed. Therefore, it is necessary to monitor a part of the light (= signal light) from the front, and this control method is called front APC (hereinafter, referred to as FAPC).

【0005】FAPC方式で、半導体レーザ素子を使用
する際の構成を図4に示す。101は半導体レーザ素
子、102は出射光分割手段で例えばハーフミラーなど
で構成され、103はモニタ用受光素子で、半導体レー
ザ装置が構成される。半導体レーザ素子101から出射
した光は分割手段102で分割され一部は、出力光とな
り例えば光ディスクへ出射される。残りの一部は、光出
力モニタ用の受光素子に入力しAPC用のモニタ光電流
を出力する。この構成では、半導体レーザ素子からモニ
タ用の受光素子に入射する光強度が段階的に大きく変化
するような場合、例えば、本装置を光ピックアップの光
源として用いてDVD−ROMとDVD−RAMを同一
の発光素子で実現するような場合、受光素子からの出力
電流値が大きく変動し、APC駆動用の外部制御回路に
非常に大きなダイナミックレンジが必要になるという問
題がある。例えば、現在DVD−ROMおよびRAMに
用いられている赤色半導体レーザ素子(波長約650n
m)では、ROMモードでの半導体レーザ光出力は最大
約5mWに対し、RAMでは約10倍の約50mWにも
及ぶ。大きなダイナミックレンジと精密な制御を両立す
ることは本質的に困難であるため、制御回路系が複雑化
する。さらには、入射光強度が大きくなると、受光素子
の出力電流は光強度に線形に追随できなくなる飽和現象
が生じる場合がある。飽和が生じた場合、半導体レーザ
素子の駆動電流を受光素子からの出力電流に対して非線
形に制御する必要が生じ、制御回路構成が複雑化する。
このため、RAMモードとROMモードでモニタ用受光
素子を別々に設けたり、制御回路系を2系統用意するな
どの必要が生じ、部品点数の増加を招きコストの上昇と
小型化の障害となるという問題が生じる。
FIG. 4 shows a configuration when a semiconductor laser element is used in the FAPC system. Reference numeral 101 denotes a semiconductor laser element, 102 denotes an emission light splitting unit which is constituted by, for example, a half mirror, and 103 denotes a monitoring light receiving element, which constitutes a semiconductor laser device. The light emitted from the semiconductor laser element 101 is split by the splitting means 102 and a part of the light becomes output light and is emitted to, for example, an optical disk. The remaining part is input to a light receiving element for optical output monitoring and outputs a monitoring photocurrent for APC. In this configuration, when the light intensity incident from the semiconductor laser element to the light receiving element for monitoring changes stepwise greatly, for example, the DVD-ROM and the DVD-RAM can be made identical by using this apparatus as a light source of an optical pickup. In such a case, the output current value from the light receiving element greatly fluctuates, and an external control circuit for driving the APC needs a very large dynamic range. For example, a red semiconductor laser device (wavelength of about 650 nm) currently used for DVD-ROM and RAM
In the case of m), the output of the semiconductor laser in the ROM mode is about 5 mW at the maximum, while the output of the RAM is about 10 times as large as about 50 mW. Since it is inherently difficult to achieve both a large dynamic range and precise control, the control circuit system becomes complicated. Further, when the incident light intensity increases, a saturation phenomenon may occur in which the output current of the light receiving element cannot linearly follow the light intensity. When saturation occurs, it becomes necessary to control the drive current of the semiconductor laser element nonlinearly with respect to the output current from the light receiving element, and the control circuit configuration becomes complicated.
For this reason, it is necessary to separately provide a monitor light receiving element in the RAM mode and the ROM mode, or to prepare two control circuit systems. Problems arise.

