JP2002128808A - Polymer and manufacturing method - Google Patents

Polymer and manufacturing method

Info

Publication number
JP2002128808A
JP2002128808A JP2000332561A JP2000332561A JP2002128808A JP 2002128808 A JP2002128808 A JP 2002128808A JP 2000332561 A JP2000332561 A JP 2000332561A JP 2000332561 A JP2000332561 A JP 2000332561A JP 2002128808 A JP2002128808 A JP 2002128808A
Authority
JP
Japan
Prior art keywords
polymer
polymerization
carbon dioxide
temperature
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000332561A
Other languages
Japanese (ja)
Other versions
JP4411377B2 (en
Inventor
Katsunobu Mizuguchi
勝信 水口
Kishio Shibafuji
岸夫 柴藤
Katsuto Otake
勝人 大竹
Takeshi Sako
猛 佐古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
NOF Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical NOF Corp
Priority to JP2000332561A priority Critical patent/JP4411377B2/en
Publication of JP2002128808A publication Critical patent/JP2002128808A/en
Application granted granted Critical
Publication of JP4411377B2 publication Critical patent/JP4411377B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a polymer which has a low environmental load, a simple process, a high yield and enables a polymer with a wide versatility to be obtained efficiently and to provide a polymer which can be manufactured easily with a low environmental load, has a wide versatility and is of high quality. SOLUTION: This polymer is obtained by polymerizing a polymerizable monomer in supercritical carbon dioxide in the presence of a non-polymerizable dispersant which has 10 or more carbons and at least one carboxy group in a molecule.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超臨界二酸化炭素
を用いた重合体の製造方法及び該方法で得られる重合体
に関する。
[0001] The present invention relates to a method for producing a polymer using supercritical carbon dioxide and a polymer obtained by the method.

【0002】[0002]

【従来の技術】従来から高分子微粉体等の重合体を製造
する方法としては、有機溶剤中にて不飽和単量体を溶液
重合した後、得られた高分子溶液から有機溶剤を除去
し、乾燥、粉砕などを行うプロセスが一般的である。該
プロセスでは、重合体を得るまでに何段階もの操作が必
要である。また、このようなプロセスで高分子微粉体を
製造すると、得られる微粉体の大きさが不均一となると
いう欠点がある。
2. Description of the Related Art Conventionally, as a method for producing a polymer such as a fine polymer powder, an unsaturated monomer is solution-polymerized in an organic solvent, and then the organic solvent is removed from the obtained polymer solution. , Drying, pulverization and the like are generally used. In this process, many steps are required to obtain a polymer. Further, when a polymer fine powder is produced by such a process, there is a disadvantage that the size of the obtained fine powder becomes non-uniform.

【0003】その他の方法としては、特開昭56−76
447号公報に水不溶の不飽和単量体を界面活性剤の存
在下、水中に分散させて乳化重合させる方法が開示され
ている。しかしながら、このような方法においては、多
量の水を使用するため、多量の廃水処理が必要となり、
環境負荷が大きい。また、このようなプロセスで高分子
微粉体を製造しようとする場合、得られた微粒子の単離
の際に微粒子同士が融着し、結果的に大きな粒子や塊に
なってしまい、微粉体等を得ることが困難である。
Another method is disclosed in Japanese Patent Application Laid-Open No. 56-76.
No. 447 discloses a method in which a water-insoluble unsaturated monomer is dispersed in water in the presence of a surfactant to carry out emulsion polymerization. However, in such a method, since a large amount of water is used, a large amount of wastewater treatment is required,
Large environmental load. In the case of producing a polymer fine powder by such a process, when the obtained fine particles are isolated, the fine particles are fused to each other, resulting in a large particle or a lump. Is difficult to obtain.

【0004】近年、環境負荷の低い反応方法として超臨
界二酸化炭素を溶剤に用いた反応方法の研究が進められ
ている。高分子合成の分野においても、従来からの有機
溶剤を多量に使用する製法に代わって、超臨界二酸化炭
素を溶剤に用いたポリマーの合成が検討されている。例
えば、特開平8−104830号公報には一度重合した
高分子物質の溶液を超臨界相に溶解させて急速膨張させ
ることにより塗料用高分子微粒子を製造する技術が開示
されており、特開平8−113652号公報には一度生
成した高分子固体を超臨界相に溶解させて、急速膨張さ
せて塗料用高分子微粒体を製造する方法が開示されてい
る。
[0004] In recent years, research on a reaction method using supercritical carbon dioxide as a solvent has been advanced as a reaction method with a low environmental load. In the field of polymer synthesis, synthesis of a polymer using supercritical carbon dioxide as a solvent has been studied instead of a conventional production method using a large amount of an organic solvent. For example, Japanese Patent Application Laid-Open No. H08-104830 discloses a technique in which a solution of a polymer material once polymerized is dissolved in a supercritical phase and rapidly expanded to produce polymer fine particles for coating. Japanese Patent Application No. 113652 discloses a method for producing polymer fine particles for coating by dissolving a polymer solid once formed in a supercritical phase and rapidly expanding the solid.

【0005】しかし、これら開示された技術では、超臨
界相での膨張に先立ち、超臨界流体以外の溶剤で重合反
応を行い高分子物質を得る工程が必要となるので、工程
が煩雑であるとともに有機溶剤量の減量を達成すること
は困難である。
However, these disclosed techniques require a step of performing a polymerization reaction with a solvent other than a supercritical fluid to obtain a high molecular substance prior to expansion in the supercritical phase. It is difficult to achieve a reduction in the amount of the organic solvent.

【0006】超臨界流体中において重合反応を行う技術
としては、スチレン−アクリロニトリルの単量体混合物
を、超臨界二酸化炭素中で、ラジカル重合開始剤の存在
下で反応させる方法(特開平8−41135号公報)、
スチレン−酢酸ビニルの単量体混合物を超臨界二酸化炭
素中でラジカル重合開始剤の存在下で反応させる方法
(特開平10−45838号公報)などが知られてい
る。
As a technique for conducting a polymerization reaction in a supercritical fluid, a method of reacting a monomer mixture of styrene-acrylonitrile in supercritical carbon dioxide in the presence of a radical polymerization initiator (Japanese Patent Laid-Open No. 8-41135). No.),
A method is known in which a monomer mixture of styrene-vinyl acetate is reacted in supercritical carbon dioxide in the presence of a radical polymerization initiator (JP-A-10-45838).

【0007】しかし、これら開示されている技術では前
者の収率が84%、後者の収率が12〜56%であっ
て、系中に残存する未反応の単量体を除去するための工
程が必要である。更には、これら開示されている方法で
は、重合体は超臨界二酸化炭素中に溶解していない溶融
状態で製造されているため、高分子組成物は塊状で得ら
れる。従って、高分子微粉体を得るためには粉砕等の更
なる工程を必要とする。
However, in these disclosed techniques, the yield of the former is 84% and the yield of the latter is 12 to 56%, and the process for removing unreacted monomers remaining in the system is carried out. is necessary. Furthermore, in these disclosed methods, the polymer is produced in a molten state not dissolved in supercritical carbon dioxide, so that the polymer composition is obtained in a lump. Therefore, further steps such as pulverization are required to obtain the polymer fine powder.

【0008】一方、特表平9−503798号公報に
は、超臨界二酸化炭素可溶部位としてフッ素化及びケイ
素化された部位を持つ界面活性剤を用いた、超臨界二酸
化炭素中でのポリマーの分散重合反応が開示されてい
る。しかし、その収率は20〜75%と低いため工業規
模でのポリマー製造には不利である。しかも、当該方法
により得られる重合体の製品は、フルオロポリマーを含
むため、有機溶剤に難溶で汎用性に乏しい。このような
重合体の製品をそのまま塗料用組成物などとして利用し
た場合、フッ素の撥油・撥水作用による塗膜表面へのム
ラが現れるので、このような用途における利用が困難で
ある。また、当該方法により得られる重合体の製品から
フルオロポリマーを除去しようとした場合、有機溶剤を
多量に使用することが必要となり、結局環境負荷が低減
しにくくなる。
On the other hand, Japanese Patent Publication No. 9-503798 discloses that a polymer in supercritical carbon dioxide is produced using a surfactant having a fluorinated and siliconized site as a supercritical carbon dioxide soluble site. Dispersion polymerization reactions are disclosed. However, the yield is as low as 20 to 75%, which is disadvantageous for polymer production on an industrial scale. In addition, since the polymer product obtained by the method contains a fluoropolymer, it is hardly soluble in an organic solvent and has poor versatility. When such a polymer product is used as it is as a coating composition or the like, unevenness appears on the surface of the coating film due to the oil-repellent and water-repellent action of fluorine, so that it is difficult to use in such applications. In addition, when an attempt is made to remove a fluoropolymer from a polymer product obtained by the method, it is necessary to use a large amount of an organic solvent, and eventually, it is difficult to reduce the environmental load.

【0009】[0009]

【発明が解決しようとする課題】本発明の第1の目的
は、環境負荷が低く、工程が簡便で、収率が高く、汎用
性の高い重合体を効率的に得ることができる重合体の製
造方法を提供することにある。
SUMMARY OF THE INVENTION A first object of the present invention is to provide a polymer capable of efficiently obtaining a polymer having low environmental load, simple steps, high yield and high versatility. It is to provide a manufacturing method.

【0010】本発明の第2の目的は、低環境負荷で容易
に製造することができ、汎用性が高く、高品質な重合体
を提供することにある。
A second object of the present invention is to provide a high quality polymer which can be easily produced with low environmental load, has high versatility, and has high versatility.

【0011】[0011]

【課題を解決するための手段】本発明によれば、炭素数
10以上で、かつ分子中にカルボキシル基を少なくとも
1つ以上有する非重合性分散剤の存在下で、超臨界二酸
化炭素中で重合性単量体を重合することを特徴とする重
合体の製造方法が提供される。
According to the present invention, polymerization is carried out in supercritical carbon dioxide in the presence of a non-polymerizable dispersant having 10 or more carbon atoms and having at least one carboxyl group in the molecule. The present invention provides a method for producing a polymer, which comprises polymerizing a hydrophilic monomer.

【0012】また、本発明によれば、前記製造方法で得
た重合体が提供される。
Further, according to the present invention, there is provided a polymer obtained by the above production method.

【0013】[0013]

【発明の実施の形態】本発明の重合体の製造方法では、
超臨界二酸化炭素中で重合性単量体を重合する。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing a polymer of the present invention,
The polymerizable monomer is polymerized in supercritical carbon dioxide.

【0014】前記超臨界二酸化炭素とは、二酸化炭素を
その臨界点(臨界温度31℃または臨界圧力73.5k
g/cm2)以上に加温・加圧することにより得られ、
それ以上に加圧しても液化されない状態の流体となった
二酸化炭素をいい、通常、気体と液体の性質を有する。
The supercritical carbon dioxide is defined as a carbon dioxide having a critical point (critical temperature of 31 ° C. or critical pressure of 73.5 k).
g / cm 2 ) or more.
Carbon dioxide that has become a fluid that is not liquefied even when pressurized further, and usually has the properties of gas and liquid.

【0015】前記超臨界二酸化炭素は、ボンベ等に入っ
た市販の二酸化炭素ガスを、重合反応を行う反応容器内
に導入し、所定の温度及び圧力とすることで得ることが
できる。導入する二酸化炭素ガスは純度99.9%以上
のものを用いることが好ましい。
The supercritical carbon dioxide can be obtained by introducing a commercially available carbon dioxide gas contained in a cylinder or the like into a reaction vessel in which a polymerization reaction is performed, and setting the temperature and pressure to predetermined values. It is preferable to use carbon dioxide gas having a purity of 99.9% or more.

【0016】前記超臨界二酸化炭素には更に他の添加溶
剤を配合して用いてもよい。前記添加溶剤としては、
水、メタノール、エタノール等の低級アルコール、アセ
トニトリル等を用いることができる。前記の添加溶剤は
超臨界二酸化炭素100重量部に対して0.1から10
0重量部程度加えることができるが、公害発生の防止や
環境負荷の低減の観点からは添加溶剤は用いないことが
好ましい。
The supercritical carbon dioxide may be further mixed with another additive solvent. As the additive solvent,
Water, lower alcohols such as methanol and ethanol, acetonitrile and the like can be used. The added solvent is 0.1 to 10 parts by weight per 100 parts by weight of supercritical carbon dioxide.
Although about 0 parts by weight can be added, it is preferable not to use an additive solvent from the viewpoint of preventing the occurrence of pollution and reducing the environmental load.

【0017】本発明の重合体の製造方法では、重合を、
特定の非重合性分散剤の存在下において行う。
In the method for producing a polymer of the present invention, the polymerization
Performed in the presence of a specific non-polymerizable dispersant.

【0018】前記非重合性分散剤は、分子内に少なくと
も1つのカルボキシル基を有し、その分子を構成する炭
素数が10以上である。
The non-polymerizable dispersant has at least one carboxyl group in the molecule, and the molecule has 10 or more carbon atoms.

【0019】前記非重合性分散剤の炭素数が10未満で
ある場合には、超臨界二酸化炭素中での分散能が低く、
ポリマー及びモノマーが超臨界二酸化炭素中に分散され
ないため重合が完結せず、未反応モノマーが残留する。
When the carbon number of the non-polymerizable dispersant is less than 10, the dispersibility in supercritical carbon dioxide is low,
Since the polymer and the monomer are not dispersed in the supercritical carbon dioxide, the polymerization is not completed, and the unreacted monomer remains.

【0020】前記非重合性分散剤としては、デカン酸、
ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカ
ン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン
酸、オクタデカン酸、ノナデカン酸、エイコサン酸、ド
コサン酸等の炭素数10〜40の直鎖若しくは枝分かれ
した長鎖アルキルカルボン酸、あるいは1−ナフトエ
酸、2−ナフトエ酸等の炭素数10〜40の芳香族カル
ボン酸、あるいは、重量平均分子量1,000〜1,0
00,000のポリカルボン酸ホモポリマー及び、重量
平均分子量1,000〜1,000,000で、カルボ
ン酸割合(ポリマーを構成するモノマー単位の総量中に
おける、カルボン酸を有するモノマー単位の割合)が1
〜99モル%のポリカルボン酸コポリマーが挙げられ
る。好ましくは、炭素数14以上の脂肪酸を用いること
ができ、特に炭素数20〜40の長鎖アルキルカルボン
酸あるいは炭素数20〜40の枝分かれしたアルキルカ
ルボン酸が好ましい。
As the non-polymerizable dispersant, decanoic acid,
Undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, eicosanoic acid, long-chain alkyl carboxylic acids having 10 to 40 carbon atoms such as docosanoic acid Or an aromatic carboxylic acid having 10 to 40 carbon atoms such as 1-naphthoic acid or 2-naphthoic acid, or a weight average molecular weight of 1,000 to 1,0.
A polycarboxylic acid homopolymer having a weight average molecular weight of 1,000 to 1,000,000 and a carboxylic acid ratio (a ratio of a monomer unit having a carboxylic acid in the total amount of the monomer units constituting the polymer) having a weight average molecular weight of 1,000 to 1,000,000 1
9999 mol% of a polycarboxylic acid copolymer. Preferably, a fatty acid having 14 or more carbon atoms can be used, and a long-chain alkyl carboxylic acid having 20 to 40 carbon atoms or a branched alkyl carboxylic acid having 20 to 40 carbon atoms is particularly preferable.

【0021】本発明の製造方法において重合される重合
性単量体は、前記非重合性分散剤の存在下で超臨界二酸
化炭素中で重合することができる単量体であれば特に限
定されず、分子内に少なくとも1つのエチレン性不飽和
結合部を有するもの等を用いることができる。具体的に
例えば、メチル(メタ)アクリレート、エチル(メタ)
アクリレート、n−プロピル(メタ)アクリレート、イ
ソプロピル(メタ)アクリレート、n−ブチル(メタ)
アクリレート、イソブチル(メタ)アクリレート、se
c−ブチル(メタ)アクリレート、シクロヘキシル(メ
タ)アクリレート、2−エチルヘキシル(メタ)アクリ
レート、デシル(メタ)アクリレート、ドデシル(メ
タ)アクリレート、ヘキサデシル(メタ)アクリレート
等の(メタ)アクリル酸アルキルエステル類;メタクリ
ル酸、アクリル酸、クロトン酸、イタコン酸、メサコン
酸、マレイン酸、フマル酸などの重合性カルボン酸類や
これらのハーフエステル類やこれらのジエステル類;ω
−カルボキシ−ポリカプロラクトン(n=2)モノアク
リレート[例えば、アロニックスM−5300(商品
名、東亞合成化学工業(株)製)]若しくはアクリル酸
ダイマー[例えば、アロニックスM−5600(商品
名、東亞合成化学工業(株)製)]等の炭化水素鎖の末端
等に不飽和結合を有する化合物;ヒドロキシエチル(メ
タ)アクリレート、2−ヒドロキシプロピル(メタ)ア
クリレート、ポリエチレングリコール(メタ)アクリレ
ート等の水酸基含有単量体;スチレン、α−メチルスチ
レン等のスチレン系単量体;酢酸ビニルなどのビニルエ
ステル類;メチルビニルエーテル、エチルビニルエーテ
ルなどのビニルエーテル類;p−ビニルトルエン、アク
リロニトリルなどを挙げることができる。また更には、
2、2、2−トリフルオロメチルアクリレート、2、
2、2−トリフルオロメチルメタクリレート等の含フッ
素α、β―エチレン性不飽和単量体などが挙げられる。
これらは一種類用いてもよいし、二種類以上組み合わせ
て用いてもよい。中でも、(メタ)アクリル酸アルキルエ
ステルが特に好ましい。
The polymerizable monomer to be polymerized in the production method of the present invention is not particularly limited as long as it can be polymerized in supercritical carbon dioxide in the presence of the non-polymerizable dispersant. And those having at least one ethylenically unsaturated bond in the molecule can be used. Specifically, for example, methyl (meth) acrylate, ethyl (meth)
Acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth)
Acrylate, isobutyl (meth) acrylate, se
alkyl (meth) acrylates such as c-butyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, and hexadecyl (meth) acrylate; Polymerizable carboxylic acids such as methacrylic acid, acrylic acid, crotonic acid, itaconic acid, mesaconic acid, maleic acid, fumaric acid, half esters thereof, and diesters thereof;
-Carboxy-polycaprolactone (n = 2) monoacrylate [for example, Aronix M-5300 (trade name, manufactured by Toagosei Chemical Industry Co., Ltd.)] or acrylic acid dimer [for example, Aronix M-5600 (tradename, Toagosei Co., Ltd.) A compound having an unsaturated bond at the end of a hydrocarbon chain or the like; such as hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, polyethylene glycol (meth) acrylate, etc. Monomers; styrene-based monomers such as styrene and α-methylstyrene; vinyl esters such as vinyl acetate; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; p-vinyltoluene and acrylonitrile. Or even
2,2,2-trifluoromethyl acrylate, 2,
Fluorinated α, β-ethylenically unsaturated monomers such as 2,2-trifluoromethyl methacrylate and the like.
These may be used alone or in combination of two or more. Among them, alkyl (meth) acrylate is particularly preferred.

【0022】本発明の製造方法において、前記重合性単
量体組成物の重合の態様は、特に限定されるものではな
く、公知の重合の態様とすることができる。例えば、ラ
ジカル重合、アニオン重合、カチオン重合のいずれでも
よく、ラジカル重合が特に好ましい。
In the production method of the present invention, the mode of polymerization of the polymerizable monomer composition is not particularly limited, and may be a known mode of polymerization. For example, any of radical polymerization, anionic polymerization, and cationic polymerization may be used, and radical polymerization is particularly preferable.

【0023】ラジカル重合は、重合開始剤を用いて行う
ことができる。前記重合開始剤としては、特に限定され
るものではなく、例えば、t−ブチルハイドロパーオキ
シド、クメンハイドロパーオキシド、t−ブチルパーオ
キシネオデカネート、t−ブチルパーオキシピバレー
ト、メチルエチルケトンパーオキシド、アセチルシクロ
ヘキシルスルホニルパーオキシド等の有機過酸化物、更
に、2,2’−アゾビス(2,4−ジメチルバレロニト
リル)、2,2’−アゾビス(イソブチロニトリル)
(以下、AIBNと略す)、2,2’−アゾビス(2−
メチルブチロニトリル)等のアゾ系開始剤を好ましく挙
げることができる。特にAIBNが好ましい。
The radical polymerization can be carried out using a polymerization initiator. The polymerization initiator is not particularly limited, and includes, for example, t-butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxyneodecanate, t-butyl peroxypivalate, methyl ethyl ketone peroxide, Organic peroxides such as acetylcyclohexylsulfonyl peroxide, and furthermore 2,2'-azobis (2,4-dimethylvaleronitrile) and 2,2'-azobis (isobutyronitrile)
(Hereinafter abbreviated as AIBN), 2,2′-azobis (2-
An azo initiator such as methylbutyronitrile) can be preferably exemplified. Particularly, AIBN is preferable.

【0024】これらのラジカル重合開始剤は,一種類の
み用いてもよいし、二種類以上組み合わせて用いてもよ
い。
One of these radical polymerization initiators may be used alone, or two or more thereof may be used in combination.

【0025】またラジカル重合開始剤の使用量は目的と
する重合体の分子量から適宜決定することができ、特に
限定されないが、重合性単量体100重量部に対して、
好ましくは0.001〜30重量部、より好ましくは
0.1〜10重量部とすることができる。
The amount of the radical polymerization initiator used can be appropriately determined from the molecular weight of the target polymer, and is not particularly limited.
Preferably it is 0.001 to 30 parts by weight, more preferably 0.1 to 10 parts by weight.

【0026】前記重合は、具体的に例えば、前記の重合
性単量体100重量部に対して、二酸化炭素の使用量を
5〜1,500重量部とし、圧力30〜400kg/c
2、好ましくは60〜360kg/cm2で、温度31
〜160℃、好ましくは40〜150℃で、バッチ式で
行うことができる。特に、ラジカル重合により重合を行
う場合の反応温度は、好ましくは40〜150℃、より
好ましくは50〜100℃とすることができる。反応温
度が50〜100℃であるとラジカル重合開始剤が熱に
より分解しやすく、効果的に生長反応が進行しやすいた
め特に好ましい。
In the polymerization, specifically, for example, the amount of carbon dioxide used is set to 5 to 1,500 parts by weight and the pressure is set to 30 to 400 kg / c with respect to 100 parts by weight of the polymerizable monomer.
m 2 , preferably 60-360 kg / cm 2, at a temperature of 31
It can be carried out in a batch manner at a temperature of up to 160 ° C, preferably 40 to 150 ° C. In particular, the reaction temperature when performing polymerization by radical polymerization can be preferably 40 to 150 ° C, more preferably 50 to 100 ° C. A reaction temperature of 50 to 100 ° C. is particularly preferable because the radical polymerization initiator is easily decomposed by heat and the growth reaction easily proceeds effectively.

【0027】前記重合を行う際の重合時間は、重合温度
やその他の条件に左右され、一定に定めることはできな
いが、一般に2〜48時間が好ましい。
The polymerization time for carrying out the above-mentioned polymerization depends on the polymerization temperature and other conditions and cannot be fixedly determined, but is generally preferably 2 to 48 hours.

【0028】前記重合は、単量体100重量部に対し
て、前記非重合性分散剤を0.01〜100重量部、好
ましくは0.1〜50重量部程度加えて行うことができ
る。単量体100重量部に対する非重合性分散剤の添加
量が0.01重量部未満の場合は分散剤の分散能が低
く、ポリマー、ポリマーラジカル及びモノマーが超臨界
二酸化炭素中で充分に分散されないため重合が完結せ
ず、未反応モノマーが重合体に残留するため好ましくな
い。また、100重量部を超える場合には得られる重合
体の強度が低下し、好ましくない。
The polymerization can be carried out by adding 0.01 to 100 parts by weight, preferably 0.1 to 50 parts by weight of the non-polymerizable dispersant to 100 parts by weight of the monomer. If the amount of the non-polymerizable dispersant is less than 0.01 part by weight based on 100 parts by weight of the monomer, the dispersing ability of the dispersant is low, and the polymer, polymer radical and monomer are not sufficiently dispersed in the supercritical carbon dioxide. Therefore, polymerization is not completed and unreacted monomers remain in the polymer, which is not preferable. On the other hand, if it exceeds 100 parts by weight, the strength of the obtained polymer decreases, which is not preferable.

【0029】重合反応が進行することにより、超臨界二
酸化炭素中において、重合体を生成させることができ
る。重合終了後、温度及び圧力を下げ、二酸化炭素を排
出することにより、重合体を、容易に反応系から取り出
すことができる。重合体は、通常高分子微粉体として取
り出され、更なる破砕等の工程を経ることなく、直接微
粉体の製品として用いることができる。また、必要に応
じて、前記分散剤を除去してから製品とすることもでき
る。
As the polymerization reaction proceeds, a polymer can be formed in supercritical carbon dioxide. After completion of the polymerization, the temperature and pressure are reduced, and the carbon dioxide is discharged, whereby the polymer can be easily taken out of the reaction system. The polymer is usually taken out as a fine polymer powder and can be directly used as a fine powder product without further crushing or the like. If necessary, the product can be obtained after removing the dispersant.

【0030】得られた重合体から分散剤を除去する方法
としては、例えばメタノール、エタノール、プロパノー
ルなどのアルコール類や、アセトン、メチルエチルケト
ンなどのケトン類、あるいはジエチルエーテル、ジイソ
プロピルエーテルなどのエーテル類、あるいはアセトニ
トリルなどのニトリル類及びベンゼン、トルエン、キシ
レンなどの芳香族類、あるいは水酸化ナトリウム水溶液
や、水酸化カリウム水溶液、水酸化カルシウム水溶液等
のアルカリ性水溶液で洗浄することにより、容易に除去
できる。
As a method for removing the dispersant from the obtained polymer, for example, alcohols such as methanol, ethanol and propanol, ketones such as acetone and methyl ethyl ketone, ethers such as diethyl ether and diisopropyl ether, or It can be easily removed by washing with nitriles such as acetonitrile and aromatics such as benzene, toluene and xylene, or alkaline aqueous solutions such as aqueous sodium hydroxide solution, aqueous potassium hydroxide solution and aqueous calcium hydroxide solution.

【0031】本発明の重合体は前記の製造方法で得られ
た重合体である。本発明の重合体は、好ましくはエチレ
ン性不飽和単量体に基づく構成単位を含む。本発明の重
合体の分子量は、重量平均分子量として1,000〜
1,000,000、好ましくは10,000〜30
0,000とすることができる。また、本発明の重合体
は、前記重合反応により、微粉体等の粉体として得るこ
とができ、その粒子の平均粒径は0.1〜50μm、好
ましくは0.1〜20μmとすることができる。このよ
うな平均粒径を有することにより、例えば、粉体塗料と
して用いた場合、平滑性の優れた塗装被膜を与えること
ができる。
The polymer of the present invention is a polymer obtained by the above-mentioned production method. The polymer of the present invention preferably contains structural units based on ethylenically unsaturated monomers. The molecular weight of the polymer of the present invention is 1,000 to 1,000 as a weight average molecular weight.
1,000,000, preferably 10,000-30
000. Further, the polymer of the present invention can be obtained as a powder such as a fine powder by the polymerization reaction, and the average particle diameter of the particles is 0.1 to 50 μm, preferably 0.1 to 20 μm. it can. By having such an average particle diameter, for example, when used as a powder coating, a coating film having excellent smoothness can be given.

【0032】本発明の重合体は、前記の製造方法によ
り、粒径の揃った高品質な重合体として得ることができ
る。
The polymer of the present invention can be obtained as a high-quality polymer having a uniform particle size by the above-mentioned production method.

【0033】本発明の重合体は、塗料、インク、接着
剤、成形品、化粧品材料、医療品などの材料として好適
に用いることができる。
The polymer of the present invention can be suitably used as a material for paints, inks, adhesives, molded products, cosmetic materials, medical products and the like.

【0034】[0034]

【発明の効果】本発明の重合体の製造方法では、環境負
荷が低く、工程が簡便で、収率が高く、汎用性の高い重
合体を効率的に得ることができる。さらに、重合体とし
て高分子微粉体を製造することができ、粒径の揃った高
品質の微粉体を簡便に得ることができる。
According to the process for producing a polymer of the present invention, a polymer having a low environmental load, simple steps, a high yield and a high versatility can be efficiently obtained. Further, a polymer fine powder can be produced as a polymer, and a high-quality fine powder having a uniform particle size can be easily obtained.

【0035】本発明の重合体は、低環境負荷で容易に製
造することができ、汎用性が高く、高品質な重合体とす
ることができる。
The polymer of the present invention can be easily produced with a low environmental load, and has high versatility and high quality.

【0036】[0036]

【実施例】以下、実施例に基づいて本発明を更に詳細に
説明するが、本発明はこれらに限定されない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

【0037】実施例において用いた測定方法等は、以下
の通りである。 1. 重量平均分子量の測定; ゲル浸透クロマトグラフィー(GPC); 機種;東ソー社製、GPC−8020、 条件;カラム;東ソー社製、TSKgel−G3000
PWXL、東ソー社製、TSKgel−G6000PWXL
の2本を直列連結、 カラム温度;45℃、 流量;1mL/min 溶離液;リン酸緩衝液(pH7.4、20mM) 標準試料;ポリエチレングリコール 検出器;UV(東ソー社製UV−8020)、RI(東
ソー社製RI−8020)の2つを使用。 2. 粉体の粒径測定; 機種;走査型電子顕微鏡(日立製作所製S−80) 測定条件;加速電圧15KVおよび20KVで測定、粒
子100個の平均粒径を粒径とした。 3. ガラス転移温度の測定 示差走査熱量計DSC(セイコーDSC−220)によ
り行った。
The measuring method and the like used in the examples are as follows. 1. Measurement of weight average molecular weight; Gel permeation chromatography (GPC); Model: GPC-8020, manufactured by Tosoh Corporation Conditions: Column: TSKgel-G3000, manufactured by Tosoh Corporation
PW XL , manufactured by Tosoh Corporation, TSKgel-G6000PW XL
Column temperature; 45 ° C., flow rate: 1 mL / min eluent; phosphate buffer (pH 7.4, 20 mM) standard sample; polyethylene glycol detector; UV (Tosoh UV-8020), Two of RI (RI-8020 manufactured by Tosoh Corporation) are used. 2. Particle size measurement of powder; Model: Scanning electron microscope (S-80 manufactured by Hitachi, Ltd.) Measurement conditions: Measured at acceleration voltages of 15 KV and 20 KV, and the average particle size of 100 particles was taken as the particle size. 3. Measurement of glass transition temperature The measurement was performed using a differential scanning calorimeter DSC (Seiko DSC-220).

【0038】[0038]

【実施例1】攪拌装置及び測温装置を有する容積54m
Lの金属製高圧用重合容器を31℃以上まで昇温し、重
合容器にメタクリル酸メチル5.40g、重合開始剤と
してAIBN21.6mg並びに炭素数22のドコサン
酸0.54gを添加し、その後二酸化炭素を注入し、速
やかに重合容器内の温度が65℃、圧力が300kg/
cm2になるように加熱及び加圧した。所定の温度、圧
力に到達した後、700rpmで攪拌を行いながら、2
4時間単量体を重合させた。重合終了後、重合容器内の
温度と圧力を下げた後、二酸化炭素を排出した。重合容
器内には白色の微粉体が得られ、その収量は5.08g
であった。
Example 1 54 m capacity with stirrer and temperature measuring device
The metal high-pressure polymerization vessel L was heated to 31 ° C. or higher, and 5.40 g of methyl methacrylate, 21.6 mg of AIBN as a polymerization initiator, and 0.54 g of docosanoic acid having 22 carbon atoms were added to the polymerization vessel. Inject carbon and immediately raise the temperature in the polymerization vessel to 65 ° C and the pressure to 300 kg /
Heating and pressurizing were performed so as to obtain cm 2 . After reaching the predetermined temperature and pressure, while stirring at 700 rpm, 2
The monomer was polymerized for 4 hours. After completion of the polymerization, the temperature and pressure in the polymerization vessel were lowered, and then carbon dioxide was discharged. A fine white powder was obtained in the polymerization vessel, and the yield was 5.08 g.
Met.

【0039】この高分子微粉体は、前述のGPCで測定
したところMw(重量平均分子量)が180,000であ
った。また、この高分子微粉体の走査型電子顕微鏡によ
る観察では、粒径3.3μmの大きさの揃った微粉体で
あることが確認できた。図1に走査型電子顕微鏡による
観察結果の写真を示す。
This polymer fine powder had a Mw (weight average molecular weight) of 180,000 as measured by the aforementioned GPC. In addition, observation of the polymer fine powder with a scanning electron microscope confirmed that the fine powder had a uniform particle size of 3.3 μm. FIG. 1 shows a photograph of the result of observation with a scanning electron microscope.

【0040】この高分子微粉体のガラス転移点(Tg)
を測定したところ105℃であった。
Glass transition point (Tg) of this polymer fine powder
Was 105 ° C.

【0041】[0041]

【実施例2】攪拌装置及び測温装置を有する容積54m
Lの金属製高圧用重合容器を31℃以上まで昇温し、重
合容器にメタクリル酸メチル3.78g、n−ブチルメ
タアクリレート1.62g、重合開始剤としてのAIB
N21.6mg並びに炭素数22のドコサン酸0.54
gを添加し、その後二酸化炭素を注入し、速やかに重合
容器内の温度が65℃、圧力が300kg/cm2になる
ように加熱及び加圧した。所定の温度、圧力に到達した
後、700rpmで攪拌を行いながら、24時間単量体
を重合させた。重合終了後、重合容器内の温度と圧力を
下げた後、二酸化炭素を排出した。重合容器内には白色
の微粉体が得られ、その収量は5.23gであった。
Example 2 54 m capacity with stirring device and temperature measuring device
The temperature of the metal high-pressure polymerization container L was raised to 31 ° C. or higher, and 3.78 g of methyl methacrylate, 1.62 g of n-butyl methacrylate, and AIB as a polymerization initiator
N21.6 mg and docosanoic acid having 22 carbon atoms 0.54
g, and then carbon dioxide was injected, and the mixture was immediately heated and pressurized so that the temperature in the polymerization vessel became 65 ° C. and the pressure became 300 kg / cm 2 . After reaching the predetermined temperature and pressure, the monomer was polymerized for 24 hours while stirring at 700 rpm. After completion of the polymerization, the temperature and pressure in the polymerization vessel were lowered, and then carbon dioxide was discharged. A fine white powder was obtained in the polymerization vessel, and the yield was 5.23 g.

【0042】この高分子微粉体は、前述のGPCで測定
したところMw(重量平均分子量)が210,000であ
った。また、この高分子微粉体の走査型電子顕微鏡によ
る観察では、粒径2.8μmの大きさの揃った微粉体で
あることが確認できた。
This polymer fine powder had a Mw (weight average molecular weight) of 210,000 as measured by the aforementioned GPC. In addition, observation of this polymer fine powder with a scanning electron microscope confirmed that it was a fine powder having a uniform particle size of 2.8 μm.

【0043】この高分子微粉体のガラス転移点を測定し
たところ75℃であった。
The glass transition point of this fine polymer powder was measured and found to be 75 ° C.

【0044】[0044]

【実施例3】攪拌装置及び測温装置を有する容積54m
Lの金属製高圧用重合容器を31℃以上まで昇温し、重
合容器にメタクリル酸メチル5.40g、重合開始剤と
してAIBN21.6mg並びに炭素数22のドコサン
酸3.40gを添加し、その後二酸化炭素を注入し、速
やかに重合容器内の温度が65℃、圧力が300kg/
cm2になるように加熱及び加圧した。所定の温度、圧
力に到達した後、700rpmで攪拌を行いながら、2
4時間単量体を重合させた。重合終了後、重合容器内の
温度と圧力を下げた後、二酸化炭素を排出した。重合容
器内には白色の微粉体が得られ、その収量は7.30g
であった。
Embodiment 3 54 m capacity with stirrer and temperature measuring device
The temperature of the metal high-pressure polymerization vessel L was raised to 31 ° C. or higher, and 5.40 g of methyl methacrylate, 21.6 mg of AIBN as a polymerization initiator and 3.40 g of docosanoic acid having 22 carbon atoms were added to the polymerization vessel. Inject carbon and immediately raise the temperature in the polymerization vessel to 65 ° C and the pressure to 300 kg /
Heating and pressurizing were performed so as to obtain cm 2 . After reaching the predetermined temperature and pressure, while stirring at 700 rpm, 2
The monomer was polymerized for 4 hours. After completion of the polymerization, the temperature and pressure in the polymerization vessel were lowered, and then carbon dioxide was discharged. A fine white powder was obtained in the polymerization vessel, and the yield was 7.30 g.
Met.

【0045】この高分子微粉体は、前述のGPCで測定
したところMw(重量平均分子量)が109,000であ
った。また、この高分子微粉体の走査型電子顕微鏡によ
る観察では、粒径2.3μmの大きさの揃った微粉体で
あることが確認できた。この高分子微粉体のガラス転移
点を測定したところ105℃であった。
This polymer fine powder had a Mw (weight average molecular weight) of 109,000 as measured by the aforementioned GPC. In addition, observation of this polymer fine powder with a scanning electron microscope confirmed that it was a fine powder having a uniform particle size of 2.3 μm. The glass transition point of this fine polymer powder was measured and found to be 105 ° C.

【0046】[0046]

【実施例4】攪拌装置及び測温装置を有する容積54m
Lの金属製高圧用重合容器を31℃以上まで昇温し、重
合容器にメタクリル酸メチル5.40g、重合開始剤と
してAIBN21.6mg並びに炭素数14のミリスチ
ン酸0.54gを添加し、その後二酸化炭素を注入し、
速やかに重合容器内の温度が65℃、圧力が300kg
/cm2になるように加熱及び加圧した。所定の温度、圧
力に到達した後、700rpmで攪拌を行いながら、2
4時間単量体を重合させた。重合終了後、重合容器内の
温度と圧力を下げた後、二酸化炭素を排出した。重合容
器内には白色の微粉体が得られ、その収量は5.21g
であった。この高分子微粉体は、前述のGPCで測定し
たところMw(重量平均分子量)が140,000であっ
た。また、この高分子微粉体の走査型電子顕微鏡による
観察では、粒径3.4μmの大きさの揃った微粉体であ
ることが確認できた。
Embodiment 4 54 m capacity with stirrer and temperature measuring device
The metal high-pressure polymerization vessel L was heated to 31 ° C. or higher, and 5.40 g of methyl methacrylate, 21.6 mg of AIBN as a polymerization initiator, and 0.54 g of myristic acid having 14 carbon atoms were added to the polymerization vessel. Inject carbon,
The temperature inside the polymerization vessel is 65 ° C and the pressure is 300kg
/ cm 2 . After reaching the predetermined temperature and pressure, while stirring at 700 rpm, 2
The monomer was polymerized for 4 hours. After completion of the polymerization, the temperature and pressure in the polymerization vessel were lowered, and then carbon dioxide was discharged. A fine white powder was obtained in the polymerization vessel, and the yield was 5.21 g.
Met. This polymer fine powder had a Mw (weight average molecular weight) of 140,000 as measured by the aforementioned GPC. In addition, observation of the polymer fine powder with a scanning electron microscope confirmed that the fine powder had a uniform particle size of 3.4 μm.

【0047】この高分子微粉体のガラス転移点を測定し
たところ105℃であった。
The glass transition point of the polymer fine powder was measured and found to be 105 ° C.

【0048】[0048]

【実施例5】攪拌装置及び測温装置を有する容積54m
Lの金属製高圧用重合容器を31℃以上まで昇温し、重
合容器にスチレン5.40g、重合開始剤としてAIB
N21.6mg並びに炭素数22のドコサン酸0.54
gを添加し、その後二酸化炭素を注入し、速やかに重合
容器内の温度が65℃、圧力が300kg/cm2になる
ように加熱及び加圧した。所定の温度、圧力に到達した
後、700rpmで攪拌を行いながら、24時間単量体
を重合させた。重合終了後、重合容器内の温度と圧力を
下げた後、二酸化炭素を排出した。重合容器内には白色
の微粉体が得られ、その収量は5.06gであった。
Embodiment 5 54 m capacity with stirrer and temperature measuring device
L was heated to a temperature of 31 ° C. or higher, and 5.40 g of styrene was added to the polymerization vessel, and AIB was used as a polymerization initiator.
N21.6 mg and docosanoic acid having 22 carbon atoms 0.54
g, and then carbon dioxide was injected, and the mixture was immediately heated and pressurized so that the temperature in the polymerization vessel became 65 ° C. and the pressure became 300 kg / cm 2 . After reaching the predetermined temperature and pressure, the monomer was polymerized for 24 hours while stirring at 700 rpm. After completion of the polymerization, the temperature and pressure in the polymerization vessel were lowered, and then carbon dioxide was discharged. A fine white powder was obtained in the polymerization vessel, and the yield was 5.06 g.

【0049】この高分子微粉体は前述のGPCで測定し
たところMw(重量平均分子量)は190,000であっ
た。また、この高分子微粉体の走査型電子顕微鏡による
観察では、粒径2.0μmの大きさの揃った微粉体であ
ることが確認できた。
This polymer fine powder had a Mw (weight average molecular weight) of 190,000 as measured by the aforementioned GPC. In addition, observation of the polymer fine powder with a scanning electron microscope confirmed that the polymer fine powder had a uniform particle size of 2.0 μm.

【0050】この高分子微粉体のガラス転移点を測定し
たところ100℃であった。
The glass transition point of this fine polymer powder was 100 ° C.

【0051】[0051]

【比較例1】攪拌装置及び測温装置を有する容積54m
Lの金属製高圧用重合容器を31℃以上まで昇温し、重
合容器にメタクリル酸メチル5.40g、重合開始剤と
してのAIBN21.6mg並びに界面活性剤としてポ
リ(1,1−ジヒドロペルフルオロオクチルアクリレー
ト)0.54gを添加し、その後二酸化炭素を注入し、
速やかに重合容器内の温度が65℃、圧力が300kg
/cm2になるように加熱及び加圧した。所定の温度、圧
力に到達した後、700rpmで攪拌を行いながら、2
4時間単量体を重合させた。重合終了後、重合容器内の
温度と圧力を下げた後、二酸化炭素を排出した。重合容
器内には未反応モノマーと白色の高分子微粉体及びペレ
ット状の高分子体が得られ、その高分子微粉体の収量は
3.10gであった。
[Comparative Example 1] 54 m in capacity with a stirrer and temperature measuring device
The temperature of the metal high-pressure polymerization vessel L was raised to 31 ° C. or higher, and 5.40 g of methyl methacrylate was added to the polymerization vessel, 21.6 mg of AIBN as a polymerization initiator, and poly (1,1-dihydroperfluorooctyl acrylate) as a surfactant. ) 0.54 g is added, then carbon dioxide is injected,
The temperature inside the polymerization vessel is 65 ° C and the pressure is 300kg
/ cm 2 . After reaching the predetermined temperature and pressure, while stirring at 700 rpm, 2
The monomer was polymerized for 4 hours. After completion of the polymerization, the temperature and pressure in the polymerization vessel were lowered, and then carbon dioxide was discharged. An unreacted monomer, a white polymer fine powder and a pellet-shaped polymer were obtained in the polymerization vessel, and the yield of the polymer fine powder was 3.10 g.

【0052】この高分子微粉体の走査型電子顕微鏡によ
る観察では、微粒子が会合した大きさの不均一な会合体
であることが観察できた。図2に走査型電子顕微鏡によ
る観察結果の写真を示す。
By observing the polymer fine powder with a scanning electron microscope, it was possible to observe that the fine particles were aggregated in a non-uniform size. FIG. 2 shows a photograph of the result of observation with a scanning electron microscope.

【0053】[0053]

【比較例2】攪拌装置及び測温装置を有する容積54m
Lの金属製高圧用重合容器を31℃以上まで昇温し、重
合容器にメタクリル酸メチル5.40g、重合開始剤と
してのAIBN21.6mgを添加し、その後二酸化炭
素を注入し、速やかに重合容器内の温度が65℃、圧力
が300kg/cm2になるように加熱及び加圧した。所
定の温度、圧力に到達した後、700rpmで攪拌を行
いながら、24時間単量体を重合させた。24時間後、
重合容器内の温度と圧力を下げ、二酸化炭素を排出し
た。重合容器内には無色透明のペレット状重合体と未反
応メタクリル酸メチルが認められ、重合反応が完結して
いないことが確認された。
[Comparative Example 2] 54 m in volume with a stirrer and temperature measuring device
The temperature of the metal-made high-pressure polymerization vessel L was increased to 31 ° C. or higher, and 5.40 g of methyl methacrylate and 21.6 mg of AIBN as a polymerization initiator were added to the polymerization vessel. Heating and pressurizing were performed so that the temperature in the inside was 65 ° C. and the pressure was 300 kg / cm 2 . After reaching the predetermined temperature and pressure, the monomer was polymerized for 24 hours while stirring at 700 rpm. 24 hours later,
The temperature and pressure in the polymerization vessel were lowered, and carbon dioxide was discharged. A colorless and transparent pellet polymer and unreacted methyl methacrylate were observed in the polymerization vessel, confirming that the polymerization reaction was not completed.

【0054】[0054]

【比較例3】攪拌装置及び測温装置を有する容積54m
Lの金属製高圧用重合容器を31℃以上まで昇温し、重
合容器にメタクリル酸メチル5.40g、重合開始剤と
してAIBN21.6mg並びに炭素数2の酢酸0.5
4gを添加し、その後二酸化炭素を注入し、速やかに重
合容器内の温度が65℃、圧力が300kg/cm2にな
るように加熱及び加圧した。所定の温度、圧力に到達し
た後、700rpmで攪拌を行いながら、24時間単量
体を重合させた。重合終了後、重合容器内の温度と圧力
を下げた後、二酸化炭素を排出した。重合容器内には無
色透明のペレット状重合体とメタクリル酸メチルが認め
られ、重合反応が完結していないことが確認された。
[Comparative Example 3] 54 m in capacity with a stirring device and a temperature measuring device
The temperature of the metal-made high-pressure polymerization vessel L was raised to 31 ° C. or higher.
4 g was added, and then carbon dioxide was injected, and the mixture was immediately heated and pressurized so that the temperature in the polymerization vessel became 65 ° C. and the pressure became 300 kg / cm 2 . After reaching the predetermined temperature and pressure, the monomer was polymerized for 24 hours while stirring at 700 rpm. After completion of the polymerization, the temperature and pressure in the polymerization vessel were lowered, and then carbon dioxide was discharged. A colorless transparent pellet polymer and methyl methacrylate were observed in the polymerization vessel, confirming that the polymerization reaction was not completed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は実施例1で得られた重合体の走査型電子
顕微鏡による観察結果を示す写真である。
FIG. 1 is a photograph showing the result of observation of the polymer obtained in Example 1 with a scanning electron microscope.

【図2】図2は比較例1で得られた重合体の走査型電子
顕微鏡による観察結果を示す写真である。
FIG. 2 is a photograph showing the result of observation of the polymer obtained in Comparative Example 1 with a scanning electron microscope.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴藤 岸夫 神奈川県横浜市金沢区片吹6−2 (72)発明者 大竹 勝人 茨城県つくば市東1丁目1番地 工業技術 院物質工学工業技術研究所内 (72)発明者 佐古 猛 茨城県つくば市東1丁目1番地 工業技術 院物質工学工業技術研究所内 Fターム(参考) 4J011 AA10 AB02 AB04 HB27 LA02 LA06  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kishio Shibato, Inventor 6-2 Katabuki, Kanazawa-ku, Yokohama, Kanagawa Prefecture (72) Katsuto Otake 1-1-1, Higashi, Tsukuba, Ibaraki Pref. In-house (72) Inventor Takeshi Sako 1-1-1, Higashi, Tsukuba, Ibaraki Pref. F-term (reference) 4M011 AA10 AB02 AB04 HB27 LA02 LA06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭素数10以上で、かつ分子中にカルボ
キシル基を少なくとも1つ以上有する非重合性分散剤の
存在下で、超臨界二酸化炭素中で重合性単量体を重合す
ることを特徴とする重合体の製造方法。
1. A polymerizable monomer is polymerized in supercritical carbon dioxide in the presence of a non-polymerizable dispersant having 10 or more carbon atoms and having at least one carboxyl group in a molecule. A method for producing a polymer.
【請求項2】 前記非重合性分散剤が、炭素数14以上
の脂肪酸である請求項1記載の重合体の製造方法。
2. The method according to claim 1, wherein the non-polymerizable dispersant is a fatty acid having 14 or more carbon atoms.
【請求項3】 請求項1又は請求項2に記載の製造方法
で得た重合体。
3. A polymer obtained by the production method according to claim 1 or 2.
【請求項4】 エチレン性不飽和単量体に基づく構成単
位を含み、かつ分子量が1,000〜1,000,00
0で、平均粒径が0.1〜50.0μmの粉体であるこ
とを特徴とする請求項3に記載の重合体。
4. A composition containing a structural unit based on an ethylenically unsaturated monomer and having a molecular weight of 1,000 to 1,000,000.
The polymer according to claim 3, wherein the powder has a mean particle size of 0 to 0.1 to 50.0 µm.
JP2000332561A 2000-10-31 2000-10-31 Method for producing polymer Expired - Lifetime JP4411377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000332561A JP4411377B2 (en) 2000-10-31 2000-10-31 Method for producing polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000332561A JP4411377B2 (en) 2000-10-31 2000-10-31 Method for producing polymer

Publications (2)

Publication Number Publication Date
JP2002128808A true JP2002128808A (en) 2002-05-09
JP4411377B2 JP4411377B2 (en) 2010-02-10

Family

ID=18808753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000332561A Expired - Lifetime JP4411377B2 (en) 2000-10-31 2000-10-31 Method for producing polymer

Country Status (1)

Country Link
JP (1) JP4411377B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7081486B2 (en) 2003-02-25 2006-07-25 Shizuoka University Method of producing polymer
JP2008291141A (en) * 2007-05-25 2008-12-04 Chugoku Marine Paints Ltd High-solid antifouling coating composition, coating film composed of the composition, substrate coated with the coating film and antifouling method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7081486B2 (en) 2003-02-25 2006-07-25 Shizuoka University Method of producing polymer
JP2008291141A (en) * 2007-05-25 2008-12-04 Chugoku Marine Paints Ltd High-solid antifouling coating composition, coating film composed of the composition, substrate coated with the coating film and antifouling method

Also Published As

Publication number Publication date
JP4411377B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
JPH05178912A (en) Production of cross-linked polymer particle
JPH09501457A (en) Production of polymer emulsion
EP3572438A1 (en) Alkaline water soluble resin, method for producing same, and emulsion polymer including alkaline water soluble resin
TW201317281A (en) Method of manufacturing core-shell structure submicrospheres
JP2006257139A (en) Core-shell type polymer particulate and method for producing the same
JP7310140B2 (en) Rubber polymer, graft copolymer and thermoplastic resin composition
US5688870A (en) Process for preparing water dispersible polymer powders
JPS59199703A (en) Manufacture of emulsifier-free and protective colloid-free emulsion polymer
JP3513479B2 (en) High-temperature low-viscosity low-temperature high-viscosity thermosensitive polymer material
JP2009132878A (en) Polymer particle and method for producing the same
JP2002128808A (en) Polymer and manufacturing method
JP2006249389A (en) Production method for polymer having hydroxy group
US20140194585A1 (en) Bulk polymerization of (meth)acrylate copolymers soluble under aqueous-alkaline conditions
Hong et al. Preparation of copolymer particles by emulsion polymerization using a polymerizable amphiphilic macromonomer
JP2006316239A (en) Polymer fine particle, polymer fine particle dispersion and method for producing the same
JP2021195521A (en) Molded body and method for manufacturing the same
JPH07228608A (en) Production of polymer fine particle
JPH0678398B2 (en) Method for producing crosslinked fine particle polymer
JP3101022B2 (en) Method for producing polymer fine particles
JP5028974B2 (en) POLYMER PARTICLE AND METHOD FOR PRODUCING POLYMER PARTICLE
JPH1087710A (en) Production of polymer particle
JP3713545B2 (en) Method for producing micron-sized polymer particles
TW201226480A (en) Coating composition with (meth) acrylic polymers and coalescents
JP4398080B2 (en) Paint composition
JP6953867B2 (en) Composite rubber polymer, graft copolymer and thermoplastic resin composition

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4411377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term