JP2002135982A - Uninterruptible power supply switchable to independent operation - Google Patents

Uninterruptible power supply switchable to independent operation

Info

Publication number
JP2002135982A
JP2002135982A JP2000318015A JP2000318015A JP2002135982A JP 2002135982 A JP2002135982 A JP 2002135982A JP 2000318015 A JP2000318015 A JP 2000318015A JP 2000318015 A JP2000318015 A JP 2000318015A JP 2002135982 A JP2002135982 A JP 2002135982A
Authority
JP
Japan
Prior art keywords
power
inverter
control
output
instantaneous interruption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000318015A
Other languages
Japanese (ja)
Inventor
Norihiko Takamatsu
典彦 高松
Atsushi Takeda
淳 武田
Kenji Morishita
健治 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2000318015A priority Critical patent/JP2002135982A/en
Publication of JP2002135982A publication Critical patent/JP2002135982A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Fuel Cell (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive but reliable uninterruptible power supply which can reduce the interrupted period when switching from link operation to independent operation covering the momentary interruption completely. SOLUTION: This uninterruptible power supply switchable to independent operation is provided with an inverter to invert the dc power from the main fuel cell into ac power, a power feed point to send the surplus of the above power to an ac power system excepting the power consumed in the load equipment, a first high speed breaker to cut off the connection of the above feed point and the above ac power system without momentary interruption, an abnormality detector quickly detecting an abnormality in the ac power system, a second breaker which can quickly connect the above load equipment to another ac power supply system independent of the above ac power system without momentary interruption, and a controller which automatically switch the supply power for the above load equipment to the best power supply by operating the above first and second breakers upon receiving the signal from the abnormality detector.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、燃料電池等の系統
連系運転において系統異常が発生した場合、無瞬断で系
統電源を切り替える無瞬断自立移行発電システムに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an instantaneous interruption independent transition power generation system that switches system power without interruption when a system abnormality occurs in a system interconnection operation of a fuel cell or the like.

【0002】[0002]

【従来の技術】図6は、例えば、特開平10−1890
20号公報に記載されている無瞬断自立移行発電システ
ムの一例としての燃料電池発電システムの構成図であ
る。図6において、2は燃料電池本体、3は逆変換装
置、4は逆変換装置3を介して燃料電池本体2の出力側
へ接続する負荷装置、10は交流系統、15は電流検出
手段である。31は供給物生成調整設備、38は単独負
荷への供電力供給源を交流系統から逆変換装置発電出力
側へ切り替える切替スイッチ、40は制卸装置、41は
設定関数、42は調節制御系、43は信号切替スイッ
チ、44は電流設定器である。
2. Description of the Related Art FIG.
FIG. 1 is a configuration diagram of a fuel cell power generation system as an example of an instantaneous interruption-free independent power generation system described in Japanese Patent Publication No. 20; 6, reference numeral 2 denotes a fuel cell main body, 3 denotes an inverter, 4 denotes a load device connected to the output side of the fuel cell main body 2 via the inverter 3, 10 denotes an AC system, and 15 denotes current detection means. . 31 is a supply generation adjustment equipment, 38 is a changeover switch for switching a power supply source to an independent load from the AC system to the inverter output side, 40 is a control device, 41 is a setting function, 42 is an adjustment control system, 43 is a signal changeover switch, and 44 is a current setting device.

【0003】次に、この従来例の動作について説明す
る。都市ガスや天然ガス等からなる原燃料は、供給物生
成調整設備31によって水素に変化させられ、空気と共
に燃料電池本体2に供給される。燃料電池本体2は直流
電力を発電し、直流発電電力は逆変換装置3によって交
流電力に変換される。単独負荷4には、切替スイッチ3
8により交流系統10又は逆変換装置3の交流出力から
電力が供給される。
Next, the operation of this conventional example will be described. Raw fuel composed of city gas, natural gas, or the like is converted into hydrogen by the supply generation adjustment facility 31, and supplied to the fuel cell body 2 together with air. The fuel cell body 2 generates DC power, and the DC power is converted into AC power by the inverter 3. The single load 4 has a changeover switch 3
The power is supplied from the AC system 10 or the AC output of the inverter 3 by the AC system 8.

【0004】制御装置40は、電流検出手段15による
検出電流値を電流設定器44による設定電流値に保持す
るため、設定関数41によって調節制御系42の調節値
を指定し、供給物生成調整設備31の原燃料を制御す
る。
The control device 40 specifies the adjustment value of the adjustment control system 42 by the setting function 41 to maintain the current value detected by the current detection means 15 at the current value set by the current setting device 44, 31 raw fuels are controlled.

【0005】供給物生成調整設備31に原燃料ガス及び
空気を供給し、燃料電池本体2から直流発電出力を逆変
換装置3へ入力して得られた交流出力が、切替スイッチ
38を通して単独負荷4に電力供給される。このような
運転時に、供給物生成調整設備31、燃料電池本体2、
直流検出手段15、逆変換装置3、及び制御装置40に
異常が発生し、且つ交流系統10が正常な場合には、負
荷4への電力供給は、切替スイッチ38によって、逆変
換装置3の出力から交流系統10に切り替えられる。
[0005] The raw fuel gas and air are supplied to the feed generation and regulation equipment 31, and the DC output from the fuel cell main body 2 is input to the inverter 3. Power. During such operation, the feed generation adjustment equipment 31, the fuel cell body 2,
When an abnormality occurs in the DC detection means 15, the inverter 3, and the controller 40 and the AC system 10 is normal, the power supply to the load 4 is controlled by the changeover switch 38 so that the output of the inverter 3 is To the AC system 10.

【0006】交流系統10から切替スイッチ38を通し
て単独負荷4へ電力供給している時に、供給物生成調整
設備31、燃料電池本体2、直流検出手段15、逆変換
装置3、及び制御装置40がいずれも正常であり、且つ
交流系統10に異常が発生した場合には、単独負荷4へ
の電力供給は、切替スイッチ38によって、交流系統1
0から逆変換装置3の出力に切り替えられる。
When power is supplied from the AC system 10 to the single load 4 through the changeover switch 38, any of the supply generation adjustment equipment 31, the fuel cell main body 2, the DC detection means 15, the inverting device 3, and the control device 40 are used. Is normal, and if an abnormality occurs in the AC system 10, the power supply to the single load 4 is switched by the changeover switch 38 to the AC system 1.
The output is switched from 0 to the output of the inverse converter 3.

【0007】単独負荷4への電力供給を無瞬断で上記交
流系統10から逆変換装置3の出力へ切り替えるために
は、非常に高速に燃料電池本体2が発電開始可能となる
状態を保持する必要があるので、常時、燃料電池発電を
行い、燃料電池出力を切替スイッチバイパス回路17の
スイッチ18を常時閉路しておくことで、交流系統10
へ逆潮流しておき、上記異常発生時にスイッチ18を高
速で解列し、切替スイッチ38を交流系統10から逆変
換装置3の出力に切り替える。
In order to switch the power supply to the single load 4 from the AC system 10 to the output of the inverter 3 without an instantaneous interruption, the state where the fuel cell main body 2 can start power generation at a very high speed is maintained. Therefore, it is necessary to generate fuel cell power at all times and keep the switch 18 of the changeover switch bypass circuit 17 closed at all times.
When the abnormality occurs, the switch 18 is disconnected at a high speed, and the changeover switch 38 is switched from the AC system 10 to the output of the inverter 3.

【0008】[0008]

【発明が解決しようとする課題】従来の制御方法では、
非常に高速に燃料電池本体2が発電開始可能となる状態
を保持する必要があるため、図6に示すツインインバー
タと呼ばれる従来例のように、逆変換装置3は、常時は
燃料電池の出力を切替スイッチバイパス回路17を通し
て交流系統10へ逆潮流する系統連系運転専用の逆変換
装置と、燃料電池の出力を切替スイッチ38を通して単
独負荷4へ電力供給する単独運転専用の逆変換装置3B
との2台の逆変換装置とを内蔵することが必要となる
上、切替スイッチ38及び切替スイッチバイパス回路1
7用のスイッチ18の2個のスイッチが必要となってい
た。
In the conventional control method,
Since it is necessary to maintain a state in which the fuel cell body 2 can start power generation at a very high speed, the inverter 3 always outputs the fuel cell output, as in a conventional example called a twin inverter shown in FIG. Inverter dedicated to grid-connected operation for reverse power flow to the AC system 10 through the changeover switch bypass circuit 17, and reverse converter 3B dedicated to isolated operation that supplies the output of the fuel cell to the single load 4 through the changeover switch 38
It is necessary to incorporate the two inverse converters, and the changeover switch 38 and the changeover switch bypass circuit 1
Two switches of the switch 18 for 7 were required.

【0009】2個のスイッチ共、遮断及び切替の高速性
を実現するためサイリスタスイッチなどを用いるが、サ
イリスタスイッチは高価な上、スイッチ部の電流通電ロ
スが真空遮断器などと比べて大きいため、高速切替シス
テム全体としてコストアップとなっていた。
Both switches use a thyristor switch or the like in order to realize high-speed switching and switching. However, the thyristor switch is expensive and the current loss of the switch section is larger than that of a vacuum circuit breaker. The cost was increased as a whole of the high-speed switching system.

【0010】また、サイリスタスイッチの動作上、半サ
イクル程度の遮断時間が必要なため、従来の高速切替シ
ステムでは、瞬停時間が半サイクル以上であり、小容量
電磁リレー等は従来システムのサイリスタスイッチ等の
瞬停時間に耐えられずダウンする等、一部制御機器に対
する完全な瞬停補償は不可能であった。半サイクル以上
の瞬停に耐えられない一部の制御機器に対しても瞬停補
償する為には、系統瞬停時に切替を伴わない常時バック
アップ型の無停電電源装置(UPS)などを導入する必
要があった。しかし、無停電電源装置は一般的に装置に
搭載するバッテリー容量の都合により、数分から数時間
程度の短時間補償手段であり、長時間の系統停電及び需
要家構内工事などの長期間停電に対応するためには、膨
大なバッテリーが必要となるので、非常に高コストとな
っている。
In addition, since the operation of the thyristor switch requires a cut-off time of about half a cycle, the conventional high-speed switching system has an instantaneous interruption time of half a cycle or more, and the small-capacity electromagnetic relays and the like have the thyristor switch of the conventional system. For example, it was impossible to completely compensate for instantaneous power failure for some control devices. In order to compensate for momentary power failure even for some control equipment that cannot withstand a momentary power failure of more than half a cycle, an always-on backup type uninterruptible power supply (UPS) that does not involve switching at the momentary power failure is introduced. Needed. However, uninterruptible power supplies are generally short-term compensation means of several minutes to several hours, depending on the capacity of the battery installed in the equipment. To do so requires an enormous amount of batteries, which is very expensive.

【0011】長期間停電に対応するために、ガスタービ
ン発電機、ディーゼル発電機などの電源を交流系統から
切り離して常時単独運転を行い、発電機異常時も想定し
てバックアップ用発電機を並列運転すれば、単独負荷へ
の安定した電力供給が行えるが、初期コストアップとな
る。
In order to cope with a long-term power outage, a power supply such as a gas turbine generator or a diesel generator is disconnected from the AC system and always operates independently. Then, stable power supply to a single load can be performed, but the initial cost increases.

【0012】本発明は、上述したような問題点を解決す
るためになされたもので、切替及び遮断スイッチ部にお
ける交流電流通電ロスを減少させ、連系運転と単独運転
の切替遮断時間を短縮して瞬停に対して完全補償できる
安価で信頼性が高く、長時間の停電が発生した場合でも
重要負荷を運転継続可能とすることができる無瞬断自立
移行システムを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is intended to reduce AC current conduction loss in a changeover and cutoff switch section, and to shorten a cutoff time for switching between interconnected operation and isolated operation. The purpose of the present invention is to provide an instantaneous interruption-free transition system that can completely compensate for momentary power failures, is inexpensive, has high reliability, and can continue to operate important loads even if a long-term power failure occurs .

【0013】[0013]