【0006】FAPCで半導体レーザ素子を制御して使
用する方法として、反射鏡後部にフロントAPC用の受
光素子を集積化した図5に示すような提案(例えば特開
平05−315700号公報等)がされている。半導体
レーザ素子1をサブマウントであるシリコン基板2に形
成した凹部3に実装し、凹部の壁面の高濃度n型拡散層
24−2に形成した反射面で反射させて情報に光ビーム
を取出す構成である。この構成によれば、前面出力光の
一部をモニタすることが可能である。また、この構成に
よれば出力光は、半導体レーザ素子の近傍でつまり、大
きく広がる前に上方に反射されるため、特別に実装面と
の位置関係を考慮せずとも、実装面での蹴られは少な
く、ビーム形状もほぼ保たれたまま出力光を取出すこと
が出来る。
As a method of controlling and using a semiconductor laser element by FAPC, a proposal as shown in FIG. 5 (for example, Japanese Patent Application Laid-Open No. 05-315700) in which a light receiving element for front APC is integrated at the rear of a reflector. Have been. A configuration in which a semiconductor laser device 1 is mounted in a concave portion 3 formed in a silicon substrate 2 as a submount, and a light beam is extracted as information by reflecting the light on a reflecting surface formed in a high-concentration n-type diffusion layer 24-2 on the wall surface of the concave portion. It is. According to this configuration, it is possible to monitor a part of the front output light. In addition, according to this configuration, the output light is reflected upward in the vicinity of the semiconductor laser element, that is, before being greatly expanded, so that the output light is kicked on the mounting surface without special consideration of the positional relationship with the mounting surface. And the output light can be extracted while the beam shape is almost maintained.

【0007】しかしながら、このような構成であっても
上記従来例(図4)と本質的には同様の問題がある。半
導体レーザ素子からモニタ用の受光素子に入射する光強
度が段階的に大きく変化するような場合、受光素子から
の出力電流値が大きく変動し、APC駆動用の外部制御
回路に非常に大きなダイナミックレンジが必要になると
いう問題がある。
However, even with such a configuration, there is a problem essentially similar to the above-described conventional example (FIG. 4). When the intensity of light incident on the light receiving element for monitoring from the semiconductor laser element changes stepwise greatly, the output current value from the light receiving element fluctuates greatly, and an extremely large dynamic range is provided to the external control circuit for driving the APC. Is necessary.

【0008】[0008]

【発明が解決しようとする課題】以上で詳述した通り、
反射鏡などの光路分割手段後部にフロントAPC用の受
光素子を配置した半導体レーザ装置において、光ピック
アップの光源として用いてDVD−ROMとDVD−R
AMを同一の発光素子で実現するような場合、発光素子
から入射する光強度が段階的に大きく変化するため、受
光素子からの出力電流値が大きく変動し、APC駆動用
の外部制御回路に非常に大きなダイナミックレンジが必
要になるという問題があった。
As described in detail above,
In a semiconductor laser device in which a light receiving element for front APC is arranged at the rear of an optical path splitting means such as a reflector, a DVD-ROM and a DVD-R are used as light sources of an optical pickup.
In the case where the AM is realized by the same light emitting element, the intensity of light incident from the light emitting element greatly changes step by step, so that the output current value from the light receiving element greatly fluctuates, and the external control circuit for driving the APC is very difficult. A large dynamic range is required.

【0009】本発明は上述した問題に対処してなされた
もので、APC駆動用の外部制御回路に大きなダイナミ
ックレンジの必要としない新規な半導体レーザ装置を提
供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a novel semiconductor laser device which does not require a large dynamic range in an external control circuit for driving an APC.

【0010】[0010]

【課題を解決するための手段】本発明の半導体レーザ装
置は、反射鏡とその後部に配置した受光素子との間に、
可変光減衰器を設ける事を特徴とする。
According to the present invention, there is provided a semiconductor laser device comprising a reflecting mirror and a light receiving element disposed at a rear portion thereof.
A variable optical attenuator is provided.

