JP2002128536A - Synthetic quartz glass - Google Patents

Synthetic quartz glass

Info

Publication number
JP2002128536A
JP2002128536A JP2000323968A JP2000323968A JP2002128536A JP 2002128536 A JP2002128536 A JP 2002128536A JP 2000323968 A JP2000323968 A JP 2000323968A JP 2000323968 A JP2000323968 A JP 2000323968A JP 2002128536 A JP2002128536 A JP 2002128536A
Authority
JP
Japan
Prior art keywords
concentration
distribution
quartz glass
synthetic quartz
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000323968A
Other languages
Japanese (ja)
Inventor
Chuka Shu
忠華 周
Hiroto Ikuno
浩人 生野
Atsuro Miyao
敦朗 宮尾
Tomohiro Nunome
智宏 布目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2000323968A priority Critical patent/JP2002128536A/en
Publication of JP2002128536A publication Critical patent/JP2002128536A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/12Doped silica-based glasses containing boron or halide containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/21Doped silica-based glasses containing non-metals other than boron or halide containing molecular hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a synthetic quartz glass capable of being produced without heat treatment for forming refractive index distribution due to virtual temperature distribution and having an uniform refractive index and high productivity and is suitable for an optical member. SOLUTION: The synthetic quartz glass has a region having the maximum OH group concentration in the central part, and OH group concentration is gradually decreased towards the peripheral part from this region, and fluorine concentration is the minimum in the region of the central part to cancel the refractive index distribution due to OH group concentration distribution and fluorine concentration is gradually increased towards the peripheral part from the region of the central part, and H2 concentration is 1×1017 to 1×1019 molecule/cm3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は合成石英ガラスに係
わり、特にエキシマレーザ(KrF:248nm、Ar
F:193nm、F:157nm)、エキシマランプ
(Xe−Xe:172nm)などの真空紫外乃至紫外光
用のレンズやフォトマスク基板などに用いられる光学部
材に適する合成石英ガラスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synthetic quartz glass, and particularly to an excimer laser (KrF: 248 nm, Ar
The present invention relates to a synthetic quartz glass suitable for an optical member used for a lens for vacuum ultraviolet to ultraviolet light such as F: 193 nm, F 2 : 157 nm, an excimer lamp (Xe-Xe: 172 nm) and a photomask substrate.

【0002】[0002]

【従来の技術】エキシマレーザステッパ用レンズやフォ
トマスク基板などの光学部材として用いられる石英ガラ
スは、レーザ波長での高い透過性および高いレーザ耐性
に加え、さらに△n(屈折率変動幅)≦1×10−6
いう優れた屈折率均一性が要求されている。そのため、
直接法(火炎加水分解法)およびVAD法(スート法)
などの方法で製造された合成石英ガラスが用いられてい
る。
2. Description of the Related Art Quartz glass used as an optical member such as a lens for an excimer laser stepper or a photomask substrate has a high transmittance at a laser wavelength and a high laser resistance, and furthermore, Δn (refractive index fluctuation width) ≦ 1. An excellent refractive index uniformity of × 10 −6 is required. for that reason,
Direct method (flame hydrolysis method) and VAD method (soot method)
Synthetic quartz glass manufactured by such a method is used.

【0003】このようにして製造された合成石英ガラス
は、透過性およびレーザ耐性の特性を満たすために、O
H基(0〜1500ppm)、F(0〜10000pp
m)、H(1×1016〜1×1020分子/c
)を含有させたり、添加したりしている。このよう
にして製造された合成石英ガラスは、直径200mmサ
イズの合成石英ガラスにおいて、OH基濃度の最大値と
最小値との差(以下△OHという)が20〜500pp
mになることは一般的である。
[0003] The synthetic quartz glass manufactured in this manner is made of O.sub.
H group (0 to 1500 ppm), F (0 to 10000 pp)
m), H 2 (1 × 10 16 to 1 × 10 20 molecules / c)
m 3 ) is contained or added. The synthetic quartz glass thus manufactured has a difference between the maximum value and the minimum value of the OH group concentration (hereinafter referred to as ΔOH) of 20 to 500 pp in a synthetic quartz glass having a diameter of 200 mm.
It is common to be m.

【0004】ところが、△OHが10ppmあると、1
×10−6以上の△nが引き起こされ、OH基濃度分布
に起因する屈折率の大きな変動が問題となっている。
However, if △ OH is 10 ppm, 1 ppm
Δn of × 10 −6 or more is caused, and a large change in the refractive index due to the OH group concentration distribution is a problem.

【0005】このような問題点を解決する従来種々の方
策がなされている。
Conventionally, various measures have been taken to solve such problems.

【0006】特開平2−102139号公報に記載され
た発明においては、合成石英ガラスの中央部分にOH基
の極小濃度域を存在させるとともに、周辺部に近づくに
つれて徐々に高濃度となるOH基濃度分布を形成する。
このとき、OH基濃度分布に起因する屈折率分布は中央
部分で極大値を有し、周辺部に近づくにつれて低下する
分布(凸型分布という)をなし、一方、OH基濃度分布
に起因する屈折率分布を打ち消すように、熱処理条件を
選択することによる屈折率分布を形成する。すなわち、
800〜1300℃の範囲に所定時間加熱した後、所定
の速度で徐冷する方法により仮想温度分布をコントロー
ルし、この仮想温度分布に起因する中央部分に極小値を
有し、周辺部に近づくにつれて大きくなる屈折率分布
(凹型分布という)を形成する。このような相反する不
純物濃度に起因する屈折率分布と仮想温度分布に起因す
る屈折率分布を形成することにより、屈折率を均一にし
た光学用合成石英ガラスを得ると記載されている。
In the invention described in Japanese Patent Application Laid-Open No. 2-102139, a minimum concentration range of OH groups exists in the central portion of synthetic quartz glass, and the OH group concentration gradually increases as approaching the peripheral portion. Form a distribution.
At this time, the refractive index distribution caused by the OH group concentration distribution has a local maximum value at the central portion and forms a distribution (referred to as a convex distribution) which decreases as approaching the peripheral portion. A refractive index distribution is formed by selecting heat treatment conditions so as to cancel the refractive index distribution. That is,
After heating to a temperature in the range of 800 to 1300 ° C. for a predetermined time, the virtual temperature distribution is controlled by a method of gradually cooling at a predetermined speed, and has a local minimum value caused by the virtual temperature distribution, and becomes closer to the peripheral portion. A large refractive index distribution (referred to as a concave distribution) is formed. It is described that a synthetic quartz glass for optical use having a uniform refractive index is obtained by forming a refractive index distribution caused by such contradictory impurity concentrations and a refractive index distribution caused by a virtual temperature distribution.

【0007】しかし、このような公報記載の合成石英ガ
ラスは、OH基濃度分布に起因する凸型分布の屈折率分
布と、仮想温度分布に起因する凹型分布の屈折率分布と
で相殺するようにして製造されるので、合成石英ガラス
の温度制御が複雑になり、また、冷却のために時間を要
し、生産性が低く、さらに、OH基濃度の最大値と最小
値との差が約45ppmのとき、屈折率の変動幅(Δ
n)は約4.5×10 となり、これより大きい場合
には、OH基濃度の分布に基づく屈折率分布を、仮想温
度分布を調節することにより打ち消すのは難かしい傾向
にある。
However, in the synthetic quartz glass described in such a publication, the refractive index distribution of the convex distribution caused by the OH group concentration distribution and the refractive index distribution of the concave distribution caused by the virtual temperature distribution are offset. Therefore, the temperature control of the synthetic quartz glass becomes complicated, time is required for cooling, productivity is low, and the difference between the maximum value and the minimum value of the OH group concentration is about 45 ppm. , The fluctuation range of the refractive index (Δ
n) is about 4.5 × 10 - 6 becomes, the greater than this, the refractive index distribution based on the distribution of OH group concentration, counteract by adjusting the fictive temperature distribution is the flame Kashii trend.

【0008】また、特開平9−52723号公報に記載
された発明においては、光学用合成石英ガラス材のOH
基濃度を凸型分布にし、このOH基濃度の分布に基づく
凹型分布の屈折率分布を打ち消すように、1500℃か
ら冷却して凹型分布の仮想温度分布に起因する凸型分布
の屈折率分布を形成し、かつ、水素を5×1015〜1
×1019分子/cm含有させることにより、屈折率
を均一にした合成石英ガラスを得ると記載されている。
Further, in the invention described in Japanese Patent Application Laid-Open No. 9-52723, the OH
The base concentration is set to a convex distribution, and the refractive index distribution of the convex distribution caused by the virtual temperature distribution of the concave distribution is cooled by cooling from 1500 ° C. so as to cancel the refractive index distribution of the concave distribution based on the distribution of the OH group concentration. Formed and hydrogen is 5 × 10 15 -1
It is described that a synthetic quartz glass having a uniform refractive index can be obtained by containing × 10 19 molecules / cm 3 .

【0009】しかし、この公報記載の合成石英ガラス
も、OH基濃度分布に起因する屈折率分布と、仮想温度
分布に起因する屈折率分布とで相殺するようにして製造
されるので、合成石英ガラスの温度制御が複雑になり、
また、冷却のために長時間を要し、生産性が低い傾向に
ある。
However, the synthetic quartz glass described in this publication is also manufactured so that the refractive index distribution caused by the OH group concentration distribution and the refractive index distribution caused by the virtual temperature distribution are offset. Temperature control becomes complicated,
Further, a long time is required for cooling, and the productivity tends to be low.

【0010】さらに、特開平10−67521号公報に
記載された発明においては、原料ガスが流出される円状
管あるいはそれに隣接したリング状管からフッ素含有ガ
スを流出することにより、熱処理なしにフッ素、OH
基、および水素分子を共存させた合成石英ガラスの製造
方法であり、フッ素を均一に分布させることが可能とな
り、屈折率が均一な合成石英ガラスが得られると記載さ
れている。しかし、この公報記載の合成石英ガラスは原
料ガスが流出される円状管あるいはそれに隣接したリン
グ状管からフッ素含有ガスを流出し、熱処理なしにフッ
素、OH基、および水素分子を共存させた合成石英ガラ
スであるので、凸型分布または凹型分布で存在するOH
基濃度に起因する屈折率分布は凹型分布または凸型分布
になり、この凹型分布または凸型分布の屈折率分布を、
均一に分布したフッ素濃度分布に起因する屈折率分布で
打ち消して、屈折率を均一にすることは難しく、容易に
均一な屈折率を有する合成石英ガラスは得にくい傾向に
ある。
Further, in the invention described in Japanese Patent Application Laid-Open No. 10-67521, the fluorine-containing gas is discharged from a circular tube from which the raw material gas is discharged or a ring-shaped tube adjacent thereto, so that the fluorine-containing gas can be discharged without heat treatment. , OH
This is a method for producing a synthetic quartz glass in which a group and a hydrogen molecule coexist, and describes that it is possible to uniformly distribute fluorine and to obtain a synthetic quartz glass having a uniform refractive index. However, the synthetic quartz glass described in this publication emits a fluorine-containing gas from a circular tube from which a raw material gas flows out or a ring-shaped tube adjacent to the circular tube, and has a fluorine, OH group, and hydrogen molecule coexistent without heat treatment. Since it is quartz glass, OH existing in a convex distribution or a concave distribution
The refractive index distribution caused by the base concentration becomes a concave distribution or a convex distribution, and the refractive index distribution of the concave distribution or the convex distribution is
It is difficult to make the refractive index uniform by canceling out the refractive index distribution caused by the uniformly distributed fluorine concentration distribution, and it tends to be difficult to obtain a synthetic quartz glass having a uniform refractive index easily.

【0011】[0011]

【発明が解決しようとする課題】そこで、仮想温度分布
に起因する屈折率分布を形成するための熱処理を行わず
に製造でき、屈折率が均一で生産性が高く光学部材に適
する合成石英ガラスが要望されていた。
Therefore, synthetic quartz glass which can be manufactured without performing a heat treatment for forming a refractive index distribution caused by a virtual temperature distribution, has a uniform refractive index, has high productivity, and is suitable for an optical member has been developed. Had been requested.

【0012】本発明は上述した事情を考慮してなされた
もので、仮想温度分布に起因する屈折率分布を形成する
ための熱処理を行わずに製造でき、屈折率が均一で生産
性が高く光学部材に適する合成石英ガラスを提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and can be manufactured without performing a heat treatment for forming a refractive index distribution caused by a virtual temperature distribution. An object is to provide a synthetic quartz glass suitable for a member.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
になされた本願請求項1の発明は、中心部にOH濃度が
極大となる領域が存在し、この領域を中心に外周に行く
に従って、OH基濃度が次第に低下し、前記OH基濃度
分布に基づく屈折率分布を打ち消すように、前記中心部
の領域において、フッ素濃度を極小とし、この領域を中
心に外周に行くに従ってフッ素濃度が次第に高くなり、
かつ、H濃度は1×1017〜1×1019分子/c
であることを特徴とする合成石英ガラスであること
を要旨としている。
Means for Solving the Problems According to the first aspect of the present invention, which has been made to achieve the above object, there is provided a region where the OH concentration is maximum at the center, and the outer periphery is centered around this region. The OH group concentration gradually decreases, so that the refractive index distribution based on the OH group concentration distribution is canceled out, in the central region, the fluorine concentration is minimized, and the fluorine concentration gradually increases toward the outer periphery around this region. Become
And, H 2 concentration of 1 × 10 17 ~1 × 10 19 molecules / c
is summarized in that a synthetic quartz glass, which is a m 3.

【0014】本願請求項2の発明では、中心部にOH基
濃度が極小となる領域が存在し、この領域を中心に外周
に行くに従ってOH基濃度が次第に高くなり、前記OH
基濃度分布に基づく屈折率分布を打ち消すように、前記
中心部の領域において、フッ素濃度を極大とし、この領
域を中心に外周に行くに従ってフッ素濃度が次第に低下
し、H濃度を1×1017〜1×1019分子/cm
含有することを特徴とする合成石英ガラスであること
を要旨としている。
According to the invention of claim 2 of the present application, there is a region where the OH group concentration is extremely small in the center, and the OH group concentration gradually increases toward the outer periphery centering on this region.
In order to cancel the refractive index distribution based on the base concentration distribution, the fluorine concentration is maximized in the central region, and the fluorine concentration gradually decreases toward the outer periphery of the central region, and the H 2 concentration is reduced to 1 × 10 17. ~ 1 × 10 19 molecules / cm
The gist of the invention is that it is a synthetic quartz glass characterized by containing 3 .

【0015】本願請求項3の発明では、上記合成石英ガ
ラスの中心部と外周とのOH基濃度差が、中心部と外周
とのフッ素濃度差の3.0〜4.8倍とすることを特徴
とする請求項1または2に記載の合成石英ガラスである
ことを要旨としている。
In the invention of claim 3 of the present application, the difference in OH group concentration between the center and the outer periphery of the synthetic quartz glass is set to be 3.0 to 4.8 times the difference in fluorine concentration between the center and the outer periphery. The gist is a synthetic quartz glass according to the first or second aspect.

【0016】[0016]

【発明の実施の形態】以下、本発明に係わる合成石英ガ
ラスの実施形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the synthetic quartz glass according to the present invention will be described below.

【0017】第一の実施形態の合成石英ガラスは、中心
部にOH基濃度が極大となる領域が存在し、この領域を
中心に外周に行くに従って、OH基濃度が次第に低下
し、OH基濃度分布に基づく屈折率分布を打ち消すよう
に、中心部の領域において、フッ素濃度を極小とし、こ
の領域を中心に外周に行くに従ってフッ素濃度が次第に
高くなり、かつ、H濃度が1×1017〜1×10
19分子/cmである。
In the synthetic quartz glass of the first embodiment, there is a region where the OH group concentration is maximum at the center, and the OH group concentration gradually decreases toward the outer periphery around this region, and the OH group concentration decreases. In order to cancel the refractive index distribution based on the distribution, the fluorine concentration is minimized in the central region, the fluorine concentration gradually increases toward the outer periphery around this region, and the H 2 concentration is 1 × 10 17 to 1 × 10
19 molecules / cm 3 .

【0018】すなわち、模式的に図1に示すように、O
H基濃度分布(△OH)に起因する屈折率分布をフッ素
濃度分布(△F)に起因する屈折率分布で相殺すること
に基づき、合成石英ガラスにフッ素を添加し、OH基お
よびフッ素濃度分布を互いに相反させ、合成石英ガラス
の中心と外周とのOH濃度差が中心と外周とのフッ素濃
度差の3.0〜4.8倍になり、優れた屈折率変動幅
(屈折率均一性)△n≦1×10−6を有する。
That is, as schematically shown in FIG.
Based on the fact that the refractive index distribution caused by the H group concentration distribution (分布 OH) is offset by the refractive index distribution caused by the fluorine concentration distribution (△ F), fluorine is added to the synthetic quartz glass, and the OH group and the fluorine concentration distribution are added. And the OH concentration difference between the center and the outer periphery of the synthetic quartz glass becomes 3.0 to 4.8 times the fluorine concentration difference between the center and the outer periphery, and an excellent refractive index variation width (refractive index uniformity). Δn ≦ 1 × 10 −6 .

【0019】H濃度はレーザ照射時の合成石英ガラス
の特性に影響を与え、H濃度が1×1017分子/c
より低いと、レーザ照射で発生する蛍光が強くな
り、また、1×1019分子/cmより高いと、レー
ザ照射初期透過率変化が大きくなる。
The H 2 concentration affects the properties of the synthetic quartz glass during laser irradiation, and the H 2 concentration is 1 × 10 17 molecules / c.
When it is lower than m 3 , the fluorescence generated by laser irradiation becomes strong, and when it is higher than 1 × 10 19 molecules / cm 3 , the change in the initial transmittance of laser irradiation becomes large.

【0020】合成石英ガラスの中心と外周とのOH濃度
差が、中心と外周とのフッ素濃度差の3.0〜4.8倍
になり、OH濃度分布に起因する屈折率分布とフッ素濃
度分布に起因する屈折率分布とが相殺し、屈折率均一性
△n≦1×10−6の合成石英ガラスが得られる。OH
基濃度差がフッ素濃度差の3.0よりも小さいか、また
は、4.8よりも大きいとOH基濃度分布に起因する屈
折率分布をフッ素濃度分布屈折率分布で打ち消す効果が
小さい。
The difference in the OH concentration between the center and the periphery of the synthetic quartz glass is 3.0 to 4.8 times the difference in the fluorine concentration between the center and the periphery, and the refractive index distribution and the fluorine concentration distribution caused by the OH concentration distribution. And the refractive index distribution caused by the above is canceled out, and a synthetic quartz glass having a refractive index uniformity Δn ≦ 1 × 10 −6 is obtained. OH
When the group concentration difference is smaller than the fluorine concentration difference of 3.0 or larger than 4.8, the effect of canceling the refractive index distribution caused by the OH group concentration distribution with the fluorine concentration distribution refractive index distribution is small.

【0021】フッ素の添加方法は、合成石英ガラスをV
AD法(スート法)で製造する場合と直接法(火炎加水
分解法)で製造する場合とで異なる。
The method of adding fluorine is as follows.
It differs between the case of production by the AD method (soot method) and the case of production by the direct method (flame hydrolysis method).

【0022】次に第一の実施形態に係わる合成石英ガラ
スをVAD法で製造する場合について説明する。
Next, a case where the synthetic quartz glass according to the first embodiment is manufactured by the VAD method will be described.

【0023】例えば、合成石英ガラス形成原料を火炎加
水分解させて多孔質石英ガラス体化し、この多孔質石英
ガラス体を不活性ガス雰囲気中で加熱し、さらに、加熱
温度1000〜1200℃に時点でSiF濃度1〜2
0%の雰囲気に切換えてフッ素ドープ処理し、ドープ処
理雰囲気中にで昇温して、フッ素ドープした多孔質石英
ガラス体を透明化し、しかる後、水素ガス含浸雰囲気
中、200〜300℃の温度で水素ドープ処理して合成
石英ガラスを製造する。
For example, a synthetic quartz glass forming raw material is flame-hydrolyzed to form a porous quartz glass body, and this porous quartz glass body is heated in an inert gas atmosphere, and further heated to a temperature of 1000 to 1200 ° C. SiF 4 concentration 1-2
The atmosphere is switched to 0%, and fluorine is doped, and the temperature is increased in the doping atmosphere to make the fluorine-doped porous quartz glass body transparent. Thereafter, the temperature is increased to 200 to 300 ° C. in a hydrogen gas impregnated atmosphere. To produce a synthetic quartz glass.

【0024】このように、透明化段階でSiFなどフ
ッ素含有ガスを導入することによって、合成石英ガラス
にフッ素添加ができる。VAD法の場合には、凸型分布
のOH基濃度分布が一般的であり、フッ素含有ガスの分
圧、導入温度およびキープ時間を調整することによっ
て、図1に示すように、OH基濃度分布と相反した凹型
分布のフッ素濃度分布の形成ができる。
As described above, fluorine can be added to synthetic quartz glass by introducing a fluorine-containing gas such as SiF 4 in the transparentizing step. In the case of the VAD method, the OH group concentration distribution having a convex distribution is generally used. By adjusting the partial pressure of the fluorine-containing gas, the introduction temperature, and the keeping time, as shown in FIG. Thus, it is possible to form a fluorine concentration distribution having a concave distribution which is contrary to the above.

【0025】次に、第二の実施形態の合成石英ガラスに
ついて説明する。
Next, the synthetic quartz glass of the second embodiment will be described.

【0026】第二の実施形態の合成石英ガラスは、中心
部にOH基濃度が極小となる領域が存在し、この領域を
中心に外周に行くに従ってOH基濃度が次第に高くな
り、OH基濃度分布に基づく屈折率分布を打ち消すよう
に、中心部の領域において、フッ素濃度を極大とし、こ
の領域を中心に外周に行くに従ってフッ素濃度が次第に
低下し、H濃度を1×1017〜1×1019分子/
cm含有する。
In the synthetic quartz glass of the second embodiment, there is a region where the OH group concentration is extremely small at the center, and the OH group concentration gradually increases toward the outer periphery centering on this region. so as to cancel the refractive index distribution based on, in the region of the central portion, the fluorine concentration is maximal, the fluorine concentration decreases gradually toward the outer periphery around this region, the concentration of H 2 1 × 10 17 ~1 × 10 19 molecules /
cm 3 .

【0027】さらに、第二の実施形態の合成石英ガラス
を直接法で製造する場合について説明する。
Further, a case where the synthetic quartz glass of the second embodiment is manufactured by a direct method will be described.

【0028】テトラエトキシシランSi(OC
原料及びSiFを酸水素火炎中で加水分解し、さら
に生成したSiOの微粒子を同じ酸水素火炎の熱で直
接溶融してガラス体とする。SiFなどのフッ素含有
ガスを導入することによってフッ素添加することができ
る。
Tetraethoxysilane Si (OC 2 H 5 )
The four raw materials and SiF 4 are hydrolyzed in an oxyhydrogen flame, and the generated fine particles of SiO 2 are directly melted by the heat of the same oxyhydrogen flame to form a glass body. Fluorine can be added by introducing a fluorine-containing gas such as SiF 4 .

【0029】例えば、模式的に図2に示すように、この
場合には、中心部が低く、外周が高いという凹型分布の
OH基濃度分布が一般的であり、フッ素含有ガスの導入
位置および分圧などの調整によって、OH基濃度分布と
相反した凸型分布のフッ素濃度分布に形成することがで
きる。従って、OH基濃度分布(△OH)に起因する屈
折率分布をフッ素濃度分布(△F)に起因する屈折率分
布で相殺し、均一な屈折率分布の合成石英ガラスを製造
することができる。
For example, as shown schematically in FIG. 2, in this case, the OH group concentration distribution in a concave shape in which the central portion is low and the outer periphery is high is generally used. By adjusting the pressure or the like, it is possible to form a fluorine concentration distribution having a convex distribution that is opposite to the OH group concentration distribution. Therefore, the refractive index distribution caused by the OH group concentration distribution (ΔOH) is canceled by the refractive index distribution caused by the fluorine concentration distribution (ΔF), and a synthetic quartz glass having a uniform refractive index distribution can be manufactured.

【0030】また、合成石英ガラスの原料は塩素を含有
せず、例えばアルコキシシランなどを用いることが望ま
しい。塩素を含有する原料を使うと、塩素が合成石英ガ
ラスに残り、合成石英ガラスに塩素が存在すると、レー
ザ耐性に悪い影響を及ぼすだけでなく、塩素濃度のバラ
ツキは屈折率のバラツキを引き起こす。
It is preferable that the raw material of the synthetic quartz glass does not contain chlorine, and for example, an alkoxysilane or the like is used. When a chlorine-containing raw material is used, chlorine remains in the synthetic quartz glass, and when chlorine is present in the synthetic quartz glass, not only does the laser resistance have a bad effect, but also a variation in chlorine concentration causes a variation in the refractive index.

【0031】[0031]

【実施例】実施例1:(VAD法) SiCl原料を酸水素火炎中で加水分解させ、生成し
たSiO微粒子を石英ガラス製のターゲットに堆積さ
せて、φ400mm、長さ500mmの多孔質シリカ
(スート)を得た。このスートをHe雰囲気で1000
℃まで加熱した後、雰囲気をHe+SiFガスに切り
替え、2時間キープ後、雰囲気をHeに戻し、1500
℃で2時間焼結させて透明化するVAD法でφ200m
m、長さ250mmのガラスインゴットを得た。このイ
ンゴットをφ200mm、厚さ5mmの円盤状にスライ
スした後、300℃、30時間、水素雰囲気中熱処理し
た。次いで、光学研磨を施し、OH基、H、F、C
l、屈折率変動幅△n、ArFエキシマレーザ耐性を評
価した。図3に示したようなOH基、フッ素濃度の面内
分布を得た。
EXAMPLES Example 1 (VAD method) SiCl 4 raw material was hydrolyzed in an oxyhydrogen flame, and the generated SiO 2 fine particles were deposited on a quartz glass target to form a porous silica having a diameter of 400 mm and a length of 500 mm. (Suit). 1000% of this soot in He atmosphere
After heating to ° C., the atmosphere was switched to He + SiF 4 gas, and after keeping for 2 hours, the atmosphere was returned to He and 1500
200mm by VAD method which sinters at 2 ℃ for 2 hours to make it transparent
m and a glass ingot having a length of 250 mm were obtained. This ingot was sliced into a disk having a diameter of 200 mm and a thickness of 5 mm, and then heat-treated at 300 ° C. for 30 hours in a hydrogen atmosphere. Next, optical polishing is performed, and OH groups, H 2 , F, C
1, the refractive index fluctuation width Δn, and the ArF excimer laser resistance were evaluated. The in-plane distribution of the OH group and fluorine concentration as shown in FIG. 3 was obtained.

【0032】実施例2:(直接法) テトラエトキシシランSi(OC原料及びS
iFを酸水素火炎中で加水分解し、さらに生成したS
iOの微粒子を同じ酸水素火炎の熱で直接溶融してガ
ラス体とする直接法でφ200mm長さ250mmのガ
ラスインゴットを得た。このインゴットをφ200m
m、厚さ5mmの円盤状にスライスした後、光学研磨を
施し、OH基、H、F、Cl、屈折率分布△n、Ar
Fエキシマレーザ耐性を評価した。図4に示したような
OH基、フッ素濃度の面内分布を得た。ArFエキシマ
レーザ耐性について、100KJ/cm照射した後の
透過率低下が0.5%以内時は良好という基準を用い
た。
Example 2: (Direct method) Tetraethoxysilane Si (OC 2 H 5 ) 4 raw material and S
iF 4 is hydrolyzed in an oxyhydrogen flame, and further produced S
A glass ingot having a diameter of 200 mm and a length of 250 mm was obtained by a direct method in which the fine particles of iO 2 were directly melted by the heat of the same oxyhydrogen flame to obtain a glass body. This ingot is φ200m
m, sliced into a disk having a thickness of 5 mm, and then subjected to optical polishing to obtain an OH group, H 2 , F, Cl, a refractive index distribution Δn, Ar
The F excimer laser resistance was evaluated. The in-plane distribution of the OH group and fluorine concentration as shown in FIG. 4 was obtained. Regarding the ArF excimer laser resistance, a criterion of good when the transmittance decrease after irradiation with 100 KJ / cm 2 was within 0.5% was used.

【0033】比較例1:(VAD法) SiFを使用しないこと以外は実施例1と同様にし
た。
Comparative Example 1: (VAD method) The same procedure as in Example 1 was performed except that SiF 4 was not used.

【0034】(比較例2):(直接法) SiFを使用しないこと以外は実施例2と同様にし
た。
(Comparative Example 2): (Direct Method) The procedure was the same as in Example 2 except that SiF 4 was not used.

【0035】(結果)評価結果を表1に示す。(Results) The evaluation results are shown in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】実施例1および実施例2には、合成石英ガ
ラスにフッ素を添加し、さらにフッ素濃度分布はOH基
濃度分布と相反させ、かつ、△OH=4×△Fになるよ
うに調整したことで、△n≦1×10−6を達成した。
また、実施例1および実施例2のArFエキシマレーザ
耐性は良好であった。
In Examples 1 and 2, fluorine was added to the synthetic quartz glass, and the fluorine concentration distribution was adjusted so as to be opposite to the OH group concentration distribution and △ OH = 4 × △ F. Thereby, Δn ≦ 1 × 10 −6 was achieved.
The ArF excimer laser resistance of Examples 1 and 2 was good.

【0038】比較例2は、ArFエキシマレーザ耐性は
良好であったが、比較例1とともに△OHに起因する△
nが大きかった。
In Comparative Example 2, the ArF excimer laser resistance was good, but together with Comparative Example 1, {caused by OH}
n was large.

【0039】[0039]

【発明の効果】本発明に係わる合成石英ガラスによれ
ば、仮想温度分布に起因する屈折率分布を形成するため
の熱処理を行わずに製造でき、屈折率が均一で生産性が
高く光学部材に適する合成石英ガラスを提供することが
できる。
According to the synthetic quartz glass of the present invention, it can be manufactured without performing a heat treatment for forming a refractive index distribution caused by a virtual temperature distribution, and has a uniform refractive index, high productivity and an optical member. Suitable synthetic quartz glass can be provided.

【0040】すなわち、中心部にOH基濃度が極大とな
る領域が存在し、この領域を中心に外周に行くに従っ
て、OH基濃度が次第に低下し、OH基濃度分布に基づ
く屈折率分布を打ち消すように、中心部の領域におい
て、フッ素濃度を極小とし、この領域を中心に外周に行
くに従ってフッ素濃度が次第に高くなり、かつ、H
度は1×1017〜1×1019分子/cmである合
成石英ガラスであるので、OH基濃度分布に起因する屈
折率分布をフッ素濃度分布に起因する屈折率分布で相殺
することに基づき、合成石英ガラスにフッ素を添加し、
OH基およびフッ素濃度分布を互いに相反させ、屈折率
が均一になる。
That is, there is a region where the OH group concentration is maximum at the center, and the OH group concentration gradually decreases toward the outer periphery around this region, so that the refractive index distribution based on the OH group concentration distribution is canceled. In the central region, the fluorine concentration is minimized, the fluorine concentration gradually increases toward the outer periphery of the region, and the H 2 concentration is 1 × 10 17 to 1 × 10 19 molecules / cm 3 . Because it is a synthetic quartz glass, fluorine is added to the synthetic quartz glass based on canceling the refractive index distribution caused by the OH group concentration distribution with the refractive index distribution caused by the fluorine concentration distribution,
The OH groups and the fluorine concentration distribution are made to be opposite to each other, and the refractive index becomes uniform.

【0041】また、中心部にOH基濃度が極小となる領
域が存在し、この領域を中心に外周に行くに従ってOH
基濃度が次第に高くなり、OH基濃度分布に基づく屈折
率分布を打ち消すように、中心部の領域において、フッ
素濃度を極大とし、この領域を中心に外周に行くに従っ
てフッ素濃度が次第に低下し、H濃度を1×10
〜1×1019分子/cm含有する合成石英ガラスで
あるので、OH基濃度分布に起因する屈折率分布をフッ
素濃度分布に起因する屈折率分布で相殺することに基づ
き、合成石英ガラスにフッ素を添加し、OH基およびフ
ッ素濃度分布を互いに相反させ、屈折率が均一になる。
Further, there is an area where the OH group concentration is minimal at the center, and the
In order to cancel the refractive index distribution based on the OH group concentration distribution, the fluorine concentration is maximized in the central region, and the fluorine concentration gradually decreases toward the outer periphery around this region, so that H 2 concentration of 1 × 10 1 7
Since it is a synthetic quartz glass containing 11 × 10 19 molecules / cm 3 , the synthetic quartz glass has fluorine based on the fact that the refractive index distribution caused by the OH group concentration distribution is offset by the refractive index distribution caused by the fluorine concentration distribution. Is added to make the OH group and fluorine concentration distributions contradict each other, and the refractive index becomes uniform.

【0042】また、合成石英ガラスの中心と外周とのO
H基濃度差が中心と外周とのフッ素濃度差の3.0〜
4.8倍とすることにより、OH基濃度分布に起因する
屈折率分布とフッ素濃度分布に起因する屈折率分布とが
より適切に相殺し、屈折率変動幅△n≦1×10−6
合成石英ガラスが得られる。
The O between the center and the outer periphery of the synthetic quartz glass
The H group concentration difference is 3.0 to 3.0 of the fluorine concentration difference between the center and the outer periphery.
By setting it to 4.8 times, the refractive index distribution caused by the OH group concentration distribution and the refractive index distribution caused by the fluorine concentration distribution more appropriately cancel each other, and the refractive index fluctuation width Δn ≦ 1 × 10 −6 is satisfied . A synthetic quartz glass is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる合成石英ガラスの第一実施形態
におけるOH基濃度分布、F基濃度分布およびこれらに
起因する屈折率分布の模式図。
FIG. 1 is a schematic diagram of an OH group concentration distribution, an F group concentration distribution, and a refractive index distribution resulting therefrom in a first embodiment of a synthetic quartz glass according to the present invention.

【図2】本発明に係わる合成石英ガラスの第二実施形態
におけるOH基濃度分布、F基濃度分布およびこれらに
起因する屈折率分布の模式図。
FIG. 2 is a schematic diagram of an OH group concentration distribution, an F group concentration distribution, and a refractive index distribution resulting therefrom in the second embodiment of the synthetic quartz glass according to the present invention.

【図3】本発明に係わる合成石英ガラスの製造方法の実
施例1の結果図。
FIG. 3 is a view showing the result of Example 1 of the method for producing synthetic quartz glass according to the present invention.

【図4】本発明に係わる合成石英ガラスの製造方法の実
施例2の結果図。
FIG. 4 is a view showing the result of Example 2 of the method for producing a synthetic quartz glass according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮尾 敦朗 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 (72)発明者 布目 智宏 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 Fターム(参考) 2H095 BA01 BA07 BC27 4G014 AH12 AH15 AH21 AH23 4G062 AA04 BB02 CC07 MM02 NN16 NN20 5F046 BA03 CB12  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Atsuro Miyao 30 Soya, Hadano-shi, Kanagawa Toshiba Ceramics Co., Ltd. In-house F-term (reference) 2H095 BA01 BA07 BC27 4G014 AH12 AH15 AH21 AH23 4G062 AA04 BB02 CC07 MM02 NN16 NN20 5F046 BA03 CB12

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 中心部にOH基濃度が極大となる領域が
存在し、この領域を中心に外周に行くに従って、OH基
濃度が次第に低下し、前記OH基濃度分布に基づく屈折
率分布を打ち消すように、前記中心部の領域において、
フッ素濃度を極小とし、この領域を中心に外周に行くに
従ってフッ素濃度が次第に高くなり、かつ、H濃度は
1×1017〜1×1019分子/cmであることを
特徴とする合成石英ガラス。
1. An area where the OH group concentration is maximum exists in the center, and the OH group concentration gradually decreases toward the outer periphery around this area, thereby canceling the refractive index distribution based on the OH group concentration distribution. As described above, in the central region,
Synthetic quartz characterized in that the fluorine concentration is minimized, the fluorine concentration gradually increases toward the periphery around this region, and the H 2 concentration is 1 × 10 17 to 1 × 10 19 molecules / cm 3. Glass.
【請求項2】 中心部にOH基濃度が極小となる領域が
存在し、この領域を中心に外周に行くに従ってOH基濃
度が次第に高くなり、前記OH基濃度分布に基づく屈折
率分布を打ち消すように、前記中心部の領域において、
フッ素濃度を極大とし、この領域を中心に外周に行くに
従ってフッ素濃度が次第に低下し、H 濃度を1×10
17〜1×1019分子/cm含有することを特徴と
する合成石英ガラス。
2. An area where the OH group concentration is minimal at the center
Exists, and the OH group concentration increases as going to the outer periphery around this region.
Degree gradually increases and refraction based on the OH group concentration distribution
In order to cancel the rate distribution, in the central region,
To maximize the fluorine concentration, go to the periphery around this region
Therefore, the fluorine concentration gradually decreases and H 2Concentration 1 × 10
17~ 1 × 1019Molecule / cm3Characterized by containing
Synthetic quartz glass.
【請求項3】 上記合成石英ガラスの中心部と外周との
OH基濃度差が、中心部と外周とのフッ素濃度差の3.
0〜4.8倍とすることを特徴とする請求項1または2
に記載の合成石英ガラス。
3. The difference in OH group concentration between the central portion and the outer periphery of the synthetic quartz glass is equal to the difference in fluorine concentration between the central portion and the outer periphery.
3. The method according to claim 1, wherein the value is 0 to 4.8 times.
The synthetic quartz glass according to the above.
JP2000323968A 2000-10-24 2000-10-24 Synthetic quartz glass Withdrawn JP2002128536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000323968A JP2002128536A (en) 2000-10-24 2000-10-24 Synthetic quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000323968A JP2002128536A (en) 2000-10-24 2000-10-24 Synthetic quartz glass

Publications (1)

Publication Number Publication Date
JP2002128536A true JP2002128536A (en) 2002-05-09

Family

ID=18801569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000323968A Withdrawn JP2002128536A (en) 2000-10-24 2000-10-24 Synthetic quartz glass

Country Status (1)

Country Link
JP (1) JP2002128536A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206050A (en) * 2008-02-29 2009-09-10 Ushio Inc Discharge lamp, and light emitting device
JP2009203142A (en) * 2008-02-29 2009-09-10 Sumitomo Electric Ind Ltd Fluorine-added quartz glass
US7964522B2 (en) 2006-08-31 2011-06-21 Corning Incorporated F-doped silica glass and process of making same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964522B2 (en) 2006-08-31 2011-06-21 Corning Incorporated F-doped silica glass and process of making same
JP2009206050A (en) * 2008-02-29 2009-09-10 Ushio Inc Discharge lamp, and light emitting device
JP2009203142A (en) * 2008-02-29 2009-09-10 Sumitomo Electric Ind Ltd Fluorine-added quartz glass

Similar Documents

Publication Publication Date Title
US5474589A (en) UV light-permeable glass and article comprising the same
EP0917523B1 (en) Synthetic silica glass used with uv-rays and method producing the same
US5364433A (en) Optical member of synthetic quartz glass for excimer lasers and method for producing same
EP1900694B1 (en) Method for making a synthetic quartz glass substrate for excimer lasers
JP4763877B2 (en) Synthetic quartz glass optical material and optical member for F2 excimer laser
JP3403317B2 (en) High power synthetic silica glass optical material for vacuum ultraviolet light and method for producing the same
JP2862001B2 (en) Manufacturing method of quartz glass optical member
JP4158009B2 (en) Synthetic quartz glass ingot and method for producing synthetic quartz glass
JP3865039B2 (en) Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
JP2588447B2 (en) Method of manufacturing quartz glass member for excimer laser
JP2861512B2 (en) Manufacturing method of quartz glass optical member
EP1127857B1 (en) Fluorine-containing synthetic quartz glass and method of production
JP2002128536A (en) Synthetic quartz glass
EP1178688A2 (en) Image decoding device and image decoding method
JP3071362B2 (en) Synthetic quartz mask substrate for ArF excimer laser lithography and method of manufacturing the same
JPH05178632A (en) Optical quartz glass having high heat resistance and its production
JP4114039B2 (en) Synthetic quartz glass
US20020046580A1 (en) Synthetic quartz glass article and process of production
US20030139277A1 (en) Fused silica having improved index homogeneity
JP3796653B2 (en) Fluorine-containing synthetic quartz glass and method for producing the same
JP2835540B2 (en) Method of manufacturing quartz glass member for excimer laser
JP4110362B2 (en) Method for producing synthetic quartz glass member
JPH08709B2 (en) Quartz glass base material for light transmitting body, method for manufacturing the same, and light transmitting body formed using the base material
JPH0952723A (en) Optical synthetic quartz glass preform and its production
JPH10324528A (en) Optical quartz glass

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091109

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091109