【課題を解決するための手段】この発明に係る無瞬断自
立移行システムは、ガス供給設備からの供給ガスによっ
て直流電力を発電する燃料電池本体と、前記直流電力を
交流電力に変換する逆変換装置と、前記逆変換装置より
出力される交流電流を測定する交流発電電流測定手段
と、前記交流電流に相当する供給ガス流量を調整する供
給ガス流量制御手段と、前記逆変換装置からの交流出力
電力を消費する負荷装置と、前記交流出力電力のうち前
記負荷装置による消費電力を除いた余剰分を交流系統へ
送電する送電点と、前記送電点と前記交流系統とを無瞬
断で解列可能な第1の高速遮断手段と、前記第1の高速
遮断手段の操作電源として前記交流出力電力を利用する
手段と、前記交流系統の異常を瞬時に検出する系統異常
検出手段と、前記系統異常検出手段の検出信号を受けて
前記第1の高速遮断手段へ解列指令を出して前記逆変換
装置の運転モードを定電力制御から定電圧制御へ切り替
える制御手段と、前記交流系統から独立した別の交流系
統と前記負荷装置とを無瞬断で接続するよう投入可能な
第2の高速遮断手段と、を備え、前記制御装置は、前記
系統異常信号により前記第1及び第2の高速遮断手段を
作動させて、前記負荷装置への電力供給源を自動的に最
適な供給源に切り替えることを特徴とするものである。
また、この発明に係る無瞬断自立移行システムは、前記
逆変換装置運転モード切替時に制御安定化させる制御安
定化回路を更に備え、前記制御安定化回路は、発電制御
モード切替後の前記逆変換装置の出力に過電流が発生し
ても、前記逆変換装置の作動を一定時間継続させ、その
後自立移行させる過電流リミッター制御回路を備えるこ
とを特徴とするものである。さらに、この発明に係る無
瞬断自立移行システムは、ガス供給設備からの供給ガス
によって直流電力を発電する燃料電池本体と、前記直流
電力を交流電力に変換する逆変換装置と、前記逆変換装
置より出力される交流電流を測定する交流発電電流測定
手段と、前記交流電流に相当する供給ガス流量を調整す
る供給ガス流量制御手段と、前記逆変換装置からの交流
出力電力を消費する負荷装置と、前記交流出力電力のう
ち前記負荷装置による消費電力を除いた余剰分を交流系
統へ送電する送電点と、前記送電点と前記交流系統とを
無瞬断で解列可能な高速遮断手段と、前記高速遮断手段
の操作電源として前記交流出力電力を利用する手段と、
前記交流系統の異常を瞬時に検出する系統異常検出手段
と、前記系統異常検出手段の検出信号を受けて前記高速
遮断手段へ解列指令を出して前記逆変換装置の運転モー
ドを定電力制御から定電圧制御へ切り替える制御手段
と、前記逆変換装置運転モード切替時に制御安定化させ
る制御安定化回路と、を備え、前記制御安定化回路は、
発電制御モード切替後の前記逆変換装置の出力に過電流
が発生しても、前記逆変換装置の作動を一定時間継続さ
せ、その後自立移行させる過電流リミッター制御回路を
備えることを特徴とするものである。さらにまた、この
発明に係る無瞬断自立移行システムは、前記系統異常検
出手段が、短時間停電でダウンするような瞬停耐力が低
い制御機器により構成されることを特徴とするものであ
る。また、この発明に係る無瞬断自立移行システムは、
ガス供給設備からの供給ガスによって直流電力を発電す
る燃料電池本体と、前記直流電力を交流電力に変換する
逆変換装置と、前記逆変換装置より出力される交流電流
を測定する交流発電電流測定手段と、前記交流電流に相
当する供給ガス流量を調整する供給ガス流量制御手段
と、前記逆変換装置からの交流出力電力を消費する負荷
装置と、前記交流出力電力のうち前記負荷装置による消
費電力を除いた余剰分を交流系統へ送電する送電点と、
前記送電点と前記交流系統とを無瞬断で解列可能な高速
遮断手段と、前記高速遮断手段の操作電源として前記交
流出力電力を利用する手段と、前記交流系統の異常を瞬
時に検出する系統異常検出手段と、前記系統異常検出手
段の検出信号を受けて前記高速遮断手段へ解列指令を出
して前記逆変換装置の運転モードを定電力制御から定電
圧制御へ切り替える制御手段と、を備え、前記系統異常
検出手段は、短時間停電でダウンするような瞬停耐力が
低い制御機器により構成されることを特徴とするもので
ある。
According to the present invention, there is provided a non-instantaneous interruption independent transition system according to the present invention, comprising: a fuel cell main body for generating DC power by gas supplied from a gas supply facility; A device, an AC generation current measuring means for measuring an AC current output from the inverting device, a supply gas flow control means for adjusting a supply gas flow rate corresponding to the AC current, and an AC output from the inverting device. A load device that consumes power, a transmission point that transmits a surplus of the AC output power excluding power consumption by the load device to an AC system, and disconnects the transmission point and the AC system without an instantaneous interruption. A possible first high-speed cutoff means, a means for using the AC output power as an operation power supply for the first high-speed cutoff means, a system abnormality detection means for instantaneously detecting an abnormality in the AC system, Control means for receiving a detection signal from the abnormality detection means and issuing a disconnection command to the first high-speed cutoff means to switch the operation mode of the inverter from constant power control to constant voltage control; and A second high-speed cutoff means that can be turned on so as to connect another AC system to the load device without an instantaneous interruption; and wherein the control device performs the first and second high-speed cutoffs in response to the system abnormality signal. Activating the means to automatically switch the power supply source to the load device to an optimum power supply source.
Further, the instantaneous interruption-free autonomous transition system according to the present invention further includes a control stabilization circuit for stabilizing the control when the inverter operation mode is switched, and the control stabilization circuit is configured to perform the inverse conversion after switching the power generation control mode. An overcurrent limiter control circuit is provided which keeps the operation of the inverting device continued for a certain period of time even if an overcurrent occurs in the output of the device, and then makes the device self-sustained. Further, the instantaneous interruption-free transition system according to the present invention includes a fuel cell main body that generates DC power using gas supplied from a gas supply facility, an inverter that converts the DC power into AC power, and the inverter. AC generation current measurement means for measuring the output AC current, supply gas flow control means for adjusting the supply gas flow rate corresponding to the AC current, and a load device for consuming AC output power from the inverting device. A power transmission point for transmitting a surplus of the AC output power excluding power consumption by the load device to an AC system, and a high-speed cutoff unit capable of disconnecting the power transmission point and the AC system without instantaneous interruption, Means for using the AC output power as an operation power supply of the high-speed cutoff means,
A system abnormality detecting means for instantaneously detecting an abnormality of the AC system, and receiving a detection signal of the system abnormality detecting means, issuing a disconnection command to the high-speed cutoff means, and changing an operation mode of the inverter from constant power control. Control means for switching to constant voltage control, and a control stabilization circuit for stabilizing the control when the inverter operation mode is switched, the control stabilization circuit,
Even if an overcurrent occurs in the output of the inverter after the switching of the power generation control mode, an overcurrent limiter control circuit is provided that allows the operation of the inverter to continue for a certain period of time and then shifts to an independent state. It is. Still further, the instantaneous interruption-free independent transition system according to the present invention is characterized in that the system abnormality detection means is configured by a control device having a low instantaneous power failure tolerance, such as a failure due to a short-time power failure. Further, the instantaneous interruption independent transition system according to the present invention includes:
A fuel cell main body for generating DC power by gas supplied from a gas supply facility, an inverter for converting the DC power to AC power, and an AC generation current measuring means for measuring an AC current output from the inverter. Supply gas flow rate control means for adjusting a supply gas flow rate corresponding to the AC current, a load device consuming AC output power from the inverter, and a power consumption by the load device among the AC output power. A transmission point for transmitting the surplus removed to the AC system,
High-speed cutoff means capable of disconnecting the power transmission point and the AC system without instantaneous interruption, means for using the AC output power as an operation power supply for the high-speed cutoff means, and instantaneously detecting an abnormality in the AC system System abnormality detection means, and control means for receiving a detection signal of the system abnormality detection means, issuing a disconnection command to the high-speed cutoff means, and switching an operation mode of the inverter from constant power control to constant voltage control. Wherein the system abnormality detection means is configured by a control device having a low instantaneous power failure resistance, such as a failure due to a short-time power failure.

【0014】[0014]

【発明の実施の形態】以下、この発明の実施の形態を添
付図面について説明する。尚、以下の説明では、本発明
による無瞬断自立移行システムを燃料電池発電プラント
に適用した場合について記載する。 実施の形態1.図1は、この発明の実施の形態1に係る
燃料電池発電プラントのフロー図である。図1におい
て、この燃料電池発電プラントは、ガス供給設備1、燃
料電池本体2、逆変換装置3、負荷装置4、第1の高速
遮断手段或いは単に高速遮断手段(後述する実施の形態
2以降)としての高速遮断スイッチ5等から構成されて
いる。燃料電池発電プラントは更に、逆変換装置制御回
路6、系統異常検出回路6a、発電出力電力制御回路6
b、逆変換装置異常検出回路6c、高速遮断スイッチ操
作電源8、ガス供給量制御回路9、交流系統10、保護
遮断器11、系統電圧計測器12、発電電圧計測器1
3、発電電流測定器15を備えている。また、交流系統
10とは別の系統10aから負荷装置4へ電力を供給す
る回路を有し、この回路にも、高速遮断スイッチ5と同
様の、第2の高速遮断手段としての高速遮断スイッチ5
aが介挿され、この高速遮断スイッチ5aは高速遮断ス
イッチ操作電源8aより給電されている。さらに、逆変
換装置制御回路6は、逆変換装置3の異常を検出する逆
変換装置異常検出回路(図示せず)を備えている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. In the following description, a case where the instantaneous interruption-free transition system according to the present invention is applied to a fuel cell power plant will be described. Embodiment 1 FIG. FIG. 1 is a flowchart of a fuel cell power plant according to Embodiment 1 of the present invention. In FIG. 1, this fuel cell power plant includes a gas supply facility 1, a fuel cell main body 2, an inverter 3, a load device 4, a first high-speed cutoff unit, or simply a high-speed cutoff unit (the second and later embodiments described later). And a high-speed cutoff switch 5 and the like. The fuel cell power plant further includes an inverter control circuit 6, a system abnormality detection circuit 6a, a power generation output power control circuit 6,
b, Inverter abnormality detection circuit 6c, high-speed cutoff switch operating power supply 8, gas supply amount control circuit 9, AC system 10, protection circuit breaker 11, system voltage measurement device 12, generation voltage measurement device 1
3. A generated current measuring device 15 is provided. In addition, a circuit for supplying power to the load device 4 from a system 10a different from the AC system 10 is provided. This circuit also has a high-speed cutoff switch 5 as a second high-speed cutoff device, similar to the high-speed cutoff switch 5.
The high-speed cutoff switch 5a is supplied with power from a high-speed cutoff switch operating power supply 8a. Further, the inverse conversion device control circuit 6 includes an inverse conversion device abnormality detection circuit (not shown) for detecting an abnormality of the inverse conversion device 3.

【0015】次に、本実施の形態1の動作について図1
及び図2に基づいて説明する。図1において、ガス供給
設備1から供給される水素ガス及び酸素ガスによって燃
料電池2は直流電力を発電し、逆変換装置3によって直
流電力は交流電力に変換される。逆変換装置3の発電出
力は保護遮断器11を通して負荷装置4へ電力供給さ
れ、発電出力のうち負荷装置4で消費される電力を引い
た余剰発電出力分は、高速遮断スイッチ5及び保護遮断
器11を通して系統10へ出力される。すなわち、燃料
電池発電システムは系統10が正常な場合、系統連系運
転の状態にある。
Next, the operation of the first embodiment will be described with reference to FIG.
A description will be given based on FIG. In FIG. 1, the fuel cell 2 generates DC power by hydrogen gas and oxygen gas supplied from a gas supply facility 1, and the DC power is converted into AC power by an inverter 3. The power output of the inverter 3 is supplied to the load device 4 through the protection circuit breaker 11, and the excess power output of the power output minus the power consumed by the load device 4 is divided into the high-speed cutoff switch 5 and the protection circuit breaker. It is output to the system 10 through 11. That is, when the system 10 is normal, the fuel cell power generation system is in a system interconnection operation state.

【0016】系統連系運転では、逆変換装置制御回路6
は系統電圧計測器12及び発電電圧計測器13の電圧を
同期させた連系同期運転を行っており、発電電圧計測器
13及び発電電流測定器15により逆変換装置3の発電
電力を制御し、発電電流測定器15で計測した発電電流
値に必要なガス量をガス供給量制御回路9で演算し、ガ
ス供給設備1から燃料電池2本体へ供給するガス量を調
整する。
In the system interconnection operation, the inverter control circuit 6
Performs an interconnected synchronous operation in which the voltages of the system voltage measuring device 12 and the generated voltage measuring device 13 are synchronized, and controls the generated power of the inverter 3 by the generated voltage measuring device 13 and the generated current measuring device 15, The gas supply amount control circuit 9 calculates the gas amount required for the generated current value measured by the generated current measuring device 15, and adjusts the gas amount supplied from the gas supply equipment 1 to the fuel cell 2 main body.

【0017】図2は、系統異常検出回路6a内での系統
瞬停検出方法及び逆変換装置3の運転制御モード切替タ
イミングを示している。例えば、各相電圧に対してそれ
ぞれ系統電圧異常レベルを系統電圧±25%に設定した
場合、系統電圧計測器12で測定した系統電圧値が予め
設定した系統電圧不足レベル(系統正常電圧×75%)
を下回ったとき、系統異常検出回路6aは発電出力電力
制御回路6bへ系統異常信号を送出し、発電出力電力制
御回路6bは高速遮断スイッチ5へ遮断信号を送出し、
高速遮断スイッチ解列のタイミングに合わせて電力変換
装置出力を定電力制御から定電圧制御に切り替え、負荷
装置4へは無瞬断で電力を供給し続ける。すなわち、系
統10が正常な状態である系統連系運転から、燃料電池
出力を系統10から解列した単独運転状態に無瞬断で切
り替わる。また、発電電圧計測器13で計測した系統電
圧測定値が予め設定した系統電圧過剰レベル(系統正常
電圧×125%)より上回ったとき、系統異常検出回路
6aは発電出力電力制御回路6bへ系統異常信号を送出
し、前記系統瞬停の場合と同様の動作で、無瞬断自立移
行する。単独運転検出、不足周波数、過周波数、過電流
など他の系統異常検出の場合も、前記系統瞬停の場合と
同様の動作で無瞬断自立移行する。また、交流系統1
0、逆変換装置3ともに異常が発生した場合には、系統
異常検出回路6aの系統異常信号及び逆変換装置制御回
路6に内蔵された逆変換装置異常検出回路(図示せず)
の異常検出信号に基づいて、発電出力電力制御回路6b
により交流別系統10aと負荷装置4との間に設置され
た高速スイッチ5aを無瞬断で投入し、負荷装置4への
電力を継続する。
FIG. 2 shows a method of detecting an instantaneous system interruption in the system abnormality detection circuit 6a and the operation control mode switching timing of the inverter 3. For example, when the system voltage abnormal level is set to the system voltage ± 25% for each phase voltage, the system voltage value measured by the system voltage measuring device 12 is set to a predetermined system voltage shortage level (system normal voltage × 75%). )
When the power is below the threshold, the system abnormality detection circuit 6a sends a system abnormality signal to the power generation output power control circuit 6b, and the power generation output power control circuit 6b sends a cutoff signal to the high-speed cutoff switch 5,
The output of the power converter is switched from the constant power control to the constant voltage control in accordance with the timing of the high-speed cutoff switch disconnection, and the power is continuously supplied to the load device 4 without interruption. That is, the system 10 is switched from the grid-connected operation in which the system 10 is in a normal state to the isolated operation state in which the fuel cell output is disconnected from the system 10 without any interruption. When the measured system voltage measured by the generated voltage measuring device 13 exceeds a preset system voltage excess level (system normal voltage × 125%), the system abnormality detection circuit 6a sends a system abnormality to the generation output power control circuit 6b. A signal is sent out, and the operation is instantaneously interrupted and self-sustained in the same operation as in the case of the instantaneous power outage. Also in the case of other system abnormality detection such as islanding operation detection, under-frequency, over-frequency, over-current, etc., the instantaneous interruption independent transition is performed by the same operation as in the case of the system instantaneous stop. AC system 1
0, when an abnormality occurs in both the inverters 3, a system abnormality signal of the system abnormality detector 6a and an inverter abnormality detector circuit (not shown) built in the inverter controller 6
Output power control circuit 6b based on the abnormality detection signal of
As a result, the high-speed switch 5a installed between the AC separate system 10a and the load device 4 is turned on without an instantaneous interruption, and the power to the load device 4 is continued.

【0018】一般的な電動遮断器と同様、高速遮断スイ
ッチ5、5aを操作するための電源が必要であり、逆変
換装置3の発電電力の一部を供給している。具体的に
は、特開平11−111123号公報に記載されている
ような高速遮断スイッチを使用するため、充電装置とし
て直流電源8、8aへの交流電源が必要となる。
As in the case of a general electric circuit breaker, a power supply for operating the high-speed cutoff switches 5, 5a is required, and a part of the power generated by the inverter 3 is supplied. Specifically, in order to use a high-speed cutoff switch as described in JP-A-11-111123, an AC power supply to the DC power supplies 8 and 8a is required as a charging device.

【0019】実施の形態2.図3はこの発明の実施の形
態2に係る燃料電池発電プラントのフロー図である。図
3において、1〜15は図1と同様であるが、図1の別
系統10aから負荷装置4へ給電する回路は省かれてお
り、逆変換装置制御回路6は、逆変換装置運転モード切
替時に制御安定化させる制御安定化回路を有し、この制
御安定化回路は、発電電流測定器15から発電出力電力
制御回路6bへ供給される出力信号を所定時間遮断する
過電流リミッター制御回路6cを備えている。また、図
4は本実施の形態2の動作を説明するための図である。
Embodiment 2 FIG. 3 is a flowchart of the fuel cell power plant according to Embodiment 2 of the present invention. In FIG. 3, 1 to 15 are the same as in FIG. 1, but the circuit for supplying power to the load device 4 from the separate system 10a in FIG. 1 is omitted, and the inverter control circuit 6 switches the inverter operation mode. A control stabilization circuit that stabilizes the control at times, and the control stabilization circuit includes an overcurrent limiter control circuit 6c that interrupts an output signal supplied from the generated current measuring device 15 to the generated output power control circuit 6b for a predetermined time. Have. FIG. 4 is a diagram for explaining the operation of the second embodiment.

【0020】次に、本実施の形態2の動作について図3
に基づいて説明する。図3において、系統連系運転及び
単独運転におけるガス供給動作及び発電動作は図1の実
施の形態1と同様である。図3において、系統異常が発
生し、逆変換装置3が定電力制御から定電圧制御に無瞬
断で切り替わるとき、図4に示すような切替タイミング
となった場合、高速遮断スイッチ5が閉じているままの
ため、交流系統10と逆変換装置3が解列されていない
状態で、定電圧制御を行うタイミングが発生している。
逆変換装置3の定電圧制御での電圧目標値と系統電圧値
に差があり、系統10に瞬停が発生して系統電圧の方が
逆変換装置3の定電圧制御目標値より低い場合には、過
電流が増大する方向にインバータ制御が行われる。しか
し、1サイクルから1.5サイクル間であれば、系統電
圧と逆変換装置定電圧制御目標値に差がある場合でも過
電流の増加割合は少ないので、実質的に過電流が流れに
くい。このため、本実施の形態2では、過電流リミッタ
ー制御回路6cによる過電流リミッター制御(発電電流
測定器15の出力遮断)を所定時間(約20ms)程度
行って、なお過電流状態にある場合にのみ、発電出力電
力制御回路6bにより逆変換装置3を非常停止させる。
Next, the operation of the second embodiment will be described with reference to FIG.
It will be described based on. In FIG. 3, the gas supply operation and the power generation operation in the system interconnection operation and the single operation are the same as those in the first embodiment in FIG. In FIG. 3, when a system abnormality occurs and the inverter 3 switches from constant power control to constant voltage control without instantaneous interruption, when the switching timing shown in FIG. 4 is reached, the high-speed cutoff switch 5 is closed. Since the AC system 10 and the inverter 3 are not disconnected, a timing for performing the constant voltage control occurs.
When there is a difference between the voltage target value in the constant voltage control of the inverter 3 and the system voltage, and an instantaneous interruption occurs in the system 10 and the system voltage is lower than the constant voltage control target of the inverter 3 In this case, the inverter control is performed in the direction in which the overcurrent increases. However, in the period from 1 cycle to 1.5 cycles, even if there is a difference between the system voltage and the inverting device constant voltage control target value, the rate of increase of the overcurrent is small, so that the overcurrent substantially hardly flows. For this reason, in the second embodiment, the overcurrent limiter control (the output cutoff of the generated current measuring device 15) by the overcurrent limiter control circuit 6c is performed for a predetermined time (about 20 ms) and the overcurrent limiter is still in the overcurrent state. Only in such a case, the power generation output power control circuit 6b causes the reverse conversion device 3 to make an emergency stop.

【0021】尚、本実施の形態2では、別系統10aか
ら負荷装置4へ給電する回路を省いて説明したが、上記
実施の形態1においても、本実施の形態2の過電流リミ
ッター制御回路6cを備えた制御安定化回路を設けるよ
うにしてもよい。
In the second embodiment, the circuit for supplying power from the separate system 10a to the load device 4 has been described. However, in the first embodiment, the overcurrent limiter control circuit 6c of the second embodiment is also used. May be provided.

【0022】実施の形態3.図5はこの発明の実施の形
態3を示す燃料電池発電プラントのフロー図である。図
5において、1〜15は図1と同様であり、6zは系統
瞬停検出器である。すなわち、本実施の形態3では、図
1の別系統10aから負荷装置4へ給電する回路は省か
れており、系統電圧計測器12の出力より系統異常を検
出して、異常の場合には、高速遮断スイッチ5を遮断
(開放)する系統瞬停検出器6zが設けられている。
Embodiment 3 FIG. FIG. 5 is a flow chart of a fuel cell power plant according to Embodiment 3 of the present invention. In FIG. 5, 1 to 15 are the same as those in FIG. 1, and 6z is a system instantaneous power failure detector. That is, in the third embodiment, the circuit for supplying power to the load device 4 from the separate system 10 a in FIG. 1 is omitted, and a system abnormality is detected from the output of the system voltage measuring device 12. A system instantaneous interruption detector 6z for interrupting (opening) the high-speed interruption switch 5 is provided.

【0023】次に、本実施の形態3の動作について図5
に基づいて説明する。図5において、系統連系運転及び
単独運転におけるガス供給動作及び発電動作は図1の上
記実施の形態1と同様である。図5では、系統停電耐量
が最も低い機器を系統電圧不足検出器として使用し、例
えば、電圧が正常値の75%以下で3ms程度以上継続
するとダウンしてしまう小容量の電磁リレーを高速不足
電圧検出用として利用する。具体的には、系統電圧計測
器(変圧器)12のタップ値を通常(440V/110
V)の場合より二次側電圧が若干下がる方向(440/
l05V)などに設定している。系統電圧計測器(変圧
器)12の二次側には、系統瞬停検出器6zとして前記
電磁リレー等を接続するので、系統電圧が正常値440
V(100%)の状態において、電磁リレーには105
V(正常値l10Vの95.45%)が印加されるの
で、電磁リレーにとっての正常値(ll0V)の95.
45%(105V)の電圧がかかっていることになる。
すなわち、系統電圧が440Vの78.58%(電磁リ
レーの電圧が110V×75%以下)が3ms程度継続
した時点で、電磁リレーが先にダウンし、高速遮断スイ
ッチ5へ遮断指令を送出する。以下は上記実施の形態1
と同じ動作を行い、無瞬断に自立移行を達成する。
Next, the operation of the third embodiment will be described with reference to FIG.
It will be described based on. In FIG. 5, the gas supply operation and the power generation operation in the system interconnection operation and the single operation are the same as those in the first embodiment in FIG. In FIG. 5, a device having the lowest system power failure tolerance is used as a system voltage shortage detector. For example, a small-capacity electromagnetic relay that goes down when the voltage is 75% or less of a normal value and continues for about 3 ms or more is replaced with a high-speed undervoltage. Used for detection. Specifically, the tap value of the system voltage measuring instrument (transformer) 12 is set to a normal value (440 V / 110
V), the direction in which the secondary voltage slightly decreases (440 /
105V). The electromagnetic relay or the like is connected to the secondary side of the system voltage measuring device (transformer) 12 as the system momentary power failure detector 6z.
In the state of V (100%), the electromagnetic relay has 105
V (95.45% of the normal value of 110 V) is applied, so that the normal value (110 V) of the electromagnetic relay is 95.45%.
This means that a voltage of 45% (105 V) is applied.
That is, when 78.58% of the system voltage of 440 V (voltage of the electromagnetic relay is 110 V × 75% or less) continues for about 3 ms, the electromagnetic relay goes down first and sends a cutoff command to the high-speed cutoff switch 5. The following is the first embodiment.
Performs the same operation as above, and achieves self-sustained transition without any interruption.

【0024】尚、上記実施の形態1及び実施の形態2に
おいても、本実施の形態3の系統瞬停検出器6zを設け
るようにしても良く、この場合にも、本実施の形態3と
同様の作用効果が得られることは言うまでもない。
In the first and second embodiments, the instantaneous power failure detector 6z of the third embodiment may be provided. In this case, the same as in the third embodiment is provided. Needless to say, the effect of the invention can be obtained.

【0025】[0025]

【発明の効果】以上のように、この発明によれば、以下
に記載するような効果を奏する。請求項1の発明によれ
ば、逆変換装置容量を定格発電出力一台分とすることが
可能となり、逆変換装置部の初期コストを抑制できると
共に、逆変換装置部の構成単純化により、逆変換装置の
高信頼化を実現できると共に、通電ロスが極めてゼロに
近い真空バルブ構造をもつ高速遮断スイッチを採用する
ことで、ランニングコストを抑制することが可能とな
る。また、瞬停発生時に負荷供電力供給力の停電時間が
極めて短い時間(約2msec程度)であり、従来シス
テムより短時間化しているので、制御リレー等の最も瞬
停耐量が低い機器の瞬停補償も可能となる。さらに、単
独運転中に系統異常が継続していて逆変換装置が異常と
なった場合にも、無瞬断で負荷装置への電力供給を逆変
換装置出力から異常系統とは別の系統へ切り替えること
が可能となり、負荷設備の運転継続性を向上できる。従
って、安定した発電出力を負荷装置及び系統へ送電する
ことが可能となる。請求項2或いは請求項3の発明によ
れば、系統異常が発生し、無瞬断に自立移行するときに
逆変換装置と高速遮断スイッチ間の信号伝達遅れ或いは
高速遮断スイッチの操作遅れなどが生じて、系統解列で
きていない状態で、逆変換装置の制御モードが連系運転
モード定電力制御から自並運転モード定電圧制御に切り
替わった状態において、過電流検出を短時間行わずに、
過電流リミッター制御回路により過電流状態でも運転継
続するように制御するので、むやみに逆変換装置を非常
停止させることなく、負荷装置への連続電力供給性を向
上させることが可能となる。請求項4或いは請求項5の
発明によれば、安価な電磁リレー等を系統異常検出器と
して利用できるため、侍別に高速検出ロジックを設けな
くても、安価な検出システムを構築できる。
As described above, according to the present invention, the following effects can be obtained. According to the first aspect of the present invention, the capacity of the inverter can be reduced to one rated power generation output, the initial cost of the inverter can be suppressed, and the configuration of the inverter can be simplified, The reliability of the converter can be improved, and the running cost can be suppressed by adopting a high-speed cutoff switch having a vacuum valve structure in which the conduction loss is very close to zero. In addition, when a momentary power failure occurs, the power failure time of the load supply power is extremely short (about 2 msec), which is shorter than that of the conventional system. Compensation is also possible. Furthermore, even if the system abnormality continues during the isolated operation and the inverter becomes abnormal, the power supply to the load device is switched from the inverter output to a system different from the abnormal system without instantaneous interruption. It is possible to improve the continuity of the operation of the load equipment. Therefore, it is possible to transmit a stable power generation output to the load device and the grid. According to the second or third aspect of the present invention, when a system abnormality occurs and a self-sustained shift occurs without an instantaneous interruption, a signal transmission delay between the inverter and the high-speed cutoff switch or an operation delay of the high-speed cutoff switch occurs. In a state in which the control system of the inverter is switched from the interconnected operation mode constant power control to the self-parallel operation mode constant voltage control in a state where the system has not been disconnected, without performing overcurrent detection for a short time,
Since the overcurrent limiter control circuit controls the operation to continue even in an overcurrent state, it is possible to improve the continuous power supply to the load device without unnecessarily stopping the inverter in an emergency. According to the invention of claim 4 or 5, since an inexpensive electromagnetic relay or the like can be used as a system abnormality detector, an inexpensive detection system can be constructed without providing a high-speed detection logic for each system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1に係る燃料電池発電
プラントのフロー図である。
FIG. 1 is a flowchart of a fuel cell power plant according to Embodiment 1 of the present invention.

【図2】 実施の形態1の系統異常検出方法を示す図で
ある。
FIG. 2 is a diagram showing a system abnormality detection method according to the first embodiment.

【図3】 この発明の実施の形態2に係る燃料電池発電
プラントのフロー図である。
FIG. 3 is a flowchart of a fuel cell power plant according to Embodiment 2 of the present invention.

【図4】 実施の形態2の動作を説明するための図であ
る。
FIG. 4 is a diagram for explaining an operation of the second embodiment.

【図5】 この発明の実施の形態3に係る燃料電池発電
プラントのフロー図である、
FIG. 5 is a flowchart of a fuel cell power plant according to Embodiment 3 of the present invention.

【図6】 従来の燃料電池発電プラントを示すフロー図
である。
FIG. 6 is a flowchart showing a conventional fuel cell power plant.

【符号の説明】[Explanation of symbols]

1 ガス供給設備、2 燃料電池本体、3 逆変換装
置、4 負荷装置、5高速遮断スイッチ(第1の高速遮
断手段、高速遮断手段)、5a 高速遮断スイッチ(第
2の高速遮断手段)、6 制御回路、6a 系統異常検
出回路、6b発電出力電力制御回路、6c 過電流リミ
ッター制御回路、6z 系統瞬停検出器、8、8a 高
速遮断スイッチ操作用直流電源、9 ガス供給量制御回
路、10 交流系統、10a 別の交流系統、11 保
護遮断器、12 送電電圧検出器、13 発電電圧検出
器、15 発電電流検出器。
REFERENCE SIGNS LIST 1 gas supply facility, 2 fuel cell main body, 3 inverter, 4 load device, 5 high-speed cutoff switch (first high-speed cutoff means, high-speed cutoff means), 5 a high-speed cutoff switch (second high-speed cutoff means), 6 Control circuit, 6a system abnormality detection circuit, 6b power generation output power control circuit, 6c overcurrent limiter control circuit, 6z system momentary power failure detector, 8, 8a DC power supply for high-speed cutoff switch operation, 9 gas supply amount control circuit, 10 AC System, 10a separate AC system, 11 protection circuit breaker, 12 transmission voltage detector, 13 generation voltage detector, 15 generation current detector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武田 淳 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 森下 健治 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 Fターム(参考) 5G015 FA13 GA05 HA15 JA05 JA21 JA32 JA64 5G066 HA01 HA06 HB07 5H027 BA01 DD01 KK51 MM01 MM26 5H420 BB12 BB14 CC03 DD03 EA03 EA37 EA47 EB13 EB39 FF03 FF04 LL10  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Jun Takeda 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Inside Mitsubishi Electric Corporation (72) Inventor Kenji Morishita 3-2-2 Nakanoshima, Kita-ku, Osaka-shi, Osaka No. Kansai Electric Power Company F-term (reference) 5G015 FA13 GA05 HA15 JA05 JA21 JA32 JA64 5G066 HA01 HA06 HB07 5H027 BA01 DD01 KK51 MM01 MM26 5H420 BB12 BB14 CC03 DD03 EA03 EA37 EA47 EB13 EB39 FF03 FF04 LL10

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガス供給設備からの供給ガスによって直
流電力を発電する燃料電池本体と、 前記直流電力を交流電力に変換する逆変換装置と、 前記逆変換装置より出力される交流電流を測定する交流
発電電流測定手段と、 前記交流電流に相当する供給ガス流量を調整する供給ガ
ス流量制御手段と、 前記逆変換装置からの交流出力電力を消費する負荷装置
と、 前記交流出力電力のうち前記負荷装置による消費電力を
除いた余剰分を交流系統へ送電する送電点と、 前記送電点と前記交流系統とを無瞬断で解列可能な第1
の高速遮断手段と、 前記第1の高速遮断手段の操作電源として前記交流出力
電力を利用する手段と、 前記交流系統の異常を瞬時に検出する系統異常検出手段
と、 前記系統異常検出手段の検出信号を受けて前記第1の高
速遮断手段へ解列指令を出して前記逆変換装置の運転モ
ードを定電力制御から定電圧制御へ切り替える制御手段
と、 前記交流系統から独立した別の交流系統と前記負荷装置
とを無瞬断で接続するよう投入可能な第2の高速遮断手
段と、 を備え、 前記制御装置は、前記系統異常信号により前記第1及び
第2の高速遮断手段を作動させて、前記負荷装置への電
力供給源を自動的に最適な供給源に切り替えることを特
徴とする無瞬断自立移行システム。
1. A fuel cell main body that generates DC power using gas supplied from a gas supply facility, an inverter that converts the DC power into AC power, and measures an AC current that is output from the inverter. AC generation current measurement means, supply gas flow rate control means for adjusting a supply gas flow rate corresponding to the AC current, a load device consuming AC output power from the inverter, and the load of the AC output power A power transmission point for transmitting a surplus amount excluding power consumption by the device to the AC system, and a first power source capable of disconnecting the power transmission point and the AC system without an instantaneous interruption.
High-speed cutoff means, means for using the AC output power as an operating power supply for the first high-speed cutoff means, system abnormality detection means for instantaneously detecting abnormality in the AC system, and detection of the system abnormality detection means Control means for receiving a signal and issuing a disconnection command to the first high-speed cutoff means to switch the operation mode of the inverter from constant power control to constant voltage control; and another AC system independent of the AC system. A second high-speed cutoff unit that can be turned on so as to be connected to the load device without an instantaneous interruption. The control device operates the first and second high-speed cutoff units according to the system abnormality signal. A power supply source for the load device is automatically switched to an optimum power supply source.
【請求項2】 請求項1記載の無瞬断自立移行システム
において、 前記逆変換装置運転モード切替時に制御安定化させる制
御安定化回路を更に備え、 前記制御安定化回路は、発電制御モード切替後の前記逆
変換装置の出力に過電流が発生しても、前記逆変換装置
の作動を一定時間継続させ、その後自立移行させる過電
流リミッター制御回路を備えることを特徴とする無瞬断
自立移行システム。
2. The system according to claim 1, further comprising a control stabilization circuit for stabilizing the control at the time of switching the operation mode of the inverter, wherein the control stabilization circuit is provided after the switching of the power generation control mode. Even if an overcurrent occurs in the output of the inverting device, an overcurrent limiter control circuit for continuing the operation of the inverting device for a certain period of time, and then performing an independence transition, characterized in that it is provided with an instantaneous interruption independence transition system .
【請求項3】 ガス供給設備からの供給ガスによって直
流電力を発電する燃料電池本体と、 前記直流電力を交流電力に変換する逆変換装置と、 前記逆変換装置より出力される交流電流を測定する交流
発電電流測定手段と、 前記交流電流に相当する供給ガス流量を調整する供給ガ
ス流量制御手段と、 前記逆変換装置からの交流出力電力を消費する負荷装置
と、 前記交流出力電力のうち前記負荷装置による消費電力を
除いた余剰分を交流系統へ送電する送電点と、 前記送電点と前記交流系統とを無瞬断で解列可能な高速
遮断手段と、 前記高速遮断手段の操作電源として前記交流出力電力を
利用する手段と、 前記交流系統の異常を瞬時に検出する系統異常検出手段
と、 前記系統異常検出手段の検出信号を受けて前記高速遮断
手段へ解列指令を出して前記逆変換装置の運転モードを
定電力制御から定電圧制御へ切り替える制御手段と、 前記逆変換装置運転モード切替時に制御安定化させる制
御安定化回路と、 を備え、 前記制御安定化回路は、発電制御モード切替後の前記逆
変換装置の出力に過電流が発生しても、前記逆変換装置
の作動を一定時間継続させ、その後自立移行させる過電
流リミッター制御回路を備えることを特徴とする無瞬断
自立移行システム。
3. A fuel cell main body that generates DC power using gas supplied from a gas supply facility, an inverter that converts the DC power into AC power, and measures an AC current that is output from the inverter. AC generation current measurement means, supply gas flow rate control means for adjusting a supply gas flow rate corresponding to the AC current, a load device consuming AC output power from the inverter, and the load of the AC output power A power transmission point for transmitting a surplus amount excluding power consumption by the device to the AC system; a high-speed cutoff unit capable of disconnecting the power transmission point and the AC system without instantaneous interruption; and Means for utilizing AC output power; system abnormality detection means for instantaneously detecting abnormality in the AC system; and receiving a detection signal from the system abnormality detection means and issuing a disconnection command to the high-speed cutoff means. Control means for switching the operation mode of the inverter from constant power control to constant voltage control; anda control stabilization circuit for stabilizing the control when the inverter operation mode is switched. Even if an overcurrent occurs in the output of the inverter after the switching of the power generation control mode, an overcurrent limiter control circuit is provided that allows the operation of the inverter to continue for a certain period of time and then shifts to an independent state. Instantaneous interruption independent transition system.
【請求項4】 請求項1乃至3の何れかに記載の無瞬断
自立移行システムにおいて、 前記系統異常検出手段は、短時間停電でダウンするよう
な瞬停耐力が低い制御機器により構成されることを特徴
とする無瞬断自立移行システム。
4. The system according to claim 1, wherein the system abnormality detection unit is configured by a control device having a low tolerance to instantaneous interruption such as a short-time power interruption. An instantaneous interruption independent transition system characterized by the following.
【請求項5】 ガス供給設備からの供給ガスによって直
流電力を発電する燃料電池本体と、 前記直流電力を交流電力に変換する逆変換装置と、 前記逆変換装置より出力される交流電流を測定する交流
発電電流測定手段と、 前記交流電流に相当する供給ガス流量を調整する供給ガ
ス流量制御手段と、 前記逆変換装置からの交流出力電力を消費する負荷装置
と、 前記交流出力電力のうち前記負荷装置による消費電力を
除いた余剰分を交流系統へ送電する送電点と、 前記送電点と前記交流系統とを無瞬断で解列可能な高速
遮断手段と、 前記高速遮断手段の操作電源として前記交流出力電力を
利用する手段と、 前記交流系統の異常を瞬時に検出する系統異常検出手段
と、 前記系統異常検出手段の検出信号を受けて前記高速遮断
手段へ解列指令を出して前記逆変換装置の運転モードを
定電力制御から定電圧制御へ切り替える制御手段と、 前記系統異常検出手段は、短時間停電でダウンするよう
な瞬停耐力が低い制御機器により構成されることを特徴
とする無瞬断自立移行システム。
5. A fuel cell main body for generating DC power by gas supplied from a gas supply facility, an inverter for converting the DC power into AC power, and measuring an AC current output from the inverter. AC generation current measurement means, supply gas flow rate control means for adjusting a supply gas flow rate corresponding to the AC current, a load device consuming AC output power from the inverter, and the load of the AC output power A power transmission point for transmitting a surplus amount excluding power consumption by the device to the AC system; a high-speed cutoff unit capable of disconnecting the power transmission point and the AC system without instantaneous interruption; and Means for utilizing AC output power; system abnormality detection means for instantaneously detecting abnormality in the AC system; and receiving a detection signal from the system abnormality detection means and issuing a disconnection command to the high-speed cutoff means. Control means for switching the operation mode of the inverting device from constant power control to constant voltage control; andthe system abnormality detecting means is configured by a control device having a low tolerance to instantaneous power failure such as a short-time power failure. An instantaneous interruption independent transition system characterized by the following.
JP2000318015A 2000-10-18 2000-10-18 Uninterruptible power supply switchable to independent operation Pending JP2002135982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000318015A JP2002135982A (en) 2000-10-18 2000-10-18 Uninterruptible power supply switchable to independent operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000318015A JP2002135982A (en) 2000-10-18 2000-10-18 Uninterruptible power supply switchable to independent operation

Publications (1)

Publication Number Publication Date
JP2002135982A true JP2002135982A (en) 2002-05-10

Family

ID=18796708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000318015A Pending JP2002135982A (en) 2000-10-18 2000-10-18 Uninterruptible power supply switchable to independent operation

Country Status (1)

Country Link
JP (1) JP2002135982A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176477A1 (en) * 2011-06-22 2012-12-27 京セラ株式会社 Power conditioner, control method and power generation system
US8767362B2 (en) 2009-08-07 2014-07-01 Shimizu Corporation Islanded power system with distributed power supply
CN106291387A (en) * 2016-09-28 2017-01-04 中国地质大学(武汉) A kind of fuel cell pile adds Thermal test circuit and system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8767362B2 (en) 2009-08-07 2014-07-01 Shimizu Corporation Islanded power system with distributed power supply
WO2012176477A1 (en) * 2011-06-22 2012-12-27 京セラ株式会社 Power conditioner, control method and power generation system
CN106291387A (en) * 2016-09-28 2017-01-04 中国地质大学(武汉) A kind of fuel cell pile adds Thermal test circuit and system
CN106291387B (en) * 2016-09-28 2023-09-19 中国地质大学(武汉) Fuel cell stack heating test circuit and system

Similar Documents

Publication Publication Date Title
US6288456B1 (en) Power system
US6465910B2 (en) System for providing assured power to a critical load
JP5792824B2 (en) Power supply system, distributed power supply system, management device, and power supply control method
KR100868372B1 (en) Uninterruptible power supply apparatus and power failure compensating system
JP6047490B2 (en) Power supply system, power distribution device, and power control method
JP6101539B2 (en) Power feeding system and power feeding method
JP2020022311A (en) System interconnection system, interconnection control device, and system interconnection method
WO2011016092A1 (en) Island operating system for distributed power source
JP2012016261A (en) Grid connection system and distributor
RU2656372C1 (en) Dynamic voltage compensator
CA2388892C (en) Electric power system interconnection device
WO2020021925A1 (en) Power supply system
JP3839643B2 (en) Uninterrupted self-sustained power generation system
JP2006254659A (en) Distributed power unit
JP2002171671A (en) Non-interruptible self-changeover power generator system
JP6773204B1 (en) Distributed power system
JP2000184602A (en) Distributed power source unit
KR101989774B1 (en) Hybrid Closed Transition Transfer Switch System Using Mechanical And Electronic Switches
JP2002135982A (en) Uninterruptible power supply switchable to independent operation
JP2009219204A (en) Isolated operation system of distributed power supply
RU2410816C2 (en) Device for guaranteed power supply to essential loads
JPH03142512A (en) Power generation system
JP2004336933A (en) Power supplying system
JP2006101634A (en) Distributed power supply device
CN115280630A (en) Conversion device, retrofit kit and method for supplying power to a load