【0011】さらには、反射鏡後部に配置した受光素子
部に光路にほぼ垂直となる方向の溝を設け、光学的に直
列に受光素子を分割し、入射光強度が大きい場合には、
前段の受光素子をオフとして光吸収層として使用し、後
段の受光素子からの出力電流を用いて制御を行う。ま
た、入射光強度が小さいときには、前後両方の受光素子
を用いて制御することができる半導体レーザ装置を提供
する。
Furthermore, a groove is provided in a direction substantially perpendicular to the optical path in a light-receiving element disposed at the rear of the reflecting mirror, and the light-receiving element is optically divided in series.
The light receiving element at the preceding stage is turned off and used as a light absorbing layer, and control is performed using the output current from the light receiving element at the subsequent stage. Further, the present invention provides a semiconductor laser device which can be controlled using both front and rear light receiving elements when the intensity of incident light is small.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照して説明する。図1は、本発明の第1の実施形態を
説明するための図である。101は半導体レーザ素子、
102は出射光分割手段で例えばハーフミラーなどで構
成される。103はモニタ用受光素子である。104
は、可変光減衰器である。可変光減衰器は、電圧や電流
などにより減衰量を変化させることのできる構造であれ
ばよく、例えば、液晶などで構成される。半導体レーザ
101から出射した光は分割手段102で分割され一部
は、出力光となり例えば光ディスクへ出射される。残り
の一部は、光出力モニタ用の受光素子103に入力しA
PC用のモニタ光電流を出力する。ここで、モニタ受光
素子に入射する光強度が大きい場合には、可変光減衰器
の減衰量を大きくし、光強度が小さい場合には減衰量を
小さくすることによって、モニタ受光素子からの出力電
流値を適切に制御することができる。これによって、別
の受光素子を用意する必要が無く、制御回路の設計が容
易になる。この図では、各要素は別素子のごとく描かれ
ているがもちろん集積化されていてもよく、個別部品に
限定されるものではない。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram for explaining the first embodiment of the present invention. 101 is a semiconductor laser element,
Reference numeral 102 denotes an outgoing light splitting unit which is constituted by, for example, a half mirror. 103 is a monitor light receiving element. 104
Is a variable optical attenuator. The variable optical attenuator may have any structure as long as the amount of attenuation can be changed by a voltage, a current, or the like, and is made of, for example, a liquid crystal. The light emitted from the semiconductor laser 101 is split by the splitting means 102 and a part of the light becomes output light and is emitted to, for example, an optical disk. The remaining part is input to the light receiving element 103 for monitoring the optical output and
The monitor photocurrent for PC is output. Here, when the light intensity incident on the monitor light receiving element is high, the attenuation of the variable optical attenuator is increased, and when the light intensity is low, the attenuation is reduced, so that the output current from the monitor light receiving element is reduced. The value can be controlled appropriately. Thus, it is not necessary to prepare another light receiving element, and the control circuit can be easily designed. In this figure, each element is depicted as a separate element, but may of course be integrated and is not limited to individual components.

