JP2002126425A - Filter medium - Google Patents

Filter medium

Info

Publication number
JP2002126425A
JP2002126425A JP2000319158A JP2000319158A JP2002126425A JP 2002126425 A JP2002126425 A JP 2002126425A JP 2000319158 A JP2000319158 A JP 2000319158A JP 2000319158 A JP2000319158 A JP 2000319158A JP 2002126425 A JP2002126425 A JP 2002126425A
Authority
JP
Japan
Prior art keywords
filter medium
filter
gel
filtration
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000319158A
Other languages
Japanese (ja)
Inventor
Norio Takagi
憲男 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2000319158A priority Critical patent/JP2002126425A/en
Publication of JP2002126425A publication Critical patent/JP2002126425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a filter medium for a filter by which foreign materials contained in a molten polymer and coarse particles and gelled materials contained in a filler or the like can be caught and removed at the same time. SOLUTION: This filter medium is obtained by dispersing a metallic fiber having 60-50,000 aspect ratio in a nonwoven fabric state and sintering it and has 2-70% change rate of air permeation resistance when pressurized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高粘度液体を濾過す
るのに用いる濾材に関し、更に詳しくはゲル状物質の阻
止性能に優れ、濾過寿命の長いフィルター用の濾材に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter medium used for filtering a high-viscosity liquid, and more particularly to a filter medium having an excellent ability to prevent gel-like substances and having a long filter life.

【0002】[0002]

【従来の技術】粘度の高い溶液や、溶融ポリマーから繊
維やフィルム製造する際、ポリマー中の異物、フィラー
等に含まれる粗大な粒子或いはゲル状物を除去するため
にフィルターによる濾過が行われる。フィルター用の濾
材には金属粒子を焼結したもの(金属粒子焼結体)或い
は不織布状の金属繊維を焼結したもの(金属繊維焼結
体)が使用されている。
2. Description of the Related Art When producing fibers or films from a solution having a high viscosity or a molten polymer, filtration is performed with a filter in order to remove coarse particles or gel-like substances contained in the polymer, foreign substances, fillers and the like. As a filter material for a filter, a material obtained by sintering metal particles (sintered metal particles) or a material obtained by sintering non-woven metal fibers (sintered metal fiber) is used.

【0003】金属繊維焼結体は一般的に金属粒子焼結体
に比べて空隙率が高いため、濾過抵抗が小さく、特に粘
度の高いポリマーの精密濾過に適している。しかし熱可
塑性ポリマーを溶融して押出す際、一部のポリマーがし
ばしばゲル状物化して押出成形品の異物欠点になる。こ
のゲル状物を除去する捕捉性能はフィルター用の濾材に
よって異なり、金属粒子焼結体が金属繊維焼結体より優
れていることが知られている。従って高粘度のポリマー
を精密濾過し、しかもゲル状物を除去するために、金属
粒子焼結体と金属繊維焼結体とのそれぞれの利点を活か
す方法(特開平9−11308号公報、特開平9−39
072号公報)が提案されている。
[0003] Since sintered metal fibers generally have a higher porosity than sintered metal particles, they have low filtration resistance and are particularly suitable for microfiltration of polymers having high viscosity. However, when the thermoplastic polymer is melted and extruded, some of the polymer often becomes a gel and becomes a foreign matter defect of the extruded product. It is known that the capturing performance for removing the gel-like material differs depending on the filter medium for the filter, and the sintered metal particles are superior to the sintered metal fibers. Therefore, in order to carry out microfiltration of a high-viscosity polymer and to remove a gel-like substance, a method utilizing the respective advantages of the metal particle sintered body and the metal fiber sintered body (JP-A-9-11308, JP-A-9-11308) 9-39
No. 072) has been proposed.

【0004】即ち、濾過工程を直列二段階にして、そ
の一方に金属繊維焼結体フィルターを用い、他の一方に
金属粒子焼結体フィルターを用いる方法で、濾過工程の
上流側に金属繊維焼結体フィルターを用いればこのフィ
ルターで溶融ポリマー中の異物或いはフィラー等に含ま
れる粗大粒子を捕捉し、下流側の金属粒子焼結体フィル
ターでゲル状物を確実に捕捉することができる。
That is, the filtration process is performed in two stages in series, and a metal fiber sintered filter is used for one of them and a metal particle sintered filter is used for the other. If a sintered filter is used, foreign matter in the molten polymer or coarse particles contained in fillers and the like can be captured by the filter, and a gel-like substance can be reliably captured by the sintered metal particle filter on the downstream side.

【0005】二段階濾過の他の具体化方法として、1
個のフィルターエレメントの濾材を金属繊維焼結体と金
属粒子焼結体との積層体で構成して、濾過を実質一工程
で行う方法も知られている。このような濾材が異種焼結
体の積層体の場合、一個のフィルターの容積が大きくな
るため、一定容積の濾過系に組み込めるフィルターの個
数が少なくなり、実質濾過面積が小さくなる欠点があ
る。
[0005] Another embodiment of the two-stage filtration is as follows.
There is also known a method in which the filter material of each filter element is formed of a laminate of a sintered metal fiber and a sintered metal particle, and the filtration is performed in substantially one step. When such a filter medium is a laminate of different kinds of sintered bodies, the volume of one filter is increased, so that the number of filters that can be incorporated in a filtration system having a fixed volume is reduced, and there is a disadvantage that the filtration area is substantially reduced.

【0006】また、濾過面積の縮小を軽減する方法と
して、薄い金網に小さい金属粒子を焼結して濾材の構成
要素とし、異種焼結体の金属粒子層を代替した積層構造
のフィルターも知られている。
As a method of reducing the reduction of the filtration area, there is also known a filter having a laminated structure in which small metal particles are sintered on a thin metal mesh to form a component of a filter material, and a metal particle layer of a different kind of sintered body is substituted. ing.

