JP2002126540A - Catalyst regeneration method and apparatus to be employed therefor - Google Patents

Catalyst regeneration method and apparatus to be employed therefor

Info

Publication number
JP2002126540A
JP2002126540A JP2000321668A JP2000321668A JP2002126540A JP 2002126540 A JP2002126540 A JP 2002126540A JP 2000321668 A JP2000321668 A JP 2000321668A JP 2000321668 A JP2000321668 A JP 2000321668A JP 2002126540 A JP2002126540 A JP 2002126540A
Authority
JP
Japan
Prior art keywords
catalyst
temperature
regeneration
regenerating
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000321668A
Other languages
Japanese (ja)
Other versions
JP3983968B2 (en
Inventor
Atsushi Morita
敦 森田
Nobuyuki Masaki
信之 正木
Noboru Sugishima
昇 杉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2000321668A priority Critical patent/JP3983968B2/en
Publication of JP2002126540A publication Critical patent/JP2002126540A/en
Application granted granted Critical
Publication of JP3983968B2 publication Critical patent/JP3983968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst heating and regenerating method which causes neither a thermal damage such as sintering of catalyst components nor activity deterioration of the catalyst and provide an apparatus for the method. SOLUTION: The catalyst regeneration method is a method for regenerating a catalyst, which is poisoned by an poisonous substance in a waste gas and deteriorated in the activity, by blowing hot air to the catalyst, and is characterized in that the temperature is controlled so as to keep the temperature distribution in a packed part of the catalyst within a range of proper regeneration temperature ±30 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排ガス中の被毒物
質により被毒して活性の劣化した触媒を再生する方法お
よびその実施に用いる装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating a catalyst whose activity has been deteriorated by being poisoned by a poisoning substance in exhaust gas, and an apparatus used for carrying out the method.

【0002】[0002]

【従来の技術】現在、燃焼排ガス中の有害物質を除去す
る方法として、処理効率やコストの面から触媒を用いた
除去方法が様々な分野で用いられており、その例として
は、火力発電所排ガスに含まれる窒素酸化物を還元除去
する選択的触媒還元(SCR)法や、産業廃棄物や都市
廃棄物の焼却施設から発生する排ガス中に含まれるダイ
オキシン類などの有機ハロゲン化合物を触媒に用いて酸
化分解する方法などが挙げられる。これらの方法で用い
られる一般的な触媒としては、チタン、バナジウム、タ
ングステンおよびモリブデンなどの金属の酸化物を含有
するものがある。
2. Description of the Related Art At present, as a method of removing harmful substances in combustion exhaust gas, a removal method using a catalyst is used in various fields from the viewpoint of processing efficiency and cost. Selective catalytic reduction (SCR) method that reduces and removes nitrogen oxides contained in exhaust gas, and uses organic halogen compounds such as dioxins in exhaust gas generated from incineration facilities for industrial waste and municipal waste as catalysts And oxidative decomposition. Typical catalysts used in these methods include those containing oxides of metals such as titanium, vanadium, tungsten and molybdenum.

【0003】火力発電所や廃棄物焼却炉から排出される
排ガス中には、アンモニア、硫黄酸化物(SOx)、高
沸点有機化合物、カリウムやナトリウムなどのアルカリ
金属化合物などの触媒被毒物質が含まれており、350
℃以下の比較的低温度域で上記の触媒を使用すると、S
Oxによりバナジウム酸化物が硫酸塩に変化して失活し
たり、触媒に酸性硫酸アンモニウムや硫酸アンモニウ
ム、高沸点有機化合物の蓄積が生じて触媒の比表面積低
下や細孔の閉塞を引き起こしたりするため、触媒性能が
経時的に劣化する。このようにして被毒し活性劣化した
触媒を再生する方法としては、(1)触媒を水または添
加剤入りの水によって洗浄再生する方法、(2)反応装
置から触媒を取り出して加熱炉で高温再生する方法、
(3)予めバーナーなどで加熱されたガスを触媒に通す
ことによって熱処理再生する方法、などが知られてい
る。
[0003] Exhaust gas discharged from thermal power plants and waste incinerators contains catalyst poisoning substances such as ammonia, sulfur oxides (SOx), high-boiling organic compounds, and alkali metal compounds such as potassium and sodium. 350
When the above catalyst is used in a relatively low temperature range of not more than ℃,
Ox transforms vanadium oxides into sulfates and deactivates them.Acid ammonium sulfate, ammonium sulfate, and high-boiling organic compounds accumulate in the catalyst, causing a decrease in the specific surface area of the catalyst and blocking of pores. Performance degrades over time. As a method for regenerating the poisoned catalyst whose activity has been deteriorated in this manner, (1) a method of cleaning and regenerating the catalyst with water or water containing an additive, and (2) a method of taking out the catalyst from the reactor and heating it at a high temperature in a heating furnace. How to play,
(3) A method of regenerating heat treatment by passing a gas heated in advance by a burner or the like through a catalyst is known.