【0013】図2は、本発明の第2の実施形態を説明す
るための断面図である。図2で、1は半導体レーザ素子
であり、図で左右方向に共振器を持ち端面11から光が
出射される端面発光型である。2はサブマウント基板で
例えばSi等からなり、高濃度に不純物ドープされたn
型伝導型の基板21上に不純物濃度が低い層22および
高濃度に不純物がドーピングされたp型伝導型領域24
がエピタキシャル成長などで形成された基板に、異方性
エッチングなどにより凹部が形成されている。24,2
2,21の各層で受光素子であるpin型フォトダイオ
ードを構成する。26は、フォトダイオード引出しp電
極であり、裏面電極28(=n電極)との間に逆バイア
ス電圧をかけて用いられる。半導体レーザ素子1は、半
田などからなる導電性の接着剤5により凹部に実装され
ており、その出射光14は、斜面23上に形成された誘
電体膜などからなる反射鏡となる半透過膜25で一部は
反射され基板上方に出力され、透過した一部の光は低濃
度層22内に広がった空乏層に入り吸収されて光電流と
なる。このとき、半透過膜25の後方に形成された受光
素子は分離溝29により、半導体レーザの出射光14の
透過光15の光軸対して直列となるようにフォトダイオ
ード3および4の2つに分割されている。透過光15
は、フォトダイオード4で一部が吸収されて透過後、フ
ォトダイオード3で吸収される構造になっている。
FIG. 2 is a sectional view for explaining a second embodiment of the present invention. In FIG. 2, reference numeral 1 denotes a semiconductor laser element, which is an edge emitting type having a resonator in the left-right direction and emitting light from an end face 11 in the figure. Reference numeral 2 denotes a submount substrate made of, for example, Si or the like, and n which is highly doped with impurities.
Layer 22 with low impurity concentration and p-type region 24 with high impurity concentration on substrate 21 of type conductivity
Is formed on a substrate formed by epitaxial growth or the like by anisotropic etching or the like. 24,2
Each of the layers 2 and 21 constitutes a pin photodiode as a light receiving element. Reference numeral 26 denotes a photodiode extraction p-electrode, which is used by applying a reverse bias voltage to a back electrode 28 (= n-electrode). The semiconductor laser device 1 is mounted in a concave portion by a conductive adhesive 5 made of solder or the like, and the emitted light 14 is a semi-transmissive film serving as a reflecting mirror made of a dielectric film or the like formed on the slope 23. At 25, a part of the light is reflected and outputted above the substrate, and a part of the transmitted light enters a depletion layer spread in the low-concentration layer 22 and is absorbed to become a photocurrent. At this time, the light receiving element formed behind the semi-transmissive film 25 is connected to the two photodiodes 3 and 4 by the separation groove 29 so as to be in series with the optical axis of the transmitted light 15 of the emitted light 14 of the semiconductor laser. Has been split. Transmitted light 15
Has a structure in which a part is absorbed by the photodiode 4, transmitted, and then absorbed by the photodiode 3.

【0014】本構造を用いてFAPCを実現するには、
入射光強度が小さい場合には、フォトダイオード3およ
び4の両方の出力電流を用いて制御し、逆に大きい場合
にはフォトダイオード3のみの光電流を用いて制御を行
う。フォトダイオード3のみを用いる場合、フォトダイ
オード4は、光吸収層として働くため、例えば90%の
光を吸収させて10%をフォトダイオード3で吸収させ
るように設計することで、RAMモードとROMモード
でほぼ同程度の光電流が得られる。このように構成する
ことで、別々のモニタ用受光素子を用意することなく、
受光素子の飽和現象を抑制しながら駆動回路に大きい制
御信号(モニタ出力電流)を入力することができ、適正
な制御回路系全体の設計が容易になる。この構造では、
前段の受光素子が可変光減衰器とモニタ用受光素子の両
方の機能を持たせて、同じ素子構造で受光素子と光減衰
器を攻勢できるようにし、より集積化が容易な構造であ
る。
To realize FAPC using this structure,
When the incident light intensity is small, the control is performed using the output currents of both the photodiodes 3 and 4, and when the incident light intensity is large, the control is performed using the photocurrent of the photodiode 3 alone. When only the photodiode 3 is used, the photodiode 4 functions as a light absorbing layer. For example, the photodiode 4 is designed to absorb 90% of the light and absorb 10% of the light in the RAM mode and the ROM mode. , Approximately the same level of photocurrent can be obtained. With such a configuration, without preparing a separate monitor light receiving element,
A large control signal (monitor output current) can be input to the drive circuit while suppressing the saturation phenomenon of the light receiving element, and it is easy to design an appropriate control circuit system as a whole. In this structure,
The light receiving element at the preceding stage has the function of both the variable optical attenuator and the light receiving element for monitoring, so that the light receiving element and the optical attenuator can be attacked with the same element structure, and the structure can be more easily integrated.

【0015】なお、図2では、凹部の底面の反射面とな
る斜面23側に溝27が形成されており、半導体レーザ
素子1の光出射部(すなわち活性層)が凹部底面に比較
的近い位置にある場合にも、出力光ビームが凹部底面で
蹴られないようにしている。
In FIG. 2, a groove 27 is formed on the side of the slope 23 serving as a reflection surface on the bottom surface of the concave portion, so that the light emitting portion (ie, the active layer) of the semiconductor laser device 1 is relatively close to the bottom surface of the concave portion. In this case, the output light beam is prevented from being kicked at the bottom of the concave portion.

【0016】この構造は、次のようにして実現される。
まず、高濃度基板21上にエピタキシャル成長などによ
り低濃度層22および高濃度層24が形成されたウェハ
を、熱酸化膜や窒化膜などをフォトリソグラフィーの手
法等を用いてパターニングし、これらの膜をマスクとし
てKOHなどの溶液で底部が基板21に到達するまで凹
部をエッチングする。更に同様の手法で底部の一部にパ
ターニング、エッチングを行い溝27を形成できる。こ
の場合、KOHなどの異方性エッチング溶液を用いるこ
とにより凹部の斜面は特定の結晶面を出す事が出来、平
坦な面を得ることが出来る。さらに、レジストや酸化膜
をマスクとしてRIEなどによって基板21に到達する
分離溝29を形成する。
This structure is realized as follows.
First, a wafer in which the low concentration layer 22 and the high concentration layer 24 are formed on the high concentration substrate 21 by epitaxial growth or the like is subjected to patterning of a thermal oxide film, a nitride film, and the like by using a photolithography method or the like. The recess is etched with a solution such as KOH until the bottom reaches the substrate 21 as a mask. Further, a groove 27 can be formed by patterning and etching a part of the bottom in the same manner. In this case, by using an anisotropic etching solution such as KOH, a specific crystal plane can be formed on the slope of the concave portion, and a flat surface can be obtained. Further, a separation groove 29 reaching the substrate 21 is formed by RIE or the like using a resist or an oxide film as a mask.

【0017】溝29の側壁は、表面リークを抑えるた
め、熱酸化膜などによりパッシベーションされる。溝内
部での反射ロスを減らすために、望ましくはパッシベー
ション膜が光軸に対して無反射膜となるように形成され
る。この後に、半透過ミラーとして膜25を誘電体膜で
形成後、フォトダイオードの取出し電極26および裏面
電極28を形成しダイシング等によりチップに切り出
す。
The side wall of the groove 29 is passivated with a thermal oxide film or the like to suppress surface leakage. In order to reduce the reflection loss inside the groove, the passivation film is desirably formed so as to be a non-reflection film with respect to the optical axis. Then, after forming a film 25 as a semi-transmissive mirror with a dielectric film, a take-out electrode 26 and a back surface electrode 28 of the photodiode are formed and cut into chips by dicing or the like.

【0018】本実施形態では、受光素子構造として高速
なPIN構造を示したが、通常のPN型の受光素子を用
いても同様な効果が得られる。その場合、低濃度層22
は不要である。
In this embodiment, a high-speed PIN structure is shown as the light receiving element structure, but the same effect can be obtained by using a normal PN type light receiving element. In that case, the low concentration layer 22
Is unnecessary.

【0019】また、基板2は2層のエピタイシャル層で
形成されているが、低濃度層22のみの基板を用いて外
形を作成した後、熱拡散などであとからp層(24)を
形成しても良い。また、溝の形状はトレンチ状に縦型の
場合を図示したが、透過光が後段の受光素子3に入射す
る範囲であれば反射面23と同様の斜面であっても良
い。この場合、分離溝を反射面23と同時に形成するこ
とも可能で、プロセスが簡単化される。
Although the substrate 2 is formed of two epitaxial layers, an outer shape is formed using a substrate having only the low concentration layer 22, and then a p layer (24) is formed by thermal diffusion or the like. May be. In addition, although the case where the shape of the groove is vertical in the shape of a trench is illustrated, an inclined surface similar to the reflecting surface 23 may be used as long as transmitted light is incident on the light receiving element 3 at the subsequent stage. In this case, the separation groove can be formed simultaneously with the reflection surface 23, and the process is simplified.