【0007】しかしながら、濾過工程を二段階に分け
て、金属繊維焼結体による濾過と、金属粒子焼結体によ
る濾過を個別に行う前記の方法では、設備投資が大き
くなる上に、濾過工程が長くなってポリマーの高温での
履歴時間が長くなるため、ゲル状物化し易いポリマーで
は濾過工程で新たにゲル状物化を生じる等の問題が生じ
る。
[0007] However, in the above-mentioned method in which the filtration step is divided into two stages and the filtration using a metal fiber sintered body and the filtration using a metal particle sintered body are individually performed, the capital investment is increased and the filtration step is not performed. Since the hysteresis time of the polymer at a high temperature is prolonged, a problem such as a new gelation occurring in a filtration step occurs in a polymer which easily forms a gel.

【0008】また、一個のフィルターの濾材が、金属繊
維焼結体と金属粒子焼結体との積層体で構成される前記
の方法は、実質濾過面積が小さくなるため、単位時間
当りのポリマーの濾過量が少なくなる問題があり、加え
てフィルターの再生洗浄が困難になる問題がある。
In the above-mentioned method, in which the filter medium of one filter is composed of a laminate of a sintered metal fiber and a sintered metal particle, the filtration area is substantially reduced, so that the amount of polymer per unit time is reduced. There is a problem that the amount of filtration is small, and in addition, there is a problem that it is difficult to regenerate and wash the filter.

【0009】異種積層体の金属粒子層を、金網に小さい
金属粒子を焼結してなる濾材で代替する前記の方法
は、金属繊維焼結単体のフィルターよりゲル状物捕捉効
果は改善されるが、代替層が薄いため効果が十分でない
ことがある。
In the above-described method in which the metal particle layer of the heterogeneous laminate is replaced with a filter medium formed by sintering small metal particles on a wire net, the gel-like substance trapping effect is improved as compared with a filter made of a single metal fiber sintered body. In some cases, the effect is not sufficient because the substitute layer is thin.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記のよう
な問題を解消し、溶融ポリマー中の異物やフィラー等に
含まれる粗大粒子等の粒子状物とゲル状物を同時に捕捉
し、除去出来るフィルター用の濾材を提供することを課
題とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and simultaneously captures and removes particulate matter such as foreign particles in a molten polymer and coarse particles contained in fillers and the like and a gel-like substance. It is an object to provide a filter material for a filter that can be used.

【0011】本発明者は、課題を解決するために種々検
討した結果、通気抵抗の加圧処理による変化率が特定値
になるように焼結された金属繊維焼結体を濾材に用いる
と、上記の問題が一挙に解決できることを知見して本発
明に到達した。
The present inventor has conducted various studies to solve the problems. As a result, when a metal fiber sintered body sintered so that the rate of change of the airflow resistance by the pressure treatment becomes a specific value is used as a filter medium, The inventors have found that the above problems can be solved at once, and arrived at the present invention.

【0012】[0012]

【課題を解決するための手段】本発明の課題は、アスペ
クト比が60〜50000の金属繊維を不織布状に分散
し焼結して得られる濾材であって、該濾材の加圧処理に
よる通気抵抗の変化率が2〜70%の範囲であることを
特徴とする濾材により達成できる。
An object of the present invention is to provide a filter material obtained by dispersing and sintering a metal fiber having an aspect ratio of 60 to 50,000 into a nonwoven fabric, and to control the air flow resistance of the filter material by a pressure treatment. Is in the range of 2 to 70%.

【0013】また、本発明の好ましい態様として、前記
濾材の濾過精度が1〜50μmのものを挙げることがで
きる。
Further, as a preferred embodiment of the present invention, a filter medium having a filtration accuracy of 1 to 50 μm can be mentioned.

【0014】本発明の更に好ましい態様として、粘度が
5〜5000Pa・sの液状物質を被濾過体に用いるこ
と、特に好ましい態様として、溶融ポリマーを被濾過体
に用いることを挙げることができる。
As a further preferred embodiment of the present invention, a liquid substance having a viscosity of 5 to 5000 Pa · s is used for the object to be filtered, and as a particularly preferred embodiment, a molten polymer is used for the object to be filtered.

【0015】[0015]

【発明の実施の形態】以下、本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0016】(濾材)本発明の濾材は、アスペクト比が
60〜50000の金属繊維を不織布状に分散し焼結し
て得られる濾材であって、加圧処理による通気抵抗の変
化率が2〜70%の範囲のものである。
(Filter Material) The filter material of the present invention is a filter material obtained by dispersing and sintering metal fibers having an aspect ratio of 60 to 50,000 into a non-woven fabric. It is in the range of 70%.

【0017】本発明において、濾材を構成する金属繊維
とは、ステンレス鋼、ハステロイ等の耐蝕性の金属を、
太さが例えば1〜50μmの繊維状に成形したものであ
る。また、アスペクト比とは繊維の長さと太さの比であ
って、本発明における金属繊維はアスペクト比が60〜
50000のものである。このアスペクト比が60未満
であると、金属繊維を不織布状に配置して焼結して得ら
れる濾材の機械強度が不十分になる。また、アスペクト
比が50000を超えると、金属繊維を不織布状に均一
に分散させることが困難になる。金属繊維のアスペクト
比の下限は、濾材の機械強度を更に強固なものとするた
め100であることが好ましく、500であることが更
に好ましい。また金属繊維のアスペクト比の上限は、金
属繊維を不織布状に配置する際により均一に分散させる
ため20000であることが好ましく、10000であ
ることが更に好ましい。
In the present invention, the metal fiber constituting the filter medium is a corrosion-resistant metal such as stainless steel or Hastelloy.
It is formed into a fibrous shape having a thickness of, for example, 1 to 50 μm. Further, the aspect ratio is a ratio of the length and thickness of the fiber, and the metal fiber in the present invention has an aspect ratio of 60 to
50,000. When the aspect ratio is less than 60, the mechanical strength of a filter medium obtained by arranging and sintering metal fibers in a nonwoven fabric shape becomes insufficient. On the other hand, if the aspect ratio exceeds 50,000, it becomes difficult to uniformly disperse the metal fibers into a nonwoven fabric. The lower limit of the aspect ratio of the metal fiber is preferably 100, more preferably 500, in order to further increase the mechanical strength of the filter medium. Further, the upper limit of the aspect ratio of the metal fiber is preferably 20,000, more preferably 10,000, in order to disperse the metal fiber more evenly when arranging the metal fiber in a nonwoven fabric shape.

【0018】本発明の濾材は、上記アスペクト比の金属
繊維を不織布状に分散し焼結して得られるものである
が、濾材の通気抵抗の加圧処理による変化率が2〜70
%の範囲であることが必要である。この通気抵抗とは、
25℃の空気1L(リットル)が1分間に単位面積(1
cm2 )の濾材を通過する時の圧力損失のことである。
The filter medium of the present invention is obtained by dispersing and sintering metal fibers having the above-mentioned aspect ratio into a non-woven fabric.
%. This ventilation resistance
One liter (liter) of air at 25 ° C. is applied to a unit area (1
cm 2 ) is the pressure loss when passing through a filter medium.

【0019】また、本発明における加圧処理とは、シー
ト状の濾材から直径50mmの円板状に切り出した濾材
をサンプルとし、このサンプルの両面に直径50mmの
円板状に切り出したゴム硬度50〜70度、厚さ5mm
のシリコンゴムシート又はウレタンゴムシートを重ね合
わせ、一方のゴムシートを下側にしてプレス機等の加圧
装置の金型上に設置し、もう一方のゴムシート面に濾材
サンプルの実質単位面積当り14.7MPa(150K
gf/cm2)の圧力を加えて10分間保持し、その後
加圧負荷を開放することをいう。
The pressure treatment in the present invention means that a filter material cut out from a sheet-like filter material into a disk having a diameter of 50 mm is used as a sample, and a rubber hardness of 50 mm is cut out from both sides of the sample into a disk shape having a diameter of 50 mm. ~ 70 degree, thickness 5mm
The silicone rubber sheet or urethane rubber sheet is placed on top and placed on a mold of a pressing device such as a press with one rubber sheet facing down, and the other rubber sheet surface is placed on the surface of the filter medium sample per unit area. 14.7MPa (150K
gf / cm 2 ) is applied and maintained for 10 minutes, and then the pressure load is released.

【0020】加圧処理した濾材サンプルは、ゴムシート
を取り除いた後、通気抵抗の測定に供する。同一サンプ
ルについてこの加圧処理と通気抵抗測定を5回繰り返
し、5回の通気抵抗測定値の最大値(Rm)と加圧処理
前の通気抵抗測定値(Ri)から下記式(1)より通気
抵抗の変化率(X)を求める。
The filter medium sample subjected to the pressure treatment is subjected to measurement of air flow resistance after removing the rubber sheet. This pressure treatment and measurement of the ventilation resistance are repeated five times for the same sample, and ventilation is performed according to the following formula (1) from the maximum value (Rm) of the five measurement values of the ventilation resistance and the measurement value (Ri) of the ventilation resistance before the pressure treatment. The rate of change (X) in resistance is determined.

【0021】[0021]

【数1】 X=100×(Rm−Ri)/(Ri)・・・(1)X = 100 × (Rm−Ri) / (Ri) (1)

【0022】但し、上記の式(1)でXは通気抵抗の変
化率(%)、Riは加圧処理を行なう前の濾材サンプル
の通気抵抗測定値、Rmは加圧処理と通気抵抗測定を5
回繰り返した際の加圧処理後の通気抵抗測定値の最大値
である。
In the above formula (1), X is the rate of change (%) of the airflow resistance, Ri is the measured airflow resistance of the filter material sample before the pressure treatment, and Rm is the pressure treatment and the airflow resistance measurement. 5
This is the maximum value of the measured airflow resistance after the pressurization treatment when repeated.

【0023】本発明の濾材は、加圧処理による通気抵抗
の変化率が2〜70%のものである。この変化率が2%
未満であると、濾材の引張応力に対する伸度が小さく、
濾材を曲げ加工する際に濾材の表面に割れが発生する等
の問題が生じる。また、変化率が70%を越えると、異
物やフィラー等に含まれる粗大粒子等粒子状物とゲル状
物を同時に捕捉し除去する本発明の効果が発現しない。
The filter medium of the present invention has a rate of change in air flow resistance by a pressure treatment of 2 to 70%. This change rate is 2%
If less than, the elongation of the filter medium for tensile stress is small,
Problems such as cracks occurring on the surface of the filter medium when bending the filter medium occur. On the other hand, if the rate of change exceeds 70%, the effect of the present invention of simultaneously capturing and removing particulate matter such as coarse particles and gel-like substances contained in foreign substances and fillers does not appear.

【0024】通気抵抗の変化率の下限は、3%であるこ
とが好ましく、4%であることが更に好ましい。また、
通気抵抗の変化率の上限は50%であることが好まし
く、40%であることが更に好ましく、30%であるこ
とが特に好ましい。
The lower limit of the rate of change of the airflow resistance is preferably 3%, more preferably 4%. Also,
The upper limit of the rate of change in airflow resistance is preferably 50%, more preferably 40%, and particularly preferably 30%.

【0025】本発明の濾材は加圧処理による変化率の少
ない、言い換えると耐圧搾変形性に優れたものである
が、このような濾材は、例えば濾材の焼結の温度や時間
を変えることや、濾材の空隙率を小さくして焼結するこ
と等により製作することができる。
The filter medium of the present invention has a small rate of change due to pressure treatment, in other words, is excellent in compressive deformation, but such a filter medium can be obtained by, for example, changing the sintering temperature and time of the filter medium. And sintering while reducing the porosity of the filter medium.

【0026】尚、本発明の濾材には、少なくとも片面に
保護金網が焼結されていることが好ましく、両面に保護
金網が焼結されていることが特に好ましい。
The filter medium of the present invention preferably has a protective wire mesh sintered on at least one surface, and particularly preferably has a protective wire mesh sintered on both surfaces.

【0027】(ゲル状物の阻止性能)本発明の濾材はゲ
ル状物の阻止に優れた性能を発揮する。ゲル状物の生成
と濾過を、例えばポリエステルのシート成形を例にして
述べる。ポリエステルポリマーは押出機で溶融され、溶
融ポリマーは配管系で移送されてフィルターハウジング
に導かれ、ここでリーフディスクフィルター等のフィル
ターを通過してダイからシート状に押し出され、冷却ド
レムで冷却されてシートに成形される。
(Inhibiting performance of gel-like material) The filter medium of the present invention exhibits excellent performance in inhibiting gel-like material. The formation and filtration of a gel-like material will be described by taking, for example, polyester sheet molding as an example. The polyester polymer is melted by an extruder, and the molten polymer is transported by a piping system and guided to a filter housing, where it is extruded into a sheet form from a die through a filter such as a leaf disk filter, and cooled by a cooling drem. Formed into sheets.