【0004】これらの再生方法には、それぞれ次のよう
な問題点があった。(1)の洗浄再生方法は、水および
添加剤による触媒成分の流出、廃水処理の困難さを有す
ることに加えて、再生効率が低い。(2)および(3)
の加熱再生方法は、加熱方法の如何により、触媒の熱的
劣化を生じさせたり再生効率の低下を引き起こしたりす
る。
Each of these reproducing methods has the following problems. The washing and regenerating method (1) has a low regenerating efficiency in addition to the outflow of catalyst components due to water and additives and the difficulty of treating wastewater. (2) and (3)
The heat regeneration method described above causes thermal degradation of the catalyst or lowers regeneration efficiency depending on the heating method.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、上記
従来技術のうち、(2)および(3)の加熱再生方法に
おいて、熱的な劣化が生じず、再生効率の低下も起きな
い、触媒再生方法およびこれに使用する装置を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide, among the above-mentioned prior arts, the heat regeneration methods (2) and (3) in which no thermal deterioration occurs and no decrease in regeneration efficiency occurs. An object of the present invention is to provide a catalyst regeneration method and an apparatus used for the method.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記従来の
加熱再生方法において、熱的な劣化や再生効率の低下が
起きる原因を追求した結果、以下のことを知ることが出
来た。すなわち、触媒の再生中、触媒層の温度分布が大
きい場合は効率よく再生を行うことができず、例えば局
所的に温度が高い部分があると、その部分にある触媒が
触媒成分のシンタリングなどの熱的なダメージを受けや
すくなり、逆に、局所的に温度が低い部分があると、そ
の部分にある触媒の再生効率が低下する。特に、触媒層
のガス流れ方向の温度差が大きい場合、例えば触媒層の
ガス流れ出口部の温度が入口部の温度よりも低い場合に
は、熱処理によって前段部の触媒から放出されたSOx
などの被毒物質が後段部の触媒に蓄積し、後段部の触媒
が更に被毒されることもある。
The inventor of the present invention has found out the following as a result of pursuing the cause of the thermal degradation and the decrease in the regeneration efficiency in the above-mentioned conventional heat regeneration method. In other words, during the regeneration of the catalyst, if the temperature distribution of the catalyst layer is large, the regeneration cannot be performed efficiently. For example, if there is a locally high temperature part, the catalyst in that part may be sintering the catalyst component. In contrast, if there is a portion where the temperature is locally low, the regeneration efficiency of the catalyst in that portion decreases. In particular, when the temperature difference in the gas flow direction of the catalyst layer is large, for example, when the temperature of the gas flow outlet portion of the catalyst layer is lower than the temperature of the inlet portion, SOx released from the catalyst in the preceding stage by the heat treatment is used.
Such poisoning substances may accumulate in the catalyst at the subsequent stage, and the catalyst at the subsequent stage may be further poisoned.

【0007】そこで、本発明者は、このような現象の起
きることを防止する方法につき種々検討した結果、触媒
層の少なくとも2箇所以上に温度センサーを設置し、触
媒層の温度分布を小さくする、つまり各測定箇所での温
度差が小さくなるように温度制御することによって、上
記課題を解決できることを見出し、本発明を完成するに
至った。すなわち、本発明にかかる触媒再生方法は、排
ガス中の被毒物質により被毒して活性の劣化した触媒に
熱風を流すことによって前記触媒を再生する方法であっ
て、前記触媒の充填部における温度分布が再生適正温度
の±30℃以内に納まるように温度制御することを特徴
とする。
Therefore, the present inventor has conducted various studies on a method for preventing such a phenomenon from occurring, and as a result, installing temperature sensors in at least two or more locations of the catalyst layer to reduce the temperature distribution of the catalyst layer. That is, the inventors have found that the above problem can be solved by controlling the temperature so that the temperature difference at each measurement point is reduced, and have completed the present invention. That is, the catalyst regenerating method according to the present invention is a method of regenerating the catalyst by flowing hot air through the catalyst which has been degraded in activity by being poisoned by the poisoning substance in the exhaust gas. The temperature is controlled so that the distribution falls within ± 30 ° C. of the appropriate regeneration temperature.

【0008】また、本発明にかかる触媒再生装置は、上
記の方法に使用する装置であって、触媒を充填する容器
と、前記容器内に熱風を流す手段と、前記容器の複数箇
所に温度測定点を持つ複数の温度センサーと、を備えて
いることを特徴とする。
A catalyst regeneration apparatus according to the present invention is an apparatus used in the above method, comprising: a container for filling a catalyst; means for flowing hot air into the container; And a plurality of temperature sensors having points.

【0009】[0009]

【発明の実施の形態】本発明にかかる触媒再生方法の実
施に用いる装置は、火力発電プラントや廃棄物焼却プラ
ントなどの設備から独立した装置であってもよく、それ
自体がプラントの排ガス系内に組み込まれている形式の
もの、すなわち、排ガス中の有害物質を除去するための
反応に使用する触媒充填用の反応容器であってもよいの
である。さらに、触媒層での排ガス温度を触媒の処理効
率が高くなる温度になるまで昇温するために、触媒層の
前段に可燃物を燃焼する設備を設置しているプロセスに
おいて、この設備を触媒の再生用としても兼用される形
式のものでもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The apparatus used for carrying out the catalyst regeneration method according to the present invention may be an apparatus independent of equipment such as a thermal power plant or a waste incineration plant, and may itself be installed in the exhaust gas system of the plant. In other words, it may be a reaction vessel for charging a catalyst used for a reaction for removing harmful substances in exhaust gas. Further, in order to raise the temperature of the exhaust gas in the catalyst layer to a temperature at which the treatment efficiency of the catalyst becomes high, in a process in which a facility for burning combustibles is installed in front of the catalyst layer, this facility is used for the catalyst. It may be of a type that is also used for reproduction.

