JP2002126531A - Catalyst for steam reforming reaction of methane and method for steam reforming of methane - Google Patents

Catalyst for steam reforming reaction of methane and method for steam reforming of methane

Info

Publication number
JP2002126531A
JP2002126531A JP2000324634A JP2000324634A JP2002126531A JP 2002126531 A JP2002126531 A JP 2002126531A JP 2000324634 A JP2000324634 A JP 2000324634A JP 2000324634 A JP2000324634 A JP 2000324634A JP 2002126531 A JP2002126531 A JP 2002126531A
Authority
JP
Japan
Prior art keywords
catalyst
methane
nickel
steam reforming
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000324634A
Other languages
Japanese (ja)
Inventor
Katsuhiko Wakabayashi
勝彦 若林
Masahiro Kishida
昌浩 岸田
Terufusa Tako
輝興 多湖
Hiroki Hayashi
博樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saibu Gas Co Ltd
Original Assignee
Saibu Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saibu Gas Co Ltd filed Critical Saibu Gas Co Ltd
Priority to JP2000324634A priority Critical patent/JP2002126531A/en
Publication of JP2002126531A publication Critical patent/JP2002126531A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst capable of efficiently suppressing a carbon deposition reaction, regarding a catalyst to be employed for a steam reforming method of methane. SOLUTION: The catalyst for steam reforming reaction of methane is a catalyst for reacting methane with steam to produce hydrogen and carbon monoxide and is characterized in that the catalyst is alumina containing an ultrafine nickel particle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、メタンの水蒸気改
質反応(スチームリホーミング)用触媒及び該触媒を用
いるメタンの水蒸気改質方法に関するものである。
The present invention relates to a catalyst for a steam reforming reaction of methane (steam reforming) and a method for steam reforming of methane using the catalyst.

【0002】[0002]

【従来の技術】メタンを触媒の存在下で水蒸気と反応さ
せて水蒸気と一酸化炭素を生成させる方法は、水素改質
方法として知られている。この方法においては、水蒸気
の使用割合が低くなると、例えば水蒸気/メタンモル比
が1.4より低くなると、炭素の析出反応が著しく促進
され、反応管の閉塞や触媒活性の低下等の問題が起る。
2. Description of the Related Art A method of reacting methane with steam in the presence of a catalyst to produce steam and carbon monoxide is known as a hydrogen reforming method. In this method, when the usage ratio of steam becomes low, for example, when the steam / methane molar ratio becomes lower than 1.4, the precipitation reaction of carbon is remarkably accelerated, and problems such as clogging of the reaction tube and reduction in catalytic activity occur. .

【0003】[0003]

【発明が解決しようとする課題】本発明は、メタンの水
蒸気改質方法に用いる触媒において、炭素析出反応を効
果的に抑制する触媒及び該触媒を用いるメタンの水蒸気
改質方法を提供することその課題とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a catalyst for use in a methane steam reforming method which effectively suppresses a carbon deposition reaction and a methane steam reforming method using the catalyst. Make it an issue.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。即ち、本発明によれば、メタンを水蒸気と反
応させて水素と一酸化炭素を生成させるメタンの水蒸気
改質反応用触媒であって、ニッケル超微粒子を含有する
アルミナからなることを特徴とするメタンの水蒸気改質
反応用触媒が提供される。また、本発明によれば、メタ
ンを触媒の存在下で水蒸気と反応させて水素と一酸化炭
素を生成させるメタンの水蒸気改質方法において、該触
媒として前記の触媒を用いることを特徴とするメタンの
水蒸気改質方法が提供される。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have completed the present invention. That is, according to the present invention, there is provided a catalyst for a steam reforming reaction of methane for producing methane and hydrogen monoxide by reacting methane with steam, the catalyst comprising alumina containing nickel ultrafine particles. Is provided. Further, according to the present invention, in a steam reforming method for methane in which methane is reacted with steam in the presence of a catalyst to generate hydrogen and carbon monoxide, the methane is used as the catalyst. Is provided.

【0005】[0005]

【発明の実施の形態】本発明の触媒は、ニッケル超微粒
子を含有するアルミナからなる。この触媒において、ニ
ッケル超微粒子の含有量は、触媒に対して、1〜30
%、好ましくは5〜20%である。ニッケル超微粒子の
平均粒径は10〜200Å、好ましくは30〜100Å
である。本発明の触媒において、そのニッケル粒子径分
布はシャープであり、平均粒子径をMとしたときに、そ
の0.8M〜1.2Mの範囲にそのニッケル粒子径の8
0%以上が分布している。また、ニッケルとアルミナと
の間の相互作用が強く、ニッケル微粒子はアルミナ(N
iに対して電子吸引性を示す)の作用を強く受ける。こ
のことは、TPRによって確認される。即ち、本発明の
触媒におけるそのTPRスペクトルを見ると、その触媒
は、温度770〜776Kの範囲内、通常、約773K
に、NiO→Niに起因するピークを有し、このピーク
は、含浸法による通常のニッケル/アルミナ触媒の場合
のピークよりも、高温側にシフトしている。触媒の形状
は、粉末状、ペレット状、球形状等の各種の形状である
ことができ、特に制約されない。
BEST MODE FOR CARRYING OUT THE INVENTION The catalyst of the present invention comprises alumina containing ultrafine nickel particles. In this catalyst, the content of the nickel ultrafine particles is 1 to 30 with respect to the catalyst.
%, Preferably 5 to 20%. The average particle size of the nickel ultrafine particles is 10 to 200 °, preferably 30 to 100 °.
It is. In the catalyst of the present invention, the nickel particle size distribution is sharp, and when the average particle size is defined as M, the nickel particle size in the range of 0.8M to 1.2M is 8%.
0% or more are distributed. Further, the interaction between nickel and alumina is strong, and the nickel fine particles are made of alumina (N
(shows an electron-withdrawing property with respect to i). This is confirmed by the TPR. That is, looking at the TPR spectrum of the catalyst of the present invention, the catalyst has a temperature in the range of 770 to 776K, usually about 773K.
Has a peak due to NiO → Ni, and this peak is shifted to a higher temperature side than the peak in the case of a normal nickel / alumina catalyst obtained by the impregnation method. The shape of the catalyst can be various shapes such as a powder shape, a pellet shape, and a spherical shape, and is not particularly limited.

【0006】本発明の触媒を調製するには、先ず、超微
粒子状のニッケル水酸化物を含有する油中水型のマイク
ロエマルジョンを作る。このエマルジョンは、界面活性
剤を含む非水溶性溶媒に、硝酸ニッケル等の水溶性ニッ
ケル化合物の水溶液を加え、高速攪拌する。この場合、
界面活性剤としては、例えば、平均付加モル数が5〜2
5、好ましくは5〜20のポリオキシエチレンノニルフ
ェノール等を用いることができる。その使用量は、非水
溶性溶媒1リットル当り、0.1〜0.5モル、好まし
くは0.2〜0.3モルの割合である。非水溶性溶媒と
しては、沸点が60〜200℃、好ましくは60〜17
0℃のもの、例えば、炭素数6〜10のアルコール(ヘ
キサノール、ヘプタノール、オクタノール、シクロヘキ
サノール等)や、炭素数6〜12の炭化水素(ヘキサ
ン、ヘプタン、オクタン、シクロヘキサン、ベンゼン、
トルエン等)等が挙げられる。前記ニッケル化合物を含
む水溶液において、そのニッケル化合物の濃度は、0.
1〜10%、好ましくは1〜5%である。非水溶性溶媒
に加えるニッケル化合物を含む水溶液の量は、非水溶性
溶媒1リットル当り、1〜200cc、好ましくは20
〜100ccの割合である。非水溶性溶媒とニッケル化
合物を含む水溶液との混合温度は、5〜50℃、好まし
くは20〜50℃である。
To prepare the catalyst of the present invention, first, a water-in-oil microemulsion containing ultrafine nickel hydroxide is prepared. In this emulsion, an aqueous solution of a water-soluble nickel compound such as nickel nitrate is added to a water-insoluble solvent containing a surfactant, and the mixture is stirred at high speed. in this case,
As the surfactant, for example, the average number of moles added is 5-2.
5, preferably 5 to 20 polyoxyethylene nonylphenols can be used. The amount used is 0.1 to 0.5 mol, preferably 0.2 to 0.3 mol, per liter of the water-insoluble solvent. The water-insoluble solvent has a boiling point of 60 to 200 ° C, preferably 60 to 17 ° C.
0 ° C., for example, alcohols having 6 to 10 carbon atoms (hexanol, heptanol, octanol, cyclohexanol, etc.) and hydrocarbons having 6 to 12 carbon atoms (hexane, heptane, octane, cyclohexane, benzene,
Toluene and the like). In the aqueous solution containing the nickel compound, the concentration of the nickel compound is 0.1.
It is 1 to 10%, preferably 1 to 5%. The amount of the aqueous solution containing the nickel compound added to the water-insoluble solvent is 1 to 200 cc, preferably 20 to 1 liter of the water-insoluble solvent.
割 合 100 cc. The mixing temperature of the water-insoluble solvent and the aqueous solution containing the nickel compound is 5 to 50C, preferably 20 to 50C.

【0007】前記のようにして、非水溶性溶媒中に、ニ
ッケル化合物を含む水溶液が超微粒子状水滴粒子として
分散したマイクロエマルジョンが得られる。このエマル
ジョン中の水滴粒子の平均粒径は、10〜300Å、好
ましくは20〜150Åである。
[0007] As described above, a microemulsion in which an aqueous solution containing a nickel compound is dispersed as ultrafine water droplet particles in a water-insoluble solvent is obtained. The average particle size of the water droplet particles in this emulsion is 10 to 300 °, preferably 20 to 150 °.

【0008】次に、このマイクロエマルジョンに、トリ
アルキルアミンを加え、攪拌することにより、マイクロ
エマルジョン中に含まれるニッケル化合物(硝酸塩)と
反応させてニッケル水酸化物超微粒子を生成させる。そ
の後、攪拌下でアルミニウムアルコキシドを加え、エマ
ルジョン中で加水分解させる。前記トリアルキルアミン
としては、炭素数1〜6、好ましくは1〜3の低級アル
キル基を有するトリアルキルアミンが用いられ、その添
加量は、ニッケル化合物を水酸化物に変換させるのに十
分な量であればよい。前記アルミニウムアルコキシドと
しては、炭素数1〜6、好ましくは1〜3の低級アルキ
ル基を有するアルミニウムトリアルコキシドを用いるこ
とができる。その量は、エマルジョン中に含まれるニッ
ケルとアルミニウムとの原子比[Ni]/[Al]で、
0.01〜0.31、好ましくは0.05〜0.22と
なるような割合である。アルミニウムアルコキシドをニ
ッケル化合物を含むエマルジョンに添加する場合、その
アルミニウムアルコキシドは、非水溶性溶媒に溶解させ
て溶液として添加するのが好ましい。
Next, a trialkylamine is added to the microemulsion and stirred to react with a nickel compound (nitrate) contained in the microemulsion to produce nickel hydroxide ultrafine particles. Thereafter, an aluminum alkoxide is added under stirring, and the mixture is hydrolyzed in the emulsion. As the trialkylamine, a trialkylamine having a lower alkyl group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms is used, and its addition amount is an amount sufficient to convert the nickel compound to a hydroxide. Should be fine. As the aluminum alkoxide, an aluminum trialkoxide having a lower alkyl group having 1 to 6, preferably 1 to 3 carbon atoms can be used. The amount is represented by the atomic ratio of nickel to aluminum contained in the emulsion [Ni] / [Al],
The ratio is 0.01 to 0.31, preferably 0.05 to 0.22. When aluminum alkoxide is added to an emulsion containing a nickel compound, the aluminum alkoxide is preferably dissolved in a water-insoluble solvent and added as a solution.

【0009】前記のアルミニウムアルコキシドの加水分
解により、超微粒子状のニッケル水酸化物を含有するア
ルミニウム水酸化物を含むエマルジョンが得られる。そ
のアルミニウム水酸化物は、遠心分離等の固液分離法に
より母液から分離し、洗浄し、80℃程度の温度で乾燥
後、空気中で350〜650℃、好ましくは400〜5
00℃で焼成する。このようにして、超微粒子状の酸化
ニッケルを含有するアルミナからなる触媒を得る。この
触媒は、反応に使用するに際し、あらかじめ水素と触媒
させて、その酸化ニッケルを金属ニッケルに還元するの
が好ましい。
By the hydrolysis of the above-mentioned aluminum alkoxide, an emulsion containing an aluminum hydroxide containing nickel hydroxide in the form of ultrafine particles is obtained. The aluminum hydroxide is separated from the mother liquor by a solid-liquid separation method such as centrifugation, washed, dried at a temperature of about 80 ° C., and then 350 to 650 ° C. in air, preferably 400 to 5 ° C.
Bake at 00 ° C. Thus, a catalyst made of alumina containing ultrafine nickel oxide is obtained. When this catalyst is used in the reaction, it is preferable to catalyze the catalyst in advance with hydrogen to reduce its nickel oxide to metallic nickel.

【0010】本発明の触媒を用いてメタンの水蒸気改質
を行うには、メタンの水蒸気との混合物を本発明触媒と
接触させればよい。この場合、水蒸気とメタンの割合
は、メタン1モル当り、水蒸気0.5モル以上、好まし
くは1〜3モルの割合である。反応温度は、550〜8
50℃、好ましくは600〜800℃である。この反応
により、水素と一酸化炭素を含む反応生成物が得られ
る。
In order to carry out steam reforming of methane using the catalyst of the present invention, a mixture of methane and steam may be brought into contact with the catalyst of the present invention. In this case, the ratio of steam to methane is 0.5 mole or more, preferably 1 to 3 moles of steam per mole of methane. The reaction temperature is 550-8
The temperature is 50 ° C, preferably 600 to 800 ° C. By this reaction, a reaction product containing hydrogen and carbon monoxide is obtained.

【0011】[0011]

【実施例】次に本発明を実施例により詳述する。Next, the present invention will be described in detail with reference to examples.

【0012】実施例1 内容積1000mlのビーカーに0.3Mのポリオキシ
エチレン(平均付加モル数20)ノニルフェニルエーテ
ル1−ヘキサノール溶液を500ml入れ、これに0.
25M硝酸ニッケル水溶液を30ml加え、50℃下に
マグネチックスターラーで攪拌して、マイクロエマルシ
ョンを調製した。このマイクロエマルションは油中水滴
型のものであり、水滴粒子の直径は66Åと計算され、
一つの水滴中に含まれるニッケルイオンの数は平均23
個と計算される。このマイクロエマルションに市販のト
リエチルアミンを3cc加え、50℃下に10分間よく
攪拌してニッケルの水酸化物超微粒子を形成させた。そ
の後、攪拌下で50℃の温度において、アルミニウムト
リイソプロポキシド40gを2−ヘキサノール300m
lにあらかじめ混合攪拌したものを添加し、1時間加水
分解を行った。次に、ビーカー内容物を室温まで冷却後
に母液を遠心分離によって分離し、得られて沈殿を2−
プロパノールで3回洗浄した。この精製沈殿を80℃で
12時間乾燥後に空気流通下400℃で5時間(昇温速
度2℃/min)焼成した。この結果、5.0wt%の
ニッケルを含むアルミナゲル(触媒I)9.2gが得ら
れた。以上のようにして調製した5.0wt%ニッケル
含有アルミナゲル触媒Iの性能を評価するために、触媒
Iを成形機で成形して粒径:16−28メッシュのペレ
ットとし、この成形触媒0.2gを内径8mmの反応管
に装填し、先ず、水素流通下600℃で2時間水素還元
を行った。水素還元後の触媒Iの物性および炭素残留量
を表1に示す。水素還元を行った後、メタンの水蒸気改
質反応を行った。すなわち、温度幅1℃以内で温度制御
の可能な電気炉内に反応管を設置し、この反応管にメタ
ン:水蒸気:アルゴン=10:10:1(モル比)の混
合ガスを送入して反応させた。反応圧は常圧、触媒層温
度は600℃で混合ガス流量は116cc/minとし
た。この反応実験により、本発明触媒は活性劣化が非常
に小さく、長時間にわたって高い活性を維持することが
確認された。
Example 1 In a beaker having an internal volume of 1000 ml, 500 ml of a 0.3 M solution of polyoxyethylene (average addition mole number: 20) nonylphenyl ether 1-hexanol was added.
30 ml of a 25 M aqueous nickel nitrate solution was added, and the mixture was stirred with a magnetic stirrer at 50 ° C. to prepare a microemulsion. This microemulsion is of the water-in-oil type, the diameter of the water droplet particles is calculated to be 66 °,
The average number of nickel ions contained in one water droplet is 23
Is calculated. To this microemulsion, 3 cc of commercially available triethylamine was added and stirred well at 50 ° C. for 10 minutes to form nickel hydroxide ultrafine particles. Thereafter, at a temperature of 50 ° C. under stirring, 40 g of aluminum triisopropoxide was added to 300 m of 2-hexanol.
The mixture which had been previously mixed and stirred was added to 1 and hydrolyzed for 1 hour. Next, the contents of the beaker were cooled to room temperature, and the mother liquor was separated by centrifugation.
Washed three times with propanol. The purified precipitate was dried at 80 ° C. for 12 hours and calcined at 400 ° C. for 5 hours (heating rate 2 ° C./min) under air flow. As a result, 9.2 g of an alumina gel (catalyst I) containing 5.0% by weight of nickel was obtained. In order to evaluate the performance of the 5.0 wt% nickel-containing alumina gel catalyst I prepared as described above, the catalyst I was molded by a molding machine into pellets having a particle size of 16 to 28 mesh. 2 g was charged into a reaction tube having an inner diameter of 8 mm, and hydrogen reduction was first performed at 600 ° C. for 2 hours under a hydrogen flow. Table 1 shows the physical properties and carbon residue of Catalyst I after hydrogen reduction. After hydrogen reduction, a steam reforming reaction of methane was performed. That is, a reaction tube is installed in an electric furnace whose temperature can be controlled within a temperature range of 1 ° C., and a mixed gas of methane: steam: argon = 10: 10: 1 (molar ratio) is fed into the reaction tube. Reacted. The reaction pressure was normal pressure, the catalyst layer temperature was 600 ° C., and the mixed gas flow rate was 116 cc / min. From this reaction experiment, it was confirmed that the catalyst of the present invention showed very small activity deterioration and maintained high activity for a long time.

【0013】実施例2 実施例1で製造したニッケル水酸化物微粒子分散液とア
ルミニウムトリイソプロポキシドを原料とし、実施例1
と同様にしてニッケル含有量が10.1wt%のアルミ
ナゲル(触媒II)を調製した。その触媒物性を表1に示
す。このニッケル含有アルミナ触媒を用い、実施例1の
場合と同様な触媒性能評価試験を行った。この反応実験
により、本発明触媒は活性劣化が非常に小さく、長時間
にわたって高い活性を維持することが確認された。
Example 2 Using the dispersion of nickel hydroxide fine particles produced in Example 1 and aluminum triisopropoxide as raw materials,
In the same manner as in the above, an alumina gel (catalyst II) having a nickel content of 10.1 wt% was prepared. Table 1 shows the physical properties of the catalyst. Using this nickel-containing alumina catalyst, a catalyst performance evaluation test similar to that in Example 1 was performed. From this reaction experiment, it was confirmed that the catalyst of the present invention showed very small activity deterioration and maintained high activity for a long time.

【0014】実施例3 内容積1000mlのビーカーに0.3Mのポリオキシ
エチレン(平均付加モル数10)ノニルフェニルエーテ
ル/1−ヘキサノール溶液を500ml入れ、これに
0.25M硝酸ニッケル水溶液を30ml加え、55℃
下にマグネチックスターラーで攪拌して、マイクロエマ
ルションを調製した。その後の操作は実施例1と同様に
行って、ニッケル含有量が10.2wt%のアルミナゲ
ル(触媒III)を調製した。その触媒物性を表1に示
す。このニッケル含有アルミナ触媒を用い、実施例1の
場合と同様な触媒性能評価試験を行った。この反応実験
により、本発明触媒は活性劣化が非常に小さく、長時間
にわたって高い活性を維持することが確認された。
Example 3 500 ml of a 0.3 M solution of polyoxyethylene nonylphenyl ether / 1-hexanol (average number of moles added: 10) was placed in a beaker having an internal volume of 1000 ml, and 30 ml of a 0.25 M nickel nitrate aqueous solution was added thereto. 55 ° C
The microemulsion was prepared by stirring under a magnetic stirrer. Subsequent operations were performed in the same manner as in Example 1 to prepare an alumina gel (catalyst III) having a nickel content of 10.2 wt%. Table 1 shows the physical properties of the catalyst. Using this nickel-containing alumina catalyst, a catalyst performance evaluation test similar to that in Example 1 was performed. From this reaction experiment, it was confirmed that the catalyst of the present invention showed very small activity deterioration and maintained high activity for a long time.

【0015】実施例4 内容積1000mlのビーカーに0.3Mのポリオキシ
エチレン(平均付加モル数5)ノニルフェニルエーテル
/1−オクタノール溶液を500ml入れ、これに0.
25M硝酸ニッケル水溶液を30ml加え、55℃下に
マグネチックスターラーで攪拌して、マイクロエマルシ
ョンを調製した。その後の操作は実施例1と同様に行っ
て、ニッケル含有量が10.0wt%のアルミナゲル
(触媒IV)を調製した。その触媒物性を表1に示す。こ
のニッケル含有アルミナ触媒を用い、実施例1の場合と
同様な触媒性能評価試験を行った。この反応実験によ
り、本発明触媒は活性劣化が非常に小さく、長時間にわ
たって高い活性を維持することが確認された。
Example 4 In a beaker having an internal volume of 1000 ml, 500 ml of a 0.3 M solution of polyoxyethylene (average addition mole number: 5) nonylphenyl ether / 1-octanol was added.
30 ml of 25M nickel nitrate aqueous solution was added, and the mixture was stirred with a magnetic stirrer at 55 ° C. to prepare a microemulsion. The subsequent operation was performed in the same manner as in Example 1 to prepare an alumina gel (catalyst IV) having a nickel content of 10.0% by weight. Table 1 shows the physical properties of the catalyst. Using this nickel-containing alumina catalyst, a catalyst performance evaluation test similar to that in Example 1 was performed. From this reaction experiment, it was confirmed that the catalyst of the present invention showed very small activity deterioration and maintained high activity for a long time.

【0016】比較例1、2、3 蒸発皿に0.25M硝酸ニッケル水溶液とイオン交換水
を入れ、これにあらかじめマイクロエマルション中で調
製したアルミナゲルを5g加え、攪拌後1時間設置し
た。放置後、減圧乾燥機内で3時間乾燥後、乾燥機内で
80℃で12時間乾燥させた。その後、実施例1と同条
件で焼成、水素還元を行った。こうして、ニッケル担持
量5wt%のアルミナゲル(触媒A)、10wt%のア
ルミナゲル(触媒B)、20wt%のアルミナゲル(触
媒C)を調製した。その触媒物性を表1に示す。これら
のアルミナ担持ニッケル触媒を用い、実施例1の場合と
同様な触媒性能評価試験を行った。この反応実験によ
り、比較触媒はいずれも活性劣化が大きく、その活性は
時間とともに急速に低下することが確認された。
Comparative Examples 1, 2, and 3 A 0.25 M aqueous solution of nickel nitrate and ion-exchanged water were put in an evaporating dish, and 5 g of alumina gel previously prepared in a microemulsion was added thereto, followed by stirring for 1 hour. After being left, it was dried in a vacuum dryer for 3 hours, and then dried in a dryer at 80 ° C. for 12 hours. Thereafter, firing and hydrogen reduction were performed under the same conditions as in Example 1. Thus, an alumina gel (catalyst A) having a nickel carrying amount of 5 wt% (catalyst A), an alumina gel of 10 wt% (catalyst B), and an alumina gel of 20 wt% (catalyst C) were prepared. Table 1 shows the physical properties of the catalyst. Using these alumina-supported nickel catalysts, the same catalyst performance evaluation test as in Example 1 was performed. From this reaction experiment, it was confirmed that the activity of each of the comparative catalysts was greatly degraded, and the activity rapidly decreased with time.

【0017】[0017]

【表1】 [Table 1]

【0018】表1において、SBETは、触媒のBET表
面積を示す。但し、触媒A〜Cについては、アルミナの
BET表面積を示す。炭素量は、温度873K、H2
/CH4=1、GHSV=35000h-1の条件下で反
応を継続して行った後の触媒上に残留する炭素量を示
す。この場合、反応継続時間は、触媒I〜IVの場合は4
0時間であり、触媒A〜Cの場合は20時間である。
In Table 1, S BET indicates the BET surface area of the catalyst. However, the catalysts A to C show the BET surface area of alumina. The amount of carbon is 873K, H 2 O
It shows the amount of carbon remaining on the catalyst after continuing the reaction under the conditions of / CH 4 = 1 and GHSV = 35000 h −1 . In this case, the reaction duration is 4 in the case of catalysts I to IV.
0 hours and 20 hours for catalysts AC.

【0019】前記表1からわかるように、本発明による
マイクロエマルジョン法(ME法)による触媒では、そ
のニッケルの平均粒子径は40〜140Å(4nm〜1
4nm)と非常に小さく、触媒中に超微粒子状で含有さ
れている。また、そのニッケル粒子径分布も非常にシャ
ープである。本発明の触媒I〜IVを比較触媒A〜Cと比
較してわかるように、本発明触媒はいずれも長時間にわ
たって高い活性を維持する。
As can be seen from Table 1, the average particle size of nickel of the catalyst by the microemulsion method (ME method) according to the present invention is 40 to 140 ° (4 nm to 1 nm).
4 nm), which is extremely small and contained in the catalyst in the form of ultrafine particles. Also, the nickel particle size distribution is very sharp. As can be seen by comparing inventive catalysts I-IV with comparative catalysts AC, all of the inventive catalysts maintain a high activity over time.

【0020】[0020]

【発明の効果】本発明の触媒は、炭素析出性の非常に小
さいもので、長時間にわたって高い活性を維持する。従
って、本発明触媒を用いることにより、長時間にわたっ
て高い転換率を維持しながらメタンの水蒸気改質を行う
ことが可能となる。
The catalyst of the present invention has a very low carbon deposition property and maintains a high activity for a long time. Therefore, by using the catalyst of the present invention, it is possible to carry out steam reforming of methane while maintaining a high conversion rate for a long time.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 多湖 輝興 福岡県福岡市東区原田2丁目20番22号メゾ ンドール三宅302号室 (72)発明者 林 博樹 福岡県福岡市東区筥松2丁目28番16号キャ トルメゾン101号室 Fターム(参考) 4G040 EA03 EA06 EC02 EC08 4G069 AA03 AA08 BA01A BA01B BB02A BB02B BC68A BC68B CC17 DA06 EA01Y EA02Y EA04Y EB18Y EB19 FA01 FA02 FB06 FB08 FB44 FC08 4G140 EA03 EA06 EC02 EC08  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Teruaki TAKO 2-20-22 Harada, Higashi-ku, Fukuoka City, Fukuoka Prefecture Maison d'Or Miyake Room 302 (72) Inventor Hiroki Hayashi 2-28, Hakomatsu, Higashi-ku, Fukuoka City, Fukuoka Prefecture No. 16 Cat Maison Room 101 F-term (reference) 4G040 EA03 EA06 EC02 EC08 4G069 AA03 AA08 BA01A BA01B BB02A BB02B BC68A BC68B CC17 DA06 EA01Y EA02Y EA04Y EB18Y EB19 FA01 FA02 FB06 EC08 EA08 EC08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 メタンを水蒸気と反応させて水素と一酸
化炭素を生成させるメタンの水蒸気改質反応用触媒であ
って、ニッケル超微粒子を含有するアルミナからなるこ
とを特徴とするメタンの水蒸気改質反応用触媒。
1. A methane steam reforming catalyst for producing methane and hydrogen monoxide by reacting methane with steam, comprising a catalyst containing alumina containing ultrafine nickel particles. Reaction catalyst.
【請求項2】 該ニッケルの割合が、触媒中1〜30%
である請求項1の触媒。
2. The catalyst according to claim 1, wherein the proportion of nickel is 1 to 30% in the catalyst.
2. The catalyst of claim 1 wherein
【請求項3】 メタンを触媒の存在下で水蒸気と反応さ
せて水素と一酸化炭素を生成させるメタンの水蒸気反応
方法において、該触媒として請求項1又は2の触媒を用
いることを特徴とするメタンの水蒸気改質方法。
3. A method of reacting methane with steam in the presence of a catalyst to produce hydrogen and carbon monoxide, wherein the catalyst according to claim 1 or 2 is used as the catalyst. Steam reforming method.
JP2000324634A 2000-10-24 2000-10-24 Catalyst for steam reforming reaction of methane and method for steam reforming of methane Pending JP2002126531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000324634A JP2002126531A (en) 2000-10-24 2000-10-24 Catalyst for steam reforming reaction of methane and method for steam reforming of methane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000324634A JP2002126531A (en) 2000-10-24 2000-10-24 Catalyst for steam reforming reaction of methane and method for steam reforming of methane

Publications (1)

Publication Number Publication Date
JP2002126531A true JP2002126531A (en) 2002-05-08

Family

ID=18802135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000324634A Pending JP2002126531A (en) 2000-10-24 2000-10-24 Catalyst for steam reforming reaction of methane and method for steam reforming of methane

Country Status (1)

Country Link
JP (1) JP2002126531A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004141860A (en) * 2002-10-04 2004-05-20 Japan National Oil Corp Catalyst for hydrocarbon reforming, and its manufacturing method
WO2010122855A1 (en) * 2009-04-24 2010-10-28 国立大学法人山梨大学 Catalyst for selective methanation of carbon monoxide, process for producing same, and device using same
KR101634946B1 (en) * 2015-06-30 2016-07-01 한국에너지기술연구원 Methane steam reforming, using nickel/alumina nanocomposite catalyst or nickel/silica-alumina hybrid nanocomposite catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004141860A (en) * 2002-10-04 2004-05-20 Japan National Oil Corp Catalyst for hydrocarbon reforming, and its manufacturing method
WO2010122855A1 (en) * 2009-04-24 2010-10-28 国立大学法人山梨大学 Catalyst for selective methanation of carbon monoxide, process for producing same, and device using same
US9005552B2 (en) 2009-04-24 2015-04-14 University Of Yamanashi Selective CO methanation catalyst, method of producing the same, and apparatus using the same
KR101634946B1 (en) * 2015-06-30 2016-07-01 한국에너지기술연구원 Methane steam reforming, using nickel/alumina nanocomposite catalyst or nickel/silica-alumina hybrid nanocomposite catalyst
US10280080B2 (en) 2015-06-30 2019-05-07 Korea Institute Of Energy Research Methane steam reforming, using nickel/alumina nanocomposite catalyst or nickel/silica-alumina hybrid nanocomposite catalyst

Similar Documents

Publication Publication Date Title
JP5303033B2 (en) Methanol synthesis catalyst from synthesis gas and method for producing the same
JP5285776B2 (en) Catalyst for producing synthesis gas from natural gas and carbon dioxide and method for producing the same
WO2010094226A1 (en) Fischer-tropsch synthesis fe-based catalyst, process of preparation and application thereof
US6342538B1 (en) Catalyst for the synthesis of methanol and a method for the synthesis of methanol
US5703133A (en) Isoalcohol synthesis
US6034141A (en) Isobutanol synthesis catalyst
KR101359990B1 (en) Catalyst for Reforming of Methane with the Enhanced Stability for Sulfur components, Preparing Method Thereof and Methane Reforming Method Using The Catalyst
US5691268A (en) Isoalcohol synthesis catalyst
JP2002126531A (en) Catalyst for steam reforming reaction of methane and method for steam reforming of methane
CN103476492A (en) Promoted copper/zinc catalyst for hydrogenating aldehydes to alcohols
JP2002172326A (en) Catalyst for steam modification reaction of methane and method for steam modification of methane
JPH05221602A (en) Production of synthesis gas
AU595853B2 (en) Improved syngas conversion catalyst, production and use thereof
US5811602A (en) Isobutanol synthesis method
JP2813770B2 (en) Ethanol production method
JPH06312138A (en) Catalyst for synthesizing methanol
AU2018219673B2 (en) Start-up procedure for a fischer-tropsch process
CN106238048B (en) Catalyst for synthesizing oxide, method for producing same, apparatus for producing oxide, and method for producing oxide
US5707920A (en) Isobutanol synthesis catalyst
JP5626077B2 (en) Methanol production method and methanol production catalyst
JP4012965B2 (en) Catalyst for high temperature CO shift reaction
WO2016091692A1 (en) Process for producing a supported reductively activated fischer-tropsch synthesis catalyst, and process for producing hydrocarbons using the same
CN110368935B (en) Cu-Ti-Si catalyst for synthesizing 1, 4-butynediol
CN106423257B (en) By the catalyst of ethyl acetate and benzene synthesizing ethyl benzene
JPH09173848A (en) Catalyst for manufacturing dimethyl ether, manufacture thereof and manufacture of dimethyl ether