【0028】ゲル状物は、ポリマーの熱劣化によって生
じ、押出機からダイの出口までの溶融状態の間に発生す
ると考えられる。例えば、配管の壁面や滞留部等ポリマ
ーの流速が遅い個所で長時間の熱履歴を受けてゲル状物
が生じる。このため、一般にフィルターをダイに接近し
て配置することにより、濾過後のゲル状物発生を極力回
避する手段がとられる。
It is believed that the gel is caused by thermal degradation of the polymer and occurs during the molten state from the extruder to the exit of the die. For example, a gel-like substance is generated at a location where the flow rate of the polymer is low, such as a wall surface of a pipe or a stagnant portion, by receiving a long-term heat history. For this reason, in general, means for avoiding generation of a gel-like substance after filtration as much as possible is provided by disposing the filter close to the die.

【0029】ゲル状物は滞留部では溶融ポリマーよりも
ゆっくり流動し、滞留部で発生したゲル状物は配管系の
僅かな流速の変化などによって滞留部から離脱し、ある
いは配管壁面などから剥離して溶融ポリマーに同伴して
流動しフィルターの濾材表面に到達し堆積する。この堆
積量が少なく濾過の差圧が小さい間は、ゲル状物の堆積
物は移動しないが、時間が経過して濾過の差圧が大きく
なると堆積物に作用する押し圧力が大きくなり、ゲル状
物が変形して濾材を通過することがある。
The gel-like substance flows more slowly in the stagnation section than the molten polymer, and the gel-like substance generated in the stagnation section separates from the stagnation section due to a slight change in the flow velocity of the piping system or separates from the pipe wall surface. Then, it flows together with the molten polymer and reaches the surface of the filter medium of the filter to be deposited. While the accumulation amount is small and the filtration differential pressure is small, the gel deposit does not move, but as time elapses and the filtration differential pressure increases, the pressing force acting on the deposit increases and the gel Objects may deform and pass through the filter media.

【0030】この時に、加圧処理による通気抵抗の変化
率が小さい本発明の濾材では、濾過の差圧が大きくなっ
てもゲル状物を捕捉したままで通過させない効果があ
る、或いはゲル状物を実害の無い程度に小さく裁断して
通過させる効果がある。一方、加圧処理による通気抵抗
の変化率が本発明の濾材よりも大きい濾材では、濾過の
差圧が大きくなると、変形したゲル状物が貫通できる程
度に濾材が変形し、貫通路が形成されてしまうので、ゲ
ル状物の阻止性能が劣る。
At this time, the filter medium of the present invention, in which the rate of change in airflow resistance due to the pressure treatment is small, has an effect of preventing the gel-like substance from being trapped and passing through even if the filtration differential pressure increases, or Has the effect of being cut into small pieces without causing actual harm and passing therethrough. On the other hand, in a filter medium in which the rate of change in airflow resistance due to the pressure treatment is larger than that of the filter medium of the present invention, when the differential pressure of filtration increases, the filter medium is deformed to such an extent that the deformed gel-like substance can penetrate, and a penetration path is formed. As a result, the gel-like material has poor blocking performance.

【0031】(フィルター再生後の濾過性能)金属繊維
焼結フィルターを、例えば溶融ポリマー等の高温高粘度
液体の濾過に用い、次いでこのフィルターを再生洗浄し
て溶融ポリマーの濾過に繰り返し用いる場合、再生後の
フィルターの濾過圧力はポリマー濾過初期の濾過圧力よ
り一般的には高くなる。この理由は不織布状にして焼結
された濾材に高い濾過圧力が負荷されると、濾材に圧搾
変形現象が生じて濾材シートの厚さが薄くなると共に濾
材の空隙率等が減少するためと考えられる。
(Filtration performance after filter regeneration) When a sintered metal fiber filter is used for filtering a high-temperature and high-viscosity liquid such as a molten polymer, and then the filter is regenerated and washed and repeatedly used for filtering the molten polymer, the regeneration is performed. The filtration pressure of the subsequent filter is generally higher than the filtration pressure at the beginning of the polymer filtration. The reason for this is considered that when a high filtration pressure is applied to the filter medium sintered in the form of a nonwoven fabric, a compression deformation phenomenon occurs in the filter medium, and the thickness of the filter medium sheet becomes thinner and the porosity of the filter medium decreases. Can be

【0032】特に、高温雰囲気で濾材に濾過圧力の負荷
が加わると、金属材料の強度が低下しているため、圧搾
変形現象はより顕著になる。圧搾変形した濾材シート
は、流体に対する圧力損失が高くなること、JISB8
356−1976(ASTM−E−128−61)で測
定される濾材シートの平均孔径が小さくなること、その
結果、濾材シートの濾過精度が精密濾過の方向に変化す
る(濾過精度が向上する)こと知られている。
In particular, when a load of filtration pressure is applied to the filter medium in a high-temperature atmosphere, the compressive deformation phenomenon becomes more remarkable because the strength of the metal material is reduced. The squeezed and deformed filter medium sheet has a high pressure loss against the fluid, JISB8
The average pore diameter of the filter medium sheet measured by 356-1976 (ASTM-E-128-61) is reduced, and as a result, the filtration accuracy of the filter medium sheet changes in the direction of microfiltration (the filtration accuracy is improved). Are known.

【0033】しかし、本発明者はゲル状物の濾過につい
ては、金属繊維焼結フィルターが圧搾変形していない新
品フィルターより、繰り返し使用して圧搾変形したフィ
ルターの方がゲル状物を通過し易いことを知見した。
However, the inventor of the present invention has found that a filter which has been repeatedly used and squeezed and deformed is more likely to pass through a gel than a new filter in which a sintered metal fiber filter is not squeezed and deformed. I found that.

【0034】フィルターが被濾過体に含まれる微細な土
石や金属片等の固形異物を捕捉する濾過精度は、濾材シ
ートの平均孔径と高い相関関係にあり、圧搾変形性を受
けて平均孔径が小さくなった濾材シートでは濾過精度が
向上する。しかしゲル状物の捕捉性能は濾材シートの平
均孔径との相関性が低く、むしろ濾材シートの耐圧搾変
形性と強い相関関係があって、平均孔径が小さくとも圧
搾変形し易いフィルターはゲル状物を通過し易いことを
見出した。
The filtration accuracy of the filter, which captures solid foreign matter such as fine debris and metal fragments contained in the material to be filtered, has a high correlation with the average pore size of the filter medium sheet. In the filter material sheet which is no longer used, the filtration accuracy is improved. However, the trapping performance of the gel-like material has a low correlation with the average pore size of the filter medium sheet, and has a strong correlation with the compressive deformation of the filter medium sheet. Was found to be easy to pass through.

【0035】ゲル状物が圧搾変形し易いフィルターを通
過する現象のメカニズムは定かでないが、金属繊維の焼
結体で圧搾変形し難い焼結体の繊維は、加圧処理による
負荷を加えても、その焼結点間の自由空間で緊張状態に
あると思われる。しかし圧搾変形し易い焼結体あるいは
既に圧搾変形している焼結体は負荷を加えると、焼結点
間の距離が短くなって繊維が弛むものと思われる。加え
て、金属繊維の焼結点自身も自由空間の中の固定点でな
く、ある制約の下で自由に動くことが出来るようになる
と思われる。
Although the mechanism of the phenomenon in which the gel-like material passes through a filter which is easily deformed by compression is not clear, the sintered fiber of metal fiber which is hardly deformed by compression can be subjected to a load by a pressure treatment. Seems to be in tension in the free space between its sintering points. However, it is considered that when a load is applied to a sintered body that is easily deformed by compression or has already been deformed by compression, the distance between the sintering points is shortened and the fibers are loosened. In addition, the sintering point of the metal fiber itself is not a fixed point in free space, but will be able to move freely under certain restrictions.

【0036】ゲル状物が圧搾変形しない焼結体を通過す
る場合には、緊張した繊維に引っ掛かって止まってしま
うか、小さく裁断されて通過することが出来る。しかし
圧搾変形し易い焼結体では、ゲル状物は自身がアメーバ
のように自在に変形し、繊維の弛みや焼結点の移動し易
さを利用して、連続した通気孔を形成しながら通過する
ことが出来ると考えられる。金属粒子焼結体が圧搾変形
しない焼結体であることを考えれば、金属粒子焼結体が
ゲル状物の捕捉性能に優れていることが理解される。
When the gel-like material passes through a sintered body that does not undergo squeezing deformation, the gel-like material may be caught by the tensioned fiber and stopped, or may be cut into small pieces and pass through. However, in a sintered body that is easily deformed by squeezing, the gel-like material deforms freely like an amoeba itself, making use of the looseness of the fibers and the ease of movement of the sintering point, while forming continuous air holes. It is thought that it can pass. Considering that the metal particle sintered body is a sintered body that does not undergo squeezing deformation, it is understood that the metal particle sintered body is excellent in the performance of capturing a gel-like material.

【0037】(濾過精度)本発明の濾材は濾過精度が1
〜50μmであることが好ましい。この濾過精度は、コ
ンタミナント(ACFTD、UWホワイト90(カオリ
ン))を水に懸濁した液(懸濁液)を濾材に導いて一定
圧力(−4kPa)下で吸引濾過し、濾過前後の懸濁液
について各粒径の粒子の個数を測定して捕集効率を算出
し、この捕集効率が95%に対応する粒径をもって濾過
精度とする。
(Filtration Accuracy) The filter medium of the present invention has a filtration accuracy of 1
It is preferably from 50 μm to 50 μm. The filtration accuracy is as follows. A solution (suspension) in which a contaminant (ACFTD, UW White 90 (kaolin)) is suspended in water is guided to a filter medium, and subjected to suction filtration under a constant pressure (-4 kPa). The collection efficiency is calculated by measuring the number of particles of each particle size of the suspension, and the particle size corresponding to the collection efficiency of 95% is defined as the filtration accuracy.

【0038】本発明の濾材の濾過精度が1μm未満であ
ると濾過圧力に高圧力が必要となるので実用上好ましく
ない。また、濾過精度が50μmを超えると焼結体の構
成繊維が粗になり過ぎ、粗大粒子やゲル状物を除去する
効果が不足することがある。濾過精度の下限は1.5μ
mであることが更に好ましく、2μmであることが特に
好ましい。また、濾過精度の上限は40μmであること
が更に好ましく、30μmであることが特に好ましい。
If the filtration accuracy of the filter medium of the present invention is less than 1 μm, a high pressure is required for the filtration pressure, which is not practically preferable. If the filtration accuracy exceeds 50 μm, the constituent fibers of the sintered body become too coarse, and the effect of removing coarse particles and gel-like substances may be insufficient. The lower limit of filtration accuracy is 1.5μ
m, more preferably 2 μm. Further, the upper limit of the filtration accuracy is more preferably 40 μm, and particularly preferably 30 μm.

【0039】(被濾過体)本発明の濾材は被濾過体とし
て、溶融ポリマー等の高粘性流体や溶質を溶解した溶
液、固体を懸濁させた懸濁液などに適用することができ
る。
(Filtered Object) The filter medium of the present invention can be applied as a filtered object to a highly viscous fluid such as a molten polymer, a solution in which a solute is dissolved, a suspension in which a solid is suspended, and the like.

【0040】このうち、粘度が5〜5000Pa・sの
液状物質を被濾過体として用いることが好ましく、溶融
ポリマーを被濾過体として用いることが特に好ましい。
Among them, it is preferable to use a liquid substance having a viscosity of 5 to 5000 Pa · s as the object to be filtered, and it is particularly preferable to use a molten polymer as the object to be filtered.

【0041】被濾過体が溶融ポリマーの場合、例えばポ
リエチレンテレフタレート、ポリエチレン−2,6−ナ
フタレートのような芳香族ポリエステル、ポリエチレ
ン、ポリプロピレンのようなポリオレフイン、ポリスチ
レンのようなポリビニル、ナイロンのようなポリアミ
ド、ポリカーボネート、ポリスルフォン等の熱可塑性重
合体の溶融ポリマーを好ましく挙げることができ、その
中でも芳香族ポリエステルの溶融ポリマーが特に好まし
い。
When the material to be filtered is a molten polymer, for example, an aromatic polyester such as polyethylene terephthalate or polyethylene-2,6-naphthalate, a polyolefin such as polyethylene or polypropylene, a polyvinyl such as polystyrene, or a polyamide such as nylon; Preferable examples include a molten polymer of a thermoplastic polymer such as polycarbonate and polysulfone. Among them, a molten polymer of an aromatic polyester is particularly preferred.

【0042】更に、本発明の濾材は被濾過体として、粘
度が5〜5000Pa・sの範囲のものに好ましく適用
することができる。被濾過体の粘度が5Pa・s未満の
場合は、本発明の濾材によらなくてもゲル状物の濾過が
比較的容易に行われるので対象にならない。被濾過体の
粘度が5000Pa・sを超える場合は、本発明の濾材
を用いても、高い濾過圧力のため圧搾変形して本発明の
効果が発現しない。被濾過体の粘度の下限は8Pa・s
が更に好ましく、10Pa・sでが特に好ましい。また
被濾過体の粘度の上限は2000Pa・sが更に好まし
く、1000Pa・sが特に好ましい。
Further, the filter medium of the present invention can be preferably applied to a material to be filtered having a viscosity in the range of 5 to 5000 Pa · s. When the viscosity of the object to be filtered is less than 5 Pa · s, it is not a target because the gel-like material can be relatively easily filtered without using the filter medium of the present invention. When the viscosity of the object to be filtered exceeds 5000 Pa · s, even when the filter medium of the present invention is used, the filter medium is squeezed and deformed due to a high filtration pressure, and the effect of the present invention is not exhibited. The lower limit of the viscosity of the object to be filtered is 8 Pa · s
Is more preferable, and 10 Pa · s is particularly preferable. Further, the upper limit of the viscosity of the object to be filtered is more preferably 2000 Pa · s, particularly preferably 1000 Pa · s.

【0043】被濾過体が溶液の場合の例としては、ポリ
カーボネートを溶解した塩化メチレン溶液、トリアセチ
ルセルロースを溶解した塩化メチレン溶液等を挙げるこ
とができる。これらの溶液にはしばしば完全には溶解し
ていないゲル状物が含まれていることがあり、このゲル
状物が溶剤を蒸発して成形したフィルム等の製品の異物
欠点になる。
Examples of the case where the object to be filtered is a solution include a methylene chloride solution in which polycarbonate is dissolved, a methylene chloride solution in which triacetyl cellulose is dissolved, and the like. These solutions often contain gels that are not completely dissolved, and these gels evaporate the solvent and become foreign matter defects in products such as formed films.

【0044】[0044]

【実施例】以下、実施例をあげて本発明をさらに説明す
る。なお、本発明における物性値は、以下の如く測定さ
れたものであり、かつ定義される。尚、濾材シートに保
護金網が焼結されている場合、各種濾材特性の測定は保
護金網が積層された状態で実施する。
EXAMPLES The present invention will be further described below with reference to examples. The physical property values in the present invention are measured and defined as follows. When a protective wire mesh is sintered on the filter material sheet, various characteristics of the filter material are measured with the protective wire mesh laminated.

【0045】1.通気抵抗 濾材の通気抵抗は、25℃の空気1L(リットル)が1
分間に単位面積(1cm2 )の濾材を通過する時の圧力
損失のことである。通気抵抗は、例えば図2に模式図で
示した通気抵抗測定用セルを、図1に模式図を示した濾
材の通気抵抗測定装置に装着して測定する。図2の濾材
サンプル(11)には、シート状の濾材から直径50m
mの円板状に切り出したものを用い、シール材(12:
上側シール材、13:下側シール材、14:側面シール
材)で側面からの空気の流入が防げるように組立てる。
上側シール材および下側シール材の穴の直径は30mm
とし、セル内の濾材の有効通気面積を7.1cm2 とす
る。
1. Airflow resistance The airflow resistance of the filter medium is 1 liter (liter) of air at 25 ° C.
Pressure loss when passing through a filter medium of unit area (1 cm 2 ) per minute. The airflow resistance is measured, for example, by mounting the airflow resistance measurement cell shown in the schematic diagram of FIG. 2 to the filter medium airflow resistance measurement device shown in the schematic diagram of FIG. The filter medium sample (11) shown in FIG.
m, and used as a sealing material (12:
(Upper seal material, 13: lower seal material, 14: side seal material) so that air can be prevented from flowing in from the side.
The diameter of the hole of the upper sealing material and the lower sealing material is 30 mm.
And the effective ventilation area of the filter medium in the cell is 7.1 cm 2 .

【0046】この通気抵抗測定用セルを、図1に示した
通気抵抗測定装置に装着し、25℃に温調した雰囲気下
で真空ポンプ(6)を作動させ、濾材を通気する空気の
量(オリフィス流量計(3)により測定)が単位面積
(1cm2 )当り1分間に1L(リットル)となるよう
流量調節弁(5)の開度を調節する。空気は大気開放配
管(7)を通じて通気抵抗測定用セルに流入する。通気
量が所定の量になった時の圧力損失を通気抵抗測定用マ
ノメーター(2)で測定し、その値を通気抵抗とする。
The cell for measuring the airflow resistance was mounted on the airflow resistance measurement apparatus shown in FIG. 1, and the vacuum pump (6) was operated in an atmosphere controlled at 25 ° C., to thereby measure the amount of air to be passed through the filter medium ( The opening of the flow control valve (5) is adjusted so that the orifice flow meter (3) measures 1 L (liter) per minute per unit area (1 cm 2 ). The air flows into the ventilation resistance measuring cell through the atmosphere opening pipe (7). The pressure loss at the time when the ventilation amount reaches a predetermined amount is measured by a ventilation resistance measuring manometer (2), and the value is defined as the ventilation resistance.

【0047】2.加圧処理 濾材の加圧処理は、シート状の濾材から直径50mmの
円板状に切り出した濾材をサンプルとし、図3に示した
ようにこのサンプル(21)の両面に直径50mmの円
板状に切り出したゴム硬度50〜70度、厚さ5mmの
ウレタンゴムシートを重ね合わせ、25℃に温調した雰
囲気下で一方のゴムシート(23:下側クッション材)
を下側にしてプレス機等の加圧装置の金型(25:下側
プレス金型)上に設置し、もう一方のゴムシート面(2
2:上側クッション材)にプレス金型(24:上側プレ
ス金型)にて濾材サンプルの実質単位面積当り14.7
MPa(150Kgf/cm2)の圧力を加えて10分
間保持し、その後加圧負荷を開放する。
2. Pressure Treatment The pressure treatment of the filter medium is performed by using a filter medium cut out from a sheet-like filter medium into a disk having a diameter of 50 mm as a sample, and as shown in FIG. A urethane rubber sheet having a rubber hardness of 50 to 70 degrees and a thickness of 5 mm cut into pieces is superimposed, and one rubber sheet (23: lower cushion material) under an atmosphere controlled at 25 ° C.
Is placed on the mold (25: lower press mold) of a pressing device such as a press machine with the lower side facing down, and the other rubber sheet surface (2
2: Upper cushion material) and a press die (24: Upper press die) with a filter material sample of 14.7 per substantial unit area
A pressure of 150 kgf / cm 2 (MPa) is applied and maintained for 10 minutes, and then the pressure load is released.

【0048】[実施例1]アスペクト比が2000のス
テンレス繊維を不織布状に分散し焼結して得た金属繊維
の不織布状焼結体を濾材とした、直径177mmのリー
フディスクフィルター30枚をセットとしたものを用い
てポリエチレン−2,6−ナレフタレートを溶融押出
し、厚さ170μmのポリエステルシートを成形した。
Example 1 A set of 30 leaf disk filters having a diameter of 177 mm and using a nonwoven fabric-like sintered body of metal fibers obtained by dispersing and sintering stainless fibers having an aspect ratio of 2000 into a nonwoven fabric as a filter material was set. Then, polyethylene-2,6-naphthalate was melt-extruded to form a polyester sheet having a thickness of 170 μm.

【0049】用いた濾材は二層の繊維層からなり、上流
側から第一層は繊維径12μmで目付け量500g/m
2 、第二層は繊維径6μmで目付け量1200g/
2 、全体の空隙率が66%で、通気抵抗の加圧処理に
よる変化率が15%のものであった。このフィルター3
0枚をセットにしたフィルターの、ポリエチレン−2,
6−ナレフタレート溶融押出し時の初期圧力損失は1
2.8MPaであり、5日間の連続濾過においてポリエ
ステルシートにゲル状物は認められなかった。
The filter medium used was composed of two fiber layers. The first layer from the upstream side had a fiber diameter of 12 μm and a basis weight of 500 g / m 2.
2. The second layer has a fiber diameter of 6 μm and a basis weight of 1200 g /
m 2 , the total porosity was 66%, and the rate of change in airflow resistance due to the pressure treatment was 15%. This filter 3
A set of 0 filters, polyethylene-2,
The initial pressure loss during 6-naphthalate melt extrusion is 1
It was 2.8 MPa, and no gel was found on the polyester sheet after continuous filtration for 5 days.

【0050】[比較例1]濾材の繊維構成は実施例1と
同一であるが、その濾材の空隙率が76%、通気抵抗の
加圧処理による変化率が120%のものを用いた以外は
実施例1と同様にポリエステルシートを成形した。フィ
ルターの初期圧力損失は11.2MPaであり、運転3
日目にゲル状物が発生し、ポリエステルシートにゲル状
物に起因する欠陥が認められた。濾材構成が同一であっ
ても、通気抵抗の変化率が大きい濾材を用いたフィルタ
ーではゲル状物が通過し易い。
Comparative Example 1 The fiber structure of the filter medium was the same as that of Example 1, except that the filter medium used had a porosity of 76% and a rate of change in air flow resistance due to pressure treatment of 120%. A polyester sheet was formed in the same manner as in Example 1. The initial pressure loss of the filter was 11.2 MPa, and the operation 3
On the day, a gel-like substance was generated, and a defect caused by the gel-like substance was observed in the polyester sheet. Even if the filter material configuration is the same, a gel using a filter material having a high rate of change in airflow resistance can easily pass through a gel.

【0051】[実施例2]上流側から第一層は繊維径8
μmで目付け量400g/m2 、第二層は繊維径4μm
で目付け量1000g/m2 、全体の空隙率が68%
で、通気抵抗の加圧処理による変化率が23%の濾材を
リーフディスクフィルターに用い、ポリエステルとして
ポリエチレンテレフタレートを用いた以外は実施例1と
同様にポリエステルシートを成形した。6日間の連続成
形を行なった結果、ポリエステルシートにゲル状物は認
められなかった。
Example 2 The first layer from the upstream side has a fiber diameter of 8
400 g / m 2 in basis weight and μm, fiber diameter 4 μm in the second layer
With a basis weight of 1000 g / m 2 and a total porosity of 68%
A polyester sheet was formed in the same manner as in Example 1 except that a filter medium having a rate of change of 23% of the airflow resistance due to the pressure treatment was used for the leaf disk filter and polyethylene terephthalate was used as the polyester. As a result of performing continuous molding for 6 days, no gel-like substance was found on the polyester sheet.

【0052】[比較例2]濾材の第二層の目付け量を1
700g/m2 、全体の空隙率を76%、通気抵抗の加
圧処理による変化率が140%である濾材(濾過精度は
実施例2とほぼ同等)を用いた以外は実施例2同様にポ
リエステルシートを成形した。運転3日目にゲル状物が
発生し、ポリエステルシートにゲル状物に起因する欠陥
が認められた。濾材の濾過精度が同等であっても、通気
抵抗の変化率の大きいフィルターはゲル状物が通過し易
い。
[Comparative Example 2] The basis weight of the second layer of the filter medium was 1
Polyester in the same manner as in Example 2 except that a filter medium (filtration accuracy was almost equivalent to that in Example 2) was used, which had a porosity of 700 g / m 2 , an overall porosity of 76%, and a change rate of air flow resistance by a pressure treatment of 140%. A sheet was formed. On the third day of operation, a gel-like substance was generated, and a defect due to the gel-like substance was observed in the polyester sheet. Even if the filtering media have the same filtration accuracy, a gel having a large rate of change in airflow resistance can easily pass through the gel.

【0053】[0053]

【発明の効果】本発明の濾材を用いたフィルターによれ
ば、溶融ポリマー中の異物やフィラー等に含まれる粗大
粒子等の粒子状物に加えて、長期間ゲル状物を同時に捕
捉し除去することができる。
According to the filter using the filter medium of the present invention, a gel-like substance is simultaneously captured and removed for a long period of time in addition to particulate matter such as coarse particles contained in foreign matters and fillers in a molten polymer. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】濾材の通気抵抗測定装置の模式図。FIG. 1 is a schematic diagram of an apparatus for measuring a ventilation resistance of a filter medium.

【図2】通気抵抗測定用セル部分の拡大断面を示す模式
図。
FIG. 2 is a schematic view showing an enlarged cross section of a cell part for measuring a ventilation resistance.

【図3】濾材の加圧処理を行なう装置の模式図。FIG. 3 is a schematic view of an apparatus for performing a pressure treatment of a filter medium.

【符号の説明】[Explanation of symbols]

1:通気抵抗測定用セル 2:通気抵抗測定用マノメーター 3:オリフィス流量計 4:真空容器 5:流量調節弁 6:真空ポンプ 7、15:大気開放配管 11、21:濾材サンプル 12:上側シール材 13:下側シール材 14:側面シール材 16:吸引側配管 22:上側クッション材 23:下側クッション材 24:上側プレス金型 25:下側プレス金型 1: Cell for measuring air flow resistance 2: Manometer for measuring air flow resistance 3: Orifice flow meter 4: Vacuum container 5: Flow control valve 6: Vacuum pump 7, 15: Air release piping 11, 21: Filter material sample 12: Upper seal material 13: Lower seal material 14: Side seal material 16: Suction side piping 22: Upper cushion material 23: Lower cushion material 24: Upper press mold 25: Lower press mold

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アスペクト比が60〜50000の金属
繊維を不織布状に分散し焼結して得られる濾材であっ
て、該濾材の加圧処理による通気抵抗の変化率が2〜7
0%の範囲であることを特徴とする濾材。
1. A filter medium obtained by dispersing and sintering metal fibers having an aspect ratio of 60 to 50,000 into a nonwoven fabric, and having a rate of change of air flow resistance of 2 to 7 by pressurizing the filter medium.
A filter medium characterized by being in the range of 0%.
【請求項2】 濾過精度が1〜50μmである請求項1
に記載の濾材。
2. The filter according to claim 1, wherein the filtration accuracy is 1 to 50 μm.
3. The filter medium according to item 1.
【請求項3】 粘度が5〜5000Pa・sの液状物質
を被濾過体として用いる請求項1に記載の濾材。
3. The filter medium according to claim 1, wherein a liquid substance having a viscosity of 5 to 5000 Pa · s is used as the material to be filtered.
【請求項4】 溶融ポリマーを被濾過体として用いる請
求項3に記載の濾材。
4. The filter medium according to claim 3, wherein the molten polymer is used as a member to be filtered.
JP2000319158A 2000-10-19 2000-10-19 Filter medium Pending JP2002126425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000319158A JP2002126425A (en) 2000-10-19 2000-10-19 Filter medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000319158A JP2002126425A (en) 2000-10-19 2000-10-19 Filter medium

Publications (1)

Publication Number Publication Date
JP2002126425A true JP2002126425A (en) 2002-05-08

Family

ID=18797670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000319158A Pending JP2002126425A (en) 2000-10-19 2000-10-19 Filter medium

Country Status (1)

Country Link
JP (1) JP2002126425A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7901467B2 (en) 2006-10-31 2011-03-08 Bayer Materialscience Ag Process for treatment of metal surfaces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7901467B2 (en) 2006-10-31 2011-03-08 Bayer Materialscience Ag Process for treatment of metal surfaces

Similar Documents

Publication Publication Date Title
EP2733163B1 (en) Porous polytetrafluoroethylene film and air filter filtration material
AU2008262432B2 (en) Multiple layer filter media
EP2730607B1 (en) Method for producing porous polytetrafluoroethylene membrane
JP5928766B2 (en) Polyethylene membrane and method for producing the same
JP3273735B2 (en) Polytetrafluoroethylene porous membrane and method for producing the same, sheet-like polytetrafluoroethylene molded article, and filter medium for air filter
KR100570036B1 (en) Fitering Material, Filter Pack and Air Filter Unit Using the Same and Method of Manufacturing Fitering Material
US20020045041A1 (en) Microporous membrane with a stratified pore structure created in situ and process
WO1997009167A9 (en) Microporous membrane with a stratified pore structure created in situ and process
JPS5953085B2 (en) Filter media and their manufacturing method
JPS60216818A (en) Cylindrical fibrous structure and its production
EP2224042B1 (en) Met blown polymeric filtration medium for high efficiency fluid filtration
US6280791B1 (en) Process of making a three-region reinforced microporous filtration membrane
JP2000079332A (en) Filter medium for air filter
JP2000300921A (en) Air filter material and air filter unit using the same
JP2002534244A (en) Layered filter structure
EP3292906B1 (en) Filter material and filter unit
TW201803637A (en) Backflushable depth filter
JP2002126418A (en) Method for filtering thermoplastic polymer
Zhang et al. Composite nanofibrous microfiltration water filter
JP2002346319A (en) Suction filter medium for turbine
JP2002126425A (en) Filter medium
JP2002119811A (en) Metallic fiber sintered filter
US20180043291A1 (en) Multilayer cellular membranes for filtration applications
JP4423186B2 (en) High viscosity fluid filter unit and spinning pack
JP2005205305A (en) Air filter medium