【0010】この装置は、触媒を充填する容器と、前記
容器内に熱風を流す手段と、前記容器内の複数箇所に温
度測定点を持つ複数の温度センサーとを備えている。本
発明の触媒再生方法、装置において用いられる温度セン
サーの種類については、特に制限はなく、触媒の形状や
使用温度範囲などによって温度センサーの方式や形状な
どを適宜選択すればよい。具体的には、K熱電対やN熱
電対などの熱電対や白金測温抵抗体、サーミスター測温
体などを用いることができる。本発明の触媒再生方法、
装置においては、触媒充填部の2箇所以上に温度センサ
ー(温度測定点)が設置されていることが重要である。
触媒層における温度測定点の設置位置としては、特に制
限はないが、熱風流れ方向に垂直な方向および平行な方
向の、各々2箇所以上に設置することが好ましい。より
好ましくは、あらかじめ触媒層の温度分布を測定し、温
度差の大きい箇所に温度測定点を設置することである。
例えば、触媒層の熱風流れ方向に垂直な方向に温度測定
点を2箇所設置する場合には、触媒層の中心部と側端部
分にそれぞれ1箇所ずつ設置することが好ましく、熱風
流れ方向に平行な方向に温度測定点を2箇所設置する場
合には、触媒層の入口部と出口部にそれぞれ1箇所ずつ
設置することが好ましい。また、温度センサーは、触媒
自体の温度を正確に測定できるように設置するのが好ま
しい。具体的には、触媒がハニカム形状の場合、セル内
部に温度センサーを差し込み、さらに温度センサーの感
熱部(温度測定点)を触媒表面に接するように設置する
のが好ましい。
This apparatus includes a container for filling a catalyst, means for flowing hot air into the container, and a plurality of temperature sensors having temperature measuring points at a plurality of positions in the container. The type of the temperature sensor used in the catalyst regeneration method and apparatus of the present invention is not particularly limited, and the type and shape of the temperature sensor may be appropriately selected depending on the shape of the catalyst and the operating temperature range. Specifically, a thermocouple such as a K thermocouple or an N thermocouple, a platinum resistance temperature detector, a thermistor temperature detector, or the like can be used. Catalyst regeneration method of the present invention,
In the apparatus, it is important that temperature sensors (temperature measurement points) are installed at two or more places in the catalyst filling section.
There are no particular restrictions on the location of the temperature measurement points in the catalyst layer, but it is preferable that the temperature measurement points be located at two or more locations in the direction perpendicular to the hot air flow direction and in the direction parallel thereto. More preferably, the temperature distribution of the catalyst layer is measured in advance, and a temperature measurement point is set at a location where the temperature difference is large.
For example, when two temperature measurement points are installed in the direction perpendicular to the hot air flow direction of the catalyst layer, it is preferable to install one at each of the center part and the side end parts of the catalyst layer, When two temperature measurement points are installed in different directions, it is preferable to install one at each of the inlet and outlet of the catalyst layer. Further, the temperature sensor is preferably installed so that the temperature of the catalyst itself can be accurately measured. Specifically, when the catalyst has a honeycomb shape, it is preferable to insert a temperature sensor inside the cell and to install a heat-sensitive portion (temperature measurement point) of the temperature sensor so as to be in contact with the catalyst surface.

【0011】本発明を実施する際における再生適正温度
は、例えば350〜450℃の範囲であり、全ての測定
箇所での温度が、好ましくは再生適正温度の±30℃以
内、より好ましくは±15℃以内になるように温度制御
する。この範囲を外れて局所的に温度が高い部分がある
と、その部分にある触媒は触媒成分のシンタリングなど
の熱的なダメージを受けやすくなる恐れがあり、逆にこ
の範囲を外れて局所的に温度が低い部分があると、その
部分にある触媒の再生効率が低下する恐れがある。特
に、触媒層の熱風流れ出口部の温度が入口部の温度より
も30℃以上も低い場合には、熱処理によって前段部の
触媒から放出されたSOxなどの被毒物質が後段部の触
媒に蓄積し、後段部の触媒が更に被毒される場合もあ
る。
The proper reproduction temperature in the practice of the present invention is, for example, in the range of 350 to 450 ° C., and the temperature at all the measurement points is preferably within ± 30 ° C. of the proper reproduction temperature, more preferably ± 15 ° C. Control the temperature to within ℃. If there is a locally high temperature part outside this range, the catalyst in that part may be susceptible to thermal damage such as sintering of the catalyst component, and conversely, outside this range If there is a portion where the temperature is low, the regeneration efficiency of the catalyst in that portion may decrease. In particular, when the temperature of the hot air flow outlet of the catalyst layer is lower than the temperature of the inlet by 30 ° C. or more, poisoning substances such as SOx released from the catalyst of the preceding stage by the heat treatment accumulate in the catalyst of the subsequent stage. However, the catalyst in the subsequent stage may be further poisoned.

【0012】全ての測定箇所での温度が再生適正温度の
±30℃以内になるように制御する方法としては、特に
限定されないが、例えば、装置の触媒層外壁に断熱材を
取り付けて放熱を防ぐ方法や、この部分に加熱ヒーター
を取り付けて触媒層の温度を均一に保つ方法、あるい
は、これらを組み合わせた方法など、一般的に用いられ
ている方法を用いることができる。触媒の再生を行うと
きに触媒層に流す再生ガス(熱風)の流量は、触媒1k
gに対して0.5m3/h(Normal)以上である
のが好ましい。再生ガスの流量がこれよりも少ないと、
再生効率が低く、また装置の放熱の影響を受けやすくな
るため、好ましくない。
The method of controlling the temperature at all measurement points to be within ± 30 ° C. of the appropriate regeneration temperature is not particularly limited. For example, a heat insulating material is attached to the outer wall of the catalyst layer of the apparatus to prevent heat radiation. A commonly used method such as a method, a method in which a heater is attached to this portion to keep the temperature of the catalyst layer uniform, or a method in which these are combined can be used. When the catalyst is regenerated, the flow rate of the regeneration gas (hot air) flowing through the catalyst layer is 1 k of the catalyst.
It is preferably at least 0.5 m 3 / h (Normal) with respect to g. If the flow rate of the regeneration gas is lower than this,
It is not preferable because the regeneration efficiency is low and the device is easily affected by heat radiation of the device.

【0013】本発明においては、触媒再生装置を起動さ
せてから触媒層が再生適正温度に達するまでの間は、温
度をステップ状に昇温させることが望ましい。これは、
急激な温度上昇によって、再生ガス入口部にある触媒が
特に、熱的ダメージを受けやすくなるので、これを防ぐ
ためであり、具体的には、触媒層が再生適正温度に達す
るまでの間は、触媒層の再生ガス出口部の温度と入口部
の温度との差が100℃以内になるように出口部の温度
を入口部の温度に追随させながら、昇温を行うことが好
ましい。また、触媒が熱的ダメージを受けるのを防ぐた
めに、昇温中における触媒層の入口温度は、480℃を
超えないように制御することが望ましい。
In the present invention, it is desirable to raise the temperature in a stepwise manner from the time when the catalyst regeneration device is started to the time when the catalyst layer reaches the appropriate regeneration temperature. this is,
Due to the rapid temperature rise, the catalyst at the regeneration gas inlet becomes particularly susceptible to thermal damage, in order to prevent this.Specifically, until the catalyst layer reaches the appropriate regeneration temperature, It is preferable to raise the temperature while making the temperature of the outlet follow the temperature of the inlet such that the difference between the temperature of the outlet of the catalyst layer and the temperature of the inlet of the catalyst layer is within 100 ° C. Also, in order to prevent the catalyst from being thermally damaged, it is desirable to control the inlet temperature of the catalyst layer during the temperature rise so as not to exceed 480 ° C.

【0014】触媒を再生するための時間としては、触媒
層の各測定点での温度が再生適正温度±30℃以内にな
ってから、10時間以上経過させることが好ましい。こ
れは、再生時間が短いと再生効率が低下するためであ
る。触媒層のガス流れ入口部が再生適正温度に達した初
期の段階では、入口部と出口部との温度差が30℃を超
える場合があり、このような条件では、出口部にある触
媒の再生効率が低くなるため、各測定箇所の温度差が少
ない条件で再生を行うことが重要である。なお、再生時
に高濃度の硫黄酸化物が発生する場合は、湿式スクラバ
ーなどを用いて、水またはアルカリなどで再生排ガスを
洗浄することが好ましい。被毒物質が高沸点有機物であ
る場合は、その大部分が再生によって燃焼するが、再生
排ガス中に燃焼によって、有害物が発生したり、未燃物
が飛散することがある。このような場合は、酸化触媒な
どを用いて再生排ガスを処理することが好ましい。
[0014] The time for regenerating the catalyst is preferably 10 hours or more after the temperature at each measurement point of the catalyst layer falls within the appropriate regeneration temperature ± 30 ° C. This is because if the reproduction time is short, the reproduction efficiency is reduced. At the initial stage when the gas flow inlet of the catalyst layer reaches the appropriate regeneration temperature, the temperature difference between the inlet and the outlet may exceed 30 ° C., and under such conditions, regeneration of the catalyst at the outlet may occur. Since the efficiency is reduced, it is important to perform the regeneration under the condition that the temperature difference between the measurement points is small. When a high concentration of sulfur oxides is generated during regeneration, it is preferable to wash the regeneration exhaust gas with water or an alkali using a wet scrubber or the like. When the poisoning substance is an organic substance having a high boiling point, most of the substance is burned by regeneration, but harmful substances may be generated or unburned substances may be scattered by combustion in the regenerated exhaust gas. In such a case, it is preferable to treat the regenerated exhaust gas using an oxidation catalyst or the like.

【0015】本発明の実施において、再生ガス(熱風)
の組成としては、特に限定されないが、O2が好ましく
は5容量%以上、より好ましくは7%以上、H2Oが好
ましくは40容量%以下、SOxが好ましくは5000
容量ppm以下、より好ましくは3000容量ppm以
下、NH3が好ましくは5000容量ppm以下、より
好ましくは3000容量ppm以下、好ましくはダスト
が0.1g/m3(Normal)以下である。これら
の範囲を外れると、再生効率が低くなる恐れがあるから
である。ダストが0.1g/m3(Normal)より
多いと、ダスト成分による性能劣化も生じ、再生効率が
特に低くなる。
In the practice of the present invention, the regeneration gas (hot air)
The composition of is not particularly limited, but O 2 is preferably 5% by volume or more, more preferably 7% or more, H 2 O is preferably 40% by volume or less, and SOx is preferably 5000%.
Ppm by volume or less, more preferably 3000 ppm by volume or less, NH 3 is preferably not more than 5000 ppm by volume, more preferably 3000 ppm by volume or less, preferably dust 0.1g / m 3 (Normal) or less. If the ratio is outside these ranges, the regeneration efficiency may be reduced. When the amount of dust is more than 0.1 g / m 3 (Normal), performance degradation due to dust components occurs, and the reproduction efficiency is particularly low.

【0016】本発明においては、排ガス中のSOxや高
沸点有機化合物などの被毒成分により被毒し活性劣化し
た触媒を再生の対象にするが、温度350℃以下で窒素
酸化物および/または有機ハロゲン化合物の排ガス処理
に使用される触媒であるときに、本発明の再生方法が特
に有効である。本発明において、再生の対象となる触媒
の組成に関しては特に制限はない。しかし、例えば、特
開平10−235191号公報および特願平11−18
0933号公報に記載されているような、チタン酸化物
および/またはケイ素酸化物と、バナジウム、タングス
テンおよびモリブデンからなる群よりなる群から選ばれ
る少なくとも1種類の金属の酸化物とを含む触媒を再生
する際に、本発明の再生方法が特に好適に用いられる。
In the present invention, the catalyst which is poisoned by poisoning components such as SOx and high boiling point organic compounds in the exhaust gas and whose activity is deteriorated is subjected to regeneration. The regeneration method of the present invention is particularly effective when the catalyst is used for treating an exhaust gas of a halogen compound. In the present invention, there is no particular limitation on the composition of the catalyst to be regenerated. However, for example, Japanese Patent Application Laid-Open No. 10-235191 and Japanese Patent Application No. 11-18
No. 0933, a catalyst containing a titanium oxide and / or a silicon oxide and an oxide of at least one metal selected from the group consisting of vanadium, tungsten and molybdenum is regenerated. In this case, the reproduction method of the present invention is particularly preferably used.

【0017】[0017]

【実施例】以下、実施例を挙げて本発明を更に具体的に
説明する。 (参考例1)排ガスに曝露される前の新品触媒を参考例
1とする。この新品触媒は外形150mm×150mm
×700mmのハニカム状触媒であり、触媒成分として
チタン酸化物を70重量%、ケイ素酸化物を9.5重量
%、バナジウム酸化物を10重量%、タングステン酸化
物を5重量%、モリブデン酸化物を5重量%、硫黄分を
0.5重量%含有する触媒である。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. (Reference Example 1) A new catalyst before being exposed to exhaust gas is referred to as Reference Example 1. This new catalyst is 150mm x 150mm
× 700 mm honeycomb catalyst, 70% by weight of titanium oxide, 9.5% by weight of silicon oxide, 10% by weight of vanadium oxide, 5% by weight of tungsten oxide, and 5% by weight of molybdenum oxide as catalyst components. The catalyst contains 5% by weight and 0.5% by weight of sulfur.

【0018】(比較例1)参考例1の新品触媒を、ごみ
焼却炉のバグフィルター後流で、温度200℃で、硫黄
酸化物を20容量ppm、NH3を80容量ppm、窒
素酸化物を100容量ppm、ダイオキシン類を2ng
−TEQ/m3(Normal)、O2を10容量%含有
する排ガスの処理に使用した。この排ガス曝露にて被毒
物質により被毒して活性劣化した触媒を比較例1とす
る。 (実施例1)比較例1の排ガス曝露にて被毒物質により
被毒し活性劣化した触媒147本を図1に示す触媒再生
装置の反応器3内に3層8a,8b,8cに分けて入
れ、1層目8aのガス流れ入口部および3層目8cのガ
ス流れ出口部で、図に見るように、触媒層の中心部およ
び側面部のそれぞれ2箇所ずつ、合計4箇所に熱電対温
度計6a〜6dを設置し、それぞれの温度を温度指示器
7a〜7dで読み取るようにした。なお、熱電対温度計
6a〜6dは、触媒層の端面部から約30mmの深さに
感熱部(温度測定点)がくるようにハニカムのセル内部
に差し込んだ。熱電対温度計6a〜6dの感熱部は触媒
のセルの内壁に接するようにした。熱電対温度計6a〜
6dを差し込んだ触媒部分をそれぞれ触媒部分A〜Dと
した。
(Comparative Example 1) The new catalyst of Reference Example 1 was placed downstream of a bag filter of a refuse incinerator at a temperature of 200 ° C at a concentration of 20 ppm by volume of sulfur oxide, 80 ppm by volume of NH 3, and a nitrogen oxide. 100 ppm by volume, 2 ng dioxins
-TEQ / m 3 (Normal), were used O 2 in exhaust gas treatment containing 10% by volume. A catalyst poisoned by the poisoning substance and degraded in activity by the exhaust gas exposure is referred to as Comparative Example 1. (Example 1) 147 catalysts poisoned by the poisoning substance and degraded in activity by the exhaust gas exposure of Comparative Example 1 were divided into three layers 8a, 8b and 8c in the reactor 3 of the catalyst regenerating apparatus shown in FIG. In the gas flow inlet of the first layer 8a and the gas flow outlet of the third layer 8c, as shown in the figure, the thermocouple temperature was set at two places each at the center part and the side part of the catalyst layer, for a total of four places. A total of 6a to 6d were installed, and the respective temperatures were read by temperature indicators 7a to 7d. In addition, the thermocouple thermometers 6a to 6d were inserted into the inside of the honeycomb cell such that the thermosensitive part (temperature measurement point) was at a depth of about 30 mm from the end face of the catalyst layer. The thermosensitive portions of the thermocouple thermometers 6a to 6d were made to contact the inner wall of the catalyst cell. Thermocouple thermometer 6a-
The catalyst portions into which 6d was inserted were designated as catalyst portions A to D, respectively.

【0019】3つの触媒層8a〜8cの各外壁に電気ヒ
ーター4を取り付け、その上から断熱材を取り付けて触
媒層8a〜8cを保温できるようにした。電気ヒーター
4は、熱電対温度計6bと連動させることによって、こ
の部分が所定の温度になるように制御できるようにし
た。触媒再生装置の空気取り入れ口を開け、誘引ファン
5と電気ヒーター4を稼動させ、以下の手順に従って触
媒再生装置の運転を行った。 (1)電気ヒーター4の温度を200℃に設定し、重油
バーナー1を点火した。この後、バーナー1の燃焼状態
を調整し冷却空気調節弁2を制御しながら、60分間運
転して、熱電対温度計6aの指示値が195〜205℃
の間で安定するまで待ち、その後、熱電対温度計6aの
指示値がこの温度域にあるように制御しながら、さらに
30分間運転した。 (2)電気ヒーター4の温度を250℃に設定し、バー
ナー1の燃焼状態および冷却空気調節弁2を制御しなが
ら、30分間運転して、熱電対温度計6aの指示値が2
45〜255℃の間で安定するまで待ち、その後、熱電
対温度計6aの指示値がこの温度域にあるように制御し
ながら、さらに30分間運転した。 (3)電気ヒーター4の設定温度を300℃に設定し、
バーナー1の燃焼状態を調整し冷却空気調節弁2を制御
しながら、30分間運転して、熱電対温度計6aの指示
値が295〜305℃の間で安定するまで待ち、その
後、熱電対温度計6aの指示値がこの温度域にあるよう
に制御しながら、さらに30分間運転した。 (4)電気ヒーター4の温度を350℃に設定し、バー
ナー1の燃焼状態および冷却空気調節弁2を制御しなが
ら30分間運転して熱電対温度計6aの指示値が345
〜355℃の間で安定するまで待ち、その後、熱電対温
度計6aの指示値がこの温度域にあるように制御しなが
ら、さらに30分間運転した。 (5)電気ヒーター4の設定温度を380℃に設定し、
バーナー1の燃焼状態を調整し冷却空気調節弁2を制御
しながら、30分間運転して、熱電対温度計6aの指示
値が375〜385℃の間で安定するまで待ち、その
後、熱電対温度計6aの指示値がこの温度域にあるよう
に制御しながら、さらに30分間運転した。 (6)電気ヒーター4の温度を400℃に設定し、バー
ナー1の燃焼状態を調整し冷却空気調節弁2を制御しな
がら、30分間運転して、熱電対温度計6aの指示値が
395〜405℃の間で安定するまで待ち、その後、熱
電対温度計6aの指示値がこの温度域にあるように制御
しながら、さらに10時間運転し、触媒の再生処理を行
った。
An electric heater 4 was attached to each outer wall of the three catalyst layers 8a to 8c, and a heat insulating material was attached thereon so that the catalyst layers 8a to 8c could be kept warm. The electric heater 4 can be controlled so as to be at a predetermined temperature by linking the electric heater 4 with the thermocouple thermometer 6b. The air inlet of the catalyst regeneration device was opened, the induction fan 5 and the electric heater 4 were operated, and the catalyst regeneration device was operated according to the following procedure. (1) The temperature of the electric heater 4 was set to 200 ° C., and the heavy oil burner 1 was ignited. Thereafter, the burner 1 is operated for 60 minutes while controlling the combustion state of the burner 1 and controlling the cooling air control valve 2 so that the indicated value of the thermocouple thermometer 6a becomes 195 to 205 ° C.
Then, the operation was continued for another 30 minutes while controlling the thermocouple thermometer 6a so that the indicated value was within this temperature range. (2) The temperature of the electric heater 4 is set to 250 ° C., the operation is performed for 30 minutes while controlling the combustion state of the burner 1 and the cooling air control valve 2, and the indicated value of the thermocouple thermometer 6a becomes 2
It waited until it stabilized between 45 and 255 ° C., and was then operated for another 30 minutes while controlling the indicated value of the thermocouple thermometer 6a to be within this temperature range. (3) Set the temperature of the electric heater 4 to 300 ° C.
Operation is performed for 30 minutes while adjusting the combustion state of the burner 1 and controlling the cooling air control valve 2, and waits until the indicated value of the thermocouple thermometer 6a is stabilized at 295 to 305 ° C. The operation was further performed for 30 minutes while controlling so that the indicated value of the total 6a was within this temperature range. (4) The temperature of the electric heater 4 is set to 350 ° C., and the operation is performed for 30 minutes while controlling the combustion state of the burner 1 and the cooling air control valve 2 so that the indicated value of the thermocouple thermometer 6a becomes 345.
It waited until it stabilized between の 間 355 ° C., and was then operated for another 30 minutes while controlling the indicated value of the thermocouple thermometer 6a to be within this temperature range. (5) Set the temperature of the electric heater 4 to 380 ° C,
Operation is performed for 30 minutes while adjusting the combustion state of the burner 1 and controlling the cooling air control valve 2 until the indicated value of the thermocouple thermometer 6a stabilizes between 375 and 385 ° C. The operation was further performed for 30 minutes while controlling so that the indicated value of the total 6a was within this temperature range. (6) Set the temperature of the electric heater 4 at 400 ° C., operate the burner 1 for 30 minutes while controlling the combustion state of the burner 1 and controlling the cooling air control valve 2, and read the thermocouple thermometer 6 a from 395 to 395. After the temperature was stabilized at 405 ° C., the operation was continued for another 10 hours while controlling the indicated value of the thermocouple thermometer 6a to be within this temperature range, and the catalyst was regenerated.