【0020】本実施形態では、基板はn型伝導型とした
がもちろんp型伝導型を用いた場合、伝導型を逆にすれ
ば同様の構成が得られる。特に、凹部形成時には、p型
不純物としてボロンを用いた場合、1×1020cm
−3を超えるような高濃度に成るとKOHによるエッチ
ングレートが遅くなるため、エッチングストップ層とし
て機能させることでより平坦な凹部底面を得ることが出
来る。
In this embodiment, the substrate is of the n-type conductivity type. Of course, when the p-type conductivity type is used, a similar structure can be obtained by reversing the conductivity type. In particular, when forming the concave portion, when boron is used as the p-type impurity, 1 × 10 20 cm
If the concentration is higher than −3 , the etching rate by KOH becomes slow. Therefore, a more flat bottom surface of the concave portion can be obtained by functioning as an etching stop layer.

【0021】図3は、本発明の第三の実施形態を説明す
るための図である。図2の構造との違いは、受光素子3
と4の分離にn型拡散領域29−2を用いたことにあ
る。分離がpn分離であるため、p型拡散領域24はイ
オン注入や熱拡散などにより部分的に形成される。この
構造では、イオン注入などの通常のLSIプロセスでの
分離が可能であることや、溝側壁の表面をパッシベーシ
ョンする必要が無くプロセスが単純化される。ただし、
分離領域での吸収はすべてn型電極に流れて遅い成分の
光電流となるため、高速制御の場合には雑音となるた
め、低速制御に適している。
FIG. 3 is a diagram for explaining a third embodiment of the present invention. The difference from the structure of FIG.
And n = 4 using the n-type diffusion region 29-2. Since the separation is pn separation, the p-type diffusion region 24 is partially formed by ion implantation, thermal diffusion, or the like. This structure simplifies the process because it can be separated by a normal LSI process such as ion implantation, and there is no need to passivate the surface of the trench side wall. However,
Since all the absorption in the separation region flows to the n-type electrode and becomes a photocurrent of a slow component, it becomes noise in the case of high-speed control, and thus is suitable for low-speed control.

【0022】[0022]

【発明の効果】本発明は、反射鏡とその後部に配置した
受光素子との間に、可変光減衰器を設ける事を特徴とす
る。さらには、反射鏡後部に配置した受光素子部に光路
にほぼ垂直となる方向の溝を設け、光学的に直列に受光
素子を分割し、入射光強度が大きい場合には、前段の受
光素子をオフとして光吸収層として使用し、後段の受光
素子からの出力電流を用いて制御を行う。このように構
成した半導体レーザ装置によれば、入射光強度が小さい
ときには、前後両方の受光素子を用いて制御することが
でき、また、光ピックアップの光源として用いてDVD
−ROMとDVD−RAMを同一の発光素子で実現する
ような場合、すなわち、発光素子から入射する光強度が
段階的に大きく変化するような場合でも、単一の素子で
受光素子からの出力電流値が大きく変動することなく、
ほぼ一定の制御信号(光電流)を制御回路に入力するこ
とができるため、制御回路系全体の設計が容易となり、
コストの上昇や大型化を抑える効果がある。
The present invention is characterized in that a variable optical attenuator is provided between a reflecting mirror and a light receiving element disposed at the rear thereof. Furthermore, a groove in the direction substantially perpendicular to the optical path is provided in the light-receiving element disposed at the rear of the reflecting mirror, and the light-receiving element is optically divided in series. It is turned off and used as a light absorbing layer, and control is performed using an output current from a light receiving element at a later stage. According to the semiconductor laser device configured as described above, when the intensity of the incident light is low, it can be controlled using both the front and rear light receiving elements, and the DVD can be used as a light source for an optical pickup.
-Even when the ROM and the DVD-RAM are realized by the same light emitting element, that is, when the light intensity incident from the light emitting element changes greatly in a stepwise manner, the output current from the light receiving element is a single element. Without the value fluctuating greatly,
Since a substantially constant control signal (photocurrent) can be input to the control circuit, the entire control circuit system can be easily designed.
This has the effect of suppressing an increase in cost and size.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施形態を説明するてめの図。FIG. 1 is a diagram illustrating a first embodiment of the present invention.

【図2】本発明の第二の実施形態を説明するための図。FIG. 2 is a diagram illustrating a second embodiment of the present invention.

【図3】本発明の第三の実施形態を説明するための図。FIG. 3 is a diagram illustrating a third embodiment of the present invention.

【図4】従来の半導体レーザ装置を説明するための図。FIG. 4 is a view for explaining a conventional semiconductor laser device.

【図5】第2の従来例を説明するための図。FIG. 5 is a diagram for explaining a second conventional example.

【符号の説明】[Explanation of symbols]

1 半導体レーザ素子 11 へきかい端面 14 出力光ビーム 2 サブマウント基板 21 高濃度n型伝導型の基板 22 低濃度n型エピタキシャル層 23 凹部斜面 24 高濃度p型拡散層 24−2 高濃度n型拡散層 25 半透過膜 26 フォトダイオード電極 27 溝 28 サブマウント裏面電極 29 受光素子分離溝 29−2 受光素子分離領域(n型拡散領域) 3、4 受光素子 5 接着剤 REFERENCE SIGNS LIST 1 semiconductor laser element 11 cleavage end face 14 output light beam 2 submount substrate 21 high-concentration n-type conductivity type substrate 22 low-concentration n-type epitaxial layer 23 concave slope 24 high-concentration p-type diffusion layer 24-2 high-concentration n-type diffusion layer Reference Signs List 25 semi-transmissive film 26 photodiode electrode 27 groove 28 submount back electrode 29 light-receiving element separation groove 29-2 light-receiving element separation area (n-type diffusion region) 3, 4 light-receiving element 5 adhesive

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体レーザ素子と、該半導体レーザ素
子からの出射光を分割する手段と、前記半導体レーザ素
子の光出力をモニタする受光素子とを具備する半導体レ
ーザ装置において、前記出射光分割手段と前記受光素子
との間に可変光減衰器を挿入することを特徴とする半導
体レーザ装置。
1. A semiconductor laser device comprising: a semiconductor laser element; means for splitting light emitted from the semiconductor laser element; and a light receiving element for monitoring an optical output of the semiconductor laser element. A semiconductor laser device comprising a variable optical attenuator inserted between the semiconductor laser device and the light receiving element.
【請求項2】 請求項1記載の半導体レーザ装置におい
て、半導体レーザ素子と該半導体レーザ素子を実装する
サブマウント基板と、両者を電気的に接続する手段とを
有し、前記サブマウント基板に少なくとも一つ以上の凹
部が形成されており、該凹部の少なくとも一つの面が斜
面を有し、前記凹部の底面に実装された前記半導体レー
ザ素子の出射光の一部が前記斜面で反射されて出力さ
れ、残りの一部がサブマウント基板内に入射し前記斜面
側の基板表面に形成されたフォトダイオードで受光され
ており、前記フォトダイオードが光軸に対して直列方向
に複数に分割されており、それぞれが電気的に別々に駆
動可能に構成したことを特徴とする半導体レーザ装置。
2. The semiconductor laser device according to claim 1, further comprising: a semiconductor laser element, a submount substrate on which the semiconductor laser element is mounted, and means for electrically connecting the two. One or more concave portions are formed, and at least one surface of the concave portion has a slope, and a part of light emitted from the semiconductor laser device mounted on the bottom surface of the concave portion is reflected by the slope and output. The remaining part is incident on the sub-mount substrate and is received by the photodiode formed on the substrate surface on the slope side, and the photodiode is divided into a plurality in series with respect to the optical axis. , Each of which is configured to be electrically driven separately.
JP2000333103A 2000-10-31 2000-10-31 Semiconductor laser device Expired - Fee Related JP3735528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000333103A JP3735528B2 (en) 2000-10-31 2000-10-31 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000333103A JP3735528B2 (en) 2000-10-31 2000-10-31 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JP2002141595A true JP2002141595A (en) 2002-05-17
JP3735528B2 JP3735528B2 (en) 2006-01-18

Family

ID=18809233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000333103A Expired - Fee Related JP3735528B2 (en) 2000-10-31 2000-10-31 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3735528B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1555665A2 (en) * 2004-01-13 2005-07-20 Samsung Electronics Co., Ltd. Micro optical bench structure and method of manufacturing the same
JP2007158204A (en) * 2005-12-08 2007-06-21 Nippon Telegr & Teleph Corp <Ntt> Optical integrated device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1555665A2 (en) * 2004-01-13 2005-07-20 Samsung Electronics Co., Ltd. Micro optical bench structure and method of manufacturing the same
EP1555665A3 (en) * 2004-01-13 2006-12-27 Samsung Electronics Co., Ltd. Micro optical bench structure and method of manufacturing the same
US7456434B2 (en) 2004-01-13 2008-11-25 Samsung Electronics Co., Ltd. Micro optical bench structure
KR100906475B1 (en) 2004-01-13 2009-07-08 삼성전자주식회사 Micro optical bench structure and method of manufacturing the same
JP2007158204A (en) * 2005-12-08 2007-06-21 Nippon Telegr & Teleph Corp <Ntt> Optical integrated device

Also Published As

Publication number Publication date
JP3735528B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
JP3934828B2 (en) Semiconductor laser device
US5978401A (en) Monolithic vertical cavity surface emitting laser and resonant cavity photodetector transceiver
CN116325394A (en) 3D and LiDAR sensing modules
JP3058077B2 (en) Semiconductor light emitting and receiving device
US6654393B2 (en) Semiconductor laser device
US7403553B2 (en) Absorbing layers for reduced spontaneous emission effects in an integrated photodiode
JPH0697597A (en) Surface emitting type semiconductor laser with photodetector
US7366217B2 (en) Optimizing mirror reflectivity for reducing spontaneous emissions in photodiodes
US5757829A (en) Flip chip power monitoring system for vertical cavity surface emitting lasers
US8687664B2 (en) Laser assembly with integrated photodiode
JP4246942B2 (en) Optical subassembly for wavelength conversion
JP3735528B2 (en) Semiconductor laser device
US7184455B2 (en) Mirrors for reducing the effects of spontaneous emissions in photodiodes
US20110188529A1 (en) Optoelectronic component
JPH08116127A (en) Semiconductor laser device
JPH03105985A (en) Semiconductor photodetector and optical semiconductor device using same
US7801199B2 (en) Vertical cavity surface emitting laser with photodiode having reduced spontaneous emissions
JP4024483B2 (en) Semiconductor laser device
US7418021B2 (en) Optical apertures for reducing spontaneous emissions in photodiodes
US4937638A (en) Edge emitting light emissive diode
US20080291953A1 (en) Light-Emitting System Provided with an Integrated Control Photosensor and a Method for Producing Said System
JP3272060B2 (en) Semiconductor element
JP3788965B2 (en) Semiconductor laser device
JPH04233761A (en) Monolithic integrated ridge waveguide semiconductor optical preamplifier
JP3696154B2 (en) Semiconductor laser device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050616

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees