JP4398080B2 - Paint composition - Google Patents

Paint composition Download PDF

Info

Publication number
JP4398080B2
JP4398080B2 JP2000277937A JP2000277937A JP4398080B2 JP 4398080 B2 JP4398080 B2 JP 4398080B2 JP 2000277937 A JP2000277937 A JP 2000277937A JP 2000277937 A JP2000277937 A JP 2000277937A JP 4398080 B2 JP4398080 B2 JP 4398080B2
Authority
JP
Japan
Prior art keywords
fine powder
weight
polymerization
carbon dioxide
polymer fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000277937A
Other languages
Japanese (ja)
Other versions
JP2001151802A (en
Inventor
勝信 水口
岸夫 柴藤
勝人 大竹
猛 佐古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
NOF Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical NOF Corp
Priority to JP2000277937A priority Critical patent/JP4398080B2/en
Publication of JP2001151802A publication Critical patent/JP2001151802A/en
Application granted granted Critical
Publication of JP4398080B2 publication Critical patent/JP4398080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Description

【0001】
【発明の属する技術分野】
本発明は、超臨界二酸化炭素を用いた高分子微粉体を含む塗料用組成物に関する。
【0002】
【従来の技術】
従来から、高分子微粉体を製造する方法としては、有機溶媒中にて不飽和単量体を溶液重合し、得られた高分子溶液から有機溶媒を除去し、乾燥、粉砕等を行うプロセスが一般的である。該プロセスでは、微粉体を得るまでに何段階もの操作を行う必要があり、さらには得られた微粉体の大きさが不均一であるという欠点がある。
【0003】
その他の方法としては、有機溶媒中において分散安定剤を用いた分散重合を行ったり、特開昭56−76447号公報には、水中において乳化重合を行い、得られた高分子微粒子溶液から有機溶媒または水を除去する方法が開示されている。
しかしながら、前記の方法によって得られた微粒子を単離する際に微粒子が融着し、結果的に大きな粒子や塊になってしまうという問題がある。
【0004】
一方、超臨界二酸化炭素を使用する技術は、有機溶媒の使用がほとんどなく、また抽出効率等が高いため最近盛んに行われている。例えば、特開平8−104830号公報には、一度重合した高分子反応溶液を原料として用い、超臨界相に溶解させて、急速膨張させて塗料用高分子微粒子を製造する方法が開示されている。また、特開平8−113652号公報には、一度生成した高分子固体を原料として用い、超臨界相に溶解させて、急速膨張させて塗料用高分子微粒子を製造する方法が開示されている。
しかし、これらの開示された技術では、一度高分子材料を得る工程が必要であるため、工程が煩雑である。
【0005】
超臨界流体内で重合反応を行って高分子材料を製造する方法の例としては、スチレン−アクリロニトリルの共重合体を超臨界二酸化炭素中でラジカル重合開始剤の存在下で反応する製造方法(特開平8−41135号公報)、スチレン−酢酸ビニルの共重合体を超臨界二酸化炭素中でラジカル重合開始剤の存在下で反応する製造方法(特開平10−45838号公報)等が知られている。
しかし、これらの開示されている技術では、収率が前者では、84%であり、後者では、12〜56%であり、系内に残存する未反応の単量体を二酸化炭素で回収する工程を行なわなければならないなどの問題を抱えている。しかも、これらの開示されている方法では、重合体は超臨界二酸化炭素中で溶融状態等で製造されており、微粉末を得るためには粉砕等のさらなる工程が必要となる。
従って、超臨界二酸化炭素中で重合反応を行って高分子材料を製造する方法において、製造工程が単純で、しかも粒径の揃った高品質の微粉体として製品を得ることができる方法は見出されていないのが現状である。
【0006】
【発明が解決しようとする課題】
本発明の目的は、良好な塗膜を得ることができる塗料用組成物を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、前記の問題点に鑑み、鋭意検討した結果、超臨界二酸化炭素中で、カルボキシル基を有するエチレン性不飽和単量体を重合することができ、しかもそのような製造方法によれば、粒径の揃った高品質のもの等の高分子微粉体を、超臨界二酸化炭素中において直接得ることができることを見い出し、これらの知見に基づいて本発明を完成するに至った。
【0008】
すなわち、本発明によれば、カルボキシル基を有するエチレン性不飽和単量体を含む単量体組成物を、超臨界二酸化炭素中で、重合させて得た、重量平均分子量が1,000〜1,000,000で、粒子の平均粒径が0.1〜50μmである高分子微粉体100重量部と、一分子中にカルボキシル基と反応して化学結合を形成しうる反応性官能基を2個以上有する架橋剤10〜300重量部とを含む塗料組成物が提供される。
【0009】
【発明の実施の形態】
本発明に用いる微粉体の製造方法は、単量体組成物の重合を、超臨界二酸化炭素中で行うものである。
前記超臨界二酸化炭素とは、二酸化炭素をその臨界点(臨界温度31℃又は臨界圧力75.2kg/cm2)以上に加温、加圧することにより得られ、それ以上加圧しても、液化しない状態の流体となった二酸化炭素をいい、通常、気体と液体の性質を有する。
前記超臨界二酸化炭素は、ボンベなどに入った市販のもの等の二酸化炭素ガスを、重合反応を行う機器中へ導入し、所定の温度及び圧力とすることによって得ることができる。導入する二酸化炭素ガスは、好ましくは純度99.9%以上の二酸化炭素である。
【0010】
前記単量体組成物の重合にあたっては、前記超臨界二酸化炭素には、さらに他の添加溶媒を配合して用いてもよい。前記添加溶媒としては、水、メタノール、エタノール等の低級アルコール、アセトニトリル等を用いることができる。前記添加溶媒は前記超臨界二酸化炭素100重量部に対し、0.1〜100重量部程度加えることができるが、公害発生の防止や環境負荷軽減の観点からは、添加溶媒を用いない方が好ましい。
【0011】
前記製造方法では、前記単量体組成物として、カルボキシル基を有するエチレン性不飽和単量体(以下、単量体Aと略す。)を含むものを用いる。前記単量体Aは、分子内に1つ以上のカルボキシル基およびエチレン性不飽和結合を有するものであれば特に限定されないが、具体的には例えば、メタクリル酸、アクリル酸、クロトン酸、イタコン酸、メサコン酸、マレイン酸、フマル酸、これらのハーフエステル、ω−カルボキシ−ポリカプロラクトン(n=2)モノアクリレート[例えば、アロニックスM−5300(商品名、東亞合成化学工業(株)製)]若しくはアクリル酸ダイマー[例えば、アロニックスM−5600(商品名、東亞合成化学工業(株)製)]等の炭化水素鎖の末端等に不飽和結合を有する化合物、又はこれらの混合物などが挙げられる。中でも、メタクリル酸及び/又はアクリル酸が特に好ましい。
【0012】
前記単量体組成物は、単量体Aに加えて、カルボキシル基を含有しないエチレン性不飽和単量体(以下、単量体Bと略す。)を任意成分としてさらに含むことができる。
単量体Bは、特に限定されるものではないが、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル類;ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート等の水酸基含有単量体;スチレン、α−メチルスチレン等のスチレン系単量体;酢酸ビニル、アリルビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;p−ビニルトルエン、アクリロニトリルなどを挙げることができる。またさらには、2,2,2−トリフルオロメチルアクリレート、2,2,2−トリフルオロメチルメタクリレート等の含フツ素α,β−エチレン性不飽和単量体などが挙げられる。これらは1種用いてもよいし、2種以上を組み合わせて用いてもよい。
【0013】
前記単量体組成物中の単量体A及び単量体Bの配合割合は、単量体Aは好ましくは1〜100重量%、さらに好ましくは10〜100重量%とすることができ、単量体Bは好ましくは0〜99重量%、さらに好ましくは0〜90重量%とすることができる。
前記単量体Aが1重量%未満では、得られる重合物が微粉体ではなく塊状になる可能性があるので好ましくない。
【0014】
前記単量体組成物を重合する方法については特に制限はなく、公知の重合方法を用いることができる。
重合においては、任意に、二酸化炭素に対し親和性のある分散安定剤を用いてもよい。前記分散安定剤としては、例えば分子中にフッ素含有セグメント及び/又はシロキサン含有セグメントを有する炭化水素等の各種の界面活性剤等が挙げられる。
また、その重合方式についても特に制限はなく、例えば、ラジカル重合、カチオン重合、アニオン重合のいずれも用いることができるが、ラジカル重合が特に好ましい。
【0015】
ラジカル重合は、重合開始剤を用いて行うことができる。前記重合開始剤としては、特に限定されるものではないが、例えば、t−プチルハイドロパーオキシド、クメンハイドロパーオキシド、t−ブチルパーオキシネオデカネート、t−ブチルパーオキシピバレート、t−ヘキシルパーオキシ−2−エチルヘキサノエート、メチルエチルケトンパーオキシド、アセチルシクロヘキシルスルホニルパーオキシド等の有機過酸化物、さらに、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(イソブチロニトリル)(AIBNと略す)、2,2’−アゾビス(2−メチルブチロニトリル)等のアゾ系開始剤を好ましく挙げることができる。特にAIBNが好ましい。
これらのラジカル重合開始剤は、1種のみ用いてもよいし、2種以上を組み合わせて用いてもよい。
また、ラジカル重合開始剤の使用量は不飽和単量体の100重量部に対して、好ましくは0.001〜30重量%、より好ましくは、0.1〜10重量%とすることができる。
【0016】
また、重合時の反応温度は、31〜160℃、好ましくは40〜150℃、より好ましくは50〜100℃とすることができる。反応温度が31〜160℃であると、ラジカル重合開始剤が熱により分解しやすく、効果的に生長反応が進行しやすい。重合時間は、重合温度やその他の条件に左右され、一概に定めることはできないが、一般に2〜48時間が好ましい。
【0017】
前記重合は、反応系を撹拌しながら行うことが好ましい。前記撹拌の条件は、特に限定されないが、撹拌装置を用い、重合物が沈殿しないような条件で行うことが好ましい。具体的には、例えばマグネチックスターラー等の撹拌装置を用い、50〜2000rpmの回転速度で撹拌することが好ましい。
前記重合は、具体的には例えば、前記の単量体組成物100重量部に対して、二酸化炭素の使用量を5〜1500重量部とし、圧力30〜400kg/cm2、好ましくは60〜360kg/cm2で、温度31〜160℃、好ましくは40〜150℃で、バッチ式で行うことができる。
重合反応が進行することにより、重合体が、超臨界二酸化炭素中において、高分子微粉体として生成する。重合反応終了後、温度及び圧力を下げ、二酸化炭素を排出することにより、重合体を、固体の高分子微粉体として、容易に反応系から取り出すことができる。取り出した高分子微粉体は、さらなる破砕の工程等を経ずに、直接微粉体の製品として用いることができる。本発明の製造方法では、反応率90%以上、収率95%以上で高分子微粉体を得ることができる。
【0018】
本発明に用いる高分子微粉体は、前記の製造方法で得た高分子微粉体である。
高分子微粉体の分子量は、重量平均分子量として1,000〜1,000,000、好ましくは、10,000〜500,000である。また、粒子の平均粒径は0.1〜50μm、好ましくは0.15〜20μmである。このような平均粒径を有することにより、例えば粉体塗料として用いた場合、特性の優れた被膜を与えることができる。本発明の高分子微粉体は、前記の製造方法により、粒径の揃った高品質な微粉体として得ることができる。
【0020】
本発明の塗料用組成物は、前記高分子微粉体を含む。
本発明の塗料用組成物は、前記高分子微粉体に加え、架橋剤として、一分子中にカルボキシル基と反応して化学結合を形成しうる反応性官能基を2個以上有する化合物を含む。
前記反応性官能基は、カルボキシル基と反応して化学結合を形成しうるものであれば特に限定されないが、例えば、エポキシ基、オキサゾリン基、シラノール基、アルコキシシラン基、ヒドロキシル基、アミノ基、イミノ基、イソシアネート基、ブロック化イソシアネート基、シクロカーボネート基、ビニルエーテル基、アミノメチロール基、アセタール基、ケタール基等が好ましく挙げられる。これらの反応性官能基は1種のみが含まれていてもよいし、2種以上が組み合わされて含まれていてもよい。
【0021】
本発明の塗料用組成物中の前記架橋剤の含有割合は、前記高分子微粉体100重量部に対して、10〜300重量部で、15〜250重量部であることが好ましい。前記架橋剤の含有割合が10重量部未満又は300重量部を越える場合には、形成される塗膜の強度が低下するため好ましくない。
【0022】
本発明の塗料用組成物は、必要に応じて顔料を含むことができる。前記顔料としては、例えば、二酸化チタン、べんがら、黄色酸化鉄、カーボンブラック等の無機顔料、フタロシアニンブルー、フタロシアニングリーン、キナクリドン系赤顔料、イソインドリノン系黄色顔料等の有機顔料、アルミニウム粉、銅粉などの金属粉、タルク、硫酸バリウム、シリカ、炭酸カルシウム、アルミナ白、クレー等の体質顔料、マイカ粉等を挙げることができる。このような顔料を含んだ塗料用組成物は、着色粉体塗料等として用いることができる。または、顔料を含有させずに本発明の塗料用組成物を構成し、クリヤー粉体塗料等として用いることもできる。
本発明の塗料用組成物は、必要に応じて、フッ素樹脂、ビニル共重合樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル等の熱可塑性樹脂を含むことができる。これらの熱可塑性樹脂は、本発明の塗料用組成物を粉体塗料とする場合に、特に好ましく配合することができる。
本発明の塗料用組成物中の前記顔料及び/又は熱可塑性樹脂の含有割合は、前記高分子微粉体100重量部に対して40重量部未満とすることが好ましい。これらの含有割合が40重量部を越える場合には、塗膜の耐食性が低下するので好ましくない。
【0023】
本発明の塗料用組成物は、必要に応じて、水系溶媒等の溶媒等の他の成分を含むことができる。また溶媒を含まない塗料用組成物とし、粉体塗料として用いることもできる。本発明の塗料用組成物は、前記高分子微粉体を、粒径が細かく揃っているものとすることができるため、特に粉体塗料として用いるのに適する。
本発明の塗料用組成物は、必要に応じて、レベリング剤、顔料分散剤、紫外線吸収剤、光安定剤、熱安定剤、発泡防止剤などの添加物を含有することができる。
本発明の塗料用組成物は、任意の物品の塗装に用いることができるが、例えば、0.2〜2mm厚程度の鉄板、亜鉛メッキ板、アルミニウム板、ステンレス板等の金属板に塗装することができる。また、粉体塗料として調製した本発明の塗料用組成物を塗装する物品は、後述の焼き付け条件に耐えるものであることが好ましい。
【0024】
本発明の塗料用組成物を塗装する方法は、特に限定されないが、粉体塗料の場合、上記のものなどの記載に市販の静電塗装機(加電圧−50〜−90kV)による塗装又は粉体塗装法等によって均一に塗装した後、熱風焼付炉、赤外炉、誘導加熱炉等で150〜300℃、好ましくは160〜250℃で20秒〜60分間、好ましくは30秒〜30分間焼き付けて、20〜200μm、好ましくは30〜100μmの塗膜厚の塗膜を形成することにより行うことができる。このような塗装を行うことにより、平滑性に優れた塗膜を得ることができる。
【0025】
本発明の塗料用組成物を塗装して形成した塗膜を有する塗装物は、平滑性に優れているため、自動車のボディ及び部品;冷蔵庫、エアコン等の家電製品;ポール、防音壁、ガードレール等の建築資材;建物の内外壁、柱巻、ルーフ、仕切り板等の建材;電話機等の電気通信機器;パイプ、継手、金属機械、ゴミ入れ、小物入れ、スチール家具、スチール机、飲料缶等の鉄、亜鉛メッキ鋼、ステンレス、アルミニウム等の金属製品;ガラス、木材、石膏ボード、ガラス繊維等を原料とする繊維、耐熱紙;好ましくは150℃以上の耐熱性を有するプラスチックス;これらの印刷物又は着色物等として用いることができる。
【0026】
【発明の効果】
本発明の塗料用組成物は、前記高分子微粉体を含むので、平滑な塗装面を形成することができる。
【0027】
【実施例】
次に、本発明を実施例によりさらに具体的に説明する。なお、本発明はこれらの例によって何ら限定されるものではない。
実施例において用いた測定方法等は、以下の通りである。
1.重量平均分子量の測定;
ゲル浸透クロマトグラフィー(GPC);
機種;東ソー社製、GPC−8020、
条件;カラム;東ソー社製、TSKgel−G3000PW XL、TSKgel−G6000PW XLの2本を直列連結、カラム温度;45℃、流量;1ml/min、溶離液;リン酸緩衝液(pH7.4、20mM)、標準試料;ポリエチレングリコール、検出器;UV(東ソー(株)UV−8020)、およぴRI(東ソー(株)RI−8020)
2.粉体の粒径測定;
機種;走査型電子顕微鏡(日立製作所製 S−80)
測定条件;加速電圧15KVおよび20KVで測定。
3.塗装面の評価
塗膜の外観は、JIS K 5400 7.1(1999)の方法に準じて評価し、塗膜の鏡面光沢度はJIS K 5400 7.6(1999)の方法に準じて評価した。
【0028】
製造例1
撹拌装置及び測温装置を有する容積54mlの金属製高圧用重合容器を31℃以上まで昇温し、重合容器にメタクリル酸2.7g、メチルメタクリレート2.7g、2,2'−アゾビス(イソブチロニトリル)21.6mgを添加し、その後に二酸化炭素を注入し、速やかに重合容器内の温度が65℃、圧力が300kg/cm2になるように加熱及び加圧した。所定の温度、圧力に到達した後、700rpmで撹拌を行いながら、24時間単量体を重合させた。重合終了後、重合容器内の温度と圧力を下げた後、二酸化炭素を排出した。重合容器内には白色の高分子微粉体が得られ、その収量は5.3gであった(収率98.1%)。
この高分子微粉体の分子量は前記のGPCで測定したところMw(重量平均分子量)は180,000であった。また、この高分子微粉体を走査型電子顕微鏡を用いて観察したところ、粒径2.5μmの大きさの揃った微粉体であることが確認できた。図1に走査型電子顕微鏡による観察結果の写真を示す。
【0029】
製造例2
撹拌装置及び測温装置を有する容積54mlの金属製高圧用重合容器を31℃以上まで昇温し、重合容器にアクリル酸2.7g、n−ブチルアクリレート2.7g、2,2'−アゾビス(イソブチロニトリル)21.6mgを添加し、その後に二酸化炭素を注入し、速やかに重合容器内の温度が60℃、圧力が280kg/cm2になるように加熱及び加圧した。所定の温度、圧力に到達した後、1000rpmで撹拌を行いながら、12時間単量体を重合させた。重合終了後、重合容器内の温度と圧力を下げた後、二酸化炭素を排出した。重合容器内には白色の高分子微粉体が得られ、その収量は5.2gであった(収率96.2%)。
この高分子微粉体の分子量をGPCで測定したところMwは160,000であった。また、この高分子微粉体は、走査型電子顕微鏡測定より平均粒径3.0μmの大きさの揃った微粉体であることが確認できた。
【0030】
製造例3
撹拌装置及び測温装置を有する容積54mlの金属製高圧用重合容器を31℃以上まで昇温し、重合容器にアクリル酸4.1g、メチルメタクリレート1.3g、2,2'−アゾビス(イソブチロニトリル)43.2mgを添加し、その後に二酸化炭素を注入し、速やかに重合容器内の温度が70℃、圧力が360kg/cm2になるように加熱及び加圧した。所定の温度、圧力に到達した後、400rpmで撹拌を行いながら、24時間単量体を重合させた。重合終了後、重合容器内の温度と圧力を下げた後、ニ酸化炭素を排出した。
重合容器内には白色の高分子微粉体が得られ、その収量は5.3gであった(収率98.1%)。この高分子微粉体の分子量Mwは、GPC測定よりは120,000であった。また、この高分子微粉体は、走査型電子顕微鏡測定より、粒径2.0μmの大きさの揃った微粉体であることが確認できた。
【0031】
製造例4
撹拌装置及び測温装置を有する容積54mlの金属製高圧用重合容器を31℃以上まで昇温し、重合容器にメタクリル酸1.1g、2−エチルヘキシルメタクリレート4.3g、2,2'−アゾビス(イソブチロニトリル)21.6mgを添加し、その後に二酸化炭素を注入し、速やかに重合容器内の温度が65℃、圧力が300kg/cm2になるように加熱及び加圧した。所定の温度、圧力に到達した後、500rpmで撹拌を行いながら、24時間単量体を重合させた。重合終了後、重合容器内の温度と圧力を下げた後、二酸化炭素を排出した。
重合容器内には白色の高分子微粉体が得られ、その収量は5.3gであった(収率98.1%)。この高分子微粉体の分子量はGPC潮定よりMwは180,000であった。また、この高分子微粉体は走査型電子顕微鏡測定より、粒径8.0μmの大きさの揃った微粉体であることが確認できた。
【0032】
製造例5
撹拌装置及び測温装置を有する容積54mlの金属製高圧用重合容器を31℃以上まで昇温し、重合容器にメタクリル酸2.7g、メチルメタクリレート2.7g、2,2'−アゾビス(イソブチロニトリル)21.6mgを添加し、その後に二酸化炭素を注入し、速やかに重合容器内の温度が65℃、圧力が60kg/cm2になるように加熱及び加圧した。所定の温度、圧力に到達した後、700rpmで撹拌を行いながら、15時間単量体を重合させた。重合終了後、重合容器内の温度と圧力を下げた後、二酸化炭素を排出した。
重合容器内には白色の高分子微粉体が得られ、その収量は5.3gであった(収率98.1%)。この高分子微粉体の分子量はGPC測定よりMwは160,000であった。また、この高分子微粉体は、走査型電子顕微鏡を用いて観察したところ、粒径15μmの大きさの揃った微粉体であることが確認できた。
【0033】
製造例6
撹拌装置及び測温装置を有する容積54mlの金属製高圧用重合容器を31℃以上まで昇温し、重合容器にメタクリル酸5.4g、2,2'−アゾビス(イソブチロニトリル)21.6mgを添加し、その後に二酸化炭素を注入し、速やかに重合容器内の温度が65℃、圧力が200kg/cm2になるように加熱及び加圧した。所定の温度、圧力に到達した後、1500rpmで撹拌を行いながら、6時間単量体を重合させた。重合終了後、重合容器内の温度と圧力を下げた後、二酸化炭素を排出した。
重合容器内には白色の高分子微粉体が得られ、その収量は5.2gであった(収率96.2%)。この高分子微粉体の分子量はGPC測定よりMw(重量平均分子量)は150,000であった。また、この高分子微粉体は走査型電子顕微鏡測定より、平均粒径12μmの大きさの揃った微粉体であることが確認できた。
【0034】
製造例7
撹拌装置及び測温装置を有する容積54mlの金属製高圧用重合容器を31℃以上まで昇温し、重合容器にメタクリル酸5.4g、n−ブチルメタクリレート2.16g、2,2'−アゾビス(イソブチロニトリル)21.6mgを添加し、その後に二酸化炭素を注入し、速やかに重合容器内の温度が60℃、圧力が300kg/cm2になるように加熱及び加圧した。所定の温度、圧力に到達した後、1000rpmで撹拌を行いながら、24時間単量体を重合させた。重合終了後、重合容器内の温度と圧力を下げた後、二酸化炭素を排出した。
重合容器内には白色の高分子微粉体が得られ、その収量は5.2gであった(収率96.2%)。この高分子微粉体の分子量はGPC測定よりMw(重量平均分子量)は160,000であった。また、この高分子微粉体は走査型電子顕微鏡測定より、平均粒径3.0μmの大きさの揃った微粉体であることが確認できた。
【0035】
参考製造
撹拌装置及び測温装置を有する容積54mlの金属製高圧用重合容器を31℃以上まで昇温し、重合容器にメチルメタクリレート5.4g、2,2'−アゾビス(イソブチロニトリル)21.6mgを添加し、その後に二酸化炭素を注入し、速やかに重合容器内の温度が60℃、圧力が300kg/cm2になるように加熱及び加圧した。所定の温度、圧力に到達した後、1500rpmで撹拌を行いながら、24時間単量体を重合させた。重合終了後、重合容器内の温度と圧力を下げた後、二酸化炭素を排出した。
重合容器内には無色透明の板状重合体2.5gが得られた(収率46.3%)。また、未反応のメチルメタクリレートが2.9g回収された。
【0036】
比較製造例
撹拌装置、温度計、還流冷却器及び滴下ロートを有する4つ口フラスコに、脱イオン水50重量部、エレミノールES−12(商品名、第一工業製薬(株)製、アニオン性界面活性剤)2重量部、炭酸水素ナトリウム0.1重量部を仕込み、加熱して80℃に保持した。そこへ、メタクリル酸20重量部、メチルメタクリレート20重量部、過硫酸アンモニウム0.5重量部を混合したものを滴下ロートから2時間かけて滴下した。滴下終了後、さらに2時間液温を80℃に保持した。その後、室温まで冷却して重合を終了した。得られた溶液中の高分子微粒子の粒径は0.1μmであった。
エバポレーターを用いて水を除去し、高分子微粒子溶液から高分子微粒子を単離した。その際の粒子の融着により、単離した高分子微粒子の平均粒径は100μmとなった。高分子微粒子の収量は30g(収率75%)であった。
【0037】
実施例
電着塗装及び中塗り塗装した0.8×100×300mmのスチールテストパネルに製造例7で調製した高分子微粉体10g並びに架橋剤としてポリグリシジルメタクリレート2.7gを混合した塗料を静電塗装し、その後150℃で25分間焼き付けることによりクリヤー塗膜を形成した。この塗膜の外観及び鏡面光沢度を観察したところ、平滑な塗膜表面が観察され、60℃鏡面光沢度は91であった。
【0038】
比較例
電着塗装及び中塗り塗装した0.8×100×300mmのスチールテストパネルに比較製造例で調製した高分子微粉体10g並びに架橋剤としてポリグリシジルメタクリレート2.7gを混合した塗料を静電塗装し、その後150℃で25分間焼き付けることによりクリヤー塗膜を形成した。この塗膜の外観及び鏡面光沢度を観察したところ、平滑でなく、艶のない塗膜表面が観察され、60℃鏡面光沢度は55であった。
【図面の簡単な説明】
【図1】 図1は製造例1により得られた高分子微粉体の走査型顕微鏡の写真である(倍率×8,000)。
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a polymer fine powder using supercritical carbon dioxide.BodyThe present invention relates to a coating composition.
[0002]
[Prior art]
Conventionally, as a method for producing polymer fine powder, there is a process in which an unsaturated monomer is solution-polymerized in an organic solvent, the organic solvent is removed from the obtained polymer solution, and drying, pulverization, and the like are performed. It is common. In this process, it is necessary to perform several steps before obtaining a fine powder, and further, the obtained fine powder has a disadvantage that the size of the fine powder is not uniform.
[0003]
Other methods include dispersion polymerization using a dispersion stabilizer in an organic solvent, and JP-A-56-76447 discloses emulsion polymerization in water. Alternatively, a method for removing water is disclosed.
However, when the fine particles obtained by the above method are isolated, there is a problem that the fine particles are fused, resulting in large particles or lumps.
[0004]
On the other hand, a technique using supercritical carbon dioxide has been actively performed recently because it hardly uses an organic solvent and has high extraction efficiency. For example, JP-A-8-104830 discloses a method for producing polymer fine particles for coating by using a polymer reaction solution once polymerized as a raw material, dissolving it in a supercritical phase, and rapidly expanding it. . Japanese Patent Application Laid-Open No. 8-113652 discloses a method for producing polymer fine particles for coating by using a polymer solid once produced as a raw material, dissolving it in a supercritical phase, and rapidly expanding it.
However, these disclosed techniques require a process of obtaining a polymer material once, and thus the process is complicated.
[0005]
As an example of a method for producing a polymer material by carrying out a polymerization reaction in a supercritical fluid, a production method in which a styrene-acrylonitrile copolymer is reacted in supercritical carbon dioxide in the presence of a radical polymerization initiator (special (Kaihei 8-41135), a production method of reacting a styrene-vinyl acetate copolymer in supercritical carbon dioxide in the presence of a radical polymerization initiator (Japanese Patent Laid-Open No. 10-45838) is known. .
However, in these disclosed technologies, the yield is 84% in the former and 12 to 56% in the latter, and the step of recovering unreacted monomers remaining in the system with carbon dioxide Have problems such as having to do. Moreover, in these disclosed methods, the polymer is produced in a supercritical carbon dioxide in a molten state or the like, and further steps such as pulverization are required to obtain a fine powder.
Therefore, in a method for producing a polymer material by carrying out a polymerization reaction in supercritical carbon dioxide, a method for producing a product as a high-quality fine powder with a simple production process and a uniform particle size has been found. The current situation is not.
[0006]
[Problems to be solved by the invention]
  The present inventionThe purpose is goodAn object of the present invention is to provide a coating composition capable of obtaining a simple coating film.
[0007]
[Means for Solving the Problems]
As a result of intensive studies in view of the above problems, the present inventors can polymerize an ethylenically unsaturated monomer having a carboxyl group in supercritical carbon dioxide, and in such a production method. According to this finding, it was found that high-quality polymer fine powder having a uniform particle size can be obtained directly in supercritical carbon dioxide, and the present invention has been completed based on these findings.
[0008]
  That is, according to the present invention, a monomer composition containing an ethylenically unsaturated monomer having a carboxyl group is polymerized in supercritical carbon dioxide.The obtained polymer was reacted with 100 parts by weight of polymer fine powder having a weight average molecular weight of 1,000 to 1,000,000 and an average particle diameter of 0.1 to 50 μm, and a carboxyl group in one molecule. 10 to 300 parts by weight of a crosslinking agent having two or more reactive functional groups capable of forming a chemical bond;A coating composition is provided.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
  The present inventionUsed forIn the method for producing fine powder, the monomer composition is polymerized in supercritical carbon dioxide.
  Supercritical carbon dioxide refers to carbon dioxide at its critical point (critical temperature 31 ° C. or critical pressure 75.2 kg / cm2) Carbon dioxide, which is obtained by heating and pressurizing as described above and becomes a fluid that does not liquefy even when pressurized further, usually having properties of gas and liquid.
  The supercritical carbon dioxide can be obtained by introducing a carbon dioxide gas such as a commercially available one in a cylinder or the like into an apparatus for performing a polymerization reaction to obtain a predetermined temperature and pressure. The carbon dioxide gas to be introduced is preferably carbon dioxide having a purity of 99.9% or more.
[0010]
In the polymerization of the monomer composition, the supercritical carbon dioxide may be further mixed with another additive solvent. As the additive solvent, water, lower alcohols such as methanol and ethanol, acetonitrile and the like can be used. The additive solvent can be added in an amount of about 0.1 to 100 parts by weight with respect to 100 parts by weight of the supercritical carbon dioxide, but it is preferable not to use the additive solvent from the viewpoint of preventing pollution and reducing the environmental load. .
[0011]
  SaidIn the production method, a monomer composition containing an ethylenically unsaturated monomer having a carboxyl group (hereinafter abbreviated as “monomer A”) is used. The monomer A is not particularly limited as long as it has one or more carboxyl groups and ethylenically unsaturated bonds in the molecule. Specifically, for example, methacrylic acid, acrylic acid, crotonic acid, itaconic acid , Mesaconic acid, maleic acid, fumaric acid, half esters thereof, ω-carboxy-polycaprolactone (n = 2) monoacrylate [for example, Aronix M-5300 (trade name, manufactured by Toagosei Co., Ltd.)] or Examples thereof include compounds having an unsaturated bond at the end of a hydrocarbon chain, such as acrylic acid dimer [for example, Aronix M-5600 (trade name, manufactured by Toagosei Chemical Co., Ltd.)], or a mixture thereof. Among these, methacrylic acid and / or acrylic acid is particularly preferable.
[0012]
In addition to monomer A, the monomer composition may further contain an ethylenically unsaturated monomer (hereinafter abbreviated as monomer B) that does not contain a carboxyl group as an optional component.
Although the monomer B is not specifically limited, For example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate , Isobutyl (meth) acrylate, sec-butyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, hexadecyl (meth) acrylate, etc. ) Acrylic acid alkyl esters; Hydroxyl-containing monomers such as hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, polyethylene glycol (meth) acrylate; Styrenic monomers such as styrene and α-methylstyrene Body; can be mentioned p- vinyltoluene, acrylonitrile and the like; vinyl acetate, vinyl esters such as allyl vinyl; methyl vinyl ether and ethyl vinyl ether. Furthermore, fluorine-containing α, β-ethylenically unsaturated monomers such as 2,2,2-trifluoromethyl acrylate and 2,2,2-trifluoromethyl methacrylate are exemplified. These may be used alone or in combination of two or more.
[0013]
The blending ratio of the monomer A and the monomer B in the monomer composition is such that the monomer A is preferably 1 to 100% by weight, more preferably 10 to 100% by weight. The monomer B is preferably 0 to 99% by weight, more preferably 0 to 90% by weight.
If the monomer A is less than 1% by weight, the resulting polymer may be agglomerated rather than a fine powder, which is not preferable.
[0014]
  SaidThere is no restriction | limiting in particular about the method of superposing | polymerizing a monomer composition, A well-known polymerization method can be used.
  In the polymerization, a dispersion stabilizer having an affinity for carbon dioxide may optionally be used. Examples of the dispersion stabilizer include various surfactants such as hydrocarbons having a fluorine-containing segment and / or a siloxane-containing segment in the molecule.
  The polymerization method is not particularly limited, and for example, any of radical polymerization, cationic polymerization, and anionic polymerization can be used, and radical polymerization is particularly preferable.
[0015]
The radical polymerization can be performed using a polymerization initiator. The polymerization initiator is not particularly limited, and examples thereof include t-butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxyneodecanate, t-butyl peroxypivalate, and t-hexyl. Organic peroxides such as peroxy-2-ethylhexanoate, methyl ethyl ketone peroxide, acetylcyclohexylsulfonyl peroxide, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis Preferred examples include azo initiators such as (isobutyronitrile) (abbreviated as AIBN) and 2,2′-azobis (2-methylbutyronitrile). AIBN is particularly preferable.
These radical polymerization initiators may be used alone or in combination of two or more.
Moreover, the usage-amount of a radical polymerization initiator is preferably 0.001-30 weight% with respect to 100 weight part of an unsaturated monomer, More preferably, it can be 0.1-10 weight%.
[0016]
Moreover, the reaction temperature at the time of superposition | polymerization can be 31-160 degreeC, Preferably it is 40-150 degreeC, More preferably, it can be 50-100 degreeC. When the reaction temperature is 31 to 160 ° C., the radical polymerization initiator is easily decomposed by heat, and the growth reaction is likely to proceed effectively. The polymerization time depends on the polymerization temperature and other conditions, and cannot be generally defined, but is generally preferably 2 to 48 hours.
[0017]
The polymerization is preferably performed while stirring the reaction system. The stirring conditions are not particularly limited, but it is preferable to use a stirring device and perform the conditions under which the polymer is not precipitated. Specifically, it is preferable to stir at a rotational speed of 50 to 2000 rpm using a stirring device such as a magnetic stirrer.
Specifically, the polymerization is performed, for example, by using 5 to 1500 parts by weight of carbon dioxide with respect to 100 parts by weight of the monomer composition, and a pressure of 30 to 400 kg / cm.2, Preferably 60 to 360 kg / cm2At a temperature of 31 to 160 ° C., preferably 40 to 150 ° C.
As the polymerization reaction proceeds, a polymer is produced as a polymer fine powder in supercritical carbon dioxide. After completion of the polymerization reaction, the polymer can be easily taken out from the reaction system as a solid polymer fine powder by lowering the temperature and pressure and discharging carbon dioxide. The extracted polymer fine powder can be directly used as a fine powder product without further crushing steps. In the production method of the present invention, polymer fine powder can be obtained with a reaction rate of 90% or more and a yield of 95% or more.
[0018]
  The present inventionUsed forThe polymer fine powder is a polymer fine powder obtained by the above production method.
  TheThe molecular weight of the polymer fine powder is 1,000 to 1,000,000, preferably 10,000 to 500,000 as a weight average molecular weight. Moreover, the average particle diameter of particle | grains is 0.1-50 micrometers, Preferably it is 0.15-20 micrometers. By having such an average particle diameter, for example, when used as a powder coating, a film having excellent characteristics can be provided. The polymer fine powder of the present invention can be obtained as a high-quality fine powder having a uniform particle diameter by the production method described above.
[0020]
  The coating composition of the present invention comprises:The highContains molecular fine powder.
  The coating composition of the present invention is added to the polymer fine powder.Eh, rackAs a bridging agent, a compound having two or more reactive functional groups capable of reacting with a carboxyl group to form a chemical bond in one molecule.Including.
  The reactive functional group is not particularly limited as long as it can react with a carboxyl group to form a chemical bond, and examples thereof include an epoxy group, an oxazoline group, a silanol group, an alkoxysilane group, a hydroxyl group, an amino group, and an imino group. Preferred examples include groups, isocyanate groups, blocked isocyanate groups, cyclocarbonate groups, vinyl ether groups, aminomethylol groups, acetal groups, and ketal groups. One type of these reactive functional groups may be included, or two or more types may be included in combination.
[0021]
  The content of the crosslinking agent in the coating composition of the present invention is 10 to 300 parts by weight with respect to 100 parts by weight of the polymer fine powder.so,15 to 250 parts by weightPreferGood. When the content of the crosslinking agent is less than 10 parts by weight or more than 300 parts by weight, the strength of the coating film to be formed is lowered, which is not preferable.
[0022]
The coating composition of the present invention may contain a pigment as necessary. Examples of the pigment include inorganic pigments such as titanium dioxide, red pepper, yellow iron oxide, and carbon black, organic pigments such as phthalocyanine blue, phthalocyanine green, quinacridone red pigment, and isoindolinone yellow pigment, aluminum powder, and copper powder. Examples thereof include metal powders such as talc, barium sulfate, silica, calcium carbonate, alumina white, extender pigments such as clay, and mica powder. The coating composition containing such a pigment can be used as a colored powder coating or the like. Alternatively, the coating composition of the present invention can be constituted without containing a pigment and used as a clear powder coating or the like.
The coating composition of the present invention can contain a thermoplastic resin such as a fluororesin, a vinyl copolymer resin, a polyethylene resin, a polypropylene resin, or a polyester, if necessary. These thermoplastic resins can be blended particularly preferably when the coating composition of the present invention is used as a powder coating.
The content ratio of the pigment and / or thermoplastic resin in the coating composition of the present invention is preferably less than 40 parts by weight with respect to 100 parts by weight of the polymer fine powder. When the content ratio exceeds 40 parts by weight, the corrosion resistance of the coating film is lowered, which is not preferable.
[0023]
The coating composition of the present invention can contain other components such as a solvent such as an aqueous solvent, if necessary. Moreover, it can also be set as the composition for coating materials which does not contain a solvent, and can be used as a powder coating material. The coating composition of the present invention is particularly suitable for use as a powder coating because the polymer fine powder can have a fine particle size.
The coating composition of the present invention may contain additives such as a leveling agent, a pigment dispersant, an ultraviolet absorber, a light stabilizer, a heat stabilizer, and an antifoaming agent as necessary.
The coating composition of the present invention can be used for coating arbitrary articles. For example, it is applied to a metal plate such as an iron plate, a galvanized plate, an aluminum plate, and a stainless plate having a thickness of about 0.2 to 2 mm. Can do. Moreover, it is preferable that the article coated with the coating composition of the present invention prepared as a powder coating can withstand the baking conditions described below.
[0024]
The method for coating the coating composition of the present invention is not particularly limited. In the case of powder coating, the coating or powdering using a commercially available electrostatic coating machine (applied voltage −50 to −90 kV) is described in the above description. After uniform coating by a body coating method, etc., baking is performed at 150 to 300 ° C., preferably 160 to 250 ° C. for 20 seconds to 60 minutes, preferably 30 seconds to 30 minutes in a hot air baking furnace, infrared furnace, induction heating furnace or the like. Then, it can be carried out by forming a coating film having a coating thickness of 20 to 200 μm, preferably 30 to 100 μm. By performing such coating, a coating film excellent in smoothness can be obtained.
[0025]
A coated product having a coating film formed by coating the coating composition of the present invention is excellent in smoothness, so that it can be used for automobile bodies and parts; home appliances such as refrigerators and air conditioners; poles, soundproof walls, guardrails, etc. Building materials; building materials such as building interior and exterior walls, pole rolls, roofs, partition plates; telecommunications equipment such as telephones; pipes, joints, metal machinery, trash cans, accessory cases, steel furniture, steel desks, beverage cans, etc. Metal products such as iron, galvanized steel, stainless steel, and aluminum; fibers and heat-resistant paper made from glass, wood, gypsum board, glass fiber, etc .; preferably plastics having heat resistance of 150 ° C. or higher; It can be used as a colored product.
[0026]
【The invention's effect】
  The present inventionCoatingThe composition for the ingredients isThe highSince it contains molecular fine powder, a smooth painted surface can be formed.
[0027]
【Example】
Next, the present invention will be described more specifically with reference to examples. In addition, this invention is not limited at all by these examples.
The measurement methods used in the examples are as follows.
1. Measurement of weight average molecular weight;
Gel permeation chromatography (GPC);
Model: manufactured by Tosoh Corporation, GPC-8020,
Conditions: Column: Tosoh Corporation TSKgel-G3000PWXL, TSKgel-G6000PWXL2 in series, column temperature: 45 ° C., flow rate: 1 ml / min, eluent: phosphate buffer (pH 7.4, 20 mM), standard sample; polyethylene glycol, detector; UV (Tosoh Corporation UV) -8020), and RI (Tosoh Corporation RI-8020)
2. Particle size measurement of powder;
Model: Scanning electron microscope (Hitachi S-80)
Measurement conditions: Measured at an acceleration voltage of 15 KV and 20 KV.
3. Evaluation of painted surface
The appearance of the coating film was evaluated according to the method of JIS K 5400 7.1 (1999), and the specular gloss of the coating film was evaluated according to the method of JIS K 5400 7.6 (1999).
[0028]
  ManufacturingExample 1
  A metal high-pressure polymerization vessel with a capacity of 54 ml having a stirrer and a temperature measuring device is heated to 31 ° C. or higher, and 2.7 g of methacrylic acid, 2.7 g of methyl methacrylate, 2,2′-azobis (isobutyrate) (Ronitrile) 21.6 mg was added, and then carbon dioxide was injected. The temperature in the polymerization vessel was quickly 65 ° C., and the pressure was 300 kg / cm.2It heated and pressurized so that it might become. After reaching the predetermined temperature and pressure, the monomer was polymerized for 24 hours while stirring at 700 rpm. After completion of the polymerization, the temperature and pressure in the polymerization vessel were lowered, and then carbon dioxide was discharged. White polymer fine powder was obtained in the polymerization vessel, and the yield was 5.3 g (yield 98.1%).
  When the molecular weight of the polymer fine powder was measured by GPC, the Mw (weight average molecular weight) was 180,000. Moreover, when this polymer fine powder was observed using a scanning electron microscope, it was confirmed that the fine powder had a particle size of 2.5 μm. FIG. 1 shows a photograph of the results of observation by a scanning electron microscope.
[0029]
  ManufacturingExample 2
  A metal high-pressure polymerization vessel with a capacity of 54 ml having a stirrer and a temperature measuring device was heated to 31 ° C. or higher, and 2.7 g of acrylic acid, 2.7 g of n-butyl acrylate, 2,2′-azobis ( 21.6 mg of isobutyronitrile) was added, and then carbon dioxide was injected, and the temperature in the polymerization vessel was quickly 60 ° C. and the pressure was 280 kg / cm.2It heated and pressurized so that it might become. After reaching the predetermined temperature and pressure, the monomer was polymerized for 12 hours while stirring at 1000 rpm. After completion of the polymerization, the temperature and pressure in the polymerization vessel were lowered, and then carbon dioxide was discharged. White polymer fine powder was obtained in the polymerization vessel, and the yield was 5.2 g (yield 96.2%).
  When the molecular weight of the polymer fine powder was measured by GPC, Mw was 160,000. The polymer fine powder was confirmed to be a fine powder having an average particle size of 3.0 μm by scanning electron microscope measurement.
[0030]
  ManufacturingExample 3
  A metal high-pressure polymerization vessel with a capacity of 54 ml having a stirrer and a temperature measuring device was heated to 31 ° C. or higher, and 4.1 g of acrylic acid, 1.3 g of methyl methacrylate, 2,2′-azobis (isobutyrate) were added to the polymerization vessel. (Nitrile) 43.2 mg was added, and then carbon dioxide was injected, and the temperature in the polymerization vessel was quickly 70 ° C. and the pressure was 360 kg / cm.2It heated and pressurized so that it might become. After reaching the predetermined temperature and pressure, the monomer was polymerized for 24 hours while stirring at 400 rpm. After completion of the polymerization, the temperature and pressure in the polymerization vessel were lowered, and then carbon dioxide was discharged.
  White polymer fine powder was obtained in the polymerization vessel, and the yield was 5.3 g (yield 98.1%). The molecular weight Mw of the polymer fine powder was 120,000 from the GPC measurement. Further, it was confirmed that the polymer fine powder was a fine powder having a uniform particle size of 2.0 μm by scanning electron microscope measurement.
[0031]
  ManufacturingExample 4
  A metal high-pressure polymerization vessel with a capacity of 54 ml having a stirrer and a temperature measuring device was heated to 31 ° C. or higher, and 1.1 g of methacrylic acid, 4.3 g of 2-ethylhexyl methacrylate, 2,2′-azobis ( (Isobutyronitrile) 21.6 mg was added, and then carbon dioxide was injected. The temperature in the polymerization vessel was quickly 65 ° C., and the pressure was 300 kg / cm.2It heated and pressurized so that it might become. After reaching the predetermined temperature and pressure, the monomer was polymerized for 24 hours while stirring at 500 rpm. After completion of the polymerization, the temperature and pressure in the polymerization vessel were lowered, and then carbon dioxide was discharged.
  White polymer fine powder was obtained in the polymerization vessel, and the yield was 5.3 g (yield 98.1%). The molecular weight of this polymer fine powder was Mw of 180,000 from GPC titration. Further, this polymer fine powder was confirmed to be a fine powder having a particle size of 8.0 μm by scanning electron microscope measurement.
[0032]
  ManufacturingExample 5
  A metal high-pressure polymerization vessel with a capacity of 54 ml having a stirrer and a temperature measuring device was heated to 31 ° C. or higher, and 2.7 g of methacrylic acid, 2.7 g of methyl methacrylate, 2,2′-azobis (isobutyrate) were added to the polymerization vessel. (Ronitrile) 21.6 mg was added, and then carbon dioxide was injected. The temperature in the polymerization vessel was quickly 65 ° C., and the pressure was 60 kg / cm.2It heated and pressurized so that it might become. After reaching the predetermined temperature and pressure, the monomer was polymerized for 15 hours while stirring at 700 rpm. After completion of the polymerization, the temperature and pressure in the polymerization vessel were lowered, and then carbon dioxide was discharged.
  White polymer fine powder was obtained in the polymerization vessel, and the yield was 5.3 g (yield 98.1%). The molecular weight of this polymer fine powder was 160,000 Mw from GPC measurement. Further, when the polymer fine powder was observed using a scanning electron microscope, it was confirmed that the polymer fine powder had a uniform particle size of 15 μm.
[0033]
  ManufacturingExample 6
  A metal high-pressure polymerization vessel with a capacity of 54 ml having a stirrer and a temperature measuring device was heated to 31 ° C. or higher, and 5.4 g of methacrylic acid and 21.6 mg of 2,2′-azobis (isobutyronitrile) were added to the polymerization vessel. After that, carbon dioxide is injected, and the temperature in the polymerization vessel is 65 ° C. and the pressure is 200 kg / cm2It heated and pressurized so that it might become. After reaching the predetermined temperature and pressure, the monomer was polymerized for 6 hours while stirring at 1500 rpm. After completion of the polymerization, the temperature and pressure in the polymerization vessel were lowered, and then carbon dioxide was discharged.
  White polymer fine powder was obtained in the polymerization vessel, and the yield was 5.2 g (yield 96.2%). The molecular weight of the polymer fine powder was 150,000 as Mw (weight average molecular weight) as measured by GPC. Further, this polymer fine powder was confirmed to be a fine powder having an average particle size of 12 μm by scanning electron microscope measurement.
[0034]
  ManufacturingExample 7
  A metal high-pressure polymerization vessel with a capacity of 54 ml having a stirrer and a temperature measuring device was heated to 31 ° C. or higher, and 5.4 g of methacrylic acid, 2.16 g of n-butyl methacrylate, 2,2′-azobis ( (Isobutyronitrile) 21.6 mg was added, and then carbon dioxide was injected. The temperature in the polymerization vessel was quickly 60 ° C., and the pressure was 300 kg / cm.2It heated and pressurized so that it might become. After reaching the predetermined temperature and pressure, the monomer was polymerized for 24 hours while stirring at 1000 rpm. After completion of the polymerization, the temperature and pressure in the polymerization vessel were lowered, and then carbon dioxide was discharged.
  White polymer fine powder was obtained in the polymerization vessel, and the yield was 5.2 g (yield 96.2%). The molecular weight of this polymer fine powder was 160,000 as Mw (weight average molecular weight) from GPC measurement. The polymer fine powder was confirmed to be a fine powder having an average particle size of 3.0 μm by scanning electron microscope measurement.
[0035]
  Reference manufacturingExample
  A metal high-pressure polymerization vessel with a capacity of 54 ml having a stirrer and a temperature measuring device was heated to 31 ° C. or higher, and 5.4 g of methyl methacrylate and 21.6 mg of 2,2′-azobis (isobutyronitrile) were placed in the polymerization vessel. Then, carbon dioxide is injected, and the temperature in the polymerization vessel is quickly 60 ° C. and the pressure is 300 kg / cm.2It heated and pressurized so that it might become. After reaching the predetermined temperature and pressure, the monomer was polymerized for 24 hours while stirring at 1500 rpm. After completion of the polymerization, the temperature and pressure in the polymerization vessel were lowered, and then carbon dioxide was discharged.
  In the polymerization vessel, 2.5 g of a colorless and transparent plate-like polymer was obtained (yield 46.3%). In addition, 2.9 g of unreacted methyl methacrylate was recovered.
[0036]
  ComparisonProduction example
  In a four-necked flask having a stirrer, a thermometer, a reflux condenser and a dropping funnel, 50 parts by weight of deionized water, Eleminol ES-12 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., anionic surfactant) 2 parts by weight and 0.1 part by weight of sodium bicarbonate were charged, heated and maintained at 80 ° C. A mixture of 20 parts by weight of methacrylic acid, 20 parts by weight of methyl methacrylate, and 0.5 parts by weight of ammonium persulfate was dropped from the dropping funnel over 2 hours. After completion of the dropwise addition, the liquid temperature was kept at 80 ° C. for 2 hours. Thereafter, the polymerization was terminated by cooling to room temperature. The particle diameter of the polymer fine particles in the obtained solution was 0.1 μm.
  Water was removed using an evaporator, and polymer fine particles were isolated from the polymer fine particle solution. Due to the fusion of the particles at that time, the average particle size of the isolated polymer fine particles became 100 μm. The yield of the polymer fine particles was 30 g (yield 75%).
[0037]
  Example1
  For steel test panels of 0.8 × 100 × 300mm with electrodeposition and intermediate coatingManufacturingA clear coating film was formed by electrostatically applying a paint prepared by mixing 10 g of the polymer fine powder prepared in Example 7 and 2.7 g of polyglycidyl methacrylate as a crosslinking agent, followed by baking at 150 ° C. for 25 minutes. When the appearance and specular gloss of this coating film were observed, a smooth coating film surface was observed, and the 60 ° C. specular glossiness was 91.
[0038]
  Comparative example1
  Compared to 0.8 x 100 x 300 mm steel test panel with electrodeposition and intermediate coatingProduction exampleA coating film in which 10 g of the polymer fine powder prepared in the above and 2.7 g of polyglycidyl methacrylate as a crosslinking agent were mixed was electrostatically applied, and then baked at 150 ° C. for 25 minutes to form a clear coating film. When the appearance and specular glossiness of this coating film were observed, the coating surface was not smooth and was not glossy, and the specular glossiness at 60 ° C. was 55.
[Brief description of the drawings]
[FIG. 1] FIG.Manufacturing3 is a scanning microscope photograph of the polymer fine powder obtained in Example 1 (magnification × 8,000).

Claims (2)

カルボキシル基を有するエチレン性不飽和単量体を含む単量体組成物を、超臨界二酸化炭素中で、重合させて得た、重量平均分子量が1,000〜1,000,000で、粒子の平均粒径が0.1〜50μmである高分子微粉体100重量部と、一分子中にカルボキシル基と反応して化学結合を形成しうる反応性官能基を2個以上有する架橋剤10〜300重量部とを含む塗料用組成物A monomer composition containing an ethylenically unsaturated monomer having a carboxyl group was polymerized in supercritical carbon dioxide, and had a weight average molecular weight of 1,000 to 1,000,000, Cross-linking agent 10-300 having 100 parts by weight of polymer fine powder having an average particle size of 0.1-50 μm and two or more reactive functional groups capable of forming a chemical bond by reacting with a carboxyl group in one molecule. A coating composition comprising parts by weight . 前記カルボキシル基を有するエチレン性不飽和単量体が(メタ)アクリル酸である請求項1記載の塗料用組成物2. The coating composition according to claim 1, wherein the ethylenically unsaturated monomer having a carboxyl group is (meth) acrylic acid.
JP2000277937A 1999-09-14 2000-09-13 Paint composition Expired - Lifetime JP4398080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000277937A JP4398080B2 (en) 1999-09-14 2000-09-13 Paint composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26080999 1999-09-14
JP11-260809 1999-09-14
JP2000277937A JP4398080B2 (en) 1999-09-14 2000-09-13 Paint composition

Publications (2)

Publication Number Publication Date
JP2001151802A JP2001151802A (en) 2001-06-05
JP4398080B2 true JP4398080B2 (en) 2010-01-13

Family

ID=26544758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000277937A Expired - Lifetime JP4398080B2 (en) 1999-09-14 2000-09-13 Paint composition

Country Status (1)

Country Link
JP (1) JP4398080B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10054114A1 (en) 2000-10-31 2002-05-16 Dupont Performance Coatings Process for the preparation of powder coating compositions
JP6653254B2 (en) * 2014-07-16 2020-02-26 三洋化成工業株式会社 Method for producing hydrophilic resin particles, hydrophilic resin particles, cell culture carrier and cell culture medium

Also Published As

Publication number Publication date
JP2001151802A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
US5972809A (en) Waterborne coating compositions
EP1240223B1 (en) Aqueous, polymodal, multistage polymer emulsions
CA2605009C (en) Process for the production of aqueous binder latices
CN106939060B (en) Polymer, method and composition
US5804632A (en) Production of polymer emulsions
JP6137557B2 (en) Preparation process of aqueous dispersion of vinyl polymer
TWI757347B (en) Aqueous matte coating compositions
US11001663B2 (en) Aqueous dispersion and uses thereof
US20070049697A1 (en) Emulsion for vibration damping materials
JP5876175B2 (en) Sealer coating composition
JP3096213B2 (en) Method for forming a coating on a substrate
AU600860B2 (en) Non-aqueous dispersion, method of manufacture and use thereof
JP4398080B2 (en) Paint composition
EP2331643A1 (en) Aqueous coating composition
JP5515544B2 (en) Process for producing aqueous polymer dispersion for paint and dispersion thereof
JPH0739556B2 (en) Emulsion coating composition
JP5355360B2 (en) Resin composition for sealer
JP4780838B2 (en) Method for forming metallic coating film
JPS6166710A (en) Production of non-film-forming vinyl resin emulsion and method of powdering same
JP4282145B2 (en) Method for stabilizing dispersion of resin particles
JPS5874742A (en) Resin dispersion
JP2691225B2 (en) Bakeable aqueous coating composition
JPS5813615A (en) Preparation of polymer dispersion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070426

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4398080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term