【0020】このときの再生ガスの流量は触媒1kgあ
たり2m3/h(Normal)であった。また、酸素
濃度は15容量%、硫黄酸化物およびNH3濃度は10
0容量ppm以下、H2Oは10容量%以下、ダスト濃
度は0.1g/m3(Normal)以下であった。熱
電対温度計6aの指示値が395〜405℃の温度域で
安定した後の熱電対温度計6a〜6dの指示値を表1に
示した。
The flow rate of the regeneration gas at this time was 2 m 3 / h (Normal) per kg of the catalyst. The oxygen concentration was 15% by volume, and the sulfur oxide and NH 3 concentrations were 10% by volume.
The content was 0 vol ppm or less, H 2 O was 10 vol% or less, and the dust concentration was 0.1 g / m 3 (Normal) or less. Table 1 shows the indicated values of the thermocouple thermometers 6a to 6d after the indicated value of the thermocouple thermometer 6a was stabilized in the temperature range of 395 to 405 ° C.

【0021】[0021]

【表1】 [Table 1]

【0022】(比較例2)実施例1で再生処理を行った
触媒を触媒再生装置から取り出し、比較例1の排ガス曝
露にて被毒物質により被毒を受け活性劣化した触媒14
7本を実施例1と同様にして新たに充填し、熱電対温度
計を実施例1と同じ位置に差し込んだ。熱電対温度計6
a〜6dを差し込んだ触媒をそれぞれ触媒E〜Hとし
た。また、触媒層外壁に取り付けた保温用の断熱材を装
置から取り外した。触媒再生装置の空気取り入れ口を開
け、誘引ファン5を稼動させた後、以下の手順で触媒再
生装置の運転を行った。なお、運転中は電気ヒーター4
は稼動させなかった。 (1)重油バーナー1を点火し、熱電対温度計6aの指
示値が400℃に達するまで触媒層8a〜8cの昇温を
行った。 (2)熱電対温度計6aの指示値が400℃に到達した
後、熱電対温度計6aの指示値が395〜405℃の間
になるようにバーナー1の燃焼状態を調整し冷却空気調
節弁2を制御しながら、10時間運転し、触媒の再生処
理を行った。
(Comparative Example 2) The catalyst which had undergone the regeneration treatment in Example 1 was taken out of the catalyst regenerating apparatus, and the catalyst 14 which was poisoned by the poisoning substance and was degraded in activity when exposed to the exhaust gas of Comparative Example 1.
Seven tubes were newly filled in the same manner as in Example 1, and a thermocouple thermometer was inserted into the same position as in Example 1. Thermocouple thermometer 6
Catalysts into which a to 6d were inserted were designated as catalysts E to H, respectively. Also, the heat insulating material attached to the outer wall of the catalyst layer was removed from the apparatus. After opening the air intake of the catalyst regeneration device and operating the induction fan 5, the catalyst regeneration device was operated in the following procedure. During operation, the electric heater 4
Did not run. (1) The heavy oil burner 1 was ignited, and the temperature of the catalyst layers 8a to 8c was increased until the indicated value of the thermocouple thermometer 6a reached 400 ° C. (2) After the indicated value of the thermocouple thermometer 6a reaches 400 ° C., the combustion state of the burner 1 is adjusted so that the indicated value of the thermocouple thermometer 6a is between 395 and 405 ° C., and the cooling air control valve is used. 2 was controlled for 10 hours to perform catalyst regeneration treatment.

【0023】このときの再生ガスの流量は触媒1kgあ
たり2m3/h(Normal)であった。また、酸素
濃度は15容量%、硫黄酸化物およびNH3濃度は10
0容量ppm以下、H2Oは10容量%以下、ダスト濃
度は0.1g/m3(Normal)以下であった。熱
電対温度計6aの指示値が400℃に到達した後の熱電
対温度計6a〜6dの指示値を表2に示した。
At this time, the flow rate of the regeneration gas was 2 m 3 / h (Normal) per kg of the catalyst. The oxygen concentration was 15% by volume, and the sulfur oxide and NH 3 concentrations were 10% by volume.
The content was 0 vol ppm or less, H 2 O was 10 vol% or less, and the dust concentration was 0.1 g / m 3 (Normal) or less. Table 2 shows the indicated values of the thermocouple thermometers 6a to 6d after the indicated value of the thermocouple thermometer 6a reached 400 ° C.

【0024】[0024]

【表2】 [Table 2]

【0025】(試験例1)実施例1と比較例2で熱処理
再生を行った触媒A〜H、参考例1の新品触媒、および
比較例1の活性劣化した触媒の各触媒の一部を切り出
し、粉砕後圧縮成形したものを分析サンプルとして蛍光
X線測定装置で各触媒中の硫黄分を定量した。そして、
再生効率(%)を下記式にしたがって求めた。結果を表
3に示した。 再生効率(%)=〔再生前の触媒中の硫黄分(重量%)−
再生後の触媒中の硫黄分(重量%)〕÷〔再生後の触媒中
の硫黄分(重量%)−新品の触媒中の硫黄分(重量%)〕×
100 (試験例2)実施例1と比較例2で熱処理再生を行った
触媒A〜H、参考例1の新品触媒、および比較例1の活
性劣化した触媒の各触媒を用い、以下に示す試験条件で
脱硝反応を行った。 〔試験条件〕 ガス組成 NOx:100容量ppm(Dry)、NH3:100
容量ppm(Dry) O2:10容量%(Dry)、H2O:15容量%、
2:バランス ガス温度:250℃ 空間速度:15000h-1 そして、脱硝率を下記式にしたがって求めた。結果を表
3に示した。 脱硝率(%)=〔(反応器入口NOx濃度)−(反応器
出口NOx濃度)〕÷(反応器入口NOx濃度)×10
0 (試験例3)実施例1と比較例2で熱処理再生を行った
触媒A〜H、参考例1の新品触媒、および比較例1の活
性劣化した触媒の各触媒について、ダイオキシン類分解
性能確認のため、代替物質としてクロロトルエンを用い
て、以下に示す試験条件でクロロトルエン(CT)分解
反応を行った。 〔試験条件〕 ガス組成 CT:50容量ppm(Dry)、O2:10容量%
(Dry) H2O:15容量%、N2:バランス ガス温度:220℃ 空間速度:4500h-1 そして、CT分解率を下記式にしたがって求めた。結果
を表3に示した。 CT分解率(%)=(反応器入口CT濃度)−(反応器
出口CT濃度)}÷(反応器入口CT濃度)×100
(Test Example 1) A part of each of the catalysts A to H which were subjected to heat treatment regeneration in Example 1 and Comparative Example 2, a new catalyst of Reference Example 1, and a catalyst whose activity was deteriorated of Comparative Example 1 was cut out. After the pulverization and compression molding, the sulfur content in each catalyst was determined using an X-ray fluorescence analyzer as an analysis sample. And
The regeneration efficiency (%) was determined according to the following equation. The results are shown in Table 3. Regeneration efficiency (%) = [Sulfur content in catalyst before regeneration (% by weight)-
Sulfur content in regenerated catalyst (% by weight)] ÷ [Sulfur content in regenerated catalyst (% by weight) −Sulfur content in new catalyst (% by weight)] ×
100 (Test Example 2) Using the catalysts A to H which were subjected to the heat treatment regeneration in Example 1 and Comparative Example 2, the new catalyst of Reference Example 1, and the catalyst whose activity was deteriorated of Comparative Example 1, the following tests were performed. A denitration reaction was performed under the conditions. [Test Conditions] Gas composition NOx: 100 volume ppm (Dry), NH 3: 100
Ppm (Dry) O 2 : 10% by volume (Dry), H 2 O: 15% by volume,
N 2 : balance gas temperature: 250 ° C. space velocity: 15000 h −1 and the denitration rate was determined according to the following equation. The results are shown in Table 3. Denitration rate (%) = [(reactor inlet NOx concentration) − (reactor outlet NOx concentration)] ÷ (reactor inlet NOx concentration) × 10
(Test Example 3) Confirmation of dioxin decomposition performance of each of catalysts A to H, heat-treated and regenerated in Example 1 and Comparative Example 2, a new catalyst of Reference Example 1, and a catalyst with deteriorated activity of Comparative Example 1. Therefore, a chlorotoluene (CT) decomposition reaction was performed under the following test conditions using chlorotoluene as an alternative substance. [Test conditions] Gas composition CT: 50 vol ppm (Dry), O 2 : 10 vol%
(Dry) H 2 O: 15% by volume, N 2 : balance Gas temperature: 220 ° C. Space velocity: 4500 h −1 and the CT decomposition rate was determined according to the following equation. The results are shown in Table 3. CT decomposition rate (%) = (reactor inlet CT concentration) − (reactor outlet CT concentration)} ÷ (reactor inlet CT concentration) × 100

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【発明の効果】本発明によると、触媒層の複数箇所の温
度を測定しつつ温度制御することにより、触媒の再生を
行うことができる。そのため、触媒層の温度分布を小さ
くすることができて、触媒成分のシンタリング等の熱的
なダメージを生じさせず、かつ、さらなる活性劣化を生
じさせずに、触媒を効率よく再生することができる。
According to the present invention, the catalyst can be regenerated by controlling the temperature while measuring the temperature at a plurality of points in the catalyst layer. Therefore, the temperature distribution of the catalyst layer can be reduced, and the catalyst can be efficiently regenerated without causing thermal damage such as sintering of the catalyst component and without further deteriorating the activity. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例1および2で用いた触媒再生
装置を示す断面図である。
FIG. 1 is a sectional view showing a catalyst regenerating apparatus used in Examples 1 and 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 重油バーナー 2 冷却空気調節弁 3 反応器 4 電気ヒーター 5 誘引ファン 6a〜6d 熱電対温度計 7a〜7d 温度指示器 8a〜7c 触媒層 DESCRIPTION OF SYMBOLS 1 Fuel oil burner 2 Cooling air control valve 3 Reactor 4 Electric heater 5 Induction fan 6a-6d Thermocouple thermometer 7a-7d Temperature indicator 8a-7c Catalyst layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉島 昇 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 Fターム(参考) 4D048 AA06 AA11 AB03 BA06X BA07X BA23X BA26X BA27X BA41X BA46X BB02 BD01 BD02 DA01 DA02 DA03 DA05 DA06 DA13 4G069 AA10 BA02B BA04B BB04B BC54B BC59B BC60B BD08B CA02 CA10 CA13 CA19 DA06 EA18 GA02 GA19  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Noboru Sugishima No. 992, Nishioki, Okihama-ku, Abashiri-ku, Himeji-shi, Hyogo Japan DA02 DA03 DA05 DA06 DA13 4G069 AA10 BA02B BA04B BB04B BC54B BC59B BC60B BD08B CA02 CA10 CA13 CA19 DA06 EA18 GA02 GA19

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】排ガス中の被毒物質により被毒して活性の
劣化した触媒に熱風を流すことによって前記触媒を再生
する方法であって、前記触媒の充填部における温度分布
が再生適正温度の±30℃以内に納まるように温度制御
することを特徴とする、触媒再生方法。
1. A method for regenerating a catalyst by pouring hot air through a catalyst which has been degraded in activity due to poisoning by a poisoning substance in exhaust gas, wherein a temperature distribution in a portion filled with the catalyst has an appropriate regeneration temperature. A method for regenerating a catalyst, comprising controlling the temperature so as to fall within ± 30 ° C.
【請求項2】前記触媒の充填部における複数箇所で温度
を測定しつつ各測定点の温度が再生適正温度の±30℃
以内になるように温度制御する、請求項1に記載の触媒
再生方法。
2. While measuring the temperature at a plurality of points in the catalyst filling section, the temperature at each measurement point is ± 30 ° C. of the appropriate regeneration temperature.
The catalyst regeneration method according to claim 1, wherein the temperature is controlled so as to be within the range.
【請求項3】請求項1または2の方法に使用する装置で
あって、触媒を充填する容器と、前記容器内に熱風を流
す手段と、前記容器の複数箇所に温度測定点を持つ複数
の温度センサーと、を備えていることを特徴とする、触
媒再生装置。
3. An apparatus for use in the method according to claim 1, wherein a container for filling the catalyst, means for flowing hot air into the container, and a plurality of temperature measuring points at a plurality of locations of the container. A catalyst regeneration device comprising: a temperature sensor.
JP2000321668A 2000-10-20 2000-10-20 Catalyst regeneration method and apparatus used therefor Expired - Fee Related JP3983968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000321668A JP3983968B2 (en) 2000-10-20 2000-10-20 Catalyst regeneration method and apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000321668A JP3983968B2 (en) 2000-10-20 2000-10-20 Catalyst regeneration method and apparatus used therefor

Publications (2)

Publication Number Publication Date
JP2002126540A true JP2002126540A (en) 2002-05-08
JP3983968B2 JP3983968B2 (en) 2007-09-26

Family

ID=18799747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000321668A Expired - Fee Related JP3983968B2 (en) 2000-10-20 2000-10-20 Catalyst regeneration method and apparatus used therefor

Country Status (1)

Country Link
JP (1) JP3983968B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094931A1 (en) * 2011-12-19 2013-06-27 에스코 주식회사 Apparatus for regenerating selective catalytic reduction module
JP2021534961A (en) * 2018-08-22 2021-12-16 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Offline catalytic regeneration of the selective catalytic reduction process and the inactivation catalyst of that process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094931A1 (en) * 2011-12-19 2013-06-27 에스코 주식회사 Apparatus for regenerating selective catalytic reduction module
KR101297338B1 (en) * 2011-12-19 2013-08-16 에스코 주식회사 Reproducing apparatus of SCR module
JP2021534961A (en) * 2018-08-22 2021-12-16 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Offline catalytic regeneration of the selective catalytic reduction process and the inactivation catalyst of that process

Also Published As

Publication number Publication date
JP3983968B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
JPH04503772A (en) Methods of reducing emissions of organic products of incomplete combustion
WO2006093026A1 (en) System and method for removing mercury in exhaust gas
US4877592A (en) Method of catalytic cleaning of exhaust gases
JP2016523699A (en) Hazardous gas treatment and harmful substance generation suppression and removal apparatus and method
JP2002126540A (en) Catalyst regeneration method and apparatus to be employed therefor
KR100498881B1 (en) treatment apparatus for destroying by burning up and melting radioactive waste and method the same
JPS5979025A (en) Exhaust-gas purifying apparatus for engine
JP4348020B2 (en) Method for regenerating catalyst for exhaust gas treatment
JP3383051B2 (en) Exhaust gas purification method and apparatus
JP3779889B2 (en) Catalyst regeneration method
JP2003159532A (en) Catalyst element containing metal and/or oxide and method for oxidizing and decomposing cyclic organic compound in exhaust gas from incineration plant using the same
JPH0576729A (en) Nitrogen oxide removing system by ammonia catalytic reduction process for exhaust gas of glass fusion furnace or the like
BR112019022419A2 (en) method and system for removing particulate matter and harmful compounds from flue gases
JP2001219078A (en) Method for catalyst regeneration
JP3758073B2 (en) Exhaust gas treatment equipment
JP2002370014A (en) Exhaust gas treatment system
WO2012026114A1 (en) Exhaust gas processing device
JP5615502B2 (en) Denitration catalyst protection method and denitration catalyst protection device
JP2009226298A (en) Method for treating exhaust gas and exhaust gas treatment apparatus
JP2003265955A (en) Siloxane-resistant oxidation catalyst
JPH0463288B2 (en)
JP3844569B2 (en) Operation method of dry exhaust gas treatment equipment
CN110545899A (en) Method and system for removing harmful compounds from flue gas using fabric filter bags with SCR catalyst
KR200294861Y1 (en) treatment apparatus for destroying by burning up and melting radioactive waste
JP2000288353A (en) Combustion gas treatment method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070705

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees