JP2002134531A - Semiconductor device, substrate for mounting semiconductor chip and manufacturing method therefor, and adhesive and double-sided adhesive film - Google Patents

Semiconductor device, substrate for mounting semiconductor chip and manufacturing method therefor, and adhesive and double-sided adhesive film

Info

Publication number
JP2002134531A
JP2002134531A JP2001157093A JP2001157093A JP2002134531A JP 2002134531 A JP2002134531 A JP 2002134531A JP 2001157093 A JP2001157093 A JP 2001157093A JP 2001157093 A JP2001157093 A JP 2001157093A JP 2002134531 A JP2002134531 A JP 2002134531A
Authority
JP
Japan
Prior art keywords
adhesive
weight
semiconductor chip
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001157093A
Other languages
Japanese (ja)
Other versions
JP2002134531A5 (en
JP4161544B2 (en
Inventor
Kazunori Yamamoto
和徳 山本
Yasushi Shimada
靖 島田
Yasushi Kamishiro
恭 神代
Teiichi Inada
禎一 稲田
Hiroyuki Kuritani
弘之 栗谷
Aizo Kaneda
愛三 金田
Takeo Tomiyama
健男 富山
Yoshihiro Nomura
好弘 野村
Yoichi Hosokawa
羊一 細川
Hiroshi Kirihara
博 桐原
Akira Kageyama
晃 景山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2001157093A priority Critical patent/JP4161544B2/en
Publication of JP2002134531A publication Critical patent/JP2002134531A/en
Publication of JP2002134531A5 publication Critical patent/JP2002134531A5/en
Application granted granted Critical
Publication of JP4161544B2 publication Critical patent/JP4161544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32013Structure relative to the bonding area, e.g. bond pad the layer connector being larger than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve temperature resistance cycle and moisture adsorption resistant reflow property of a semiconductor device after packaging. SOLUTION: An adhesive, a double-sided adhesive film using the adhesive, a semiconductor device, a semiconductor chip mounting substrate and manufacturing methods therefor are provided. The adhesive is used for installing the semiconductor chip on an organic substrate. The storage modulus of the adhesive measured with the dynamic viscoelasticity measuring device is 10 to 2,000 MPa at 25 deg.C and 3 to 50 MPa at 260 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置、その
製造法並びに前記半導体装置の製造に好適に使用される
半導体チップ搭載用基板、その製造法、接着剤および両
面接着フィルムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, a method of manufacturing the same, a semiconductor chip mounting substrate suitably used for manufacturing the semiconductor device, a method of manufacturing the same, an adhesive, and a double-sided adhesive film.

【0002】[0002]

【従来の技術】近年、電子機器の小型化、高周波数動作
化の動向にともない、これに搭載する半導体パッケージ
は基板に高密度で実装することが要求され、小型・軽量
化が進むとともに、外部端子がパッケージ下部にエリア
アレイ状配置されたマイクロBGA(ボールグリッドア
レイ)やCSP(チップサイズパッケージ)と呼ばれる
小型のパッケージの開発が進められている。
2. Description of the Related Art In recent years, with the trend of downsizing and high-frequency operation of electronic devices, it is required that semiconductor packages to be mounted thereon be mounted at high density on a substrate. A small package called a micro BGA (ball grid array) or CSP (chip size package) in which terminals are arranged in an area array below the package is being developed.

【0003】これらのパッケージは、2層配線構造を有
するガラスエポキシ基板や1層配線構造のポリイミド基
板などの有機基板の上に絶縁性接着剤を介してチップを
搭載し、チップ側の端子と配線板側端子とがワイヤボン
ドないしはTAB(テープオートメーテッドボンディン
グ)のインナーボンディング方式で接続され、接続部と
チップ上面部ないしは端面部とがエポキシ系封止材ない
しはエポキシ系液状封止材で封止し、配線基板裏面には
んだボールなど金属端子がエリアアレイ状に配置されて
いる構造が採用されている。そして、これらのパッケー
ジの複数個が電子機器の基板にはんだリフロー方式で高
密度で面付け一括実装する方式が採用されつつある。
In these packages, a chip is mounted on an organic substrate such as a glass epoxy substrate having a two-layer wiring structure or a polyimide substrate having a single-layer wiring structure via an insulating adhesive, and terminals on the chip side are connected to wiring. The board side terminals are connected by wire bonding or inner bonding method of TAB (tape automated bonding), and the connection portion and the chip upper surface or end surface are sealed with an epoxy-based sealing material or an epoxy-based liquid sealing material. In addition, a structure is employed in which metal terminals such as solder balls are arranged in an area array on the back surface of a wiring board. Then, a method is being adopted in which a plurality of these packages are mounted on a substrate of an electronic device at high density by a solder reflow method and are collectively mounted.

【0004】しかし、これらのパッケージに用いられる
絶縁性の接着剤の一例としては、動的粘弾性装置で測定
される25℃での貯蔵弾性率が3000MPa以上の液
状のエポキシダイボンド材が用いられていて、パッケー
ジを基板に実装した後のはんだボール接続部(2次側)
の接続信頼性が悪く、耐温度サイクル信頼性に劣ってい
た。
However, as an example of an insulating adhesive used in these packages, a liquid epoxy die bond material having a storage elastic modulus at 25 ° C. of 3000 MPa or more measured by a dynamic viscoelasticity apparatus is used. And solder ball connection after mounting the package on the board (secondary side)
Had poor connection reliability and poor thermal cycle resistance.

【0005】さらに、他の事例では、絶縁性の接着剤と
して25℃での貯蔵弾性率が10MPa以下の液状シリ
コン系エラストマが提案されており、上記した耐温度サ
イクル性には優れるもものの配線基板表面に対する高温
時の接着性に劣り耐吸湿リフロー性に劣るという問題が
あった。
Further, in another case, a liquid silicon-based elastomer having a storage elastic modulus at 25 ° C. of 10 MPa or less has been proposed as an insulating adhesive. There is a problem that the adhesiveness to the surface at high temperature is poor and the moisture absorption reflow resistance is poor.

【0006】特に、耐リフロー性については両者の事例
においても、液状の絶縁性接着剤を有機基板に塗布する
過程でボイドを巻き込み易く、ボイドが起点となって、
吸湿リフロー時にクラックが進展したり、有機基板が膨
れたりする不良モードが観察された。
[0006] In particular, with respect to the reflow resistance, in both cases, the void is easily involved in the process of applying the liquid insulating adhesive to the organic substrate, and the void becomes a starting point.
A failure mode was observed in which cracks developed during reflow due to moisture absorption and the organic substrate swelled.

【0007】また、電子機器の発達に伴い電子部品の搭
載密度が高くなり、低コストが期待できるプリント配線
板への半導体のベアチップ実装が進められてきている。
Also, with the development of electronic devices, the mounting density of electronic components has increased, and mounting of semiconductor bare chips on printed wiring boards, where low cost can be expected, has been promoted.

【0008】半導体チップの実装用基板としてはアルミ
ナ等のセラミック基板が多く用いられてきた。これは、
半導体チップの熱膨張係数が約4ppm/℃と小さいの
で、接続信頼性を確保するために熱膨張係数の比較的小
さい実装用基板の使用が求められていたことと、半導体
チップが発生する熱を外部へ放熱させやすくするために
熱伝導率の比較的高い実装用基板の使用が求められてい
たことが主な理由であった。このようなセラミック基板
への半導体チップ実装には銀ペーストに代表される液状
の接着剤が使われている。
As a substrate for mounting a semiconductor chip, a ceramic substrate such as alumina has been used in many cases. this is,
Since the thermal expansion coefficient of the semiconductor chip is as small as about 4 ppm / ° C., it has been required to use a mounting substrate having a relatively small thermal expansion coefficient in order to secure connection reliability. The main reason was that it was required to use a mounting substrate having a relatively high thermal conductivity in order to easily radiate heat to the outside. A liquid adhesive represented by a silver paste is used for mounting a semiconductor chip on such a ceramic substrate.

【0009】また、フィルム状接着剤は、フレキシブル
プリント配線板等で用いられており、アクリロニトリル
ブタジエンゴムを主成分とする系が多く用いられてい
る。
A film adhesive is used for a flexible printed wiring board and the like, and a system mainly containing acrylonitrile butadiene rubber is often used.

【0010】[0010]

【発明が解決しようとする課題】プリント配線板関連材
料としての検討では、吸湿後のはんだ耐熱性を向上させ
たものとしては、特開昭60−243180号公報に示
されるアクリル系樹脂、エポキシ樹脂、ポリイソシアネ
ートおよび無機フィラーを含む接着剤があり、また特開
昭61−138680号公報に示されるアクリル系樹
脂、エポキシ樹脂、分子中にウレタン結合を有する両末
端が第1級アミン化合物および無機フィラーを含む接着
剤があるが、PCT(プレッシャークッカーテスト)処
理等の厳しい条件下での耐湿性試験を行った場合には、
劣化が大きく不十分であった。
In the examination as a material related to a printed wiring board, the one having improved solder heat resistance after absorbing moisture includes an acrylic resin and an epoxy resin disclosed in JP-A-60-243180. And an adhesive containing a polyisocyanate and an inorganic filler, and an acrylic resin, an epoxy resin, a primary amine compound having a urethane bond in the molecule and a primary amine compound and an inorganic filler disclosed in JP-A-61-138680. However, when a moisture resistance test under severe conditions such as PCT (pressure cooker test) treatment is performed,
Deterioration was large and insufficient.

【0011】セラミック基板への半導体チップ実装に銀
ペースト接着剤を使用すると、銀フィラーの沈降がある
ため分散が均一ではないこと、ペーストの保存安定性に
留意しなければならないこと、半導体チップ実装の作業
性がLOC(リードオンチップ)等に比較して劣ること
などの問題があった。
When a silver paste adhesive is used for mounting a semiconductor chip on a ceramic substrate, dispersion is not uniform due to precipitation of silver filler, attention must be paid to the storage stability of the paste, There is a problem that workability is inferior to LOC (lead-on-chip) or the like.

【0012】また、フィルム状接着剤は、アクリロニト
リルブタジエンゴムを主成分とする系が多く用いられて
いるものの、高温で長時間処理した後の接着力の低下が
大きいことや、耐電食性に劣ることなどの欠点があっ
た。特に、半導体関連部品の信頼性評価で用いられるP
CT処理等の厳しい条件下で耐湿性試験を行った場合の
劣化が大きかった。
[0012] In addition, although a film-based adhesive containing a large amount of acrylonitrile-butadiene rubber as a main component is often used, the adhesive strength after long-time treatment at a high temperature is greatly reduced, and the electrolytic corrosion resistance is poor. There were drawbacks such as. In particular, P used for reliability evaluation of semiconductor-related parts
When a moisture resistance test was performed under severe conditions such as CT processing, the deterioration was large.

【0013】特開昭60−243180号公報、特開昭
61−138680号公報に示されるものでは、PCT
処理等の厳しい条件下での耐湿性試験を行った場合に
は、劣化が大きく不十分であった。
Japanese Unexamined Patent Publication Nos. 60-243180 and 61-138680 disclose PCT.
When a moisture resistance test was performed under severe conditions such as treatment, deterioration was large and insufficient.

【0014】これらプリント配線板関連材料としての接
着剤を用いて半導体チップをプリント配線板に実装する
場合には、半導体チップとプリント配線板の熱膨張係数
の差が大きくリフロー時にクラックが発生するために使
用できなかった。また、温度サイクルテストやPCT処
理等の厳しい条件下での耐湿性試験を行った場合の劣化
が大きく、使用できなかった。
When a semiconductor chip is mounted on a printed wiring board using an adhesive as a material related to the printed wiring board, a difference in thermal expansion coefficient between the semiconductor chip and the printed wiring board is large, and cracks occur during reflow. Could not be used. Further, when a humidity resistance test under severe conditions such as a temperature cycle test or a PCT treatment was performed, the deterioration was large and the device could not be used.

【0015】本発明は、ガラスエポキシ基板やフレキシ
ブル基板等のプリント配線板に熱膨張係数の差が大きい
半導体チップを実装する場合に必要な耐熱性、耐電食
性、耐湿性を有し、特に、PCT処理等、厳しい条件下
での耐湿性試験を行った場合の劣化が小さくなる接着
剤、接着フィルムおよびこの接着フィルムを用いて半導
体チップと配線板を接着させた半導体装置を提供するも
のである。
The present invention provides heat resistance, electrolytic corrosion resistance, and moisture resistance necessary for mounting a semiconductor chip having a large difference in thermal expansion coefficient on a printed wiring board such as a glass epoxy board or a flexible board. It is an object of the present invention to provide an adhesive, an adhesive film, and a semiconductor device in which a semiconductor chip and a wiring board are adhered using the adhesive film, the deterioration being small when a moisture resistance test is performed under severe conditions such as processing.

【0016】また本発明は、有機系支持基板に接着材を
介して半導体チップを搭載し、外部端子が基板裏面にエ
リアアレイ状に配列された半導体装置において、実装後
の耐温度サイクル性を向上するとともに、耐吸湿リフロ
ー性を向上する半導体装置、その製造法並びに前記半導
体装置の製造に好適に使用される半導体チップ搭載用基
板、その製造法、接着剤および両面接着フィルムを提供
するものである。
According to the present invention, in a semiconductor device in which a semiconductor chip is mounted on an organic support substrate via an adhesive and external terminals are arranged in an area array on the back surface of the substrate, the temperature cycle resistance after mounting is improved. The present invention also provides a semiconductor device having improved moisture absorption reflow resistance, a method of manufacturing the same, a semiconductor chip mounting substrate suitably used for manufacturing the semiconductor device, a method of manufacturing the same, an adhesive, and a double-sided adhesive film. .

【0017】[0017]

【課題を解決するための手段】本発明の半導体装置は、
有機系支持基板に接着部材を介して半導体チップが搭載
された半導体装置であって、前記有機系支持基板の半導
体チップが搭載される側には所定の配線が形成されてお
り、前記有機系支持基板の半導体チップが搭載される側
の反対側には外部接続用端子がエリアアレイ状に形成さ
れており、前記所定の配線は半導体チップ端子及び前記
外部接続用端子と接続されており、少なくとも前記半導
体チップ端子と所定の配線との接続部が樹脂封止されて
おり、前記接着部材は接着剤層を備えるもので、前記接
着剤の動的粘弾性測定装置で測定される25℃の貯蔵弾
性率が10〜2000MPaかつ260℃での貯蔵弾性
率が3〜50MPaであることを特徴とする。
According to the present invention, there is provided a semiconductor device comprising:
A semiconductor device having a semiconductor chip mounted on an organic support substrate via an adhesive member, wherein a predetermined wiring is formed on a side of the organic support substrate on which the semiconductor chip is mounted, and External connection terminals are formed in an area array on the side of the substrate opposite to the side on which the semiconductor chip is mounted, and the predetermined wiring is connected to the semiconductor chip terminals and the external connection terminals. A connection portion between the semiconductor chip terminal and a predetermined wiring is sealed with a resin, and the adhesive member has an adhesive layer, and has a storage elasticity of 25 ° C. measured by a dynamic viscoelasticity measuring device of the adhesive. It is characterized by a modulus of 10 to 2000 MPa and a storage modulus at 260 ° C. of 3 to 50 MPa.

【0018】本発明の半導体チップ搭載用基板は、接着
部材を介して半導体チップが搭載される有機系基板の半
導体チップ搭載用基板であって、前記有機系基板の、半
導体チップが搭載される側および半導体チップが搭載さ
れる側の反対側の少なくともいずれかの側には所定の配
線が形成されており、前記有機系基板の半導体チップが
搭載される側の反対側には外部接続用端子がエリアアレ
イ状に形成されており、前記接着部材は接着剤層を備え
るもので、前記接着剤硬化物の動的粘弾性測定装置で測
定される25℃の貯蔵弾性率が10〜2000MPaか
つ260℃での貯蔵弾性率が3〜50MPaであり、前
記接着部材は所定の大きさで前記有機系基板上の所定の
箇所に形成されていることを特徴とする。
A substrate for mounting a semiconductor chip according to the present invention is a substrate for mounting a semiconductor chip on an organic substrate on which a semiconductor chip is mounted via an adhesive member, and the side of the organic substrate on which the semiconductor chip is mounted. A predetermined wiring is formed on at least one of the sides opposite to the side on which the semiconductor chip is mounted, and external connection terminals are provided on the side of the organic substrate opposite to the side on which the semiconductor chip is mounted. The adhesive member is provided with an adhesive layer, and has a storage elastic modulus at 25 ° C. of 10 to 2000 MPa and 260 ° C. measured by a dynamic viscoelasticity measuring device of the cured adhesive. The storage member has a storage elastic modulus of 3 to 50 MPa, and the adhesive member has a predetermined size and is formed at a predetermined position on the organic substrate.

【0019】本発明の半導体チップ搭載用基板の製造法
は、半導体チップが搭載される側および半導体チップが
搭載される側の反対側の少なくともいずれかの側には所
定の配線が形成され、半導体チップが搭載される側の反
対側には外部接続用端子がエリアアレイ状に形成された
有機系基板に、動的粘弾性測定装置で測定される硬化物
の25℃の貯蔵弾性率が10〜2000MPaかつ26
0℃での貯蔵弾性率が3〜50MPaである接着剤層を
備える接着部材であり前記接着剤がDSC(示差熱量
計)を用いて測定した場合の全硬化発熱量の10〜40
%の発熱を終えた半硬化状態のものである接着部材フィ
ルムを、所定の大きさに切断し前記有機系基板上に熱圧
着することを含むことを特徴とする。
According to the method of manufacturing a semiconductor chip mounting substrate of the present invention, a predetermined wiring is formed on at least one of a side on which the semiconductor chip is mounted and a side opposite to the side on which the semiconductor chip is mounted, On the opposite side of the side where the chip is mounted, external connection terminals are formed on an organic substrate having an area array, and the storage elastic modulus at 25 ° C. of the cured product measured by a dynamic viscoelasticity measuring device is 10 to 10. 2000MPa and 26
An adhesive member provided with an adhesive layer having a storage elastic modulus at 0 ° C. of 3 to 50 MPa, wherein the adhesive has a total curing calorific value of 10 to 40 when measured using a DSC (differential calorimeter).
% Of the semi-cured adhesive member film that has been heated to a predetermined size and thermocompression bonded to the organic substrate.

【0020】本発明の半導体装置の製造法は、半導体チ
ップが搭載される側および半導体チップが搭載される側
の反対側の少なくともいずれかの側には所定の配線が形
成され半導体チップが搭載される側の反対側には外部接
続用端子がエリアアレイ状に形成された有機系基板の半
導体搭載用基板に、動的粘弾性測定装置で測定される硬
化物の25℃の貯蔵弾性率が10〜2000MPaかつ
260℃での貯蔵弾性率が3〜50MPaである接着剤
層を備える接着部材を接着する工程、接着部材を介して
半導体チップを搭載する工程、前記所定の配線を半導体
チップ端子及び前記外部接続用端子と接続する工程、少
なくとも前記半導体チップ端子と所定の配線との接続部
を樹脂封止する工程を備えることを特徴とする。
According to the method of manufacturing a semiconductor device of the present invention, a predetermined wiring is formed on at least one of a side on which the semiconductor chip is mounted and a side opposite to the side on which the semiconductor chip is mounted, and the semiconductor chip is mounted. On the side opposite to the side where the external connection terminals are formed, the storage elastic modulus at 25 ° C. of the cured product measured by a dynamic viscoelasticity measuring device is 10 Bonding an adhesive member provided with an adhesive layer having a storage elastic modulus at 2000 to 2000 MPa and 260 ° C. of 3 to 50 MPa, mounting a semiconductor chip via the adhesive member, connecting the predetermined wiring to a semiconductor chip terminal, and The method includes a step of connecting to the external connection terminal, and a step of resin-sealing at least a connection portion between the semiconductor chip terminal and a predetermined wiring.

【0021】本発明の接着剤は下記のA〜Dの組成より
なる。
The adhesive of the present invention has the following compositions A to D.

【0022】A.(1)エポキシ樹脂及びその硬化剤1
00重量部に対し、(2)グリシジル(メタ)アクリレ
ート2〜6重量%を含むTg(ガラス転移温度)が−1
0℃以上でかつ重量平均分子量が80万以上であるエポ
キシ基含有アクリル系共重合体100〜300重量部な
らびに(3)硬化促進剤0.1〜5重量部を含む接着
剤。
A. (1) Epoxy resin and its curing agent 1
(2) Tg (glass transition temperature) containing 2 to 6% by weight of glycidyl (meth) acrylate is -1 with respect to 00 parts by weight.
An adhesive containing 100 to 300 parts by weight of an epoxy group-containing acrylic copolymer having a temperature of 0 ° C. or more and a weight average molecular weight of 800,000 or more and (3) a curing accelerator of 0.1 to 5 parts by weight.

【0023】B.(1)エポキシ樹脂及びその硬化剤1
00重量部に対し、(2)エポキシ樹脂と相溶性があり
かつ重量平均分子量が3万以上の高分子量樹脂10〜4
0重量部、(3)グリシジル(メタ)アクリレート2〜
6重量%を含むTg(ガラス転移温度)が−10℃以上
でかつ重量平均分子量が80万以上であるエポキシ基含
有アクリル系共重合体100〜300重量部ならびに
(4)硬化促進剤0.1〜5重量部を含む接着剤。
B. (1) Epoxy resin and its curing agent 1
(2) high molecular weight resin having a weight average molecular weight of 30,000 or more,
0 parts by weight, (3) glycidyl (meth) acrylate 2
100 to 300 parts by weight of an epoxy group-containing acrylic copolymer having a Tg (glass transition temperature) of -10 ° C or more and a weight average molecular weight of 800,000 or more containing 6% by weight, and (4) a curing accelerator 0.1 An adhesive containing up to 5 parts by weight.

【0024】C.(1)エポキシ樹脂及びフェノール樹
脂100重量部に対し、(2)グリシジル(メタ)アク
リレート2〜6重量%を含むTgが−10℃以上でかつ
重量平均分子量が80万以上であるエポキシ基含有アク
リル系共重合体100〜300重量部ならびに(3)硬
化促進剤0.1〜5重量部を含む接着剤。
C. (1) An epoxy group-containing acrylic having a Tg of 2 to 6% by weight and a weight average molecular weight of 800,000 or more containing 2 to 6% by weight of glycidyl (meth) acrylate based on 100 parts by weight of an epoxy resin and a phenol resin. An adhesive containing 100 to 300 parts by weight of a system copolymer and (3) 0.1 to 5 parts by weight of a curing accelerator.

【0025】D.(1)エポキシ樹脂及びフェノール樹
脂100重量部に対し、(2)フェノキシ樹脂10〜4
0重量部、(3)グリシジル(メタ)アクリレート2〜
6重量%を含むTgが−10℃以上でかつ重量平均分子
量が80万以上であるエポキシ基含有アクリル系共重合
体100〜300重量部ならびに(4)硬化促進剤0.
1〜5重量部を含む接着剤。
D. (1) 100 parts by weight of epoxy resin and phenol resin, (2) phenoxy resin 10 to 4
0 parts by weight, (3) glycidyl (meth) acrylate 2
100 to 300 parts by weight of an epoxy group-containing acrylic copolymer having a Tg of -10 ° C or more and a weight average molecular weight of 800,000 or more containing 6% by weight, and (4) a curing accelerator.
An adhesive containing 1 to 5 parts by weight.

【0026】本発明の両面接着フィルムは、下記E〜H
の三層構造のものである。
The double-sided adhesive film of the present invention has the following E to H
It has a three-layer structure.

【0027】E.耐熱性熱可塑性フィルムをコア材に用
い、コア材の両面に、(1)エポキシ樹脂及びその硬化
剤100重量部に対し、(2)グリシジル(メタ)アク
リレート2〜6重量%を含むTg(ガラス転移温度)が
−10℃以上でかつ重量平均分子量が80万以上である
エポキシ基含有アクリル系共重合体100〜300重量
部ならびに(3)硬化促進剤0.1〜5重量部を含む接
着剤を有する三層構造の両面接着フィルム。
E. Using a heat-resistant thermoplastic film as a core material, Tg (glass) containing 2 to 6% by weight of (2) glycidyl (meth) acrylate with respect to 100 parts by weight of an epoxy resin and its curing agent on both sides of the core material. An adhesive containing 100 to 300 parts by weight of an epoxy group-containing acrylic copolymer having a transition temperature of -10 ° C or more and a weight average molecular weight of 800,000 or more and (3) 0.1 to 5 parts by weight of a curing accelerator. A three-layered double-sided adhesive film having

【0028】F.耐熱性熱可塑性フィルムをコア材に用
い、コア材の両面に、(1)エポキシ樹脂及びその硬化
剤100重量部に対し、(2)エポキシ樹脂と相溶性が
ありかつ重量平均分子量が3万以上の高分子量樹脂10
〜40重量部、(3)グリシジル(メタ)アクリレート
2〜6重量%を含むTg(ガラス転移温度)が−10℃
以上でかつ重量平均分子量が80万以上であるエポキシ
基含有アクリル系共重合体100〜300重量部ならび
に(4)硬化促進剤0.1〜5重量部を含む接着剤を有
する三層構造の両面接着フィルム。
F. A heat-resistant thermoplastic film is used as a core material. On both sides of the core material, (1) 100 parts by weight of the epoxy resin and its curing agent, (2) compatibility with the epoxy resin and weight average molecular weight of 30,000 or more High molecular weight resin 10
Tg (glass transition temperature) of -10 ° C. containing 4040 parts by weight and (3) 2-6% by weight of glycidyl (meth) acrylate
Both surfaces of a three-layer structure having an adhesive containing 100 to 300 parts by weight of an epoxy group-containing acrylic copolymer having a weight average molecular weight of 800,000 or more and (4) 0.1 to 5 parts by weight of a curing accelerator Adhesive film.

【0029】G.耐熱性熱可塑性フィルムをコア材に用
い、コア材の両面に、(1)エポキシ樹脂及びフェノー
ル樹脂100重量部に対し、(2)グリシジル(メタ)
アクリレート2〜6重量%を含むTgが−10℃以上で
かつ重量平均分子量が80万以上であるエポキシ基含有
アクリル系共重合体100〜300重量部ならびに
(3)硬化促進剤0.1〜5重量部を含む接着剤を有す
る三層構造の両面接着フィルム。
G. A heat-resistant thermoplastic film is used as a core material, and (2) glycidyl (meth) is used on both sides of the core material with respect to (1) 100 parts by weight of epoxy resin and phenol resin.
100 to 300 parts by weight of an epoxy group-containing acrylic copolymer having 2 to 6% by weight of acrylate and having a Tg of -10 ° C or more and a weight average molecular weight of 800,000 or more, and (3) a curing accelerator 0.1 to 5 A three-layered double-sided adhesive film having an adhesive containing parts by weight.

【0030】H.耐熱性熱可塑性フィルムをコア材に用
い、コア材の両面に、(1)エポキシ樹脂及びフェノー
ル樹脂100重量部に対し、(2)フェノキシ樹脂10
〜40重量部、(3)グリシジル(メタ)アクリレート
2〜6重量%を含むTgが−10℃以上でかつ重量平均
分子量が80万以上であるエポキシ基含有アクリル系共
重合体100〜300重量部ならびに(4)硬化促進剤
0.1〜5重量部を含む接着剤を有する三層構造の両面
接着フィルム。
H. A heat-resistant thermoplastic film is used as a core material. On both sides of the core material, (1) 100 parts by weight of epoxy resin and phenol resin, and (2) phenoxy resin 10
100 to 300 parts by weight of an epoxy group-containing acrylic copolymer having a Tg of not less than -10 ° C and a weight average molecular weight of not less than 800,000 containing from 2 to 6 parts by weight of (3) glycidyl (meth) acrylate. And (4) a three-layer double-sided adhesive film having an adhesive containing 0.1 to 5 parts by weight of a curing accelerator.

【0031】[0031]

【発明の実施の形態】本発明の半導体装置に於いて、所
定の配線は半導体チップ端子と、ワイヤボンド又はTA
B(テープオートメーテッドボンディング)のインナー
ボンディング方式等により直接に接続することができ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a semiconductor device according to the present invention, predetermined wiring is connected to a semiconductor chip terminal and a wire bond or TA.
B (tape automated bonding) can be directly connected by an inner bonding method or the like.

【0032】本発明の半導体装置で接着部材はフィルム
状であることが好ましく、接着部材は接着剤層を備える
もので、接着剤の樹脂成分としては、エポキシ樹脂、エ
ポキシ基含有アクリル共重合体、エポキシ樹脂硬化剤及
びエポキシ樹脂硬化促進剤を含むものが使用される。
In the semiconductor device of the present invention, the adhesive member is preferably in the form of a film, and the adhesive member has an adhesive layer. The resin component of the adhesive includes epoxy resin, epoxy group-containing acrylic copolymer, Those containing an epoxy resin curing agent and an epoxy resin curing accelerator are used.

【0033】接着部材は、コア材としてポリイミド、ポ
リエーテルスルホン、ポリアミドイミドまたはポリエー
テルイミドフィルム等のガラス転移温度が200℃以上
の耐熱性熱可塑性フィルムを使用し、そのコア材の両面
に接着剤層が形成された構造のものが好ましい。耐熱性
熱可塑性フィルムとして液晶ポリマフィルムも使用され
る。接着剤層の中の残存溶媒量は5重量%以下が好まし
い。
The adhesive member uses a heat-resistant thermoplastic film having a glass transition temperature of 200 ° C. or more, such as a polyimide, polyethersulfone, polyamideimide or polyetherimide film, as a core material. Those having a structure in which a layer is formed are preferred. Liquid crystal polymer films are also used as heat resistant thermoplastic films. The amount of the residual solvent in the adhesive layer is preferably 5% by weight or less.

【0034】本発明の半導体チップ搭載用基板に於い
て、接着部材はフィルム状であることが好ましく、接着
部材は接着剤層を備えるもので、接着剤の樹脂成分とし
ては、エポキシ樹脂、エポキシ基含有アクリル共重合
体、エポキシ樹脂硬化剤及びエポキシ樹脂硬化促進剤を
含むものが使用される。
In the substrate for mounting a semiconductor chip of the present invention, the adhesive member is preferably in the form of a film, and the adhesive member has an adhesive layer. A resin containing an acrylic copolymer, an epoxy resin curing agent and an epoxy resin curing accelerator is used.

【0035】接着部材は、コア材としてポリイミド、ポ
リエーテルスルホン、ポリアミドイミドまたはポリエー
テルイミドフィルム等のガラス転移温度が200℃以上
の耐熱性熱可塑性フィルムを使用し、そのコア材の両面
に接着剤層が形成された構造のものが好ましい。耐熱性
熱可塑性フィルムとして液晶ポリマフィルムも使用され
る。接着剤層の中の残存溶媒量は5重量%以下が好まし
い。
The adhesive member is made of a heat-resistant thermoplastic film having a glass transition temperature of 200 ° C. or more such as a polyimide, polyethersulfone, polyamideimide or polyetherimide film as a core material. Those having a structure in which a layer is formed are preferred. Liquid crystal polymer films are also used as heat resistant thermoplastic films. The amount of the residual solvent in the adhesive layer is preferably 5% by weight or less.

【0036】有機系基板上の所定の箇所に形成された接
着部材は所定の大きさに打ち抜き用金型で打ち抜かれた
フィルムが使用され、有機系基板上の所定の箇所に形成
された接着部材は、その接着部材の接着剤がDSCを用
いて測定した場合の全硬化発熱量の10〜40%の発熱
を終えた半硬化状態のフィルムであり、所定の大きさに
切断された後前記有機系基板上に熱圧着される。
As the adhesive member formed at a predetermined location on the organic substrate, a film punched by a punching die into a predetermined size is used, and the adhesive member formed at a predetermined location on the organic substrate is used. Is a film in a semi-cured state in which the adhesive of the adhesive member has generated 10 to 40% of the total curing calorific value when measured using DSC, and after being cut into a predetermined size, Thermocompression bonding is performed on a system substrate.

【0037】本発明の半導体チップ搭載用基板の製造法
に於いて、切断した接着部材フィルムは、個々に精密位
置決め後、熱プレスで仮接着し、複数の接着部材フィル
ムを多連の有機系基板に載置した後、加熱した離型表面
処理金型で押圧し一括して接着することができる。離型
表面処理金型の表面離型材はテフロン及びシリコーンの
少なくとも一種が好ましい。接着部材フィルムの搬送時
に発生する静電気を除くエリミノスタット工程を接着部
材フィルム切断工程前に少なくとも1工程加えることが
できる。
In the method for manufacturing a substrate for mounting a semiconductor chip according to the present invention, the cut adhesive member films are individually precision-positioned, and then temporarily bonded by hot pressing, so that a plurality of the adhesive member films are connected to a multiple organic substrate. , And pressed by a heated release surface treatment mold to bond them all together. The surface release material of the release surface treatment mold is preferably at least one of Teflon and silicone. At least one step of an eliminostat step for removing static electricity generated when the adhesive member film is transported can be added before the adhesive member film cutting step.

【0038】本発明の半導体装置の製造法に於いて、半
導体搭載用基板の下面側と半導体チップ側の両面から加
熱し、少なくともチップ側の温度を高くすることができ
る。
In the method of manufacturing a semiconductor device according to the present invention, the temperature can be raised at least on the chip side by heating from both the lower surface side of the semiconductor mounting substrate and the semiconductor chip side.

【0039】本発明の接着剤に於いて、DSCを用いて
測定した場合の全硬化発熱量の10〜40%の発熱を終
えた状態にして使用するのが好ましく、動的粘弾性測定
装置を用いて測定した場合の接着剤硬化物の貯蔵弾性率
が25℃で10〜2000MPaであり、260℃で3
〜50MPaであることが好ましい。
In the adhesive of the present invention, it is preferable to use the adhesive after the heat generation of 10 to 40% of the total curing calorific value measured by DSC is completed. The storage elastic modulus of the cured adhesive is 10 to 2000 MPa at 25 ° C. and 3 at 260 ° C.
Preferably it is 5050 MPa.

【0040】無機フィラーが、接着剤樹脂成分100体
積部に対して2〜20体積部使用され、無機フィラーは
アルミナ、シリカが好ましい。
The inorganic filler is used in an amount of 2 to 20 parts by volume based on 100 parts by volume of the adhesive resin component, and the inorganic filler is preferably alumina or silica.

【0041】接着剤をベースフィルム上に形成して接着
フィルムとし、この接着フィルムを用いて半導体チップ
と配線板を接着させ半導体装置を得るこができる。
An adhesive is formed on a base film to form an adhesive film, and the semiconductor chip and the wiring board are adhered to each other using the adhesive film to obtain a semiconductor device.

【0042】本発明の両面接着フィルムに於いて、接着
剤はDSCを用いて測定した場合の全硬化発熱量の10
〜40%の発熱を終えた状態にして使用するのが好まし
く、動的粘弾性測定装置を用いて測定した場合の接着剤
硬化物の貯蔵弾性率が25℃で10〜2000MPaで
あり、260℃で3〜50MPaであることが好まし
い。無機フィラーが、接着剤樹脂成分100体積部に対
して2〜20体積部使用され、無機フィラーはアルミ
ナ、シリカが好ましい。
In the double-sided adhesive film of the present invention, the adhesive is 10% of the total curing calorific value as measured by DSC.
It is preferable to use the product after heat generation of 4040% has been completed. The storage elastic modulus of the cured adhesive at 25 ° C. as measured using a dynamic viscoelasticity measuring device is 10 to 2000 MPa at 25 ° C., and 260 ° C. Is preferably 3 to 50 MPa. The inorganic filler is used in an amount of 2 to 20 parts by volume based on 100 parts by volume of the adhesive resin component, and the inorganic filler is preferably alumina or silica.

【0043】コア材に用いる耐熱性熱可塑性フィルムは
ガラス転移温度200℃以上であるものが好ましく、こ
のようなガラス転移温度200℃以上の耐熱性熱可塑性
フィルムとしては、ポリイミド、ポリエーテルスルホ
ン、ポリアミドイミドまたはポリエーテルイミドフィル
ムが好ましい。コア材に用いる耐熱性熱可塑性フィルム
として液晶ポリマフィルムも使用される。
The heat-resistant thermoplastic film used for the core material preferably has a glass transition temperature of 200 ° C. or higher. Examples of the heat-resistant thermoplastic film having a glass transition temperature of 200 ° C. or higher include polyimide, polyether sulfone, and polyamide. An imide or polyetherimide film is preferred. A liquid crystal polymer film is also used as a heat-resistant thermoplastic film used for the core material.

【0044】従来の技術で述べた課題を解決するため
に、まず有機配線基板上に絶縁性接着剤を介して半導体
チップを搭載し、チップ側端子と配線板側端子とが金ワ
イヤボンディングで接続され、はんだボール外部端子が
基板裏面にエリアアレイ状に配列された半導体パッケー
ジについて、これに用いる絶縁性接着剤の物性とマザー
ボード実装後の耐温度サイクル性との関係をFEM弾塑
性解析手法を用いて調べた。
In order to solve the problems described in the prior art, first, a semiconductor chip is mounted on an organic wiring substrate via an insulating adhesive, and the terminal on the chip and the terminal on the wiring board are connected by gold wire bonding. Using a FEM elasto-plastic analysis method, the relationship between the physical properties of the insulating adhesive used for this and the temperature cycle resistance after mounting on the motherboard was determined for a semiconductor package in which solder ball external terminals were arranged in an area array on the back of the board. I checked.

【0045】その結果、チップのCTE(線熱膨張係
数:3.5ppm)とマザーボードのCTE(14〜1
8ppm)との差から生ずる基板はんだボール外部端子
部にかかる応力は絶縁性接着剤の弾性率Eを低下させる
ほど少なくなり、動的粘弾性測定装置で測定される、弾
性率Eが2000MPa以下、望ましくは1000MP
a以下であれば、再外周部のはんだ端子の相当歪みは十
分小さく、Coffin−Manson則に当てはめて
も、−55℃〜125℃の温度サイクルで1000サイ
クル以上の疲労寿命があることがわかった。
As a result, the chip CTE (linear thermal expansion coefficient: 3.5 ppm) and the motherboard CTE (14-1)
8 ppm), the stress applied to the external terminals of the substrate solder balls decreases as the elastic modulus E of the insulating adhesive decreases, and the elastic modulus E measured by a dynamic viscoelasticity measuring device is 2000 MPa or less. Desirably 1000MP
If it is less than or equal to a, the equivalent distortion of the solder terminal at the outer peripheral portion is sufficiently small, and it can be seen that even when applied to the Coffin-Manson rule, there is a fatigue life of 1000 cycles or more at a temperature cycle of −55 ° C. to 125 ° C. .

【0046】逆に、通常のエポキシ系ダイボンディング
材の弾性率Eは3000MPa以上であり、はんだボー
ルの耐温度サイクル信頼性に対して問題があることがわ
かった。
Conversely, the modulus of elasticity E of the ordinary epoxy die bonding material was 3000 MPa or more, and it was found that there was a problem with respect to the temperature cycle reliability of the solder ball.

【0047】一方、絶縁性接着剤の弾性率Eをシリコン
エラストマ程度の10MPa以下に下げると、リフロー
温度の上限温度260℃では弾性率Eは測定限界を越え
るほど小さくなり、強度メンバーとしての機能がなくな
る領域になり、基板表面およびシリコンチップとの接着
保持を期待できなくなる。剪断接着強度の温度依存性は
弾性率の温度依存性と同様の傾向があり、温度が高くな
るほど小さくなる。すなはち、リフロー温度260℃で
の弾性率Eが少なくとも3MPa以上ないと剪断接着強
度が期待できない。リフロー温度260℃でチップある
いは基板との界面に剥離が生ずれば、その後に実施する
耐温度サイクル試験での金ワイヤー断線不良や耐湿性試
験での腐食断線不良に至る。
On the other hand, when the elastic modulus E of the insulating adhesive is reduced to 10 MPa or less, which is about the same as that of silicon elastomer, the elastic modulus E becomes smaller as the reflow temperature exceeds 260 ° C., exceeding the measurement limit. This is a region that is lost, and it is impossible to expect adhesion and holding to the substrate surface and silicon chip. The temperature dependency of the shear bond strength has the same tendency as the temperature dependency of the elastic modulus, and decreases as the temperature increases. That is, if the elastic modulus E at the reflow temperature of 260 ° C. is at least 3 MPa, the shear adhesive strength cannot be expected. If peeling occurs at the interface with the chip or the substrate at a reflow temperature of 260 ° C., a gold wire disconnection defect in a temperature cycle test to be performed later and a corrosion disconnection defect in a moisture resistance test will occur.

【0048】したがって、チップを有機配線基板に搭載
するための絶縁性接着剤(接着剤硬化物)の常温時の弾
性率としては10〜2000MPaの範囲、望ましくは
50〜1500MPa、最も望ましくは100〜100
0MPaの範囲、リフロー温度260℃での弾性率とし
ては3〜50MPaの範囲のものを使用することが、耐
温度サイクル性および耐吸湿リフロー性を満足するため
の条件であることがわかった。
Accordingly, the elastic modulus at room temperature of the insulating adhesive (adhesive cured product) for mounting the chip on the organic wiring board is in the range of 10 to 2000 MPa, preferably 50 to 1500 MPa, most preferably 100 to 1500 MPa. 100
It has been found that the use of an elastic modulus in the range of 0 MPa and the reflow temperature of 260 ° C. in the range of 3 to 50 MPa is a condition for satisfying the temperature cycle resistance and the moisture absorption reflow resistance.

【0049】上記した弾性率の温度依存性を持つ各種熱
硬化性樹脂を探索した結果、エポキシ基含有アクリル共
重合体が、その範囲の物性を具現できる好適な接着剤で
あることがわかった。
As a result of searching for various thermosetting resins having the above-mentioned temperature dependence of the elastic modulus, it was found that the epoxy group-containing acrylic copolymer was a suitable adhesive capable of realizing the physical properties in the range.

【0050】さらに、耐吸湿リフロー性を劣化させる要
因として、有機配線基板と絶縁性接着剤との界面に発生
するボイドがある。液状の熱硬化性接着剤を少量滴下さ
せ塗布する通常の方式では、ボイドを巻き込み易く、吸
湿リフロー時にクラック、基板膨れの原因になる。
Further, as a factor for deteriorating the moisture absorption reflow resistance, there is a void generated at the interface between the organic wiring substrate and the insulating adhesive. In the usual method of applying a small amount of a liquid thermosetting adhesive by dripping, a void is easily entangled, which causes cracks and swelling of the substrate during reflow of moisture.

【0051】そこで、上記したエポキシ含有アクリル共
重合体をフィルム状に加工し、残存溶媒量を5%以下、
望ましくは2%以下に乾燥するとともに、DSC(示差
熱量計)を用いて測定した場合の全硬化発熱量の10〜
40%のB−ステージ硬化状態にした接着フイルムを、
所定の寸法に切断し、有機配線基板に熱プレスにて貼付
けて、半導体搭載用基板を得る。
Therefore, the above-mentioned epoxy-containing acrylic copolymer was processed into a film, and the residual solvent amount was 5% or less.
Desirably, it is dried to 2% or less, and 10 to 10 of the total curing calorific value when measured using a DSC (differential calorimeter).
A 40% B-stage cured adhesive film is
The substrate is cut into a predetermined size and attached to an organic wiring substrate by a hot press to obtain a semiconductor mounting substrate.

【0052】その後、チップを搭載・熱圧着し、ワイヤ
ーボンディング工程、封止工程をへて、パッケージ完成
品を得る。
Thereafter, the chip is mounted and thermocompression-bonded, followed by a wire bonding step and a sealing step to obtain a completed package.

【0053】このようにして得られたパッケージは、チ
ップおよび基板との界面に隙間やボイドが発生しにくい
が、チップの熱圧着時に半導体搭載用基板側のみならず
チップ側の両面からも加熱するほうがチップと接着剤と
の界面に隙間が発生しにくく、基板の配線部間に樹脂が
充分に埋め込まれ、耐吸湿リフロー性が向上することを
見いだした。さらに、上記した接着フィルムの残存溶媒
量を5%以下望ましくは2%以下にコントロールすれ
ば、接着フィルムの硬化過程で気泡が発生し、耐吸湿リ
フロー性が低下するようなことがないことを見いだし
た。
In the package obtained in this manner, gaps and voids are hardly generated at the interface between the chip and the substrate. However, not only the semiconductor mounting substrate side but also both sides of the chip side are heated during thermocompression bonding of the chip. It has been found that a gap is less likely to occur at the interface between the chip and the adhesive, the resin is sufficiently embedded between the wiring portions of the substrate, and the moisture absorption reflow resistance is improved. Furthermore, if the amount of the residual solvent in the adhesive film is controlled to 5% or less, preferably 2% or less, it is found that bubbles are not generated during the curing process of the adhesive film and the moisture absorption reflow resistance is not reduced. Was.

【0054】上記した物性を持つ接着フィルムの適用
は、チップ側端子と配線板側端子とが金ワイヤボンディ
ングで接続され、外部端子が基板裏面にエリアアレイ状
に配列された半導体パッケージについてのみならず、チ
ップ側端子と配線板側端子とがTAB(テープオートメ
ーテッドボンディング)のインナーボンディング方式で
接続されたパッケージ(チップ側端子と配線板側端子と
が直接接続された方式のパッケージ)にも同じ作用と効
果があり、半導体チップが接着剤を介して有機配線基板
に接着されている構造を持つエリアアレイパッケージ全
ての耐温度サイクル性および耐吸湿リフロー性を同時に
満足する。外部接続用端子はエリアアレイ状、すなわ
ち、基板裏面の、全面に格子状にまたは周辺部に一列あ
るいは数列配置されている。
The application of the adhesive film having the above-described physical properties is applicable not only to a semiconductor package in which chip-side terminals and wiring board-side terminals are connected by gold wire bonding, and external terminals are arranged in an area array on the back surface of the substrate. The same effect applies to a package in which the chip side terminal and the wiring board side terminal are connected by TAB (tape automated bonding) inner bonding method (a package in which the chip side terminal and the wiring board side terminal are directly connected). And at the same time satisfy the temperature cycle resistance and the moisture absorption reflow resistance of all the area array packages having the structure in which the semiconductor chip is bonded to the organic wiring substrate via the adhesive. The external connection terminals are arranged in an area array, that is, arranged in a grid on the entire surface of the back surface of the substrate or in one or several rows at the periphery.

【0055】有機配線基板としては、BT(ビスマレイ
ミド)基板、ガラスエポキシ基板などFR−4基板であ
っても、ポリイミドフィルム基板など基板材質に限定さ
れない。また、上記した接着フィルムは上記した物性を
持つ熱硬化性接着剤で形成することも出来るが、テープ
として巻いたり、送ったりする時の剛性を確保するため
に、ポリイミドフィルムの両面に塗布した3層構造にし
てもよい。上記した同じ作用と効果があることを見いだ
した。
The organic wiring substrate is not limited to a substrate material such as a polyimide film substrate, even if it is an FR-4 substrate such as a BT (bismaleimide) substrate or a glass epoxy substrate. Further, the above-mentioned adhesive film can be formed of a thermosetting adhesive having the above-mentioned physical properties. However, in order to secure rigidity when wound or fed as a tape, the adhesive film coated on both surfaces of the polyimide film is used. It may have a layered structure. It has been found that it has the same action and effect as described above.

【0056】接着フィルムの有機配線基板への接着方法
は、接着フィルムを所定の形状に切断し、その後、切断
させたフィルムの正確な位置合わせを行い、有機配線基
板に熱圧着する。
In the method of bonding the adhesive film to the organic wiring substrate, the adhesive film is cut into a predetermined shape, and then the cut film is accurately positioned and thermocompression-bonded to the organic wiring substrate.

【0057】接着フィルムの切断方法は、フィルムを所
定の形状に正確に切断する方法ならいずれの方法でも良
いが、作業性、貼り付け性を考えると、打ち抜き金型を
用いて接着フィルムを切断し、その後有機配線基板に仮
圧着、または本圧着させるのが好ましい。
Any method of cutting the adhesive film may be used as long as it can cut the film accurately into a predetermined shape. However, considering workability and sticking property, the adhesive film is cut using a punching die. Then, it is preferable to perform temporary compression bonding or full compression bonding to the organic wiring substrate.

【0058】切断された接着フィルムの有機配線基板へ
の熱圧着は、接着フィルム切断後、プレス材に吸引によ
り吸着させ位置合わせを正確に行った後、有機配線基板
上に仮圧着し、その後熱プレスで本圧着する方法と、打
ち抜き用金型で接着フィルムを打ち抜き後仮圧着し、そ
の後熱プレスで本圧着する方法がある。また、打ち抜き
金型を用いた場合は、打ち抜き金型で打ち抜かれたテー
プをそのまま本圧着する方法がある。
In the thermocompression bonding of the cut adhesive film to the organic wiring substrate, after the adhesive film is cut, it is adsorbed on a press material by suction, and the positioning is accurately performed. There is a method of performing full pressure bonding with a press, and a method of temporarily bonding after punching out an adhesive film with a punching die and then performing full pressure bonding with a hot press. In the case where a punching die is used, there is a method in which a tape punched out by the punching die is directly pressure-bonded.

【0059】仮圧着は打ち抜かれた接着テープが有機配
線基板に接着すれば良く、特に条件は限定しない。
The temporary press-bonding may be performed as long as the punched adhesive tape is bonded to the organic wiring substrate, and the conditions are not particularly limited.

【0060】本圧着時の接着フィルムの圧着温度は30
〜250℃が好ましく、70〜150℃が更に好まし
い。圧着温度圧が30℃以下では接着フィルムの弾性率
が高く、接着力が低いばかりか、有機配線基板の配線上
に接着させる時には、配線の周りへの接着剤の埋め込み
性が悪く好ましくない。接着温度が250℃以上では配
線が酸化され、また有機配線基板が柔らかくなり作業性
上好ましくない。
The bonding temperature of the adhesive film at the time of final bonding is 30.
-250 ° C is preferred, and 70-150 ° C is more preferred. If the compression temperature is 30 ° C. or less, the elasticity of the adhesive film is high and the adhesive strength is low, and when the adhesive film is adhered on the wiring of the organic wiring substrate, the embedding property of the adhesive around the wiring is poor, which is not preferable. If the bonding temperature is 250 ° C. or higher, the wiring is oxidized, and the organic wiring substrate becomes soft, which is not preferable in terms of workability.

【0061】本圧着の圧力は1〜20kg/cmが好
ましく、3〜10kg/cmが更に好ましい。圧着圧
力が1kg/cm以下では接着フィルムの接着力、配
線周りの埋め込み性が悪く、20kg/cm以上では接
着剤が所定の位置以外にはみ出し接着剤の寸法精度が悪
くなる。
[0061] The pressure of the crimping is preferably 1~20kg / cm 2, more preferably 3~10kg / cm 2. When the pressing pressure is 1 kg / cm 2 or less, the adhesive strength of the adhesive film and the embedding property around the wiring are poor, and when the pressure is 20 kg / cm 2 or more, the adhesive extrudes to a position other than a predetermined position, and the dimensional accuracy of the adhesive deteriorates.

【0062】本圧着時間は前記圧着温度、圧着時間で接
着出来る時間なら良いが、作業性を考えると0.3〜6
0秒が好ましく、0.5〜10秒が更に好ましい。
The final pressing time may be a time at which bonding can be performed at the above-mentioned pressing temperature and pressing time.
0 second is preferable, and 0.5 to 10 second is more preferable.

【0063】本圧着用熱プレスは接着剤がプレス表面に
接着しない様に表面に離型剤したものが好ましく、特に
テフロン、シリコーンを用いたものが離型性や作業性上
好ましい。
It is preferable that the hot press for pressure bonding has a release agent on the surface so that the adhesive does not adhere to the press surface, and particularly, one using Teflon or silicone is preferable in terms of mold release properties and workability.

【0064】本発明において使用されるエポキシ樹脂
は、硬化して接着作用を呈するものであればよい。二官
能以上で、好ましくは分子量が5000未満、より好ま
しくは3000未満のエポキシ樹脂が使用される。特
に、分子量が500以下のビスフェノールA型またはビ
スフェノールF型液状樹脂を用いると積層時の流動性を
向上することができて好ましい。分子量が500以下の
ビスフェノールA型またはビスフェノールF型液状樹脂
は、油化シェルエポキシ株式会社から、エピコート80
7、エピコート827、エピコート828という商品名
で市販されている。また、ダウケミカル日本株式会社か
らは、D.E.R.330、D.E.R.331、D.
E.R.361という商品名で市販されている。さら
に、東都化成株式会社から、YD128、YDF170
という商品名で市販されている。
The epoxy resin used in the present invention may be any resin as long as it cures and exhibits an adhesive action. An epoxy resin having two or more functional groups, preferably having a molecular weight of less than 5000, more preferably less than 3000 is used. In particular, it is preferable to use a bisphenol A type or bisphenol F type liquid resin having a molecular weight of 500 or less, since the fluidity during lamination can be improved. Bisphenol A type or bisphenol F type liquid resin having a molecular weight of 500 or less is obtained from Yuka Shell Epoxy Co., Ltd.
7, Epicoat 827, Epicoat 828. In addition, Dow Chemical Japan Co., Ltd. E. FIG. R. 330, D.I. E. FIG. R. 331;
E. FIG. R. 361. Furthermore, YD128, YDF170 from Toto Kasei Co., Ltd.
It is marketed under the trade name.

【0065】エポキシ樹脂としては、高Tg(ガラス転
移温度)化を目的に多官能エポキシ樹脂を加えてもよ
く、多官能エポキシ樹脂としては、フェノールノボラッ
ク型エポキシ樹脂、クレゾールノボラック型エポキシ樹
脂等が例示される。
As the epoxy resin, a polyfunctional epoxy resin may be added for the purpose of increasing the Tg (glass transition temperature). Examples of the polyfunctional epoxy resin include a phenol novolak type epoxy resin and a cresol novolak type epoxy resin. Is done.

【0066】フェノールノボラック型エポキシ樹脂は、
日本化薬株式会社から、EPPN−201という商品名
で市販されている。また、クレゾールノボラック型エポ
キシ樹脂は、住友化学工業株式会社から、ESCN−0
01、ESCN−195という商品名で、また、前記日
本化薬株式会社から、EOCN1012、EOCN10
25、EOCN1027という商品名で市販されてい
る。また、エポキシ樹脂として、ブロム化エポキシ樹
脂、ブロム化ビスフェノールA型エポキシ樹脂(例えば
住友化学工業株式会社製商品名ESB−400)、ブロ
ム化フェノールノボラック型エポキシ樹脂(例えば日本
化薬株式会社製商品名BREN−105,BREN−
S)等が使用できる。
The phenol novolak type epoxy resin is
It is commercially available from Nippon Kayaku Co., Ltd. under the trade name EPPN-201. Cresol novolak type epoxy resin was obtained from Sumitomo Chemical Co., Ltd. as ESCN-0.
01, ESCN-195, and EOCN1012, EOCN10 from Nippon Kayaku Co., Ltd.
25, commercially available under the trade name EOCN1027. Further, as the epoxy resin, a brominated epoxy resin, a brominated bisphenol A type epoxy resin (for example, ESB-400 manufactured by Sumitomo Chemical Co., Ltd.), and a brominated phenol novolak type epoxy resin (for example, manufactured by Nippon Kayaku Co., Ltd.) BREN-105, BREN-
S) can be used.

【0067】エポキシ樹脂の硬化剤は、エポキシ樹脂の
硬化剤として通常用いられているものを使用でき、アミ
ン、ポリアミド、酸無水物、ポリスルフィッド、三弗化
硼素及びフェノール性水酸基を1分子中に2個以上有す
る化合物であるビスフェノールA、ビスフェノールF、
ビスフェノールS等が挙げられる。特に吸湿時の耐電食
性に優れるためフェノール樹脂であるフェノールノボラ
ック樹脂、ビスフェノールノボラック樹脂またはクレゾ
ールノボラック樹脂等を用いるのが好ましい。
As the curing agent for the epoxy resin, those usually used as curing agents for the epoxy resin can be used, and amine, polyamide, acid anhydride, polysulfide, boron trifluoride and phenolic hydroxyl group are contained in one molecule. Bisphenol A, bisphenol F,
Bisphenol S etc. are mentioned. In particular, it is preferable to use a phenol resin such as a phenol novolak resin, a bisphenol novolak resin, or a cresol novolak resin because of excellent electric corrosion resistance during moisture absorption.

【0068】このような好ましいとした硬化剤は、大日
本インキ化学工業株式会社から、フェノライトLF28
82、フェノライトLF2822、フェノライトTD−
2090、フェノライトTD−2149、フェノライト
VH4150、フェノライトVH4170という商品名
で市販されている。また、硬化剤として、ブロム化フェ
ノール化合物であるテトラブロモビスフェノールA(帝
人化成株式会社製商品名ファイヤーガードFG−200
0)等が使用できる。
A preferred curing agent is phenolite LF28 from Dainippon Ink and Chemicals, Inc.
82, phenolite LF2822, phenolite TD-
2090, phenolite TD-2149, phenolite VH4150, and phenolite VH4170. As a curing agent, a brominated phenol compound, tetrabromobisphenol A (trade name: Fireguard FG-200, manufactured by Teijin Chemicals Limited)
0) etc. can be used.

【0069】硬化剤とともに硬化促進剤を用いるのが好
ましく、硬化促進剤としては、各種イミダゾール類を用
いるのが好ましい。イミダゾールとしては、2−メチル
イミダゾール、2−エチル−4−メチルイミダゾール、
1−シアノエチル−2−フェニルイミダゾール、1−シ
アノエチル−2−フェニルイミダゾリウムトリメリテー
ト等が挙げられる。
It is preferable to use a curing accelerator together with the curing agent, and it is preferable to use various imidazoles as the curing accelerator. Examples of imidazole include 2-methylimidazole, 2-ethyl-4-methylimidazole,
Examples thereof include 1-cyanoethyl-2-phenylimidazole and 1-cyanoethyl-2-phenylimidazolium trimellitate.

【0070】イミダゾール類は、四国化成工業株式会社
から、2E4MZ、2PZ−CN、2PZ−CNSとい
う商品名で市販されている。
The imidazoles are commercially available from Shikoku Chemicals Corporation under the trade names 2E4MZ, 2PZ-CN, 2PZ-CNS.

【0071】エポキシ樹脂と相溶性がありかつ重量平均
分子量が3万以上の高分子量樹脂としては、フェノキシ
樹脂、高分子量エポキシ樹脂、超高分子量エポキシ樹
脂、極性の大きい官能基含有ゴム、極性の大きい官能基
含有反応性ゴムなどが挙げられる。Bステージにおける
接着剤のタック性の低減や硬化時の可撓性を向上させる
ため重量平均分子量が3万以上とされる。前記極性の大
きい官能基含有反応性ゴムは、アクリルゴムにカルボキ
シル基のような極性が大きい官能基を付加したゴムが挙
げられる。ここで、エポキシ樹脂と相溶性があるとは、
硬化後にエポキシ樹脂と分離して二つ以上の相に分かれ
ることなく、均質混和物を形成する性質を言う。
Examples of the high molecular weight resin compatible with the epoxy resin and having a weight average molecular weight of 30,000 or more include a phenoxy resin, a high molecular weight epoxy resin, an ultrahigh molecular weight epoxy resin, a highly polar functional group-containing rubber, and a highly polar rubber. And functional group-containing reactive rubber. The weight average molecular weight is set to 30,000 or more in order to reduce the tackiness of the adhesive in the B stage and improve the flexibility at the time of curing. Examples of the highly polar functional group-containing reactive rubber include a rubber obtained by adding a highly polar functional group such as a carboxyl group to an acrylic rubber. Here, the compatibility with the epoxy resin means that
It refers to the property of forming a homogeneous mixture without being separated into two or more phases by being separated from the epoxy resin after curing.

【0072】フェノキシ樹脂は、東都化成株式会社か
ら、フェノトートYP−40、フェノトートYP−5
0、フェノトートYP−60等の商品名で市販されてい
る。高分子量エポキシ樹脂は、分子量が3万〜8万の高
分子量エポキシ樹脂、さらには、分子量が8万を超える
超高分子量エポキシ樹脂(特公平7−59617号、特
公平7−59618号、特公平7−59619号、特公
平7−59620号、特公平7−64911号、特公平
7−68327号公報参照)があり、何れも日立化成工
業株式会社で製造している。極性の大きい官能基含有反
応性ゴムとして、カルボキシル基含有アクリルゴムは、
帝国化学産業株式会社から、HTR−860Pという商
品名で市販されている。
Phenoxy resins were obtained from Toto Kasei Co., Ltd., using phenotote YP-40 and phenotote YP-5.
0, phenothot YP-60 and the like. The high molecular weight epoxy resin is a high molecular weight epoxy resin having a molecular weight of 30,000 to 80,000, and an ultrahigh molecular weight epoxy resin having a molecular weight exceeding 80,000 (Japanese Patent Publication No. 7-59617, Japanese Patent Publication No. 7-59618, 7-59619, JP-B-7-59620, JP-B-7-64911 and JP-B-7-68327), all of which are manufactured by Hitachi Chemical Co., Ltd. As a polar functional group-containing reactive rubber, carboxyl group-containing acrylic rubber is
It is commercially available from Teikoku Chemical Industry Co., Ltd. under the trade name HTR-860P.

【0073】上記エポキシ樹脂と相溶性がありかつ重量
平均分子量が3万以上の高分子量樹脂の添加量は、エポ
キシ樹脂を主成分とする相(以下エポキシ樹脂相とい
う)の可撓性の不足、タック性の低減やクラック等によ
る絶縁性の低下を防止するため10重量部以上、エポキ
シ樹脂相のTgの低下を防止するため40重量部以下と
される。
The amount of the high molecular weight resin which is compatible with the above epoxy resin and has a weight average molecular weight of 30,000 or more depends on the lack of flexibility of the phase mainly composed of epoxy resin (hereinafter referred to as epoxy resin phase). The amount is set to 10 parts by weight or more to prevent a decrease in tackiness and insulation properties due to cracks and the like, and 40 parts by weight or less to prevent a decrease in Tg of the epoxy resin phase.

【0074】グリシジル(メタ)アクリレート2〜6重
量%を含む、Tgが−10℃以上でかつ重量平均分子量
が80万以上であるエポキシ基含有アクリル系共重合体
は、帝国化学産業株式会社から市販されている商品名H
TR−860P−3を使用することができる。官能基モ
ノマーが、カルボン酸タイプのアクリル酸や、水酸基タ
イプのヒドロキシメチル(メタ)アクリレートを用いる
と、架橋反応が進行しやすく、ワニス状態でのゲル化、
Bステージ状態での硬化度の上昇による接着力の低下等
の問題があるため好ましくない。また、官能基モノマー
として用いるグリシジル(メタ)アクリレートの量は、
2〜6重量%の共重合体比とする。接着力を得るため、
2重量%以上とし、ゴムのゲル化を防止するために6重
量%以下とされる。残部はエチル(メタ)アクリレート
やブチル(メタ)アクリレートまたは両者の混合物を用
いることができるが、混合比率は、共重合体のTgを考
慮して決定する。Tgが−10℃未満であるとBステー
ジ状態での接着フィルムのタック性が大きくなり取扱性
が悪化するので、−10℃以上とされる。重合方法はパ
ール重合、溶液重合等が挙げられ、これらにより得るこ
とができる。
An epoxy group-containing acrylic copolymer containing 2 to 6% by weight of glycidyl (meth) acrylate and having a Tg of -10 ° C. or more and a weight average molecular weight of 800,000 or more is commercially available from Teikoku Chemical Industry Co., Ltd. Product name H
TR-860P-3 can be used. When the functional group monomer uses carboxylic acid type acrylic acid or hydroxyl group type hydroxymethyl (meth) acrylate, the crosslinking reaction proceeds easily, and gelation in a varnish state occurs.
It is not preferable because there is a problem such as a decrease in adhesive strength due to an increase in the degree of curing in the B-stage state. The amount of glycidyl (meth) acrylate used as the functional group monomer is
The copolymer ratio is 2 to 6% by weight. In order to obtain adhesive strength,
The content is set to 2% by weight or more, and 6% by weight or less to prevent gelation of rubber. The remainder can be ethyl (meth) acrylate or butyl (meth) acrylate or a mixture of both, but the mixing ratio is determined in consideration of the Tg of the copolymer. If the Tg is less than -10 ° C, the tackiness of the adhesive film in the B-stage state is increased and the handling property is deteriorated. Examples of the polymerization method include pearl polymerization, solution polymerization, and the like, which can be obtained.

【0075】エポキシ基含有アクリル系共重合体の重量
平均分子量は、80万以上とされ、この範囲では、シー
ト状、フィルム状での強度や可撓性の低下やタック性の
増大が少ないからである。
The epoxy group-containing acrylic copolymer has a weight-average molecular weight of 800,000 or more. Within this range, there is little decrease in sheet-like or film-like strength or flexibility and little increase in tackiness. is there.

【0076】上記エポキシ基含有アクリル系共重合体添
加量は、フィルムの強度の低下やタック性が大きくなる
のを防止するため100重量部以上とされ、エポキシ基
含有アクリルゴムの添加量が増えると、ゴム成分の相が
多くなり、エポキシ樹脂相が少なくなるため、高温での
取扱い性の低下が起こるため、300重量部以下とされ
る。
The epoxy group-containing acrylic copolymer is added in an amount of 100 parts by weight or more in order to prevent a decrease in film strength and an increase in tackiness. Since the rubber component phase increases and the epoxy resin phase decreases, the handleability at high temperatures deteriorates.

【0077】接着剤には、異種材料間の界面結合をよく
するために、カップリング剤を配合することもできる。
カップリング剤としては、シランカップリング剤が好ま
しい。
A coupling agent may be added to the adhesive in order to improve interfacial bonding between different materials.
As the coupling agent, a silane coupling agent is preferable.

【0078】シランカップリング剤としては、γ−グリ
シドキシプロピルトリメトキシシラン、γ−メルカプト
プロピルトリメトキシシラン、γ−アミノプロピルトリ
エトキシシラン、γ−ウレイドプロピルトリエトキシシ
ラン、N−β−アミノエチル−γ−アミノプロピルトリ
メトキシシラン等が挙げられる。
Examples of the silane coupling agent include γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-ureidopropyltriethoxysilane, N-β-aminoethyl -Γ-aminopropyltrimethoxysilane and the like.

【0079】前記したシランカップリング剤は、γ−グ
リシドキシプロピルトリメトキシシランがNUC A−
187、γ−メルカプトプロピルトリメトキシシランが
NUC A−189、γ−アミノプロピルトリエトキシ
シランがNUC A−1100、γ−ウレイドプロピル
トリエトキシシランがNUC A−1160、N−β−
アミノエチル−γ−アミノプロピルトリメトキシシラン
がNUC A−1120という商品名で、いずれも日本
ユニカー株式会社から市販されており、好適に使用する
ことができる。
The above-mentioned silane coupling agent is such that γ-glycidoxypropyltrimethoxysilane is NUC A-
187, γ-mercaptopropyltrimethoxysilane is NUC A-189, γ-aminopropyltriethoxysilane is NUC A-1100, γ-ureidopropyltriethoxysilane is NUC A-1160, N-β-
Aminoethyl-γ-aminopropyltrimethoxysilane is commercially available from Nippon Unicar Co., Ltd. under the trade name NUC A-1120, and can be suitably used.

【0080】カップリング剤の配合量は、添加による効
果や耐熱性およびコストから、樹脂100重量部に対し
0.1〜10重量部を添加するのが好ましい。
The amount of the coupling agent to be added is preferably 0.1 to 10 parts by weight based on 100 parts by weight of the resin in view of the effect of the addition, heat resistance and cost.

【0081】さらに、イオン性不純物を吸着して、吸湿
時の絶縁信頼性をよくするために、イオン捕捉剤を配合
することができる。イオン捕捉剤の配合量は、添加によ
る効果や耐熱性、コストより、5〜10重量部が好まし
い。イオン捕捉剤としては、銅がイオン化して溶け出す
のを防止するため銅害防止剤として知られる化合物例え
ば、トリアジンチオール化合物、ビスフェノール系還元
剤を配合することもできる。ビスフェノール系還元剤と
しては、2,2’−メチレン−ビス−(4−メチル−6
−第3−ブチルフェノール)、4,4’−チオ−ビス−
(3−メチル−6−第3−ブチルフェノール)等が挙げ
られる。
Further, in order to adsorb ionic impurities and improve insulation reliability at the time of moisture absorption, an ion scavenger can be blended. The compounding amount of the ion scavenger is preferably 5 to 10 parts by weight in view of the effect, heat resistance and cost of the addition. As the ion scavenger, a compound known as a copper harm inhibitor, for example, a triazine thiol compound or a bisphenol-based reducing agent, for preventing ionization and dissolution of copper can also be blended. As the bisphenol-based reducing agent, 2,2′-methylene-bis- (4-methyl-6
-Tert-butylphenol), 4,4'-thio-bis-
(3-methyl-6-tert-butylphenol) and the like.

【0082】トリアジンチオール化合物を成分とする銅
害防止剤は、三協製薬株式会社から、ジスネットDBと
いう商品名で市販されている。またビスフェノール系還
元剤を成分とする銅害防止剤は、吉富製薬株式会社か
ら、ヨシノックスBBという商品名で市販されている。
A copper damage inhibitor containing a triazinethiol compound as a component is commercially available from Sankyo Pharmaceutical Co., Ltd. under the trade name Disnet DB. Further, a copper damage inhibitor containing a bisphenol-based reducing agent as a component is commercially available from Yoshitomi Pharmaceutical Co., Ltd. under the trade name Yoshinox BB.

【0083】さらに、接着剤の取扱い性や熱伝導性をよ
くすること、難燃性を与えること、溶融粘度を調整する
こと、チクソトロピック性を付与すること、表面硬度の
向上などを目的として、無機フィラーを接着剤樹脂成分
100体積部に対して2〜20体積部配合することが好
ましい。配合の効果の点から配合量が2体積部以上、配
合量が多くなると、接着剤の貯蔵弾性率の上昇、接着性
の低下、ボイド残存による電気特性の低下等の問題を起
こすので20体積部以下とされる。
Further, for the purpose of improving the handleability and thermal conductivity of the adhesive, imparting flame retardancy, adjusting the melt viscosity, imparting thixotropic properties, improving the surface hardness, etc. It is preferable to mix 2 to 20 parts by volume of the inorganic filler with respect to 100 parts by volume of the adhesive resin component. From the viewpoint of the effect of the compounding, if the compounding amount is 2 parts by volume or more and the compounding amount is large, problems such as an increase in the storage elastic modulus of the adhesive, a decrease in adhesiveness, and a decrease in electrical properties due to voids remaining are caused. It is as follows.

【0084】無機フィラーとしては、水酸化アルミニウ
ム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネ
シウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化
カルシウム、酸化マグネシウム、アルミナ粉末、窒化ア
ルミニウム粉末、ほう酸アルミウイスカ、窒化ホウ素粉
末、結晶性シリカ、非晶性シリカなどが挙げられる。
Examples of the inorganic filler include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, alumina powder, aluminum nitride powder, aluminum borate whisker, and boron nitride powder. , Crystalline silica, amorphous silica and the like.

【0085】熱伝導性をよくするためには、アルミナ、
窒化アルミニウム、窒化ホウ素、結晶性シリカ、非晶性
シリカ等が好ましい。
In order to improve the thermal conductivity, alumina,
Aluminum nitride, boron nitride, crystalline silica, amorphous silica and the like are preferred.

【0086】この内、アルミナは、放熱性が良く、耐熱
性、絶縁性が良好な点で好適である。また、結晶性シリ
カまたは非晶性シリカは、放熱性の点ではアルミナより
劣るが、イオン性不純物が少ないため、PCT処理時の
絶縁性が高く、銅箔、アルミ線、アルミ板等の腐食が少
ない点で好適である。
Among them, alumina is preferred because it has good heat dissipation, good heat resistance and good insulation. In addition, crystalline silica or amorphous silica is inferior to alumina in terms of heat dissipation, but has less ionic impurities, so it has high insulation properties during PCT processing, and corrodes copper foil, aluminum wires, aluminum plates, etc. It is suitable in that it has few points.

【0087】難燃性を与えるためには、水酸化アルミニ
ウム、水酸化マグネシウム、三酸化アンチモン等が好ま
しい。
For imparting flame retardancy, aluminum hydroxide, magnesium hydroxide, antimony trioxide and the like are preferable.

【0088】溶融粘度の調整やチクソトロピック性の付
与の目的には、水酸化アルミニウム、水酸化マグネシウ
ム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシ
ウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグ
ネシウム、アルミナ、結晶性シリカ、非晶性シリカ等が
好ましい。
For the purpose of adjusting the melt viscosity and imparting thixotropic properties, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, alumina, Silica and amorphous silica are preferred.

【0089】表面硬度の向上に関しては、短繊維アルミ
ナ、ほう酸アルミウイスカ等が好ましい。
For improving the surface hardness, short fiber alumina, aluminum borate whisker and the like are preferable.

【0090】本発明の接着フィルムは、接着剤の各成分
を溶剤に溶解ないし分散してワニスとし、ベースフィル
ム上に塗布、加熱し溶剤を除去することにより、接着剤
層をベースフィルム上に形成して得られる。ベースフィ
ルムとしては、ポリテトラフルオロエチレンフィルム、
ポリエチレンテレフタレートフィルム、離型処理したポ
リエチレンテレフタレートフィルム、ポリエチレンフィ
ルム、ポリプロピレンフィルム、ポリメチルペンテンフ
ィルム、ポリイミドフィルムなどのプラスチックフィル
ムが使用できる。ベースフィルムは、使用時に剥離して
接着フィルムのみを使用することもできるし、ベースフ
ィルムとともに使用し、後で除去することもできる。
The adhesive film of the present invention forms a varnish by dissolving or dispersing each component of the adhesive in a solvent, and forms an adhesive layer on the base film by coating and heating the base film to remove the solvent. Is obtained. As the base film, a polytetrafluoroethylene film,
Plastic films such as polyethylene terephthalate film, release-treated polyethylene terephthalate film, polyethylene film, polypropylene film, polymethylpentene film, and polyimide film can be used. The base film can be peeled off at the time of use to use only the adhesive film, or used together with the base film and removed later.

【0091】本発明で用いるプラスチックフィルムとし
ては、例えば、カプトン(東レ、デュポン株式会社製商
品名)、アピカル(鐘淵化学工業株式会社製商品名)等
のポリイミドフィルム、ルミラー(東レ、デュポン株式
会社製商品名)、ピューレックス(帝人株式会社製商品
名)等のポリエチレンテレフタレートフィルムなどを使
用することができる。
Examples of the plastic film used in the present invention include polyimide films such as Kapton (trade name, manufactured by DuPont Toray Co., Ltd.) and Apical (trade name, manufactured by Kaneka Chemical Co., Ltd.); And polyethylene terephthalate films such as Purex (trade name, manufactured by Teijin Limited) and the like.

【0092】ワニス化の溶剤は、比較的低沸点の、メチ
ルエチルケトン、アセトン、メチルイソブチルケトン、
2−エトキシエタノール、トルエン、ブチルセルソル
ブ、メタノール、エタノール、2−メトキシエタノール
などを用いるのが好ましい。また、塗膜性を向上するな
どの目的で、高沸点溶剤を加えても良い。高沸点溶剤と
しては、ジメチルアセトアミド、ジメチルホルムアミ
ド、メチルピロリドン、シクロヘキサノンなどが挙げら
れる。
Solvents for varnishing include relatively low-boiling methyl ethyl ketone, acetone, methyl isobutyl ketone,
It is preferable to use 2-ethoxyethanol, toluene, butyl cellosolve, methanol, ethanol, 2-methoxyethanol and the like. Further, a high boiling point solvent may be added for the purpose of improving the coating properties. Examples of the high boiling point solvent include dimethylacetamide, dimethylformamide, methylpyrrolidone, cyclohexanone and the like.

【0093】ワニスの製造は、無機フィラーの分散を考
慮した場合には、らいかい機、3本ロール及びビーズミ
ル等により、またこれらを組み合わせて行なうことがで
きる。フィラーと低分子量物をあらかじめ混合した後、
高分子量物を配合することにより、混合に要する時間を
短縮することも可能となる。また、ワニスとした後、真
空脱気によりワニス中の気泡を除去することが好まし
い。
The production of the varnish can be carried out by using a mill, a three-roll mill, a bead mill or the like, or a combination thereof, in consideration of the dispersion of the inorganic filler. After pre-mixing the filler and low molecular weight material,
By blending a high molecular weight substance, the time required for mixing can be reduced. After the varnish is formed, it is preferable to remove bubbles in the varnish by vacuum degassing.

【0094】上記プラスチックフィルム等のベースフィ
ルム上に接着剤ワニスを塗布し、加熱乾燥して溶剤を除
去するが、これにより得られる接着剤は、DSCを用い
て測定した全硬化発熱量の10〜40%の発熱を終えた
状態とされる。溶剤を除去する際に加熱するが、この
時、接着剤組成物の硬化反応が進行しゲル化してくる。
その際の硬化状態が接着剤の流動性に影響し、接着性や
取扱い性を適正化する。DSC(示差走査熱分析)は、
測定温度範囲内で、発熱、吸熱の無い標準試料との温度
差をたえず打ち消すように熱量を供給または除去するゼ
ロ位法を測定原理とするものであり、測定装置が市販さ
れておりそれを用いて測定できる。樹脂組成物の反応
は、発熱反応であり、一定の昇温速度で試料を昇温して
いくと、試料が反応し熱量が発生する。その発熱量をチ
ャートに出力し、ベースラインを基準として発熱曲線と
ベースラインで囲まれた面積を求め、これを発熱量とす
る。室温から250℃まで5〜10℃/分の昇温速度で
測定し、上記した発熱量を求める。これらは、全自動で
行なうものもあり、それを使用すると容易に行なうこと
ができる。つぎに、上記ベースフィルムに塗布し、乾燥
して得た接着剤の発熱量は、つぎのようにして求める。
まず、25℃で真空乾燥器を用いて溶剤を乾燥させた未
硬化試料の全発熱量を測定し、これをA(J/g)とす
る。つぎに、塗工、乾燥した試料の発熱量を測定し、こ
れをBとする。試料の硬化度C(%)(加熱、乾燥によ
り発熱を終えた状態)は、つぎの数式(1)で与えられ
る。
An adhesive varnish is applied on a base film such as the plastic film and dried by heating to remove the solvent. The resulting adhesive has a total curing calorific value of 10 to 10 as measured by DSC. It is assumed that the heat generation of 40% has been completed. Heat is applied when the solvent is removed. At this time, the curing reaction of the adhesive composition proceeds and gels.
The cured state at that time affects the fluidity of the adhesive, and optimizes adhesiveness and handleability. DSC (differential scanning calorimetry)
The measurement principle is based on the zero-position method of supplying or removing the amount of heat so as to constantly cancel the temperature difference between the standard sample that has no heat generation and heat absorption within the measurement temperature range. Can be measured. The reaction of the resin composition is an exothermic reaction, and when the sample is heated at a constant heating rate, the sample reacts and generates heat. The calorific value is output to a chart, and a heating curve and an area surrounded by the base line are obtained based on the base line, and this is defined as a calorific value. The heating value is measured from room temperature to 250 ° C. at a heating rate of 5 to 10 ° C./min, and the above-described calorific value is determined. Some of these are performed automatically, and can be easily performed by using them. Next, the calorific value of the adhesive obtained by applying and drying the above base film is determined as follows.
First, the total calorific value of the uncured sample obtained by drying the solvent using a vacuum dryer at 25 ° C. is measured, and this is defined as A (J / g). Next, the calorific value of the coated and dried sample was measured, and this was designated as B. The degree of cure C (%) of the sample (state in which heat generation has been completed by heating and drying) is given by the following equation (1).

【0095】 C(%)=(A−B)×100/A …(1)C (%) = (A−B) × 100 / A (1)

【0096】本発明の接着剤の動的粘弾性測定装置で測
定した貯蔵弾性率は、25℃で20〜2,000MPa
で、260℃で3〜50MPaという低弾性率でなけれ
ばならない。貯蔵弾性率の測定は、接着剤硬化物(DS
Cを用いて測定した場合の全硬化発熱量の95〜100
%の発熱を終えた接着剤)に引張り荷重をかけて、周波
数10Hz、昇温速度5〜10℃/分で−50℃から3
00℃まで測定する温度依存性測定モードで行った。2
5℃での貯蔵弾性率が2,000MPaを超えるもので
は、半導体チップとプリント配線板の熱膨張係数の差に
よってリフロー時に発生する応力を緩和させる効果が小
さくなるためクラックを発生させてしまう。一方、貯蔵
弾性率が20MPa未満では、接着剤の取扱性が悪くな
る。好ましくは50〜1000MPaである。
The storage elastic modulus of the adhesive of the present invention measured by a dynamic viscoelasticity measuring apparatus is 20 to 2,000 MPa at 25 ° C.
And a low elastic modulus of 3 to 50 MPa at 260 ° C. The measurement of the storage elastic modulus was performed using the cured adhesive (DS
95 to 100 of the total curing calorific value when measured using C
% Of the adhesive that has generated heat of 10% at a frequency of 10 Hz and a temperature rising rate of 5 to 10 ° C./min.
The measurement was performed in a temperature-dependent measurement mode in which measurement was performed up to 00 ° C. 2
When the storage elastic modulus at 5 ° C. exceeds 2,000 MPa, cracks are generated because the effect of relaxing the stress generated at the time of reflow is reduced due to the difference in thermal expansion coefficient between the semiconductor chip and the printed wiring board. On the other hand, when the storage elastic modulus is less than 20 MPa, the handleability of the adhesive becomes poor. Preferably it is 50 to 1000 MPa.

【0097】本発明は、エポキシ基含有アクリル系共重
合体とエポキシ樹脂系接着剤において、室温付近での弾
性率が低いことを特徴としている。エポキシ基含有アク
リル系共重合体は、室温付近での弾性率が低いため、エ
ポキシ基含有アクリル系共重合体の混合比を大きくする
ことで、半導体チップとプリント配線板の熱膨張係数の
差に起因して、リフロー時の加熱冷却過程で発生する応
力を緩和する効果によりクラックを抑制することができ
る。また、エポキシ基含有アクリル系共重合体はエポキ
シ樹脂との反応性に優れるため、接着剤硬化物が化学
的、物理的に安定するためPCT処理に代表される耐湿
性試験に優れた性能を示す。また、下記の方法により、
従来の接着フィルムの強度の低下、可撓性の低下、タッ
ク性の増大等取り扱い性の点での問題を解決した。
The present invention is characterized in that the epoxy group-containing acrylic copolymer and the epoxy resin-based adhesive have a low elastic modulus near room temperature. Since the epoxy group-containing acrylic copolymer has a low elastic modulus near room temperature, increasing the mixing ratio of the epoxy group-containing acrylic copolymer reduces the difference in the thermal expansion coefficient between the semiconductor chip and the printed wiring board. For this reason, cracks can be suppressed by the effect of relaxing the stress generated in the heating and cooling process during reflow. In addition, the epoxy group-containing acrylic copolymer has excellent reactivity with the epoxy resin, and the cured product of the adhesive is chemically and physically stable, so that it exhibits excellent performance in a moisture resistance test represented by PCT processing. . Also, by the following method,
This solves problems in handling properties such as a decrease in strength, flexibility, and tackiness of the conventional adhesive film.

【0098】1)本発明で規定したエポキシ基含有アク
リル系共重合体を使用することにより、リフロー時のク
ラック発生を抑制できる。
1) By using the epoxy group-containing acrylic copolymer specified in the present invention, the occurrence of cracks during reflow can be suppressed.

【0099】2)分子量の大きいアクリル系共重合体を
使用することで共重合体の添加量が少ない場合でも、接
着フィルムのフィルム強度、可撓性を確保できる。
2) By using an acrylic copolymer having a large molecular weight, the film strength and flexibility of the adhesive film can be ensured even when the amount of the copolymer is small.

【0100】3)エポキシ樹脂と相溶性がありかつ重量
平均分子量3万以上の高分子量樹脂を加えることで、タ
ック性を低減することができる。
3) The tackiness can be reduced by adding a high molecular weight resin which is compatible with the epoxy resin and has a weight average molecular weight of 30,000 or more.

【0101】さらに、本発明の接着剤では、エポキシ樹
脂と高分子量樹脂とが相溶性が良く均一になっており、
アクリル系共重合体に含まれるエポキシ基がそれらと部
分的に反応し、未反応のエポキシ樹脂を含んで全体が架
橋してゲル化するために、それが流動性を抑制し、エポ
キシ樹脂等を多く含む場合においても取扱い性を損なう
ことがない。また、未反応のエポキシ樹脂がゲル中に多
数残存しているため、圧力がかかった場合、ゲル中より
未反応成分がしみだすため、全体がゲル化した場合で
も、接着性の低下が少なくなる。
Further, in the adhesive of the present invention, the epoxy resin and the high molecular weight resin have good compatibility and are uniform.
The epoxy group contained in the acrylic copolymer partially reacts with them, and the whole is cross-linked and gelled, including the unreacted epoxy resin. Even in the case of containing a large amount, the handleability is not impaired. In addition, since a large number of unreacted epoxy resins remain in the gel, when pressure is applied, unreacted components exude from the gel, so that even if the whole is gelled, the decrease in adhesiveness is reduced. .

【0102】接着剤の乾燥時には、エポキシ基含有アク
リル系共重合体に含まれるエポキシ基やエポキシ樹脂が
ともに反応するが、エポキシ基含有アクリル系共重合体
は分子量が大きく、1分子鎖中にエポキシ基が多く含ま
れるため、反応が若干進んだ場合でもゲル化する。通
常、DSCを用いて測定した場合の全硬化発熱量の10
から40%の発熱を終えた状態、すなわちAまたはBス
テージ前半の段階でゲル化がおこる。そのため、エポキ
シ樹脂等の未反応成分を多く含んだ状態でゲル化してお
り、溶融粘度がゲル化していない場合に比べて、大幅に
増大しており、取扱い性を損なうことがない。また圧力
がかかった場合、ゲル中より未反応成分がしみだすた
め、ゲル化した場合でも、接着性の低下が少ない。さら
に、接着剤がエポキシ樹脂等の未反応成分を多く含んだ
状態でフィルム化できるため、接着フィルムのライフ
(有効使用期間)が長くなるという利点がある。
When the adhesive is dried, the epoxy group and the epoxy resin contained in the epoxy group-containing acrylic copolymer react with each other, but the epoxy group-containing acrylic copolymer has a large molecular weight and the epoxy group in one molecular chain. Since it contains many groups, it gels even when the reaction proceeds slightly. Usually, 10% of the total curing calorific value when measured using DSC.
The gelation occurs in a state in which the exotherm of 40% to 40% has been completed, that is, in the first half of the A or B stage. Therefore, the gel is formed in a state containing a large amount of unreacted components such as an epoxy resin, and the melt viscosity is significantly increased as compared with the case where the gel is not gelled, and the handleability is not impaired. In addition, when pressure is applied, unreacted components exude from the gel, and therefore, even when gelled, the adhesiveness is hardly reduced. Furthermore, since the adhesive can be formed into a film with a large amount of unreacted components such as epoxy resin, there is an advantage that the life (effective use period) of the adhesive film is extended.

【0103】従来のエポキシ樹脂系接着剤ではBステー
ジの後半から、Cステージ状態で初めてゲル化が起こ
り、ゲル化が起こった段階でのエポキシ樹脂等の未反応
成分が少ないため、流動性が低く、圧力がかかった場合
でも、ゲル中よりしみだす未反応成分が少ないため、接
着性が低下する。
In the conventional epoxy resin-based adhesive, gelation occurs for the first time in the C stage state from the latter half of the B stage, and the unreacted components such as the epoxy resin at the stage of the gelation are small, so that the fluidity is low. Even when pressure is applied, the amount of unreacted components oozing out of the gel is small, so that the adhesiveness is reduced.

【0104】なお、アクリル系共重合体に含まれるエポ
キシ基と低分子量のエポキシ樹脂のエポキシ基の反応し
やすさについては明らかではないが、少なくとも同程度
の反応性を有していればよく、アクリル系共重合体に含
まれるエポキシ基のみが選択的に反応するものである必
要はない。
It is not clear how easily the epoxy group contained in the acrylic copolymer reacts with the epoxy group of the low-molecular-weight epoxy resin, but it is only necessary to have at least the same degree of reactivity. It is not necessary that only the epoxy group contained in the acrylic copolymer reacts selectively.

【0105】なおこの場合、A、B、Cステージは、接
着剤の硬化の程度を示す。Aステージはほぼ未硬化でゲ
ル化していない状態であり、DSCを用いて測定した場
合の全硬化発熱量の0〜20%の発熱を終えた状態であ
る。Bステージは若干硬化、ゲル化が進んだ状態であり
全硬化発熱量の20〜60%の発熱を終えた状態であ
る。Cステージはかなり硬化が進み、ゲル化した状態で
あり、全硬化発熱量の60〜100%の発熱を終えた状
態である。
In this case, the stages A, B and C indicate the degree of curing of the adhesive. The A stage is in a state of being almost uncured and not gelling, and is a state in which heat generation of 0 to 20% of a total curing calorific value measured by using DSC has been completed. The B stage is in a state in which curing and gelation are slightly advanced, and a state in which heat generation of 20 to 60% of the total curing calorific value has been completed. The C stage is in a state where the curing has progressed considerably and is in a gelled state, and a state where heating of 60 to 100% of the total curing calorific value has been completed.

【0106】ゲル化の判定については、THF(テトラ
ヒドロフラン)等の浸透性の大きい溶剤中に接着剤を浸
し、25℃で20時間放置した後、接着剤が完全に溶解
しないで膨潤した状態にあるものをゲル化したと判定し
た。なお、実験的には、以下のように判定した。
Regarding the determination of gelation, the adhesive was immersed in a highly permeable solvent such as THF (tetrahydrofuran) and allowed to stand at 25 ° C. for 20 hours, after which the adhesive was swollen without completely dissolving. The product was determined to have gelled. In addition, it experimentally determined as follows.

【0107】THF中に接着剤(重量W1)を浸し、2
5℃で20時間放置した後、非溶解分を200メッシュ
のナイロン布で濾過し、これを乾燥した後の重量を測定
(重量W2)した。THF抽出率(%)をつぎの数式
(2)のように算出した。THF抽出率が80重量%を
越えるものをゲル化していないとし、80重量%以下の
ものをゲル化していると判定した。
An adhesive (weight W1) was immersed in THF,
After standing at 5 ° C. for 20 hours, undissolved components were filtered through a 200-mesh nylon cloth, and the weight after drying was measured (weight W2). The THF extraction rate (%) was calculated as in the following equation (2). Those with a THF extraction rate of more than 80% by weight were not gelled, and those with a weight of 80% by weight or less were judged to be gelled.

【0108】 [0108]

【0109】本発明では、フィラーを添加することによ
り、溶融粘度が大きくでき、さらにチクソトロピック性
を発現できるために、上記効果をさらに大きくすること
が可能となる。
In the present invention, by adding a filler, the melt viscosity can be increased and the thixotropic property can be exhibited, so that the above effects can be further enhanced.

【0110】さらに、上記の効果に加えて、接着剤の放
熱性向上、接着剤に難燃性を付与、接着時の温度におい
て適正な粘度をもたせること、表面硬度の向上等の特性
も付与できる。本発明の接着フィルムを用いて半導体チ
ップと配線板を接着させた半導体装置は、耐リフロー
性、温度サイクルテスト、耐電食性、耐湿性(耐PCT
性)等に優れていた。
Further, in addition to the above-mentioned effects, it is possible to impart properties such as improvement in heat dissipation of the adhesive, imparting flame retardancy to the adhesive, imparting an appropriate viscosity at the temperature at the time of adhesion, and improving surface hardness. . A semiconductor device in which a semiconductor chip and a wiring board are bonded using the adhesive film of the present invention has a reflow resistance, a temperature cycle test, an electric corrosion resistance, and a moisture resistance (PCT resistance).
Properties).

【0111】本発明でコア材に用いられる耐熱性熱可塑
性フィルムは、ガラス転移温度Tgが200℃以上のポ
リマまたは液晶ポリマを用いたフィルムであることが好
ましく、ポリイミド、ポリエーテルスルホン、ポリアミ
ドイミド、ポリエーテルイミドまたは全芳香族ポリエス
テルなどが好適に用いられる。フィルムの厚みは、5〜
200μmの範囲内で用いるのが好ましいが、限定する
ものではない。Tgが200℃以下の熱可塑性フィルム
をコア材に用いた場合は、はんだリフロー時などの高温
時に塑性変形を起こす場合があり、好ましくない。
The heat-resistant thermoplastic film used for the core material in the present invention is preferably a film using a polymer or a liquid crystal polymer having a glass transition temperature Tg of 200 ° C. or higher, such as polyimide, polyether sulfone, polyamide imide, Polyetherimide or wholly aromatic polyester is preferably used. The thickness of the film is 5
It is preferable to use within the range of 200 μm, but it is not limited. When a thermoplastic film having a Tg of 200 ° C. or less is used as a core material, plastic deformation may occur at a high temperature such as during solder reflow, which is not preferable.

【0112】本発明でコア材の両面に形成される接着剤
は、接着剤の各成分を溶剤に溶解ないし分散してワニス
とし、コア材となる耐熱性熱可塑性フィルム上に塗布、
加熱し溶剤を除去することにより作製することができ、
接着剤層をコア材となる耐熱性熱可塑性フィルム上に形
成することにより三層構造の両面接着フィルムを得るこ
とができる。接着剤の厚みは、2〜150μmの範囲で
用いられ、これより薄いと接着性や熱応力緩衝効果に乏
しく、厚いと経済的でなくなるが、制限するものでな
い。
The adhesive formed on both sides of the core material in the present invention is prepared by dissolving or dispersing each component of the adhesive in a solvent to form a varnish, and applying the varnish on a heat-resistant thermoplastic film as the core material.
It can be produced by heating and removing the solvent,
By forming the adhesive layer on a heat-resistant thermoplastic film serving as a core material, a double-sided adhesive film having a three-layer structure can be obtained. The thickness of the adhesive is in the range of 2 to 150 μm. If the thickness is smaller than this, the adhesiveness and the thermal stress buffering effect are poor, and if it is thicker, it is not economical, but it is not limited.

【0113】また、接着剤の各成分を溶剤に溶解ないし
分散してワニスとし、このワニスをベースフィルム上に
塗布、加熱し溶剤を除去することにより接着剤成分のみ
からなる接着フィルムを作製し、この接着剤成分のみか
らなる接着フィルムをコア材となる耐熱性熱可塑性フィ
ルムの両面に貼り合わせることにより三層構造の両面接
着フィルムを得ることもできる。ここで、接着剤成分の
みからなる接着フィルムを作製するためのベースフィル
ムとしては、ポリテトラフルオロエチレンフィルム、ポ
リエチレンテレフタレートフィルム、離型処理したポリ
エチレンテレフタレートフィルム、ポリエチレンフィル
ム、ポリプロピレンフィルム、ポリメチルペンテンフィ
ルム、ポリイミドフィルムなどのプラスチックフィルム
が使用できる。プラスチックフィルムとしては、例え
ば、カプトン(東レ、デュポン株式会社製商品名)、ア
ピカル(鐘淵化学工業株式会社製商品名)等のポリイミ
ドフィルム、ルミラー(東レ、デュポン株式会社製商品
名)、ピューレックス(帝人株式会社製商品名)等のポ
リエチレンテレフタレートフィルムなどを使用すること
ができる。
Also, the components of the adhesive are dissolved or dispersed in a solvent to form a varnish, and the varnish is applied on a base film, heated and the solvent is removed to prepare an adhesive film consisting of only the adhesive components. A double-sided double-sided adhesive film having a three-layer structure can be obtained by laminating an adhesive film containing only the adhesive component on both sides of a heat-resistant thermoplastic film serving as a core material. Here, as a base film for producing an adhesive film consisting of only the adhesive component, a polytetrafluoroethylene film, a polyethylene terephthalate film, a release-treated polyethylene terephthalate film, a polyethylene film, a polypropylene film, a polymethylpentene film, A plastic film such as a polyimide film can be used. Examples of the plastic film include polyimide films such as Kapton (trade name, manufactured by Dupont Co., Ltd.), Apical (trade name, manufactured by Kaneka Chemical Co., Ltd.), Lumirror (trade name, manufactured by Dupont Co., Ltd.), Purex A polyethylene terephthalate film such as (trade name, manufactured by Teijin Limited) can be used.

【0114】ワニス化の溶剤は、比較的低沸点の、メチ
ルエチルケトン、アセトン、メチルイソブチルケトン、
2−エトキシエタノール、トルエン、ブチルセルソル
ブ、メタノール、エタノール、2−メトキシエタノール
などを用いるのが好ましい。また、塗膜性を向上するな
どの目的で、高沸点溶剤を加えても良い。高沸点溶剤と
しては、ジメチルアセトアミド、ジメチルホルムアミ
ド、メチルピロリドン、シクロヘキサノンなどが挙げら
れる。
Solvents for varnishing include relatively low boiling point methyl ethyl ketone, acetone, methyl isobutyl ketone,
It is preferable to use 2-ethoxyethanol, toluene, butyl cellosolve, methanol, ethanol, 2-methoxyethanol and the like. Further, a high boiling point solvent may be added for the purpose of improving the coating properties. Examples of the high boiling point solvent include dimethylacetamide, dimethylformamide, methylpyrrolidone, cyclohexanone and the like.

【0115】ワニスの製造は、無機フィラーの分散を考
慮した場合には、らいかい機、3本ロール及びビーズミ
ル等により、またこれらを組み合わせて行なうことがで
きる。フィラーと低分子量物をあらかじめ混合した後、
高分子量物を配合することにより、混合に要する時間を
短縮することも可能となる。また、ワニスとした後、真
空脱気によりワニス中の気泡を除去することが好まし
い。
The production of the varnish can be carried out by using a mill, a three-roll mill, a bead mill, etc., or a combination thereof, in consideration of the dispersion of the inorganic filler. After pre-mixing the filler and low molecular weight material,
By blending a high molecular weight substance, the time required for mixing can be reduced. After the varnish is formed, it is preferable to remove bubbles in the varnish by vacuum degassing.

【0116】上記接着剤は、コア材となる耐熱性熱可塑
性フィルムまたはプラスチックフィルム等のベースフィ
ルム上に接着剤ワニスを塗布し、加熱乾燥して溶剤を除
去することにより得られるが、これにより得られる接着
剤は、DSCを用いて測定した全硬化発熱量の10〜4
0%の発熱を終えた状態とするのが好ましい。溶剤を除
去する際に加熱するが、この時、接着剤組成物の硬化反
応が進行しゲル化してくる。その際の硬化状態が接着剤
の流動性に影響し、接着性や取扱い性を適正化する。D
SC(示差走査熱分析)は、測定温度範囲内で、発熱、
吸熱の無い標準試料との温度差をたえず打ち消すように
熱量を供給または除去するゼロ位法を測定原理とするも
のであり、測定装置が市販されておりそれを用いて測定
できる。樹脂組成物の反応は、発熱反応であり、一定の
昇温速度で試料を昇温していくと、試料が反応し熱量が
発生する。その発熱量をチャートに出力し、ベースライ
ンを基準として発熱曲線とベースラインで囲まれた面積
を求め、これを発熱量とする。室温から250℃まで5
〜10℃/分の昇温速度で測定し、上記した発熱量を求
める。これらは、全自動で行なうものもあり、それを使
用すると容易に行なうことができる。
The above adhesive is obtained by applying an adhesive varnish on a base film such as a heat-resistant thermoplastic film or a plastic film as a core material and drying by heating to remove the solvent. The resulting adhesive has a total curing calorific value of 10 to 4 measured using a DSC.
It is preferable that 0% heat generation be completed. Heat is applied when the solvent is removed. At this time, the curing reaction of the adhesive composition proceeds and gels. The cured state at that time affects the fluidity of the adhesive, and optimizes adhesiveness and handleability. D
SC (differential scanning calorimetry) is an exotherm,
The measurement principle is based on the zero-position method of supplying or removing the amount of heat so as to constantly cancel the temperature difference from a standard sample having no endotherm. A measuring device is commercially available and can be measured by using it. The reaction of the resin composition is an exothermic reaction, and when the sample is heated at a constant heating rate, the sample reacts and generates heat. The calorific value is output to a chart, and a heating curve and an area surrounded by the base line are obtained based on the base line, and this is defined as a calorific value. 5 from room temperature to 250 ° C
The heating value is measured at a heating rate of ℃ 10 ° C./min, and the calorific value is determined. Some of these are performed automatically, and can be easily performed by using them.

【0117】上記コア材となる耐熱性熱可塑性フィルム
またはベースフィルムに塗布し、乾燥して得た接着剤の
発熱量は、つぎのようにして求める。まず、接着剤成分
のみを取り出し、25℃で真空乾燥器を用いて溶剤を乾
燥させた未硬化試料の全発熱量を測定し、これをA(J
/g)とする。つぎに、塗工、乾燥した試料の発熱量を
測定し、これをBとする。試料の硬化度C(%)(加
熱、乾燥により発熱を終えた状態)は、つぎの数式
(1)で与えられる。
The calorific value of the adhesive obtained by coating and drying the heat-resistant thermoplastic film or the base film as the core material is determined as follows. First, only the adhesive component was taken out, and the total calorific value of the uncured sample obtained by drying the solvent using a vacuum dryer at 25 ° C. was measured.
/ G). Next, the calorific value of the coated and dried sample was measured, and this was designated as B. The degree of cure C (%) of the sample (state in which heat generation has been completed by heating and drying) is given by the following equation (1).

【0118】 C(%)=(A−B)×100/A …(1)C (%) = (A−B) × 100 / A (1)

【0119】本発明の接着剤成分の動的粘弾性測定装置
で測定した貯蔵弾性率は、25℃で20〜2,000M
Paで、260℃で3〜50MPaという低弾性率であ
ることが好ましい。貯蔵弾性率の測定は、接着剤硬化物
に引張り荷重をかけて、周波数10Hz、昇温速度5〜
10℃/分で−50℃から300℃まで測定する温度依
存性測定モードで行った。25℃での貯蔵弾性率が2,
000MPaを超えるものでは、半導体チップとプリン
ト配線板の熱膨張係数の差によってリフロー時に発生す
る応力を緩和させる効果が小さくなるためクラックを発
生させてしまう。一方、貯蔵弾性率が20MPa未満で
は、取扱性が悪くなる。
The storage elastic modulus of the adhesive component measured by a dynamic viscoelasticity measuring apparatus of the present invention is 20 to 2,000 M at 25 ° C.
It is preferable to have a low elastic modulus of 3 to 50 MPa at 260 ° C. in Pa. The storage elastic modulus was measured by applying a tensile load to the cured adhesive and applying a frequency of 10 Hz and a temperature rising rate of 5 to 5.
The measurement was performed in a temperature dependence measurement mode in which measurement was performed from -50 ° C to 300 ° C at 10 ° C / min. The storage elastic modulus at 25 ° C is 2,
If it exceeds 000 MPa, cracks occur because the effect of relieving the stress generated during reflow is reduced due to the difference in the thermal expansion coefficient between the semiconductor chip and the printed wiring board. On the other hand, if the storage elastic modulus is less than 20 MPa, the handleability becomes poor.

【0120】本発明では、コア材に耐熱性熱可塑性フィ
ルムを用いる三層構造をとることで、エポキシ基含有ア
クリル系共重合体とエポキシ樹脂系接着剤において、室
温付近での弾性率が低いことに起因する接着フィルムの
取り扱い性を容易にすることを特徴としている。すなわ
ち、本発明の三層構造により、室温付近での剛性のない
接着フィルムの位置合せ等の作業を容易に自動化するこ
とができ、しかも、本接着剤系の優れた熱応力緩和効果
を発現することができる。本発明では、下記の方法によ
り、従来の低弾性率接着フィルムの剛性の低下等による
取り扱い性の点での問題を解決した。
In the present invention, by adopting a three-layer structure using a heat-resistant thermoplastic film for the core material, the epoxy group-containing acrylic copolymer and the epoxy resin-based adhesive have low elastic modulus near room temperature. This facilitates handling of the adhesive film caused by the above. That is, by the three-layer structure of the present invention, the work such as the positioning of the non-rigid adhesive film at around room temperature can be easily automated, and the present adhesive system exhibits an excellent thermal stress relaxation effect. be able to. In the present invention, the following method has solved the problem of handleability due to a decrease in rigidity of the conventional low elastic modulus adhesive film.

【0121】1)コア材に耐熱性熱可塑性フィルムを配
した三層構造をとることで低弾性率の接着剤をフィルム
状で容易に取り扱うことができる。
1) By adopting a three-layer structure in which a heat-resistant thermoplastic film is disposed on a core material, an adhesive having a low elastic modulus can be easily handled in the form of a film.

【0122】2)本発明で規定したコア材となる耐熱性
熱可塑性フィルムを用いることにより、リフロー時の接
着フィルムの塑性変形を抑制できる。
2) By using the heat-resistant thermoplastic film as the core material specified in the present invention, plastic deformation of the adhesive film during reflow can be suppressed.

【0123】さらに、本発明では、エポキシ樹脂と高分
子量樹脂とが相溶性が良く均一になっており、アクリル
系共重合体に含まれるエポキシ基がそれらと部分的に反
応し、未反応のエポキシ樹脂を含んで全体が架橋してゲ
ル化するために、それが流動性を抑制し、エポキシ樹脂
等を多く含む場合においても取扱い性を損なうことがな
い。また、未反応のエポキシ樹脂がゲル中に多数残存し
ているため、圧力がかかった場合、ゲル中より未反応成
分がしみだすため、全体がゲル化した場合でも、接着性
の低下が少なくなる。
Further, in the present invention, the epoxy resin and the high molecular weight resin have good compatibility and are uniform, and the epoxy group contained in the acrylic copolymer partially reacts with them, and unreacted epoxy resin is reacted. Since the whole is crosslinked and gelled including the resin, it suppresses the fluidity and does not impair the handling even when a large amount of epoxy resin or the like is contained. In addition, since a large number of unreacted epoxy resins remain in the gel, when pressure is applied, unreacted components exude from the gel, so that even if the whole is gelled, the decrease in adhesiveness is reduced. .

【0124】接着剤の乾燥時には、エポキシ基含有アク
リル系共重合体に含まれるエポキシ基やエポキシ樹脂が
ともに反応するが、エポキシ基含有アクリル系共重合体
は分子量が大きく、1分子鎖中にエポキシ基が多く含ま
れるため、反応が若干進んだ場合でもゲル化する。通
常、DSCを用いて測定した場合の全硬化発熱量の10
から40%の発熱を終えた状態、すなわちAまたはBス
テージ前半の段階でゲル化がおこる。そのため、エポキ
シ樹脂等の未反応成分を多く含んだ状態でゲル化してお
り、溶融粘度がゲル化していない場合に比べて、大幅に
増大しており、取扱い性を損なうことがない。また圧力
がかかった場合、ゲル中より未反応成分がしみだすた
め、ゲル化した場合でも、接着性の低下が少ない。さら
に、接着剤がエポキシ樹脂等の未反応成分を多く含んだ
状態でフィルム化できるため、接着フィルムのライフ
(有効使用期間)が長くなるという利点がある。
When the adhesive is dried, the epoxy group and the epoxy resin contained in the epoxy group-containing acrylic copolymer react with each other, but the epoxy group-containing acrylic copolymer has a large molecular weight and the epoxy group in one molecular chain. Since it contains many groups, it gels even when the reaction proceeds slightly. Usually, 10% of the total curing calorific value when measured using DSC.
The gelation occurs in a state in which the heat generation of 40% to 40% has been completed, that is, in the first half of the A or B stage. Therefore, the gel is formed in a state containing a large amount of unreacted components such as an epoxy resin, and the melt viscosity is significantly increased as compared with the case where the gel is not gelled, and the handleability is not impaired. In addition, when pressure is applied, unreacted components exude from the gel, and therefore, even when gelled, the adhesiveness is hardly reduced. Furthermore, since the adhesive can be formed into a film with a large amount of unreacted components such as epoxy resin, there is an advantage that the life (effective use period) of the adhesive film is extended.

【0125】従来のエポキシ樹脂系接着剤ではBステー
ジの後半から、Cステージ状態で初めてゲル化が起こ
り、ゲル化が起こった段階でのエポキシ樹脂等の未反応
成分が少ないため、流動性が低く、圧力がかかった場合
でも、ゲル中よりしみだす未反応成分が少ないため、接
着性が低下する。
In the conventional epoxy resin-based adhesive, gelation occurs for the first time in the C stage state from the latter half of the B stage, and the unreacted components such as the epoxy resin at the stage of the gelation are small, so that the fluidity is low. Even when pressure is applied, the amount of unreacted components oozing out of the gel is small, so that the adhesiveness is reduced.

【0126】なお、アクリル系共重合体に含まれるエポ
キシ基と低分子量のエポキシ樹脂のエポキシ基の反応し
やすさについては明らかではないが、少なくとも同程度
の反応性を有していればよく、アクリル系共重合体に含
まれるエポキシ基のみが選択的に反応するものである必
要はない。
It is not clear how easily the epoxy group contained in the acrylic copolymer reacts with the epoxy group of the low-molecular-weight epoxy resin, but it is sufficient that the epoxy copolymer has at least the same reactivity. It is not necessary that only the epoxy group contained in the acrylic copolymer reacts selectively.

【0127】なおこの場合、A、B、Cステージは、接
着剤の硬化の程度を示す。Aステージはほぼ未硬化でゲ
ル化していない状態であり、DSCを用いて測定した場
合の全硬化発熱量の0〜20%の発熱を終えた状態であ
る。Bステージは若干硬化、ゲル化が進んだ状態であり
全硬化発熱量の20〜60%の発熱を終えた状態であ
る。Cステージはかなり硬化が進み、ゲル化した状態で
あり、全硬化発熱量の60〜100%の発熱を終えた状
態である。
In this case, the stages A, B and C indicate the degree of curing of the adhesive. The A stage is in a state of being almost uncured and not gelling, and is a state in which heat generation of 0 to 20% of a total curing calorific value measured by using DSC has been completed. The B stage is in a state in which curing and gelation are slightly advanced, and a state in which heat generation of 20 to 60% of the total curing calorific value has been completed. The C stage is in a state where the curing has progressed considerably and is in a gelled state, and a state where heating of 60 to 100% of the total curing calorific value has been completed.

【0128】ゲル化の判定については、THF(テトラ
ヒドロフラン)等の浸透性の大きい溶剤中に接着剤を浸
し、25℃で20時間放置した後、接着剤が完全に溶解
しないで膨潤した状態にあるものをゲル化したと判定し
た。なお、実験的には、以下のように判定した。
Regarding the determination of gelation, the adhesive was immersed in a highly permeable solvent such as THF (tetrahydrofuran) and allowed to stand at 25 ° C. for 20 hours, after which the adhesive was swollen without completely dissolving. The product was determined to have gelled. In addition, it experimentally determined as follows.

【0129】THF中に接着剤(重量W1)を浸し、2
5℃で20時間放置した後、非溶解分を200メッシュ
のナイロン布で濾過し、これを乾燥した後の重量を測定
(重量W2)した。THF抽出率(%)をつぎの数式
(2)のように算出した。THF抽出率が80重量%を
越えるものをゲル化していないとし、80重量%以下の
ものをゲル化していると判定した。
An adhesive (weight W1) is immersed in THF,
After standing at 5 ° C. for 20 hours, undissolved components were filtered through a 200-mesh nylon cloth, and the weight after drying was measured (weight W2). The THF extraction rate (%) was calculated as in the following equation (2). Those with a THF extraction rate of more than 80% by weight were not gelled, and those with a weight of 80% by weight or less were judged to be gelled.

【0130】 [0130]

【0131】本発明では、フィラーを添加することによ
り、溶融粘度が大きくでき、さらにチクソトロピック性
を発現できるために、上記効果をさらに大きくすること
が可能となる。
In the present invention, by adding a filler, the melt viscosity can be increased and the thixotropic property can be exhibited, so that the above-mentioned effect can be further enhanced.

【0132】さらに、上記の効果に加えて、接着剤の放
熱性向上、接着剤に難燃性の付与、接着時の温度におい
て適正な粘度をもたせること、表面硬度の向上等の特性
も付与できる。
Further, in addition to the above-mentioned effects, it is also possible to impart properties such as improvement in heat dissipation of the adhesive, imparting flame retardancy to the adhesive, imparting an appropriate viscosity at the temperature at the time of bonding, and improving surface hardness. .

【0133】[0133]

【実施例】以下、図面に基づき本発明の各種実施例につ
いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments of the present invention will be described below with reference to the drawings.

【0134】<実施例1>図1(a)は単層の熱硬化性
接着フィルムの断面図であり、動的粘弾性装置で測定さ
れるその硬化物の25℃における弾性率が10から20
00MPaの範囲であり、かつ260℃における弾性率
が3から50MPaの範囲で規定され、DSC(示差熱
量計)を用いて測定した場合の全硬化発熱量の10〜4
0%の発熱を終えた半硬化状態の熱硬化性接着剤1から
なる。熱硬化性接着フイルム内に残存する溶媒量を2%
以下に乾燥されたエポキシ基含有アクリル共重合体フィ
ルムを用いた。
Example 1 FIG. 1 (a) is a cross-sectional view of a single-layer thermosetting adhesive film having a cured product having an elastic modulus of 10 to 20 at 25 ° C. measured by a dynamic viscoelasticity apparatus.
The elastic modulus at 260 ° C. is in the range of 3 to 50 MPa, and 10 to 4 of the total curing calorific value when measured using a DSC (differential calorimeter).
The thermosetting adhesive 1 is a semi-cured thermosetting adhesive 1 which has generated 0% of heat. 2% of solvent remaining in thermosetting adhesive film
The dried epoxy group-containing acrylic copolymer film was used below.

【0135】図1(b)は熱硬化性接着剤1をポリイミ
ドフィルム2の両面に塗工された3層の接着フィルムの
断面図を示す。この例ではポリイミドフィルムとして宇
部興産製の50μm厚のユーピレックス(商品名)を用
いた。
FIG. 1B is a cross-sectional view of a three-layer adhesive film in which a thermosetting adhesive 1 is applied to both surfaces of a polyimide film 2. In this example, a 50 μm thick Upilex (trade name) manufactured by Ube Industries, Ltd. was used as a polyimide film.

【0136】図2はワイヤボンディング方式で半導体端
子部と配線基板側端子部とを接続するのに好適な、接着
部材3を有機配線基板4に熱圧着した半導体搭載用基板
の断面図、図3はTABのインナーボンディング方式で
半導体端子部と配線板側端子部と接続するのに好適な、
接着部材3をテープ状配線基板5に熱圧着した半導体搭
載用基板の断面図である。図4は図2の半導体搭載用基
板にチップ6をフェイスアップで接着し、半導体端子部
と配線板側端子部とがワイヤ7によりワイヤボンディン
グされ、封止材で封止されてなる半導体装置の断面図、
図5は図3の半導体搭載用基板にチップ6をフェイスダ
ウンで接着したのちTABのインナーボンディング方式
で半導体端子部と基板側端子部とが接続され、チップ6
端面が液状封止材8で封止されてなる半導体装置の断面
図である。なお、図8に示すように、配線9を基板の半
導体チップ搭載側とは反対側に形成してもよい。この場
合、外部接続端子12は、半導体チップ搭載側とは反対
の側に形成された配線9の表面に形成される。また、配
線9の露出部分は、レジスト11により覆われる。
FIG. 2 is a cross-sectional view of a semiconductor mounting substrate in which an adhesive member 3 is thermocompression-bonded to an organic wiring substrate 4 suitable for connecting a semiconductor terminal portion and a wiring substrate side terminal portion by a wire bonding method. Is suitable for connecting the semiconductor terminal portion and the wiring board side terminal portion by TAB inner bonding method,
FIG. 4 is a cross-sectional view of a semiconductor mounting substrate in which an adhesive member 3 is thermocompression-bonded to a tape-shaped wiring substrate 5. FIG. 4 shows a semiconductor device in which the chip 6 is bonded face up to the semiconductor mounting substrate of FIG. 2, and the semiconductor terminal portion and the wiring board side terminal portion are wire-bonded with wires 7 and sealed with a sealing material. Sectional view,
FIG. 5 shows that after the chip 6 is bonded face down to the semiconductor mounting substrate of FIG. 3, the semiconductor terminal portion and the substrate side terminal portion are connected by the inner bonding method of TAB.
FIG. 4 is a cross-sectional view of a semiconductor device having an end face sealed with a liquid sealing material 8. Note that, as shown in FIG. 8, the wiring 9 may be formed on the side of the substrate opposite to the side on which the semiconductor chip is mounted. In this case, the external connection terminal 12 is formed on the surface of the wiring 9 formed on the side opposite to the side on which the semiconductor chip is mounted. The exposed portion of the wiring 9 is covered with the resist 11.

【0137】図6に半導体搭載用基板および半導体装置
の製造工程を示す。
FIG. 6 shows a manufacturing process of the semiconductor mounting substrate and the semiconductor device.

【0138】動的粘弾性装置で測定されるその硬化物の
25℃における弾性率が10から2000MPaの範囲
であり、かつ260℃における弾性率が3から50MP
aの範囲で規定され、DSCを用いて測定した場合の全
硬化発熱量の10〜40%の発熱を終えた半硬化状態の
熱硬化性接着剤1で構成される熱硬化性接着テープ(接
着部材)3を所定の大きさに切断プレスで切断する(図
6(a))。
The elastic modulus at 25 ° C. of the cured product measured by a dynamic viscoelasticity device is in the range of 10 to 2000 MPa, and the elastic modulus at 260 ° C. is 3 to 50 MPa.
A thermosetting adhesive tape (adhesive) composed of a thermosetting adhesive 1 in a semi-cured state that has been generated within 10 to 40% of the total curing calorific value when measured using a DSC and defined by DSC. The member 3 is cut into a predetermined size by a cutting press (FIG. 6A).

【0139】切断された熱硬化性接着テープ3を、1層
のCu配線が施され、外部はんだ端子用スルーホールが
形成されたポリイミドフィルム基板(有機配線基板)4
上面に精密に位置合わせした後、熱プレスにて熱圧着し
半導体搭載用基板を得る(図6(b))。
The cut thermosetting adhesive tape 3 is applied to a polyimide film substrate (organic wiring substrate) 4 on which one layer of Cu wiring is formed and through holes for external solder terminals are formed.
After precise positioning on the upper surface, the substrate is thermocompressed with a hot press to obtain a semiconductor mounting substrate (FIG. 6B).

【0140】この例では、熱硬化性接着フィルムの切
断、およびポリイミドフィルム基板への精密位置決め搭
載及び仮固定は個々に行い、その後、搭載した熱硬化性
接着フィルムを一括して熱プレスにて本圧着して7連の
フレーム状半導体搭載用基板を得た。さらにこの例で
は、熱硬化性接着フィルム3を切断する工程の前に、帯
電した空気を吹き付けるエリミノスタット(静電気除
去)工程を実施し、帯電した絶縁性のフィルムが切断工
程時に治具に貼り付くことを防止した。また、さらに仮
接着ならびに一括して本接着をする際の熱硬化性接着フ
ィルム3に接触する熱プレスの上型にはテフロンないし
はシリコンの離型表面処理を施し、熱硬化性フィルムが
上型に粘着することを防止した。こうして得られた多連
半導体搭載用フレーム基板に半導体チップ6をフェイス
アップにて精密位置決め搭載し、熱プレスにて加圧し接
着するチップマウント工程を経る。この例では半導体チ
ップ側の加熱温度を少なくとも半導体搭載用基板側より
高く設定し、両面から加熱・圧着した。
In this example, cutting of the thermosetting adhesive film, precise positioning and mounting on the polyimide film substrate, and temporary fixing are individually performed, and then the mounted thermosetting adhesive films are collectively pressed by a hot press. It was crimped to obtain seven frames of semiconductor mounting substrates. Furthermore, in this example, before the step of cutting the thermosetting adhesive film 3, an eliminostat (static electricity removing) step of blowing charged air is performed, and the charged insulating film is attached to the jig during the cutting step. Prevented sticking. Further, the upper die of the hot press which contacts the thermosetting adhesive film 3 for the temporary bonding and the real bonding at once is subjected to a release surface treatment of Teflon or silicon, so that the thermosetting film becomes the upper die. Prevents sticking. The semiconductor chip 6 is precisely positioned and mounted face-up on the frame substrate for mounting multiple semiconductors obtained in this manner, and then subjected to a chip mounting step of bonding by pressing with a hot press. In this example, the heating temperature on the semiconductor chip side was set at least higher than that on the semiconductor mounting substrate side, and heating and pressure bonding were performed from both sides.

【0141】その後、半導体チップ側の端子部と基板側
端子部とを金線でワイヤボンディングするワイヤボンデ
ィング工程(図6(c))、およびエポキシ系封止材に
てトランスファーモールド成形して封止する封止工程
(図6(d))、そしてはんだボールを搭載しリフロー
工程をへて外部端子9を形成するはんだボール形成工程
をへて、本発明による半導体装置を得た(図6
(e))。封止材8として日立化成製ビフェニル系エポ
キシ封止材CEL−9200(商品名)を用いた。
Thereafter, a wire bonding step of wire bonding the semiconductor chip side terminal portion and the substrate side terminal portion with a gold wire (FIG. 6 (c)), and transfer molding with an epoxy-based sealing material to seal. A semiconductor device according to the present invention was obtained through a sealing step (FIG. 6 (d)) and a solder ball forming step of mounting solder balls and forming an external terminal 9 through a reflow step (FIG. 6).
(E)). As a sealing material 8, a biphenyl-based epoxy sealing material CEL-9200 (trade name) manufactured by Hitachi Chemical Co., Ltd. was used.

【0142】<比較例1>1層のCu配線が施され、外
部はんだ端子用スルーホールが形成されたポリイミドフ
ィルム配線基板(実施例11で使用したのと同じ)上面
に、エポキシ樹脂を主成分とし、その硬化物のDMA
(動的粘弾性測定装置)で測定される25℃の弾性率が
3000MPaの絶縁性液状接着剤をダイボンド装置に
て滴下・塗布し、半導体チップを精密に位置決めし搭載
した。その後、クリーンオーブン内で所定の硬化時間を
経たのち、実施例1と同じワイヤボンディング工程、封
止工程、及びはんだボール形成工程をへて半導体装置を
得た。
<Comparative Example 1> On the upper surface of a polyimide film wiring substrate (same as that used in Example 11) on which one layer of Cu wiring was formed and through holes for external solder terminals were formed, epoxy resin was used as a main component. And the DMA of the cured product
An insulating liquid adhesive having an elastic modulus of 25 MPa at 25 ° C. measured by a (dynamic viscoelasticity measuring device) was dropped and applied by a die bonding device, and the semiconductor chip was precisely positioned and mounted. After a predetermined curing time in a clean oven, the semiconductor device was obtained through the same wire bonding step, sealing step, and solder ball forming step as in Example 1.

【0143】<比較例2>実施例1で使用したのと同じ
ポリイミド配線基板に、シリコン樹脂を主成分としその
硬化物の25℃の弾性率が10MPaであり、かつ26
0℃における弾性率が測定不可能なほど小さい絶縁性液
状接着剤、をダイボンド装置にて滴下・塗布し、半導体
チップを搭載し、その後、実施例1と同じ工程をへて半
導体装置を得た。
Comparative Example 2 On the same polyimide wiring board as used in Example 1, a silicone resin as a main component, the cured product of which had a modulus of elasticity of 10 MPa at 25 ° C. and 26
An insulating liquid adhesive whose elastic modulus at 0 ° C. is too small to be measured is dropped and applied by a die bonding device, and a semiconductor chip is mounted. Thereafter, the same process as in Example 1 is performed to obtain a semiconductor device. .

【0144】<実施例2>図7に半導体搭載用基板およ
び半導体装置の製造工程を示す。
<Embodiment 2> FIGS. 7A and 7B show a process of manufacturing a semiconductor mounting substrate and a semiconductor device.

【0145】動的粘弾性装置で測定されるその硬化物の
25℃における弾性率が10から2000MPaの範囲
であり、かつ260℃における弾性率が3から50MP
aの範囲で規定され、DSCを用いて測定した場合の全
硬化発熱量の10〜40%の発熱を終えた半硬化状態の
熱硬化性接着剤1で構成される熱硬化性接着テープ(接
着部材)3を所定の大きさに切断プレスで切断する(図
7(a))。
The elastic modulus at 25 ° C. of the cured product measured by a dynamic viscoelasticity device is in the range of 10 to 2000 MPa, and the elastic modulus at 260 ° C. is 3 to 50 MPa.
A thermosetting adhesive tape (adhesive) composed of a thermosetting adhesive 1 in a semi-cured state that has been generated within 10 to 40% of the total curing calorific value when measured using a DSC and defined by DSC. The member 3 is cut into a predetermined size by a cutting press (FIG. 7A).

【0146】切断された熱硬化性接着テープ3を、1層
のCu配線が施され、TABテープ同様のインナーリー
ド部と外部はんだ端子用のスルーホールが形成されたポ
リイミドフィルム基板5の上面に精密に位置合わせした
後、熱プレスにて熱圧着して半導体搭載用基板を得た
(図7(b))。
The cut thermosetting adhesive tape 3 is precisely placed on the upper surface of the polyimide film substrate 5 on which one layer of Cu wiring has been formed and the inner lead portions similar to the TAB tape and through holes for external solder terminals have been formed. After that, the substrate was thermocompressed with a hot press to obtain a semiconductor mounting substrate (FIG. 7B).

【0147】この例では、実施例1に記載された切断工
程前の静電気除去工程、および熱プレス上型面への離型
表面処理を施した同じ工程にて、多連半導体搭載用フレ
ーム基板を得た。
In this example, the multiple semiconductor mounting frame substrate was formed by the static electricity removing step before the cutting step described in the first embodiment and the same step of performing the release surface treatment on the upper surface of the hot press. Obtained.

【0148】その後、半導体搭載用フレーム基板に半導
体チップ6をフェイスダウンで精密位置合わせして順次
搭載し、熱プレスにて熱圧着した(図7(c))。その
後、基板側端子であるCuインナーリード部10を個々
にTABインナーリードボンダー(この例ではシングル
ポイントボンダー)を用いて、チップ側の端子部に接続
するインナーリードボンディングを経て(図7
(d))、チップ端面とポリイミドフィルム基板5の上
面とをエポキシ系液状封止材8をディスペンスにて被覆
し(図7(e))、所定の加熱・硬化時間を経て、半導
体装置を得た(図7(f))。この例では、インナーリ
ード部にはCuの上にSnめっきが施されたものを用
い、半導体端子部にはAuめっきバンプが形成されてい
るものを用いてAu/Sn接合により接続した。
Thereafter, the semiconductor chip 6 was mounted on the frame substrate for mounting the semiconductor chip in a precise position face-down, and the semiconductor chip 6 was thermocompressed by a hot press (FIG. 7C). Thereafter, the Cu inner lead portions 10 as the substrate side terminals are individually connected to the chip side terminal portions by using a TAB inner lead bonder (in this example, a single point bonder) (FIG. 7).
(D)) The chip end surface and the upper surface of the polyimide film substrate 5 are covered with an epoxy-based liquid sealing material 8 by dispensing (FIG. 7 (e)), and after a predetermined heating and curing time, a semiconductor device is obtained. (FIG. 7 (f)). In this example, the inner lead portion was formed by applying Sn plating on Cu, and the semiconductor terminal portion was formed by forming an Au plating bump and connected by Au / Sn bonding.

【0149】<比較例3>1層のCu配線が施され、T
ABテープのインナーリード部と外部はんだ端子用のス
ルーホールが形成された実施例2と同じポリイミドフィ
ルム基板の上面に、エポキシ樹脂を主成分とし、その硬
化物のDMAで測定される25℃の弾性率が3000M
Paの絶縁性液状接着剤をダイボンド装置にて滴下・塗
布し、半導体チップを精密に位置決めし搭載した。しか
し、樹脂がインナーボンディング部にまで流れ、その後
のインナーボンディングができなかったが、そのまま実
施例2と同様にチップ端面をエポキシ樹脂を主体とする
液状封止材で封止し、はんだボールを形成した比較品を
得た。
<Comparative Example 3> One layer of Cu wiring was provided,
On the upper surface of the same polyimide film substrate as in Example 2 in which the inner lead portion of the AB tape and the through-hole for the external solder terminal were formed, an epoxy resin as a main component, and a cured product of the cured product at 25 ° C. measured by DMA. The rate is 3000M
The insulating liquid adhesive of Pa was dropped and applied by a die bonding apparatus, and the semiconductor chip was precisely positioned and mounted. However, although the resin flowed to the inner bonding portion and the subsequent inner bonding could not be performed, the chip end face was sealed with a liquid sealing material mainly composed of epoxy resin as in Example 2 to form a solder ball. A comparative product was obtained.

【0150】<比較例4>1層のCu配線が施され、T
ABテープのインナーリード部と外部はんだ端子用のス
ルーホールが形成された実施例2と同じポリイミドフィ
ルム基板の上面に、シリコン樹脂を主成分としその硬化
物の25℃の弾性率が10MPaであり、かつ260℃
における弾性率が測定不可能なほど小さい絶縁性液状接
着剤、をダイボンド装置にて滴下・塗布し、実施例2と
同様に半導体チップを搭載した。しかし、樹脂がインナ
ーボンディング部にまで流れ、その後のインナーボンデ
ィングができなかったが、そのまま実施例2と同様にチ
ップ端面をエポキシ樹脂を主体とする液状封止材で封止
し、はんだボールを形成した比較品を得た。
<Comparative Example 4> One layer of Cu wiring was formed,
On the upper surface of the same polyimide film substrate as in Example 2 in which the inner lead portion of the AB tape and the through hole for the external solder terminal were formed, the elasticity at 25 ° C. of the cured product containing silicon resin as a main component was 10 MPa, And 260 ° C
An insulating liquid adhesive whose elastic modulus was too small to be measured was dropped and applied by a die bonding apparatus, and a semiconductor chip was mounted in the same manner as in Example 2. However, although the resin flowed to the inner bonding portion and the subsequent inner bonding could not be performed, the chip end face was sealed with a liquid sealing material mainly composed of epoxy resin as in Example 2 to form a solder ball. A comparative product was obtained.

【0151】<比較例5>シリコン樹脂を主成分としそ
の硬化物の25℃の弾性率が10MPaであり、かつ2
60℃における弾性率が測定不可能なほど小さい絶縁性
液状接着剤をテフロン板に注型し、その後、所定の加熱
温度・時間により硬化させて、低弾性のフィルムを得
た。このフィルムの両面に比較例3に記載したエポキシ
樹脂を主体とする熱硬化性接着剤を両面に塗布し、1層
のCu配線が施されTABテープのインナーリード部と
外部はんだ端子用のスルーホールが形成された実施例2
と同じポリイミドフィルム基板の上面に、熱プレスで熱
圧着し、その後、半導体チップをフェイスダウンで接着
した後、実施例2に記載したインナーリードボンディン
グ工程、封止工程をへてはんだボールを形成した比較品
を得た。
Comparative Example 5 A cured product of a silicone resin as a main component at 25 ° C. having an elastic modulus of 10 MPa
An insulating liquid adhesive whose elastic modulus at 60 ° C. was too small to be measured was cast on a Teflon plate, and then cured at a predetermined heating temperature and time to obtain a low elasticity film. A thermosetting adhesive mainly composed of an epoxy resin described in Comparative Example 3 was applied to both sides of this film, and one layer of Cu wiring was provided. The inner leads of the TAB tape and through holes for external solder terminals were provided. Example 2 in which was formed
After thermocompression bonding with a hot press on the upper surface of the same polyimide film substrate as described above, and after bonding the semiconductor chip face down, the solder ball was formed through the inner lead bonding step and the sealing step described in Example 2. A comparative product was obtained.

【0152】<評価>実施例1、実施例2、比較例1〜
5の半導体装置について、耐吸湿リフロー試験を実施す
るとともに、FR−4配線基板にリフロー実装した各半
導体装置について耐温度サイクル試験を実施した結果を
表1に示す。吸湿リフロー試験については、吸湿前と8
5℃85%RHの条件下で24時間および48時間吸湿
させたのち最高温度240℃のIRリフローを実施した
試験品中の剥離、クラックをSAT(超音波探査探傷装
置)で調べた結果を表示した。また、各サンプルの耐温
度サイクル試験は、基板実装後に−25℃(30分、a
ir)〜150℃(30分、air)の温度サイクルを
実施したのち、パッケージ外部端子のはんだボールの接
続抵抗を4端子法で測定し、50mΩ以上になったもの
を不良とした。
<Evaluation> Example 1, Example 2, Comparative Examples 1 to
Table 1 shows the results of the moisture absorption resistance reflow test performed on the semiconductor device No. 5 and the temperature resistance cycle test performed on each semiconductor device reflow mounted on the FR-4 wiring board. About the moisture absorption reflow test,
The results of examining the peeling and cracking in the test sample subjected to IR reflow at a maximum temperature of 240 ° C. after having been subjected to moisture absorption for 24 hours and 48 hours under the conditions of 5 ° C. and 85% RH using an SAT (ultrasonic flaw detector) are displayed. did. The temperature cycle test of each sample was performed at -25 ° C (30 minutes, a
After a temperature cycle of (ir) to 150 ° C. (30 minutes, air), the connection resistance of the solder balls of the external terminals of the package was measured by a four-terminal method, and those having a resistance of 50 mΩ or more were determined to be defective.

【0153】[0153]

【表1】 [Table 1]

【0154】(注) 耐リフロー性 ○:チップ6および有機配線基板4、5と熱硬化性接着
剤3との界面に剥離およびボイドが極めて少なく、SA
T(超音波探査探傷装置)で検知できない。 △:熱硬化性接着剤3の塗布時に有機配線基板の配線間
への埋め込みが充分でなくボイドが観察され、その箇所
から剥離が進展しているものが、サンプル10中2〜
3。 ×:上記した剥離がパッケージ外部にまで至り、リフロ
ー後はパッケージに膨れ、クラックが観察されるもがサ
ンプル10中10。剥離してワイヤーボンディング部や
インナーリード部の断線にまで至るものが観察される。
(Note) Reflow resistance :: peeling and voids at the interface between the chip 6 and the organic wiring substrates 4 and 5 and the thermosetting adhesive 3 are extremely small, and SA
Cannot be detected by T (ultrasonic detection flaw detector). Δ: When the thermosetting adhesive 3 was applied, the gap between the wirings of the organic wiring board was not sufficiently filled and a void was observed, and peeling was progressing from that location.
3. ×: The above-mentioned peeling reaches the outside of the package, and after reflow, the package swells and cracks are observed, but 10 out of 10 samples. What peels off and leads to breakage of the wire bonding portion and the inner lead portion is observed.

【0155】耐温度サイクル性 ○:はんだボール接続部の接続抵抗が変化しない。 ×:はんだボール接続部の接続抵抗が50mΩを越える
端子が1つでも存在する。 −:インナーボンディングが出来ず、接続抵抗を測定で
きない。評価不可。
Temperature cycle resistance ○: The connection resistance of the solder ball connection does not change. ×: At least one terminal having a connection resistance of the solder ball connection portion exceeding 50 mΩ is present. −: Inner bonding could not be performed, and connection resistance could not be measured. Cannot be evaluated.

【0156】<実施例3>エポキシ樹脂としてビスフェ
ノールA型エポキシ樹脂(エポキシ当量200、油化シ
ェルエポキシ株式会社製のエピコート828を使用)4
5重量部、クレゾールノボラック型エポキシ樹脂(エポ
キシ当量220、住友化学工業株式会社製のESCN0
01を使用)15重量部、エポキシ樹脂の硬化剤として
フェノールノボラック樹脂(大日本インキ化学工業株式
会社製のプライオーフェンLF2882を使用)40重
量部、エポキシ樹脂と相溶性がありかつ重量平均分子量
が3万以上の高分子量樹脂としてフェノキシ樹脂(分子
量5万、東都化成株式会社製のフェノトートYP−50
を使用)15重量部、エポキシ基含有アクリルゴムとし
てエポキシ基含有アクリルゴム(分子量100万、帝国
化学産業株式会社製のHTR−860P−3を使用)1
50重量部、硬化促進剤として硬化促進剤1−シアノエ
チル−2−フェニルイミダゾール(キュアゾール2PZ
−CN)0.5重量部、シランカップリング剤としてγ
−グリシドキシプロピルトリメトキシシラン(日本ユニ
カー株式会社製のNUC A−187を使用)0.7重
量部からなる組成物に、メチルエチルケトンを加えて撹
拌混合し、真空脱気した。得られたワニスを、厚さ75
μmの離型処理したポリエチレンテレフタレートフィル
ム上に塗布し、140℃で5分間加熱乾燥して、膜厚が
80μmのBステージ状態の塗膜を形成し接着フィルム
を作製した。
<Example 3> Bisphenol A type epoxy resin (epoxy coat 828 manufactured by Yuka Shell Epoxy Co., Ltd., 200) was used as the epoxy resin.
5 parts by weight, cresol novolac epoxy resin (epoxy equivalent: 220, ESCN0 manufactured by Sumitomo Chemical Co., Ltd.)
01), 15 parts by weight, 40 parts by weight of a phenol novolak resin (using Plyofen LF2882 manufactured by Dainippon Ink and Chemicals, Inc.) as a curing agent for the epoxy resin, which is compatible with the epoxy resin and has a weight average molecular weight of 3 Phenoxy resin (molecular weight: 50,000, phenothoto YP-50 manufactured by Toto Kasei Co., Ltd.)
15 parts by weight, epoxy group-containing acrylic rubber as epoxy group-containing acrylic rubber (molecular weight 1,000,000, using HTR-860P-3 manufactured by Teikoku Chemical Industry Co., Ltd.) 1
50 parts by weight, a curing accelerator 1-cyanoethyl-2-phenylimidazole (Curesol 2PZ) as a curing accelerator
—CN) 0.5 part by weight, γ as a silane coupling agent
-To a composition consisting of 0.7 parts by weight of glycidoxypropyltrimethoxysilane (using NUC A-187 manufactured by Nippon Unicar Co., Ltd.) was added methyl ethyl ketone, followed by stirring and mixing, followed by vacuum degassing. The obtained varnish is coated with a thickness of 75
It was applied on a μm release-treated polyethylene terephthalate film and dried by heating at 140 ° C. for 5 minutes to form a B-stage coating film having a thickness of 80 μm to prepare an adhesive film.

【0157】なおこの状態での接着剤の硬化度は、DS
C(デュポン社製912型DSC)を用いて測定(昇温
速度、10℃/分)した結果、全硬化発熱量の15%の
発熱を終えた状態であった。また、THF中に接着剤
(重量W1)を浸し、25℃で20時間放置した後、非
溶解分を200メッシュのナイロン布で濾過し、これを
乾燥した後の重量を測定(重量W2)し、THF抽出率
(=(W1−W2)×100/W1)を求めたところ、
THF抽出率は35重量%であった。さらに、接着剤硬
化物の貯蔵弾性率を動的粘弾性測定装置(レオロジ製、
DVE−V4)を用いて測定(サンプルサイズ 長さ2
0mm、幅4mm、膜厚80μm、昇温速度5℃/分、
引張りモード 自動静荷重)した結果、25℃で360
MPa、260℃で4MPaであった。
The curing degree of the adhesive in this state was determined by DS
As a result of measurement (heating rate, 10 ° C./min) using C (a 912 type DSC manufactured by DuPont), 15% of the total curing heat generation was completed. Also, after the adhesive (weight W1) was immersed in THF and allowed to stand at 25 ° C. for 20 hours, the undissolved portion was filtered with a 200-mesh nylon cloth, and the weight after drying was measured (weight W2). , THF extraction rate (= (W1−W2) × 100 / W1)
The THF extraction rate was 35% by weight. Furthermore, the storage elastic modulus of the cured adhesive is measured by a dynamic viscoelasticity measuring device (Rheology,
DVE-V4) (sample size length 2
0 mm, width 4 mm, film thickness 80 μm, heating rate 5 ° C./min,
As a result of tension mode automatic static load),
Mpa was 4 MPa at 260 ° C.

【0158】<実施例4>実施例3で用いたフェノキシ
樹脂を、カルボキシル基含有アクリロニトリルブタジエ
ンゴム(分子量40万、日本合成ゴム株式会社製のPN
R−1を使用)に変更したほか、実施例1と同様にして
接着フィルムを作製した。なお、この状態での接着剤の
硬化度は、DSCを用いて測定した結果、全硬化発熱量
の20%の発熱を終えた状態であった。THF抽出率
は、35重量%であった。さらに、接着剤硬化物の貯蔵
弾性率を動的粘弾性測定装置を用いて測定した結果、2
5℃で300MPa、260℃で3MPaであった。
Example 4 The phenoxy resin used in Example 3 was replaced with a carboxyl group-containing acrylonitrile butadiene rubber (molecular weight: 400,000, PN manufactured by Nippon Synthetic Rubber Co., Ltd.).
R-1), and an adhesive film was produced in the same manner as in Example 1. The degree of curing of the adhesive in this state was measured using a DSC, and as a result, heat generation of 20% of the total curing calorific value was completed. The THF extraction rate was 35% by weight. Furthermore, the storage elastic modulus of the cured adhesive was measured using a dynamic viscoelasticity measurement apparatus, and as a result, 2
It was 300 MPa at 5 ° C. and 3 MPa at 260 ° C.

【0159】<実施例5>実施例3の接着剤ワニスの接
着剤固形分100体積部に対してシリカを10体積部添
加し、ビーズミルで60分間混練したワニスを用いて実
施例1と同様にして接着フィルムを作製した。DSCを
用いて測定した結果、全硬化発熱量の15%の発熱を終
えた状態であった。THF抽出率は、30重量%であっ
た。さらに、接着剤硬化物の貯蔵弾性率を動的粘弾性測
定装置を用いて測定した結果、25℃で1,500MP
a、260℃で10MPaであった。
<Example 5> In the same manner as in Example 1 except that 10 parts by volume of silica was added to 100 parts by volume of the solid content of the adhesive of the adhesive varnish of Example 3, and the mixture was kneaded with a bead mill for 60 minutes. Thus, an adhesive film was prepared. As a result of measurement using DSC, it was in a state where heat generation of 15% of the total curing heat generation was completed. The THF extraction rate was 30% by weight. Furthermore, as a result of measuring the storage elastic modulus of the cured adhesive using a dynamic viscoelasticity measuring device, it was found that the
a, 10 MPa at 260 ° C.

【0160】<実施例6>実施例3で用いたフェノキシ
樹脂を用いないこと以外実施例1と同様にして接着フィ
ルムを作製した。DSCを用いて測定した結果、全硬化
発熱量の15%の発熱を終えた状態であった。THF抽
出率は、35重量%であった。さらに、接着剤硬化物の
貯蔵弾性率を動的粘弾性測定装置を用いて測定した結
果、25℃で350MPa、260℃で4MPaであっ
た。
<Example 6> An adhesive film was produced in the same manner as in Example 1 except that the phenoxy resin used in Example 3 was not used. As a result of measurement using DSC, it was in a state where heat generation of 15% of the total curing heat generation was completed. The THF extraction rate was 35% by weight. Furthermore, the storage elastic modulus of the cured adhesive was measured using a dynamic viscoelasticity measuring apparatus, and as a result, it was 350 MPa at 25 ° C. and 4 MPa at 260 ° C.

【0161】<比較例6>実施例3のエポキシ基含有ア
クリルゴムの量を150重量部から50重量部にしたこ
と以外は実施例1と同様にして接着フィルムを作製し
た。DSCを用いて測定した結果、全硬化発熱量の20
%の発熱を終えた状態であった。THF抽出率は、40
重量%であった。さらに、接着剤硬化物の貯蔵弾性率
を、動的粘弾性測定装置を用いて測定した結果、25℃
で3,000MPa、260℃で5MPaであった。
Comparative Example 6 An adhesive film was produced in the same manner as in Example 1 except that the amount of the epoxy group-containing acrylic rubber in Example 3 was changed from 150 parts by weight to 50 parts by weight. As a result of measurement using a DSC, the total curing calorific value was 20%.
% Exotherm. The THF extraction rate is 40
% By weight. Furthermore, the storage elastic modulus of the cured adhesive was measured using a dynamic viscoelasticity measurement device.
At 3,000 MPa and 5 MPa at 260 ° C.

【0162】<比較例7>実施例3のエポキシ基含有ア
クリルゴムの量を150重量部から400重量部にした
こと以外は実施例1と同様にして接着フィルムを作製し
た。DSCを用いて測定した結果、全硬化発熱量の20
%の発熱を終えた状態であった。THF抽出率は、30
重量%であった。さらに、接着剤硬化物の貯蔵弾性率を
動的粘弾性測定装置を用いて測定した結果、25℃で2
00MPa、260℃で1MPaであった。
Comparative Example 7 An adhesive film was produced in the same manner as in Example 1 except that the amount of the epoxy group-containing acrylic rubber in Example 3 was changed from 150 parts by weight to 400 parts by weight. As a result of measurement using a DSC, the total curing calorific value was 20%.
% Exotherm. The THF extraction rate is 30
% By weight. Furthermore, the storage elastic modulus of the cured adhesive was measured using a dynamic viscoelasticity measurement apparatus.
It was 1 MPa at 00 MPa and 260 ° C.

【0163】<比較例8>実施例3のエポキシ基含有ア
クリルゴムの150重量部をフェノキシ樹脂に変更(フ
ェノキシ樹脂160重量部)した他、実施例1と同様に
して接着フィルムを作製した。この接着フィルムの全硬
化発熱量は20%であり、THF抽出率は、90重量%
であった。また、貯蔵弾性率は、25℃で3,400M
Pa、260℃で3MPaであった。
Comparative Example 8 An adhesive film was prepared in the same manner as in Example 1 except that 150 parts by weight of the epoxy group-containing acrylic rubber of Example 3 was changed to phenoxy resin (160 parts by weight of phenoxy resin). The total curing calorific value of this adhesive film was 20%, and the THF extraction rate was 90% by weight.
Met. The storage modulus is 3,400M at 25 ° C.
Pa and 3MPa at 260 ° C.

【0164】<比較例9>実施例3のエポキシ基含有ア
クリルゴムをアクリロニトリルブタジエンゴムに変更し
た他は、実施例1と同様にして接着フィルムを作製し
た。この接着フィルムの全硬化発熱量は、20%、TH
F抽出率は、90重量%であった。また、貯蔵弾性率
は、25℃で500MPa、260℃で2MPaであっ
た。
Comparative Example 9 An adhesive film was produced in the same manner as in Example 1 except that the epoxy group-containing acrylic rubber in Example 3 was changed to acrylonitrile butadiene rubber. The total curing calorific value of this adhesive film is 20%, TH
The F extraction rate was 90% by weight. The storage elastic modulus was 500 MPa at 25 ° C. and 2 MPa at 260 ° C.

【0165】<評価>得られた接着フィルムを用いて作
製した半導体装置について、耐熱性、耐電食性、耐湿性
を調べた。耐熱性の評価方法には、半導体チップと厚み
25μmのポリイミドフィルムを基材に用いたフレキシ
ブルプリント配線板を接着フィルムで貼り合せた半導体
装置サンプル(片面にはんだボールを形成)の耐リフロ
ークラック性と温度サイクル試験を適用した。耐リフロ
ークラック性の評価は、サンプル表面の最高温度が24
0℃でこの温度を20秒間保持するように温度設定した
IR(赤外線)リフロー炉にサンプルを通し、室温で放
置することにより冷却する処理を2回繰り返したサンプ
ル中のクラックの観察で行った。クラックの発生してい
ないものを良好とし、発生していたものを不良とした。
温度サイクル試験は、サンプルを−55℃雰囲気に30
分間放置し、その後125℃の雰囲気に30分間放置す
る工程を1サイクルとして、破壊が起きるまでのサイク
ル数を示した。また、耐電食性の評価は、FR−4基板
にライン/スペース=75/75μmのくし形パターン
を形成し、この上に接着フィルムを貼り合せたたサンプ
ルを作製し、85℃/85%RH/DC6V印加の条件
下で1,000時間後の絶縁抵抗値を測定することによ
り行った。絶縁抵抗値が10Ω以上を示したものを良好
とし、10Ω未満であったものを不良とした。また、耐
湿性評価は、半導体装置サンプルをプレッシャークッカ
ーテスター中で96時間処理(PCT処理)後接着フィ
ルムの剥離及び変色を観察することにより行った。接着
フィルムの剥離及び変色の認められなかったものを良好
とし、剥離のあったもの又は変色のあったものを不良と
した。その結果を表2に示す。
<Evaluation> With respect to a semiconductor device manufactured using the obtained adhesive film, heat resistance, electrolytic corrosion resistance, and moisture resistance were examined. The method for evaluating heat resistance includes reflow crack resistance of a semiconductor device sample (a solder ball is formed on one side) in which a semiconductor chip and a flexible printed wiring board using a polyimide film having a thickness of 25 μm as a base material are bonded with an adhesive film. A temperature cycling test was applied. The evaluation of the reflow cracking resistance was performed when the maximum temperature of the sample surface was 24.
The sample was passed through an IR (infrared) reflow furnace set at a temperature of 0 ° C. to maintain this temperature for 20 seconds, and was cooled twice by leaving it at room temperature to observe the cracks in the sample. Those with no cracks were evaluated as good, and those with cracks were evaluated as poor.
In the temperature cycle test, the sample was placed in an atmosphere of
The number of cycles up to the occurrence of destruction was shown as one cycle in which the process was left for 30 minutes in an atmosphere at 125 ° C. for 30 minutes. For the evaluation of the electrolytic corrosion resistance, a sample was prepared by forming a comb pattern having a line / space of 75/75 μm on an FR-4 substrate, and bonding an adhesive film on the comb pattern. The measurement was performed by measuring the insulation resistance value after 1,000 hours under the condition of applying DC 6 V. Those having an insulation resistance value of 10Ω or more were evaluated as good, and those having an insulation resistance of less than 10Ω were evaluated as defective. The moisture resistance was evaluated by treating the semiconductor device sample in a pressure cooker tester for 96 hours (PCT treatment), and then observing peeling and discoloration of the adhesive film. A sample in which no peeling or discoloration of the adhesive film was observed was regarded as good, and a sample in which peeling or discoloration was observed was regarded as bad. Table 2 shows the results.

【0166】[0166]

【表2】 [Table 2]

【0167】実施例3、4及び5は、いずれも、エポキ
シ樹脂及びその硬化剤、エポキシ樹脂と相溶性の高分子
量樹脂、エポキシ基含有アクリル系共重合体、硬化促進
剤をともに含む接着剤であり、実施例6は、エポキシ樹
脂及びその硬化剤、エポキシ基含有アクリル系共重合
体、硬化促進剤をともに含む接着剤であり、本発明で規
定した25℃及び260℃での貯蔵弾性率を示してい
る。これらは、耐リフロークラック性、温度サイクル試
験、耐電食性、耐PCT性が良好であった。
Examples 3, 4 and 5 are all adhesives containing an epoxy resin and its curing agent, a high molecular weight resin compatible with the epoxy resin, an epoxy group-containing acrylic copolymer, and a curing accelerator. Example 6 is an adhesive containing both an epoxy resin and its curing agent, an epoxy group-containing acrylic copolymer, and a curing accelerator, and has a storage elastic modulus at 25 ° C. and 260 ° C. specified in the present invention. Is shown. These were good in reflow crack resistance, temperature cycle test, electric corrosion resistance, and PCT resistance.

【0168】比較例6は、本発明で規定したエポキシ基
含有アクリル系共重合体の量が少ないため貯蔵弾性率が
高く応力を緩和できずに耐リフロークラック性、温度サ
イクルテストでの結果が悪く信頼性に劣る。また、比較
例7は、本発明で規定したエポキシ基含有アクリル系共
重合体の量が多すぎるため貯蔵弾性率が低く良好である
が、接着フィルムの取扱性が悪い。比較例8は、本発明
で規定したエポキシ基含有アクリル系共重合体を含まな
い組成であるため貯蔵弾性率が高く比較例1と同様、応
力を緩和できずに耐リフロークラック性、温度サイクル
テストでの結果が悪い。比較例9は、本発明で規定した
エポキシ基含有アクリル系共重合体を含まず、それ以外
のゴム成分を含み25℃での貯蔵弾性率が低いが耐電食
性に劣る結果を示した。
In Comparative Example 6, since the amount of the epoxy group-containing acrylic copolymer specified in the present invention was small, the storage elastic modulus was high, stress could not be relaxed, and the reflow crack resistance and the results in the temperature cycle test were poor. Poor reliability. In Comparative Example 7, the storage modulus was low and good because the amount of the epoxy group-containing acrylic copolymer specified in the present invention was too large, but the handleability of the adhesive film was poor. Comparative Example 8 had a high storage elastic modulus because it had no composition containing the epoxy group-containing acrylic copolymer specified in the present invention, and thus could not relieve stress as in Comparative Example 1 without reflow crack resistance and temperature cycle test. The results are poor. Comparative Example 9 did not contain the epoxy group-containing acrylic copolymer specified in the present invention, contained other rubber components, and had a low storage elastic modulus at 25 ° C., but was inferior in electrolytic corrosion resistance.

【0169】<実施例7>エポキシ樹脂としてビスフェ
ノールA型エポキシ樹脂(エポキシ当量200、油化シ
ェルエポキシ株式会社製商品名のエピコート828を使
用)45重量部、クレゾールノボラック型エポキシ樹脂
(エポキシ当量220、住友化学工業株式会社製商品名
のESCN001を使用)15重量部、エポキシ樹脂の
硬化剤としてフェノールノボラック樹脂(大日本インキ
化学工業株式会社製商品名のプライオーフェンLF28
82を使用)40重量部、エポキシ樹脂と相溶性があり
かつ重量平均分子量が3万以上の高分子量樹脂としてフ
ェノキシ樹脂(分子量5万、東都化成株式会社製商品名
のフェノトートYP−50を使用)15重量部、エポキ
シ基含有アクリル系共重合体としてエポキシ基含有アク
リルゴム(分子量100万、帝国化学産業株式会社製商
品名のHTR−860P−3を使用)150重量部、硬
化促進剤として硬化促進剤1−シアノエチル−2−フェ
ニルイミダゾール(キュアゾール2PZ−CN)0.5
重量部、シランカップリング剤としてγ−グリシドキシ
プロピルトリメトキシシラン(日本ユニカー株式会社製
商品名のNUC A−187を使用)0.7重量部から
なる組成物に、メチルエチルケトンを加えて攪拌混合
し、真空脱気した。得られたワニスを、厚さ50μmの
プラズマ処理を施したポリイミドフィルム上に塗布し、
130℃で5分間加熱乾燥して、膜厚が50μmのBス
テージ状態の塗膜を形成し片面接着フィルムを作製し
た。つぎに、この片面接着フィルムのポリイミドフィル
ムの接着剤を塗布していない面に同じワニスを塗布し、
140℃で5分間加熱乾燥して、膜厚が50μmのBス
テージ状態の塗膜を形成し三層構造の両面接着フィルム
を作製した。
<Example 7> As an epoxy resin, 45 parts by weight of a bisphenol A type epoxy resin (epoxy equivalent: 200, product name of Yuka Shell Epoxy Co., Ltd.) was used, and a cresol novolac type epoxy resin (epoxy equivalent: 220; 15 parts by weight of a phenol novolak resin (Plyofen LF28 manufactured by Dainippon Ink and Chemicals, Inc.) as a curing agent for epoxy resin (15 parts by weight of ESCN001 manufactured by Sumitomo Chemical Co., Ltd.)
Phenoxy resin (molecular weight: 50,000; trade name: Phenotote YP-50 manufactured by Toto Kasei Co., Ltd.) is used as a high molecular weight resin having a weight average molecular weight of 30,000 or more, which is 40 parts by weight, which is compatible with the epoxy resin. 15) parts by weight, 150 parts by weight of an epoxy group-containing acrylic rubber (molecular weight: 1,000,000, using HTR-860P-3 manufactured by Teikoku Chemical Industry Co., Ltd.) as an epoxy group-containing acrylic copolymer, and cured as a curing accelerator Accelerator 1-cyanoethyl-2-phenylimidazole (Curesol 2PZ-CN) 0.5
To a composition consisting of 0.7 parts by weight of γ-glycidoxypropyltrimethoxysilane as a silane coupling agent (using NUC A-187 of Nippon Unicar Co., Ltd.), methyl ethyl ketone is added and stirred and mixed. And vacuum degassed. The resulting varnish was applied on a 50 μm-thick plasma-treated polyimide film,
The film was heated and dried at 130 ° C. for 5 minutes to form a B-stage coating film having a thickness of 50 μm, thereby producing a single-sided adhesive film. Next, the same varnish was applied to the surface of the one-sided adhesive film on which the adhesive of the polyimide film was not applied,
The film was heated and dried at 140 ° C. for 5 minutes to form a B-stage coating film having a film thickness of 50 μm, thereby producing a double-sided adhesive film having a three-layer structure.

【0170】なおこの状態での接着フィルムの接着剤成
分の硬化度は、DSC(デュポン社製商品名912型D
SC)を用いて測定(昇温速度、10℃/分)した結
果、全硬化発熱量の15%の発熱を終えた状態であっ
た。また、THF中に接着剤(重量W1)を浸し、25
℃で20時間放置した後、非溶解分を200メッシュの
ナイロン布で濾過し、これを乾燥した後の重量を測定
(重量W2)し、THF抽出率(=(W1−W2)×1
00/W1)を求めたところ、THF抽出率は35重量
%であった。さらに、接着剤硬化物の貯蔵弾性率を動的
粘弾性測定装置を用いて測定した結果、25℃で360
MPa、260℃で4MPaであった。
In this state, the degree of curing of the adhesive component of the adhesive film was measured using a DSC (trade name 912 type D manufactured by DuPont).
SC) (heating rate, 10 ° C./min). As a result, 15% of the total curing calorific value was generated. Also, an adhesive (weight W1) is immersed in THF,
After leaving at 20 ° C. for 20 hours, the undissolved matter was filtered through a 200-mesh nylon cloth, and the weight after drying was measured (weight W2), and the THF extraction rate (= (W1−W2) × 1).
00 / W1), the THF extraction rate was 35% by weight. Furthermore, the storage elastic modulus of the cured adhesive was measured using a dynamic viscoelasticity measuring apparatus, and as a result, 360 ° C at 25 ° C.
Mpa was 4 MPa at 260 ° C.

【0171】<実施例8>実施例7で用いたフェノキシ
樹脂を、カルボキシル基含有アクリロニトリルブタジエ
ンゴム(分子量40万、日本合成ゴム株式会社製商品名
のPNR−1を使用)に変更したほか、実施例1と同様
にして三層構造の両面接着フィルムを作製した。なお、
この状態での接着フィルムの接着剤成分の硬化度は、D
SCを用いて測定した結果、全硬化発熱量の20%の発
熱を終えた状態であった。THF抽出率は、35重量%
であった。さらに、接着剤硬化物の貯蔵弾性率を動的粘
弾性測定装置を用いて測定した結果、25℃で300M
Pa、260℃で3MPaであった。
<Example 8> The phenoxy resin used in Example 7 was changed to acrylonitrile-butadiene rubber having a carboxyl group (molecular weight: 400,000, using PNR-1 manufactured by Nippon Synthetic Rubber Co., Ltd.). A three-layer structure double-sided adhesive film was produced in the same manner as in Example 1. In addition,
The degree of curing of the adhesive component of the adhesive film in this state is D
As a result of measurement using SC, heat generation of 20% of the total curing calorific value was completed. The THF extraction rate is 35% by weight.
Met. Further, the storage elastic modulus of the cured adhesive was measured using a dynamic viscoelasticity measuring device, and as a result, the
Pa and 3MPa at 260 ° C.

【0172】<実施例9>実施例7で用いた接着剤ワニ
スを厚さ50μmのポリエチレンテレフタレートフィル
ム上に塗布し、140℃で5分間加熱乾燥して、膜厚が
50μmのBステージ状態の塗膜を形成し、コア材とな
る耐熱性熱可塑性フィルムに貼り合わせるための接着フ
ィルムを作製した。この接着フィルムを厚さ50μmの
プラズマ処理を施したポリイミドフィルムの両面に真空
ラミネータを用いて、ラミネータロール温度80℃、送
り速度0.2m/分、線圧5kgのラミネート条件で貼
り合わせることにより三層構造の両面接着フィルムを作
製した。なお、この状態での接着フィルムの接着剤成分
の硬化度は、DSCを用いて測定した結果全硬化発熱量
の20%の発熱を終えた状態であった。THF抽出率
は、35重量%であった。さらに、接着剤硬化物の貯蔵
弾性率を動的粘弾性測定装置を用いて測定した結果、2
5℃で360MPa、260℃で4MPaであった。
Example 9 The adhesive varnish used in Example 7 was applied on a 50 μm-thick polyethylene terephthalate film and dried by heating at 140 ° C. for 5 minutes to obtain a 50 μm-thick B-stage coating. A film was formed, and an adhesive film for bonding to a heat-resistant thermoplastic film as a core material was produced. This adhesive film is laminated on both sides of a 50 μm-thick plasma-treated polyimide film using a vacuum laminator under laminator roll temperature of 80 ° C., feed rate of 0.2 m / min, and linear pressure of 5 kg. A double-sided adhesive film having a layer structure was produced. The degree of curing of the adhesive component of the adhesive film in this state was a state in which heat generation of 20% of the total curing calorific value was finished as a result of measurement using DSC. The THF extraction rate was 35% by weight. Furthermore, the storage elastic modulus of the cured adhesive was measured using a dynamic viscoelasticity measurement apparatus, and as a result, 2
It was 360 MPa at 5 ° C. and 4 MPa at 260 ° C.

【0173】<比較例10>実施例7で用いた接着剤ワ
ニスを厚さ50μmのポリエチレンテレフタレートフィ
ルム上に塗布し、140℃で5分間加熱乾燥して、膜厚
が75μmのBステージ状態の塗膜を形成して接着フィ
ルムを作製した。この接着フィルムを2枚用い、実施例
3と同様のラミネート条件で貼り合わせて、コア材を用
いない接着フィルムを作製した。得られた接着フィルム
の接着剤成分の全硬化発熱量は20%であり、THF抽
出率は35重量%であった。また、貯蔵弾性率は、25
℃で360MPa、260℃で4MPaであった。
Comparative Example 10 The adhesive varnish used in Example 7 was applied on a polyethylene terephthalate film having a thickness of 50 μm and dried by heating at 140 ° C. for 5 minutes to obtain a coating having a thickness of 75 μm in the B stage. A film was formed to produce an adhesive film. Two adhesive films were bonded together under the same lamination conditions as in Example 3 to prepare an adhesive film using no core material. The total curing heat of the adhesive component of the obtained adhesive film was 20%, and the THF extraction rate was 35% by weight. The storage modulus is 25
360 MPa at 260C and 4 MPa at 260C.

【0174】<比較例11>実施例7のコア材となる耐
熱性熱可塑性フィルムとして用いたポリイミドフィルム
をポリプロピレンフィルムに変更した他は、実施例1と
同様にして三層構造の両面接着フィルムを作製した。こ
の接着フィルムの接着剤成分の全硬化発熱量は、20
%、THF抽出率は、35重量%であった。また、貯蔵
弾性率は、25℃で360MPa、260℃で4MPa
であった。
Comparative Example 11 A double-sided adhesive film having a three-layer structure was prepared in the same manner as in Example 1 except that the polyimide film used as the core heat-resistant thermoplastic film in Example 7 was changed to a polypropylene film. Produced. The total curing calorific value of the adhesive component of this adhesive film is 20
%, And the THF extraction rate was 35% by weight. The storage elastic modulus is 360 MPa at 25 ° C. and 4 MPa at 260 ° C.
Met.

【0175】<比較例12>実施例7のエポキシ基含有
アクリル系共重合体をフェノキシ樹脂に変更した他(フ
ェノキシ樹脂165重量部)、実施例1と同様にして三
層構造の両面接着フィルムを作製した。この接着フィル
ムの接着剤成分の全硬化発熱量は20%であり、THF
抽出率は、90重量%であった。また、貯蔵弾性率は、
25℃で3,400MPa、260℃で3MPaであっ
た。
Comparative Example 12 A double-sided adhesive film having a three-layer structure was prepared in the same manner as in Example 1 except that the epoxy group-containing acrylic copolymer of Example 7 was changed to phenoxy resin (165 parts by weight of phenoxy resin). Produced. The total curing calorific value of the adhesive component of this adhesive film is 20%, and THF
The extraction rate was 90% by weight. The storage modulus is
It was 3,400 MPa at 25 ° C. and 3 MPa at 260 ° C.

【0176】<比較例13>実施例7のエポキシ基含有
アクリル系共重合体をアクリロニトリルブタジエンゴム
に変更した他は、実施例1と同様にして三層構造の両面
接着フィルムを作製した。この接着フィルム接着剤成分
の全硬化発熱量は、20%、THF抽出率は、90重量
%であった。また、貯蔵弾性率は、25℃で500MP
a、260℃で2MPaであった。
<Comparative Example 13> A double-sided adhesive film having a three-layer structure was produced in the same manner as in Example 1 except that the epoxy group-containing acrylic copolymer of Example 7 was changed to acrylonitrile butadiene rubber. The total curing calorific value of the adhesive component of the adhesive film was 20%, and the THF extraction rate was 90% by weight. The storage modulus is 500MP at 25 ° C.
a, 2 MPa at 260 ° C.

【0177】<評価>得られた接着フィルムについて、
耐熱性、耐電食性、耐湿性を調べた。耐熱性の評価方法
には、半導体チップとプリント配線板を三層構造の両面
接着フィルムで貼り合せたサンプルの耐リフロークラッ
ク性と温度サイクル試験を適用した。耐リフロークラッ
ク性の評価は、サンプル表面の最高温度が240℃でこ
の温度を20秒間保持するように温度設定したIRリフ
ロー炉にサンプルを通し、室温で放置することにより冷
却する処理を2回繰り返したサンプル中のクラックの観
察で行った。クラックの発生していないものを良好と
し、発生していたものを不良とした。温度サイクル試験
は、サンプルを−55℃雰囲気に30分間放置し、その
後125℃の雰囲気に30分間放置する工程を1サイク
ルとして、破壊が起きるまでのサイクル数を示した。ま
た、耐電食性の評価は、FR−4基板にライン/スペー
ス=75/75μmのくし形パターンを形成し、この上
に接着フィルムを貼り合せたサンプルを作製し、85℃
/85%RH/DC6V印加の条件下で1,000時間
後の絶縁抵抗値を測定することにより行った。絶縁抵抗
値が10Ω以上を示したものを良好とし、10Ω未満で
あったものを不良とした。また、耐湿性評価は、耐熱性
評価サンプルをプレッシャークッカーテスター中で96
時間処理(PCT処理)後接着フィルムの剥離及び変色
を観察することにより行った。接着フィルムの剥離及び
変色の認められなかったものを良好とし、剥離のあった
もの又は変色のあったものを不良とした。その結果を表
3に示す。
<Evaluation> Regarding the obtained adhesive film,
Heat resistance, electrolytic corrosion resistance, and moisture resistance were examined. As a method for evaluating heat resistance, a reflow crack resistance and a temperature cycle test of a sample in which a semiconductor chip and a printed wiring board were bonded with a double-sided adhesive film having a three-layer structure were applied. The reflow crack resistance was evaluated by repeating the process of passing the sample through an IR reflow furnace set at a maximum temperature of the sample surface of 240 ° C. and maintaining this temperature for 20 seconds and cooling it by leaving it at room temperature twice. This was done by observing cracks in the sample. Those with no cracks were evaluated as good, and those with cracks were evaluated as poor. In the temperature cycle test, the number of cycles up to the occurrence of destruction was shown as one cycle in which the sample was left in an atmosphere of -55 ° C for 30 minutes and then left in an atmosphere of 125 ° C for 30 minutes. In addition, the evaluation of the electrolytic corrosion resistance was performed by forming a comb pattern having a line / space of 75/75 μm on an FR-4 substrate and bonding an adhesive film on the comb pattern.
The measurement was performed by measuring the insulation resistance value after 1,000 hours under the conditions of / 85% RH / DC6V applied. Those having an insulation resistance value of 10Ω or more were evaluated as good, and those having an insulation resistance of less than 10Ω were evaluated as defective. In addition, the moisture resistance evaluation was performed by heating a heat resistance evaluation sample in a pressure cooker tester for 96 hours.
After the time treatment (PCT treatment), the peeling and discoloration of the adhesive film were observed. A sample in which no peeling or discoloration of the adhesive film was observed was regarded as good, and a sample in which peeling or discoloration was observed was regarded as bad. Table 3 shows the results.

【0178】[0178]

【表3】 [Table 3]

【0179】実施例7、8、9は、何れも、コア材に耐
熱性熱可塑性フィルムを用いた三層構造の両面接着フィ
ルムであり、接着剤成分にエポキシ樹脂及びその硬化
剤、エポキシ樹脂と相溶性の高分子量樹脂、エポキシ基
含有アクリル系共重合体をともに含ため、本発明で規定
した25℃及び260℃での貯蔵弾性率を示している。
これらは、取り扱い性に優れ、耐リフロークラック性、
温度サイクル試験、耐電食性、耐PCT性が良好であっ
た。
Examples 7, 8 and 9 are all three-layer double-sided adhesive films using a heat-resistant thermoplastic film as a core material, and an epoxy resin and its curing agent and an epoxy resin as an adhesive component. Since both a compatible high molecular weight resin and an epoxy group-containing acrylic copolymer are included, the storage elastic modulus at 25 ° C. and 260 ° C. specified in the present invention is shown.
These are excellent in handling, reflow crack resistance,
The temperature cycle test, the corrosion resistance and the PCT resistance were good.

【0180】比較例10は、本発明で規定したコア材に
耐熱性熱可塑性フィルムを用いた三層構造の両面接着フ
ィルムではないため、取り扱い性に劣っていた。比較例
11は、コア材に耐熱性に劣るポリプロピレンフィルム
を用いたため、耐リフロー性及び温度サイクル試験結果
に劣っていた。比較例12は、本発明で規定したエポキ
シ基含有アクリル系共重合体を含まない組成であったた
めに、規定した25℃での貯蔵弾性率を超えた高い値を
示しており、耐リフロークラック性及び温度サイクル試
験結果に劣っていた。比較例13は、本発明で規定した
エポキシ基含有アクリルゴムを含まずに規定した25℃
での貯蔵弾性率に合わせていたために、耐電食性や耐P
CT性に劣る結果を示した。
Comparative Example 10 was inferior in handleability because it was not a three-layered double-sided adhesive film using a heat-resistant thermoplastic film for the core material specified in the present invention. Comparative Example 11 was inferior in reflow resistance and temperature cycle test results because a polypropylene film having poor heat resistance was used for the core material. Comparative Example 12 exhibited a high value exceeding the specified storage elastic modulus at 25 ° C. because the composition did not contain the epoxy group-containing acrylic copolymer specified in the present invention, and exhibited reflow crack resistance. And the results of the temperature cycle test were inferior. Comparative Example 13 was prepared at 25 ° C. without the epoxy group-containing acrylic rubber specified in the present invention.
Resistance to electric corrosion and P
The results showed inferior CT properties.

【0181】[0181]

【発明の効果】本発明により、耐吸湿リフロー性に優
れ、かつマザーボードに実装した状態での耐温度サイク
ル性に優れる半導体パッケージを製造することができ
る。
According to the present invention, it is possible to manufacture a semiconductor package having excellent resistance to moisture absorption and reflow and excellent resistance to temperature cycling when mounted on a motherboard.

【0182】本発明の接着剤及び接着フィルムは、室温
付近での弾性率が低いために、ガラスエポキシ基板やポ
リイミド基板に代表されるリジッドプリント配線板及び
フレキシブルプリント配線板に半導体チップを実装した
場合の熱膨張係数の差がもとで起きる加熱冷却時の熱応
力を緩和させることができる。そのため、リフロー時の
クラックの発生が認められず、耐熱性に優れている。ま
た、エポキシ基含有アクリル系共重合体を低弾性率成分
として含んでおり、耐電食性、耐湿性、特にPCT処理
等厳しい条件下で耐湿試験を行なった場合の劣化が少な
く優れた特徴を有する接着材料を提供することができ
る。
Since the adhesive and the adhesive film of the present invention have a low elastic modulus at around room temperature, the adhesive and the adhesive film when a semiconductor chip is mounted on a rigid printed wiring board and a flexible printed wiring board represented by a glass epoxy substrate or a polyimide substrate are used. Thermal stress at the time of heating and cooling, which is caused by the difference in thermal expansion coefficient of Therefore, generation of cracks during reflow is not recognized, and the heat resistance is excellent. In addition, it contains an epoxy group-containing acrylic copolymer as a low elastic modulus component, and has excellent characteristics with little deterioration due to electric corrosion resistance and moisture resistance, especially when subjected to a humidity resistance test under severe conditions such as PCT treatment. Material can be provided.

【0183】本発明のコア材に耐熱性熱可塑性フィルム
を用いた三層構造の両面接着フィルムは、接着剤層の室
温付近での弾性率が低いにもかかわらず、取扱性に優
れ、しかも、ガラスエポキシ基板やポリイミド基板に代
表されるリジッドプリント配線板及びフレキシブルプリ
ント配線板に半導体チップを実装した場合の熱膨張係数
の差がもとで起きる加熱冷却時の熱応力を緩和させるこ
とができる。そのため、リフロー時のクラックの発生が
認められず、耐熱性に優れている。また、エポキシ基含
有アクリル系共重合体を低弾性率成分として含んでお
り、耐電食性、耐湿性、特にPCT処理等厳しい条件下
で耐湿試験を行なった場合の劣化が少なく優れた特徴を
有する接着材料を提供することができる。
The double-sided adhesive film having a three-layer structure using a heat-resistant thermoplastic film as the core material of the present invention has excellent handleability despite the low elastic modulus of the adhesive layer near room temperature. Thermal stress at the time of heating and cooling caused by a difference in thermal expansion coefficient when a semiconductor chip is mounted on a rigid printed wiring board represented by a glass epoxy substrate or a polyimide substrate and a flexible printed wiring board can be reduced. Therefore, generation of cracks during reflow is not recognized, and the heat resistance is excellent. In addition, it contains an epoxy group-containing acrylic copolymer as a low elastic modulus component, and has excellent characteristics with little deterioration due to electric corrosion resistance and moisture resistance, especially when subjected to a humidity resistance test under severe conditions such as PCT treatment. Material can be provided.

【0184】本発明の、外部端子が基板裏面にエリアア
レイ状に配列された半導体パッケージは特に携帯機器や
PDA用途の小型電子機器に搭載されるのに好適であ
る。
The semiconductor package of the present invention in which external terminals are arranged in an area array on the back surface of a substrate is particularly suitable for being mounted on a portable device or a small electronic device for a PDA.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1(a)は本発明による単層の熱硬化性接
着フィルムの断面図、図1(b)は本発明による3層接
着フィルムの断面図である。
FIG. 1 (a) is a cross-sectional view of a single-layer thermosetting adhesive film according to the present invention, and FIG. 1 (b) is a cross-sectional view of a three-layer adhesive film according to the present invention.

【図2】 接着部材を有機配線基板に熱圧着した半導体
搭載用基板の断面図である。
FIG. 2 is a cross-sectional view of a semiconductor mounting substrate obtained by thermocompression bonding an adhesive member to an organic wiring substrate.

【図3】 接着部材を有機配線基板に熱圧着した半導体
搭載用基板の断面図である。
FIG. 3 is a cross-sectional view of a semiconductor mounting substrate obtained by thermocompression bonding an adhesive member to an organic wiring substrate.

【図4】 本発明の半導体装置の断面図である。FIG. 4 is a cross-sectional view of the semiconductor device of the present invention.

【図5】 本発明の半導体装置の他の例の断面図であ
る。
FIG. 5 is a cross-sectional view of another example of the semiconductor device of the present invention.

【図6】 半導体搭載用基板および半導体装置の一実施
例の製造工程を示す断面図である。
FIG. 6 is a cross-sectional view illustrating a manufacturing process of the semiconductor mounting substrate and the semiconductor device according to one embodiment;

【図7】 半導体搭載用基板および半導体装置の他の実
施例の製造工程を示す断面図である。
FIG. 7 is a cross-sectional view showing a manufacturing process of another embodiment of the semiconductor mounting substrate and the semiconductor device.

【図8】 本発明の半導体装置の他の例の断面図であ
る。
FIG. 8 is a sectional view of another example of the semiconductor device of the present invention.

【符号の説明】[Explanation of symbols]

1…熱硬化性接着剤、2…ポリイミドフィルム、3…接
着部材、4…有機配線基板、5…テープ状配線基板、6
…チップ、7…ワイヤ、8…液状封止材、9…配線、1
0…Cuインナーリード部、11…レジスト、12…外
部接続端子。
DESCRIPTION OF SYMBOLS 1 ... Thermosetting adhesive, 2 ... Polyimide film, 3 ... Adhesive member, 4 ... Organic wiring board, 5 ... Tape-shaped wiring board, 6
... chip, 7 ... wire, 8 ... liquid sealing material, 9 ... wiring, 1
0: Cu inner lead portion, 11: resist, 12: external connection terminal.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 23/12 501 H01L 23/12 501T 501W (72)発明者 栗谷 弘之 茨城県下館市幸町3−28−12 (72)発明者 金田 愛三 神奈川県横浜市戸塚区上矢部町2456−47 (72)発明者 富山 健男 茨城県つくば市松代3−4−1 日立松代 ハウスB408号 (72)発明者 野村 好弘 千葉県市原市桜台1−4−99 (72)発明者 細川 羊一 千葉県市原市桜台1−4−86 (72)発明者 桐原 博 千葉県市原市飯沼173 日立化成飯沼寮122 号 (72)発明者 景山 晃 埼玉県新座市野寺5−5−8−303 Fターム(参考) 4J004 AA10 AA12 AA13 AB05 CA06 CC02 CE01 DB01 DB02 EA05 FA05 FA08 4J040 DF062 EB031 EB032 EC061 EC062 EC071 EC072 EC151 EC152 EC231 EC232 EE062 EG002 HA086 HA136 HA196 HA206 HA306 HA316 HA326 HB26 HB28 HC01 HC21 HD05 JA03 JA12 JB02 KA16 KA17 KA23 KA25 KA42 LA01 LA06 LA07 LA08 LA09 MA10 MB03 NA20 PA18 5F047 AA19 BA34 BB03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 23/12 501 H01L 23/12 501T 501W (72) Inventor Hiroyuki Kuriya 3-28 Yukimachi, Shimodate-shi, Ibaraki Pref. −12 (72) Inventor Aizo Kaneda 2456-47, Kamiyabe-cho, Totsuka-ku, Yokohama-shi, Kanagawa-pref. Yoshihiro 1-4-99, Sakuradai, Ichihara-shi, Chiba (72) Inventor Yoichi Hosokawa 1-4-86, Sakuradai, Ichihara-shi, Chiba (72) Inventor Hiroshi Kirihara 173 Iinuma, Ichihara-shi, Chiba 122-122 ) Inventor Akira Kageyama F-5 term (reference) 5-5-8-303 Nodera, Niiza City, Saitama 4J004 AA10 AA12 AA13 AB05 CA06 CC02 CE01 DB01 DB02 EA05 FA05 FA08 4J040 DF062 EB031 EB032 EC061 EC062 EC071 EC0 72 EC151 EC152 EC231 EC232 EE062 EG002 HA086 HA136 HA196 HA206 HA306 HA316 HA326 HB26 HB28 HC01 HC21 HD05 JA03 JA12 JB02 KA16 KA17 KA23 KA25 KA42 LA01 LA06 LA07 LA08 LA09 MA10 MB03 NA20 PA18 5F047 AA19 BA34 BB03

Claims (49)

【特許請求の範囲】[Claims] 【請求項1】有機系支持基板に接着部材を介して半導体
チップが搭載された半導体装置であって、 前記有機系支持基板の、半導体チップが搭載される側、
および、半導体チップが搭載される側の反対側の少なく
ともいずれかの側には、所定の配線が形成されており、 前記有機系支持基板の半導体チップが搭載される側の反
対側には外部接続用端子がエリアアレイ状に形成されて
おり、 前記所定の配線は半導体チップ端子および前記外部接続
用端子と接続されており、 少なくとも前記半導体チップ端子と所定の配線との接続
部が樹脂封止されており、 前記接着部材は接着剤層を備えるもので、 前記接着剤の動的粘弾性測定装置で測定される25℃の
貯蔵弾性率が10〜2000MPaかつ260℃での貯
蔵弾性率が3〜50MPaであることを特徴とする半導
体装置。
1. A semiconductor device in which a semiconductor chip is mounted on an organic support substrate via an adhesive member, wherein: a side of the organic support substrate on which the semiconductor chip is mounted;
A predetermined wiring is formed on at least one of the sides opposite to the side on which the semiconductor chip is mounted, and an external connection is formed on the side of the organic support substrate opposite to the side on which the semiconductor chip is mounted. Terminals are formed in an area array shape, the predetermined wiring is connected to a semiconductor chip terminal and the external connection terminal, and at least a connection portion between the semiconductor chip terminal and the predetermined wiring is resin-sealed. The adhesive member is provided with an adhesive layer, and the storage elastic modulus at 25 ° C. measured by a dynamic viscoelasticity measuring device of the adhesive is 10 to 2000 MPa and the storage elastic modulus at 260 ° C. is 3 to 3. A semiconductor device having a pressure of 50 MPa.
【請求項2】所定の配線と半導体チップ端子とは、ワイ
ヤボンドまたは直接に接続される請求項1記載の半導体
装置。
2. The semiconductor device according to claim 1, wherein the predetermined wiring and the semiconductor chip terminal are connected by wire bonding or directly.
【請求項3】接着部材がフィルム状である請求項1また
は2記載の半導体装置。
3. The semiconductor device according to claim 1, wherein the adhesive member is in the form of a film.
【請求項4】接着剤の樹脂成分が、エポキシ樹脂、エポ
キシ基含有アクリル共重合体、エポキシ樹脂硬化剤およ
びエポキシ樹脂硬化促進剤を含む請求項1〜3のいずれ
かに記載の半導体装置。
4. The semiconductor device according to claim 1, wherein the resin component of the adhesive includes an epoxy resin, an epoxy group-containing acrylic copolymer, an epoxy resin curing agent, and an epoxy resin curing accelerator.
【請求項5】接着部材は、コア材の両面に接着剤層が形
成された構造である請求項1〜4のいずれかに記載の半
導体装置。
5. The semiconductor device according to claim 1, wherein the adhesive member has a structure in which an adhesive layer is formed on both surfaces of a core material.
【請求項6】コア材が耐熱性熱可塑性フィルムである請
求項5記載の半導体装置。
6. The semiconductor device according to claim 5, wherein the core material is a heat-resistant thermoplastic film.
【請求項7】耐熱性熱可塑性フィルムのガラス転移温度
が200℃以上である請求項6記載の半導体装置。
7. The semiconductor device according to claim 6, wherein the heat-resistant thermoplastic film has a glass transition temperature of 200 ° C. or higher.
【請求項8】ガラス転移温度200℃以上の耐熱性熱可
塑性フィルムがポリイミド、ポリエーテルスルホン、ポ
リアミドイミドまたはポリエーテルイミドである請求項
7記載の半導体装置。
8. The semiconductor device according to claim 7, wherein the heat-resistant thermoplastic film having a glass transition temperature of 200 ° C. or more is made of polyimide, polyethersulfone, polyamideimide or polyetherimide.
【請求項9】耐熱性熱可塑性フィルムが液晶ポリマであ
る請求項7記載の半導体装置。
9. The semiconductor device according to claim 7, wherein the heat-resistant thermoplastic film is a liquid crystal polymer.
【請求項10】接着剤層の中の残存溶媒量が5重量%以
下である請求項1〜9のいずれかに記載の半導体装置。
10. The semiconductor device according to claim 1, wherein the amount of the residual solvent in the adhesive layer is 5% by weight or less.
【請求項11】接着部材を介して半導体チップが搭載さ
れる有機系基板の半導体チップ搭載用基板であって、 前記有機系基板の半導体チップが搭載される側および半
導体チップが搭載される側の反対側の少なくともいずれ
かの側には所定の配線が形成されており、 前記有機系基板の半導体チップが搭載される側の反対側
には外部接続用端子がエリアアレイ状に形成されてお
り、 前記接着部材は接着剤層を備えるもので、 前記接着剤硬化物の動的粘弾性測定装置で測定される2
5℃の貯蔵弾性率が10〜2000MPaかつ260℃
での貯蔵弾性率が3〜50MPaであり、 前記接着部材は所定の大きさで前記有機系基板上の所定
の箇所に形成されていることを特徴とする半導体チップ
搭載用基板。
11. A semiconductor chip mounting substrate of an organic substrate on which a semiconductor chip is mounted via an adhesive member, wherein the semiconductor chip is mounted on the side of the organic substrate on which the semiconductor chip is mounted and on the side of the organic substrate on which the semiconductor chip is mounted. A predetermined wiring is formed on at least one of the opposite sides, and an external connection terminal is formed in an area array shape on a side opposite to a side on which the semiconductor chip of the organic substrate is mounted, The adhesive member includes an adhesive layer, and is measured by a dynamic viscoelasticity measuring device for the cured adhesive material.
5 ° C storage elastic modulus of 10 to 2000 MPa and 260 ° C
Wherein the storage member has a storage elastic modulus of 3 to 50 MPa, and the adhesive member has a predetermined size and is formed at a predetermined location on the organic substrate.
【請求項12】接着部材がフィルム状である請求項11
記載の半導体チップ搭載用基板。
12. The adhesive member is in the form of a film.
The substrate for mounting a semiconductor chip according to the above.
【請求項13】接着剤の樹脂成分が、エポキシ樹脂、エ
ポキシ基含有アクリル共重合体、エポキシ樹脂硬化剤お
よびエポキシ樹脂硬化促進剤を含む請求項11または1
2記載の半導体チップ搭載用基板。
13. The resin composition of claim 11, wherein the resin component of the adhesive comprises an epoxy resin, an epoxy group-containing acrylic copolymer, an epoxy resin curing agent, and an epoxy resin curing accelerator.
3. The substrate for mounting a semiconductor chip according to item 2.
【請求項14】接着部材は、コア材の両面に接着剤層が
形成された構造である請求項11〜13のいずれかに記
載の半導体チップ搭載用基板。
14. The semiconductor chip mounting substrate according to claim 11, wherein the adhesive member has a structure in which an adhesive layer is formed on both surfaces of a core material.
【請求項15】コア材が耐熱性熱可塑性フィルムである
請求項14記載の半導体チップ搭載用基板。
15. The substrate for mounting a semiconductor chip according to claim 14, wherein the core material is a heat-resistant thermoplastic film.
【請求項16】耐熱性熱可塑性フィルムのガラス転移温
度が200℃以上である、請求項15記載の半導体チッ
プ搭載用基板。
16. The substrate for mounting a semiconductor chip according to claim 15, wherein the glass transition temperature of the heat-resistant thermoplastic film is 200 ° C. or higher.
【請求項17】ガラス転移温度が200℃以上の耐熱性
熱可塑性フィルムがポリイミド、ポリエーテルスルホ
ン、ポリアミドイミドまたはポリエーテルイミドである
請求項16記載の半導体チップ搭載用基板。
17. The substrate for mounting a semiconductor chip according to claim 16, wherein the heat-resistant thermoplastic film having a glass transition temperature of 200 ° C. or higher is made of polyimide, polyethersulfone, polyamideimide or polyetherimide.
【請求項18】耐熱性熱可塑性フィルムが液晶ポリマで
ある請求項15記載の半導体チップ搭載用基板。
18. The substrate for mounting a semiconductor chip according to claim 15, wherein the heat-resistant thermoplastic film is a liquid crystal polymer.
【請求項19】接着剤層の中の残存溶媒量が5重量%以
下である請求項11〜18のいずれかに記載の半導体チ
ップ搭載用基板。
19. The substrate for mounting a semiconductor chip according to claim 11, wherein the amount of the residual solvent in the adhesive layer is 5% by weight or less.
【請求項20】有機系基板上の所定の箇所に形成された
接着部材は所定の大きさに打ち抜き用金型で打ち抜かれ
たフィルムである請求項11〜19のいずれかに記載の
半導体チップ搭載用基板。
20. The semiconductor chip mounting according to claim 11, wherein the adhesive member formed at a predetermined location on the organic substrate is a film punched to a predetermined size by a punching die. Substrate.
【請求項21】有機系基板上の所定の箇所に形成された
接着部材は、その接着部材の接着剤が示差熱量計を用い
て測定した場合の全硬化発熱量の10〜40%の発熱を
終えた半硬化状態のものであり、所定の大きさに切断さ
れた後前記有機系基板上に熱圧着されたフィルムである
請求項11〜20のいずれかに記載の半導体チップ搭載
用基板。
21. An adhesive member formed at a predetermined position on an organic substrate, wherein the adhesive of the adhesive member generates 10 to 40% of the total curing heat value when measured using a differential calorimeter. The substrate for mounting a semiconductor chip according to any one of claims 11 to 20, wherein the substrate is in a finished semi-cured state, is a film cut into a predetermined size, and then thermocompression-bonded onto the organic substrate.
【請求項22】半導体チップが搭載される側には所定の
配線が形成され半導体チップが搭載される側の反対側に
は外部接続用端子がエリアアレイ状に形成された有機系
基板に、動的粘弾性測定装置で測定される硬化物の25
℃の貯蔵弾性率が10〜2000MPaかつ260℃で
の貯蔵弾性率が3〜50MPaである接着剤層を備える
接着部材であり前記接着剤が示差熱量計を用いて測定し
た場合の全硬化発熱量の10〜40%の発熱を終えた半
硬化状態のものである接着部材フィルムを、所定の大き
さに切断し前記有機系基板上に熱圧着することを含むこ
とを特徴とする半導体チップ搭載用基板の製造法。
22. An organic substrate in which predetermined wiring is formed on the side on which the semiconductor chip is mounted, and external connection terminals are formed in an area array on the side opposite to the side on which the semiconductor chip is mounted. Of cured product measured by dynamic viscoelasticity measuring device
An adhesive member provided with an adhesive layer having a storage elastic modulus at 10 ° C. of 10 to 2000 MPa and a storage elastic modulus at 260 ° C. of 3 to 50 MPa, and the total curing calorific value when the adhesive is measured using a differential calorimeter. Mounting a semi-cured adhesive member film that has completed 10-40% of heat generation to a predetermined size and thermocompression-bonded to the organic substrate. Substrate manufacturing method.
【請求項23】切断した請求項22に記載の接着部材フ
ィルムを個々に精密位置決め後、熱プレスで仮接着し、
複数の接着部材フィルムを多連の請求項22に記載の有
機系基板に載置した後、加熱した離型表面処理金型で押
圧し一括して接着する請求項22に記載の半導体チップ
搭載用基板の製造法。
23. The adhesive member film according to claim 22, which is cut and precisely positioned, and temporarily bonded by a hot press.
23. The semiconductor chip mounting according to claim 22, wherein a plurality of adhesive member films are mounted on the organic substrate according to claim 22 and then pressed and bonded together by a heated release surface treatment mold. Substrate manufacturing method.
【請求項24】離型表面処理金型の表面離型材がテフロ
ン(登録商標)およびシリコーンの少なくとも一種であ
る請求項23記載の半導体チップ搭載用基板の製造法。
24. The method for manufacturing a semiconductor chip mounting substrate according to claim 23, wherein the surface release material of the release surface treatment mold is at least one of Teflon (registered trademark) and silicone.
【請求項25】接着部材フィルムの搬送時に発生する静
電気を除くエリミノスタット工程を接着部材フィルム切
断工程前に少なくとも1工程加えた請求項22〜24の
いずれかに記載の半導体搭載用基板の製造法。
25. The method of manufacturing a semiconductor mounting substrate according to claim 22, wherein at least one step of removing elimination of static electricity generated when the adhesive member film is transported is added before the cutting step of the adhesive member film. Law.
【請求項26】半導体チップが搭載される側および半導
体チップが搭載される側の反対側の少なくともいずれか
の側には所定の配線が形成され、半導体チップが搭載さ
れる側の反対側には外部接続用端子がエリアアレイ状に
形成された有機系基板の半導体チップ搭載用基板に、動
的粘弾性測定装置で測定される硬化物の25℃の貯蔵弾
性率が10〜2000MPaかつ260℃での貯蔵弾性
率が3〜50MPaである接着剤層を備える接着部材を
接着する工程、 接着部材を介して半導体チップを搭載する工程、 前記所定の配線を半導体チップ端子および前記外部接続
用端子と接続する工程、 少なくとも前記半導体チップ端子と所定の配線との接続
部を樹脂封止する工程を備えることを特徴とする半導体
装置の製造法。
26. A predetermined wiring is formed on at least one of a side on which the semiconductor chip is mounted and a side opposite to the side on which the semiconductor chip is mounted, and a predetermined wiring is formed on a side opposite to the side on which the semiconductor chip is mounted. On the semiconductor chip mounting substrate of the organic substrate in which the external connection terminals are formed in an area array shape, the storage elasticity at 25 ° C. of the cured product measured by a dynamic viscoelasticity measuring device is 10 to 2000 MPa and 260 ° C. Bonding an adhesive member provided with an adhesive layer having a storage elastic modulus of 3 to 50 MPa, mounting a semiconductor chip via the adhesive member, connecting the predetermined wiring to a semiconductor chip terminal and the external connection terminal. And a step of resin-sealing at least a connection portion between the semiconductor chip terminal and a predetermined wiring.
【請求項27】半導体チップ搭載用基板の下面側と半導
体チップ側の両面から加熱し、少なくともチップ側の温
度を高くする工程を含む請求項26記載の半導体装置の
製造法。
27. The method of manufacturing a semiconductor device according to claim 26, further comprising heating the semiconductor chip mounting substrate from both the lower surface side and the semiconductor chip side to increase the temperature of at least the chip side.
【請求項28】(1)エポキシ樹脂およびその硬化剤1
00重量部と、 (2)グリシジル(メタ)アクリレート2〜6重量%を
含むTg(ガラス転移温度)が−10℃以上でかつ重量
平均分子量が80万以上であるエポキシ基含有アクリル
系共重合体100〜300重量部ならびに(3)硬化促
進剤0.1〜5重量部とを含む接着剤。
28. (1) Epoxy resin and its curing agent 1
(2) an epoxy group-containing acrylic copolymer having a Tg (glass transition temperature) of -10 ° C or more and a weight average molecular weight of 800,000 or more containing 2 to 6% by weight of glycidyl (meth) acrylate. An adhesive containing 100 to 300 parts by weight and (3) 0.1 to 5 parts by weight of a curing accelerator.
【請求項29】(1)エポキシ樹脂およびその硬化剤1
00重量部と、 (2)エポキシ樹脂と相溶性がありかつ重量平均分子量
が3万以上の高分子量樹脂10〜40重量部、(3)グ
リシジル(メタ)アクリレート2〜6重量%を含むTg
(ガラス転移温度)が−10℃以上でかつ重量平均分子
量が80万以上であるエポキシ基含有アクリル系共重合
体100〜300重量部ならびに(4)硬化促進剤0.
1〜5重量部とを含む接着剤。
29. (1) Epoxy resin and its curing agent 1
(2) Tg containing 10 to 40 parts by weight of a high molecular weight resin having a weight average molecular weight of 30,000 or more, which is compatible with the epoxy resin, and (3) 2 to 6% by weight of glycidyl (meth) acrylate.
100 to 300 parts by weight of an epoxy group-containing acrylic copolymer having a (glass transition temperature) of −10 ° C. or more and a weight average molecular weight of 800,000 or more;
1 to 5 parts by weight.
【請求項30】(1)エポキシ樹脂およびフェノール樹
脂100重量部と、 (2)グリシジル(メタ)アクリレート2〜6重量%を
含むTgが−10℃以上でかつ重量平均分子量が80万
以上であるエポキシ基含有アクリル系共重合体100〜
300重量部ならびに(3)硬化促進剤0.1〜5重量
部とを含む接着剤。
30. A Tg containing (1) 100 parts by weight of an epoxy resin and a phenolic resin and (2) 2 to 6% by weight of glycidyl (meth) acrylate has a temperature of -10 ° C. or more and a weight average molecular weight of 800,000 or more. Epoxy group-containing acrylic copolymer 100-
An adhesive comprising 300 parts by weight and (3) 0.1 to 5 parts by weight of a curing accelerator.
【請求項31】(1)エポキシ樹脂およびそのフェノー
ル樹脂100重量部と、 (2)フェノキシ樹脂10〜40重量部、(3)グリシ
ジル(メタ)アクリレート2〜6重量%を含むTgが−
10℃以上でかつ重量平均分子量が80万以上であるエ
ポキシ基含有アクリル系共重合体100〜300重量部
ならびに(4)硬化促進剤0.1〜5重量部とを含む接
着剤。
31. A Tg containing (1) 100 parts by weight of an epoxy resin and its phenolic resin, (2) 10 to 40 parts by weight of a phenoxy resin, and (3) 2 to 6% by weight of glycidyl (meth) acrylate.
An adhesive comprising 100 to 300 parts by weight of an epoxy group-containing acrylic copolymer having a temperature of 10 ° C. or more and a weight average molecular weight of 800,000 or more and (4) a curing accelerator of 0.1 to 5 parts by weight.
【請求項32】接着剤を、示差熱量計を用いて測定した
場合の全硬化発熱量の10〜40%の発熱を終えた状態
にした請求項27〜31のいずれかに記載の接着剤。
32. The adhesive according to any one of claims 27 to 31, wherein the adhesive has been heated to 10 to 40% of the total curing calorific value as measured by a differential calorimeter.
【請求項33】動的粘弾性測定装置を用いて測定した場
合の接着剤硬化物の貯蔵弾性率が25℃で10〜200
0MPaであり、260℃で3〜50MPaである請求
項27〜32のいずれかに記載の接着剤。
33. The cured adhesive has a storage elastic modulus of 10 to 200 at 25 ° C. as measured using a dynamic viscoelasticity measuring apparatus.
The adhesive according to any one of claims 27 to 32, wherein the pressure is 0 MPa and the pressure is 3 to 50 MPa at 260 ° C.
【請求項34】無機フィラーを、接着剤樹脂成分100
体積部に対して2〜20体積部含む請求項27〜32の
いずれかに記載の接着剤。
34. An adhesive resin component 100 comprising an inorganic filler.
The adhesive according to any one of claims 27 to 32, comprising 2 to 20 parts by volume relative to the volume.
【請求項35】無機フィラーがアルミナである請求項3
4記載の接着剤。
35. The method according to claim 3, wherein the inorganic filler is alumina.
4. The adhesive according to 4.
【請求項36】無機フィラーがシリカである請求項34
記載の接着剤。
36. The method according to claim 34, wherein the inorganic filler is silica.
The adhesive as described.
【請求項37】請求項27〜36のいずれかに記載の接
着剤をベースフィルム上に形成して得られる接着フィル
ム。
37. An adhesive film obtained by forming the adhesive according to claim 27 on a base film.
【請求項38】請求項37に記載の接着フィルムを用い
て半導体チップと配線板を接着させた半導体装置。
38. A semiconductor device in which a semiconductor chip and a wiring board are bonded using the adhesive film according to claim 37.
【請求項39】耐熱性熱可塑性フィルムをコア材に用
い、コア材の両面に、 (1)エポキシ樹脂およびその硬化剤100重量部と、 (2)グリシジル(メタ)アクリレート2〜6重量%を
含むTg(ガラス転移温度)が−10℃以上でかつ重量
平均分子量が80万以上であるエポキシ基含有アクリル
系共重合体100〜300重量部ならびに(3)硬化促
進剤0.1〜5重量部とを含む接着剤を有する三層構造
の両面接着フィルム。
39. A heat-resistant thermoplastic film is used as a core material, and (1) 100 parts by weight of an epoxy resin and a curing agent thereof, and (2) 2 to 6% by weight of glycidyl (meth) acrylate are provided on both sides of the core material. 100 to 300 parts by weight of an epoxy group-containing acrylic copolymer having a Tg (glass transition temperature) of −10 ° C. or more and a weight average molecular weight of 800,000 or more, and (3) 0.1 to 5 parts by weight of a curing accelerator A double-sided adhesive film having a three-layer structure having an adhesive containing:
【請求項40】耐熱性熱可塑性フィルムをコア材に用
い、コア材の両面に、 (1)エポキシ樹脂およびその硬化剤100重量部と、 (2)エポキシ樹脂と相溶性がありかつ重量平均分子量
が3万以上の高分子量樹脂10〜40重量部、(3)グ
リシジル(メタ)アクリレート2〜6重量%を含むTg
(ガラス転移温度)が−10℃以上でかつ重量平均分子
量が80万以上であるエポキシ基含有アクリル系共重合
体100〜300重量部ならびに(4)硬化促進剤0.
1〜5重量部とを含む接着剤を有する三層構造の両面接
着フィルム。
40. A heat-resistant thermoplastic film used as a core material, on both surfaces of the core material: (1) 100 parts by weight of an epoxy resin and a curing agent thereof; (2) a weight-average molecular weight compatible with the epoxy resin. Containing 10 to 40 parts by weight of a high molecular weight resin having a molecular weight of 30,000 or more, and (3) 2 to 6% by weight of glycidyl (meth) acrylate.
100 to 300 parts by weight of an epoxy group-containing acrylic copolymer having a (glass transition temperature) of −10 ° C. or more and a weight average molecular weight of 800,000 or more;
A double-sided adhesive film having a three-layer structure having an adhesive containing 1 to 5 parts by weight.
【請求項41】耐熱性熱可塑性フィルムをコア材に用
い、コア材の両面に、 (1)エポキシ樹脂およびフェノール樹脂100重量部
と、 (2)グリシジル(メタ)アクリレート2〜6重量%を
含むTgが−10℃以上でかつ重量平均分子量が80万
以上であるエポキシ基含有アクリル系共重合体100〜
300重量部ならびに(3)硬化促進剤0.1〜5重量
部とを含む接着剤を有する三層構造の両面接着フィル
ム。
41. A heat-resistant thermoplastic film used as a core material, comprising (1) 100 parts by weight of an epoxy resin and a phenol resin, and (2) 2 to 6% by weight of glycidyl (meth) acrylate on both sides of the core material. Epoxy group-containing acrylic copolymer having a Tg of -10 ° C or higher and a weight average molecular weight of 800,000 or higher
A three-layer double-sided adhesive film having an adhesive containing 300 parts by weight and (3) 0.1 to 5 parts by weight of a curing accelerator.
【請求項42】耐熱性熱可塑性フィルムをコア材に用
い、コア材の両面に、 (1)エポキシ樹脂およびフェノール樹脂100重量部
と、 (2)フェノキシ樹脂10〜40重量部、(3)グリシ
ジル(メタ)アクリレート2〜6重量%を含むTgが−
10℃以上でかつ重量平均分子量が80万以上であるエ
ポキシ基含有アクリル系共重合体100〜300重量部
ならびに(4)硬化促進剤0.1〜5重量部とを含む接
着剤を有する三層構造の両面接着フィルム。
42. A heat-resistant thermoplastic film as a core material, on both surfaces of the core material: (1) 100 parts by weight of an epoxy resin and a phenolic resin, (2) 10 to 40 parts by weight of a phenoxy resin, and (3) glycidyl. Tg containing 2 to 6% by weight of (meth) acrylate is-
Three-layer having an adhesive containing 100 to 300 parts by weight of an epoxy group-containing acrylic copolymer having a temperature of 10 ° C. or more and a weight average molecular weight of 800,000 or more and (4) 0.1 to 5 parts by weight of a curing accelerator Structured double-sided adhesive film.
【請求項43】接着剤を、示差熱量計を用いて測定した
場合の全硬化発熱量の10〜40%の発熱を終えた状態
にした請求項39〜42のいずれかに記載の接着剤を有
する三層構造の両面接着フィルム。
43. The adhesive according to claim 39, wherein the adhesive has been heated to 10 to 40% of the total curing calorific value measured by a differential calorimeter. A double-sided adhesive film having a three-layer structure.
【請求項44】動的粘弾性測定装置を用いて測定した場
合の接着剤硬化物の貯蔵弾性率が25℃で10〜200
0MPaであり、260℃で3〜50MPaである請求
項39〜43のいずれかに記載の接着剤を有する三層構
造の両面接着フィルム。
44. A cured adhesive product having a storage elastic modulus of 10 to 200 at 25 ° C. as measured using a dynamic viscoelasticity measuring device.
The three-layered double-sided adhesive film having the adhesive according to any one of claims 39 to 43, wherein the pressure-sensitive adhesive is 0 MPa and the pressure is 3 to 50 MPa at 260 ° C.
【請求項45】無機フィラーを、接着剤樹脂成分100
体積部に対して2〜20体積部含むことを特徴とする請
求項39〜44のいずれかに記載の接着剤を有する三層
構造の両面接着フィルム。
45. An inorganic resin, comprising:
The three-layered double-sided adhesive film having an adhesive according to any one of claims 39 to 44, comprising 2 to 20 parts by volume with respect to the volume part.
【請求項46】無機フィラーがアルミナまたはシリカで
ある請求項45記載の接着剤を有する三層構造の両面接
着フィルム。
46. The three-layered double-sided adhesive film having an adhesive according to claim 45, wherein the inorganic filler is alumina or silica.
【請求項47】コア材に用いる耐熱性熱可塑性フィルム
がガラス転移温度200℃以上である請求項39〜42
のいずれかに記載の三層構造の両面接着フィルム。
47. The heat-resistant thermoplastic film used for the core material has a glass transition temperature of 200 ° C. or higher.
The double-sided adhesive film having a three-layer structure according to any one of the above.
【請求項48】コア材に用いるガラス転移温度200℃
以上の耐熱性熱可塑性フィルムがポリイミド、ポリエー
テルスルホン、ポリアミドイミドまたはポリエーテルイ
ミドである請求項39〜42のいずれかに記載の三層構
造の両面接着00ルム。
48. A glass transition temperature of 200 ° C. used for a core material.
43. The three-layer structure double-sided adhesive film according to claim 39, wherein the heat-resistant thermoplastic film is polyimide, polyethersulfone, polyamideimide or polyetherimide.
【請求項49】コア材に用いる耐熱性熱可塑性フィルム
が液晶ポリマである請求項39〜42のいずれかに記載
の三層構造の両面接着フィルム。
49. The double-sided adhesive film having a three-layer structure according to claim 39, wherein the heat-resistant thermoplastic film used for the core material is a liquid crystal polymer.
JP2001157093A 1996-10-08 2001-05-25 Adhesive film for mounting semiconductor elements Expired - Lifetime JP4161544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001157093A JP4161544B2 (en) 1996-10-08 2001-05-25 Adhesive film for mounting semiconductor elements

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP26646096 1996-10-08
JP8-266460 1996-10-08
JP8-317709 1996-11-28
JP31770996 1996-11-28
JP9-111430 1997-04-28
JP11143097 1997-04-28
JP2001157093A JP4161544B2 (en) 1996-10-08 2001-05-25 Adhesive film for mounting semiconductor elements

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP51739298A Division JP3453390B2 (en) 1996-10-08 1997-10-08 Semiconductor device, substrate for mounting semiconductor chip, and method of manufacturing the same

Publications (3)

Publication Number Publication Date
JP2002134531A true JP2002134531A (en) 2002-05-10
JP2002134531A5 JP2002134531A5 (en) 2005-06-09
JP4161544B2 JP4161544B2 (en) 2008-10-08

Family

ID=27469905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001157093A Expired - Lifetime JP4161544B2 (en) 1996-10-08 2001-05-25 Adhesive film for mounting semiconductor elements

Country Status (1)

Country Link
JP (1) JP4161544B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088180A1 (en) * 2005-02-21 2006-08-24 Nitto Denko Corporation Semiconductor device manufacturing method
JP2006261657A (en) * 2005-02-21 2006-09-28 Nitto Denko Corp Manufacturing method for semiconductor device
JP2007235021A (en) * 2006-03-03 2007-09-13 Mitsui Chemicals Inc Adhesive film
JP2009138048A (en) * 2007-12-04 2009-06-25 Shin Etsu Chem Co Ltd Adhesive composition and adhesive film
US7772040B2 (en) 2006-09-12 2010-08-10 Nitto Denko Corporation Manufacturing method of semiconductor device, adhesive sheet used therein, and semiconductor device obtained thereby
WO2012046814A1 (en) 2010-10-06 2012-04-12 日立化成工業株式会社 Multilayer resin sheet and process for production thereof, resin sheet laminate and process for production thereof, cured multilayer resin sheet, metal-foil-cladded multilayer resin sheet, and semiconductor device
WO2012132691A1 (en) 2011-03-28 2012-10-04 日立化成工業株式会社 Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing same, multilayer resin sheet with metal foil, and semiconductor device
US8592260B2 (en) 2009-06-26 2013-11-26 Nitto Denko Corporation Process for producing a semiconductor device
EP2819158A3 (en) * 2013-06-25 2015-04-22 The Bergquist Company Thermally conductive dielectric interface
WO2020153205A1 (en) 2019-01-23 2020-07-30 富士フイルム株式会社 Composition, thermally-conductive sheet, and device equipped with thermally-conductive layer
WO2021010291A1 (en) 2019-07-17 2021-01-21 富士フイルム株式会社 Composition for forming thermally conductive material, thermally conductive material, and surface-modified inorganic substance
WO2021131803A1 (en) 2019-12-26 2021-07-01 富士フイルム株式会社 Composition, heat conductive sheet, and device having heat conductive sheet
WO2021157246A1 (en) 2020-02-06 2021-08-12 富士フイルム株式会社 Composition, thermally conductive material, thermally conductive sheet, and device with thermally conductive layer

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261657A (en) * 2005-02-21 2006-09-28 Nitto Denko Corp Manufacturing method for semiconductor device
WO2006088180A1 (en) * 2005-02-21 2006-08-24 Nitto Denko Corporation Semiconductor device manufacturing method
US8236614B2 (en) 2005-02-21 2012-08-07 Nitto Denko Corporation Semiconductor device manufacturing method
JP4653672B2 (en) * 2006-03-03 2011-03-16 三井化学株式会社 Adhesive film
JP2007235021A (en) * 2006-03-03 2007-09-13 Mitsui Chemicals Inc Adhesive film
US8278153B2 (en) 2006-09-12 2012-10-02 Nitto Denko Corporation Manufacturing method of semiconductor device, adhesive sheet used therein, and semiconductor device obtained thereby
US7772040B2 (en) 2006-09-12 2010-08-10 Nitto Denko Corporation Manufacturing method of semiconductor device, adhesive sheet used therein, and semiconductor device obtained thereby
US8975759B2 (en) 2006-09-12 2015-03-10 Nitto Denko Corporation Manufacturing method of semiconductor device, adhesive sheet used therein, and semiconductor device obtained thereby
JP2009138048A (en) * 2007-12-04 2009-06-25 Shin Etsu Chem Co Ltd Adhesive composition and adhesive film
US8592260B2 (en) 2009-06-26 2013-11-26 Nitto Denko Corporation Process for producing a semiconductor device
WO2012046814A1 (en) 2010-10-06 2012-04-12 日立化成工業株式会社 Multilayer resin sheet and process for production thereof, resin sheet laminate and process for production thereof, cured multilayer resin sheet, metal-foil-cladded multilayer resin sheet, and semiconductor device
WO2012132691A1 (en) 2011-03-28 2012-10-04 日立化成工業株式会社 Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing same, multilayer resin sheet with metal foil, and semiconductor device
EP2819158A3 (en) * 2013-06-25 2015-04-22 The Bergquist Company Thermally conductive dielectric interface
US9693481B2 (en) 2013-06-25 2017-06-27 Henkel IP & Holding GmbH Thermally conductive dielectric interface
WO2020153205A1 (en) 2019-01-23 2020-07-30 富士フイルム株式会社 Composition, thermally-conductive sheet, and device equipped with thermally-conductive layer
WO2021010291A1 (en) 2019-07-17 2021-01-21 富士フイルム株式会社 Composition for forming thermally conductive material, thermally conductive material, and surface-modified inorganic substance
WO2021131803A1 (en) 2019-12-26 2021-07-01 富士フイルム株式会社 Composition, heat conductive sheet, and device having heat conductive sheet
WO2021157246A1 (en) 2020-02-06 2021-08-12 富士フイルム株式会社 Composition, thermally conductive material, thermally conductive sheet, and device with thermally conductive layer

Also Published As

Publication number Publication date
JP4161544B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
JP3453390B2 (en) Semiconductor device, substrate for mounting semiconductor chip, and method of manufacturing the same
JPH11265960A (en) Semiconductor device with metal reinforcing material
JP2002265888A (en) Adhesive film and its use and method for producing semiconductor device
JP4161544B2 (en) Adhesive film for mounting semiconductor elements
JP3528639B2 (en) Adhesive, adhesive member, wiring board for mounting semiconductor provided with adhesive member, and semiconductor device using the same
JP3539242B2 (en) Adhesive member, wiring board for mounting semiconductor provided with adhesive member, and semiconductor device using the same
JP2002060716A (en) Low-elastic adhesive, low-elastic adhesive member, substrate for loading semiconductor having low-elastic adhesive member and semiconductor device using the same
JP3617504B2 (en) Adhesive film for mounting semiconductor elements
JPH11209724A (en) Flame retarded adhesive, flame retarded bonding member, wiring board for loading semiconductor having flame retarded bonding member and semiconductor device using the same
JPH11260838A (en) Semiconductor device manufactured with double-sided adhesive film
JP2004165687A (en) Semiconductor device, method for manufacturing semiconductor device, and photosensitive adhesion film for semiconductor chip mounting
JP2001279197A (en) Adhesive film, wiring substrate for mounting semiconductor and semiconductor device provided with adhesive film and method for fabricating them
KR100483102B1 (en) Semiconductor device, semiconductor chip mounting substrate, methods of manufacturing the device and substrate, adhesive, and adhesive double coated film
JP4534100B2 (en) Double-sided adhesive film for electronic parts, organic substrate for semiconductor mounting, and semiconductor device
JPH11284114A (en) Semiconductor device
JP2000144077A (en) Double-sided adhesive film and semiconductor device using the same
JP2000154360A (en) Adhesive, adhesive member, wiring board equipped with the adhesive member for semiconductor, and semiconductor equipment
JPH11209723A (en) Flame retarded adhesive, flame retarded bonding member, wiring board for loading semiconductor having flame retarded bonding member and semiconductor device using the same
JP2004238634A (en) Adhesive, adhesive member, wiring board having adhesive member and used for packaging semiconductor, and semiconductor device using the board
JP3675072B2 (en) Semiconductor device
JP2001131501A (en) Three-layer adhesive film, semiconductor chip-carrying substrate and semiconductor device
JP2001279217A (en) Adhesive composition, flame retardant adhesive composition, adhesive film, printed circuit board for mounting semiconductor, semiconductor device and method for producing the same
JP2002256227A (en) Photosensitive adhesive film, its use and method for producing semiconductor device
JP2003045902A (en) Semiconductor device, substrate for mounting semiconductor chip, method for manufacturing them, adhesive, and double-sided adhesive film
JP2005184022A (en) Heat for connection/electrical conductive film, and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040902

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term