JP2002124515A - Silicon dioxide conversion film and method of forming patterned silicon dioxide conversion film - Google Patents

Silicon dioxide conversion film and method of forming patterned silicon dioxide conversion film

Info

Publication number
JP2002124515A
JP2002124515A JP2000317749A JP2000317749A JP2002124515A JP 2002124515 A JP2002124515 A JP 2002124515A JP 2000317749 A JP2000317749 A JP 2000317749A JP 2000317749 A JP2000317749 A JP 2000317749A JP 2002124515 A JP2002124515 A JP 2002124515A
Authority
JP
Japan
Prior art keywords
silicon dioxide
wavelength
film
conversion film
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000317749A
Other languages
Japanese (ja)
Other versions
JP4398580B2 (en
Inventor
Shigenori Kiyama
茂憲 樹山
Koutarou Tanimura
功太郎 谷村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2000317749A priority Critical patent/JP4398580B2/en
Publication of JP2002124515A publication Critical patent/JP2002124515A/en
Application granted granted Critical
Publication of JP4398580B2 publication Critical patent/JP4398580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Materials For Photolithography (AREA)
  • Silicon Compounds (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel means for simply and quickly obtaining a more high-purity silicon dioxide film from a polysilazan coat. SOLUTION: The silicon dioxide converted film is prepared by exposing a polysilazan coat to short-wavelength UV rays having wavelength of 100-280 nm in the presence of oxygen molecules enough to photooxidize it. The method of patterning the converted film comprises a step for laying a pattern mask in the presence of air over the ordinal pressure on a surface of polysilazan applied to a base surface, exposing it to short-wavelength UV rays having wavelengths of 100-280 nm, and dissolving and removing unexposed portions by an developing solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリシラザンを光
酸化分解して直接二酸化ケイ素膜に転化してなる二酸化
ケイ素転化膜とパタ−ン状二酸化ケイ素転化膜の形成方
法に関する。このものは高品質セラミック硬化膜として
各分野での有効利用が期待される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a silicon dioxide conversion film and a pattern-like silicon dioxide conversion film obtained by photooxidizing and decomposing polysilazane directly into a silicon dioxide film. This is expected to be effectively used in various fields as a high quality cured ceramic film.

【0002】[0002]

【従来の技術】酸化ケイ素系セラッミクス膜は、その優
れた特性(耐熱性、耐蝕性、耐摩耗性、透明性、電気絶
縁性等)から種々の用途に利用されている。とりわけ電
子機器分野(例えば半導体デバイス、液晶表示デバイ
ス、プリント基板等)での使用が多い。ところでこの酸
化ケイ素系セラッミクス膜の形成には、一般に二酸化ケ
イ素又は有機ケイ素化合物を原料として、これを一般に
知られている薄膜形成手段(スパッタリング等による物
理的方法又はCVDによる化学的方法)により行なって
いるが、近年ポリシラザンを原料としてこれを化学的
(空気・水分・触媒・熱の存在下)に処理して二酸化ケ
イ素膜を形成する方法が開発され話題にもなっている。
これは、このポリシラザンによりなる二酸化ケイ素膜
は、基体との密着性、膜純度(硬質で緻密)等がより高
いものであるといった理由からである。
2. Description of the Related Art Silicon oxide-based ceramics films are used in various applications because of their excellent properties (heat resistance, corrosion resistance, abrasion resistance, transparency, electrical insulation, etc.). In particular, it is often used in the field of electronic devices (eg, semiconductor devices, liquid crystal display devices, printed circuit boards, etc.). Incidentally, the silicon oxide-based ceramics film is generally formed by using silicon dioxide or an organic silicon compound as a raw material and using a generally known thin film forming means (a physical method such as sputtering or a chemical method by CVD). However, in recent years, a method of forming a silicon dioxide film by chemically treating polysilazane as a raw material (in the presence of air, moisture, a catalyst, and heat) has been developed and has become a hot topic.
This is because the silicon dioxide film made of this polysilazane has higher adhesion to a substrate, higher film purity (hard and dense), and the like.

【0003】一方、前記ポリシラザンによる二酸化ケイ
素膜をパタ−ン化するための手段として、該シラザンに
感光性を付与し、パタ−ンマスキング−紫外線露光して
後、未露光部分を現像する方法(以下写真製版法)とか
(例えば特開平11−92666号公報、特開2000
−181069号公報で公開)、又は該ポリシラザンを
酸化雰囲気下で該写真製版法によって得る方法が知られ
ている(例えば特開平5−88373号公報で公開)。
On the other hand, as a means for patterning the silicon dioxide film with the polysilazane, a method of imparting photosensitivity to the silazane, pattern masking, exposing to ultraviolet light, and then developing an unexposed portion ( (Hereinafter referred to as photoengraving method) (for example, JP-A-11-92666, JP-A-2000-2000)
A method of obtaining the polysilazane by the photoengraving method in an oxidizing atmosphere is known (for example, disclosed in JP-A-5-88373).

【0004】[0004]

【発明が解決しようとする課題】本発明は、ポリシラザ
ンから直接二酸化ケイ素に転化する手段に付き鋭意検討
した結果、新たに特殊手段を見出し達成されたものであ
る。それは次の手段である。
DISCLOSURE OF THE INVENTION The present invention has been attained by finding a new special means as a result of intensive studies on means for directly converting polysilazane to silicon dioxide. It is the next means.

【0005】[0005]

【課題を解決するための手段】即ち本発明は、まず請求
項1に記載するように、ポリシラザン塗膜を、酸素分子
存在下で、100〜280nmの波長を有する短波長紫
外線で露光し光酸化分解してなる二酸化ケイ素転化膜で
ある。
According to the present invention, a polysilazane coating film is exposed to short-wavelength ultraviolet light having a wavelength of 100 to 280 nm in the presence of oxygen molecules. This is a silicon dioxide conversion film obtained by decomposition.

【0006】又請求項2では、より有効手段として前記
請求項1における短波長紫外線が、140〜160nm
と240〜260nmとに最大ピ−ク波長をもってなる
二酸化ケイ素転化膜も提供する。
According to a second aspect of the present invention, as a more effective means, the short-wavelength ultraviolet light of the first aspect is used at 140 to 160 nm.
And a silicon dioxide conversion film having a peak wavelength of between 240 and 260 nm.

【0007】又前記請求項2における短波長紫外線の光
源として、低圧水銀灯とすることが有効であるとして請
求項3を提供する。
[0007] Further, the present invention provides a third aspect that it is effective to use a low-pressure mercury lamp as the short-wavelength ultraviolet light source in the second aspect.

【0008】又、請求項4ではパタ−ン状二酸化ケイ素
転化膜の形成方法をも提供する。つまりこの発明は、基
体面に塗膜されたポリシラザン面に、常圧以上の空気の
存在下でパタ−ンマスクを載置し、これに100〜28
0nmの波長を有する短波長紫外線を露光して後、未露
光部分を現像溶剤にて溶解除去する方法である。
The present invention also provides a method for forming a patterned silicon dioxide conversion film. That is, according to the present invention, a pattern mask is placed on the polysilazane surface coated on the substrate surface in the presence of air at normal pressure or higher,
After exposing to short wavelength ultraviolet light having a wavelength of 0 nm, the unexposed portion is dissolved and removed with a developing solvent.

【0009】そして、請求項4に従属して請求項5で
は、前記基体面に塗膜されたポリシラザン面が、空気の
存在下で100〜280nmの波長を有する短波長紫外
線で予備露光され、僅少の酸化分解によって乾燥固化さ
れてなる塗膜面であることも提供する。
According to a fourth aspect of the present invention, the polysilazane surface coated on the substrate surface is preliminarily exposed to short-wave ultraviolet light having a wavelength of 100 to 280 nm in the presence of air, and It is also provided that the coating film surface is dried and solidified by oxidative decomposition of the coating film.

【0010】又、請求項4に従属して請求項6と7では
前記短波長紫外線が、140〜160nmと240〜2
60nmとに最大ピ−ク波長を有し、この波長の光源と
して、低圧水銀灯が好ましいことをも提供する。以下前
記本発明を次の実施形態で詳述する。
[0010] Further, according to claims 6 and 7, the short-wavelength ultraviolet light has a wavelength of 140 to 160 nm and a wavelength of 240 to 2 nm.
It also provides that the maximum peak wavelength is 60 nm, and a low-pressure mercury lamp is preferable as a light source of this wavelength. Hereinafter, the present invention will be described in detail in the following embodiments.

【0011】[0011]

【発明の実施の形態】請求項1に記載の発明から説明す
る。まず該発明の二酸化ケイ素膜の形成の出発物質であ
るポリシラザン(以下Psnと略す)は、これまで数多
くの特許出願公報でも公開されているように、一般に次
の化1で示されるSi−Nを反復単位とする窒化ケイ素
ポリマーである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be described from the first aspect. First, polysilazane (hereinafter, abbreviated as Psn), which is a starting material for forming the silicon dioxide film of the present invention, generally contains Si-N represented by the following chemical formula 1 as disclosed in many patent application publications. It is a silicon nitride polymer used as a repeating unit.

【0012】[0012]

【化1】 Embedded image

【0013】ここでR、R、Rは水素原子、メチ
ル,エチル等のアルキル基、フエニル等のアリ−ル基等
の有機基である。該ポリマーの分子量(例えば数平均分
子量)は、膜(Psn塗膜及二酸化ケイ素膜としての強
度)として最低限必要な強度及びPsnの有機溶媒に対
する溶解性によって適正が決められるが、一般的には約
500〜2500の範囲で適宜選ばれる。又R
、Rが全て水素原子である場合を特にペルヒドロ
ポリシラザン(以下H・Psnと略す)、有機基である
場合をオルガノペルヒドロポリシラザン(以下O・Ps
nと略す)と呼称するが、本発明ではいずれのものも有
効に酸化分解し二酸化ケイ素膜に変わる。勿論両者混合
のPsnであっても良い。尚、Psnは、基本的には該
一般式に示す直鎖状のポリマーであるが、分子内で架橋
構造を有していても良い。但しこの架橋も有機溶媒に難
溶であるような過度の架橋密度であっては望ましくな
い。
Here, R 1 , R 2 and R 3 are a hydrogen atom, an organic group such as an alkyl group such as methyl and ethyl, and an aryl group such as phenyl. The appropriate molecular weight (eg, number average molecular weight) of the polymer is determined by the minimum strength required as a film (strength as a Psn coating film and a silicon dioxide film) and the solubility of Psn in an organic solvent. It is appropriately selected in the range of about 500 to 2500. And R 1 ,
Particularly, when R 2 and R 3 are all hydrogen atoms, perhydropolysilazane (hereinafter abbreviated as H · Psn) is used, and when R 2 and R 3 are organic groups, organoperhydropolysilazane (hereinafter O · Ps) is used.
In the present invention, any of them is effectively oxidized and decomposed to change to a silicon dioxide film. Of course, Psn which is a mixture of both may be used. Psn is basically a linear polymer represented by the general formula, but may have a crosslinked structure in the molecule. However, this cross-linking is not desirable if the cross-linking density is too high to be insoluble in an organic solvent.

【0014】前記Psnは、光酸化分解が行なわれるの
に前駆して、ある基体面に塗膜状態に置かれる。その塗
膜の形成は、まず該Psnの所定量を一般に知られてい
る有機溶剤(水分が含有されるとか、吸湿し易いものは
避ける)に溶解する。ここで該溶剤は、例えばキシレン
等の芳香族炭化水素、ジブチルエ−テル、ジオキサン等
の直鎖状又は環状のエ−テル等である。またPsnの溶
液濃度は、所望する二酸化ケイ素膜の厚さとか、塗膜精
度、塗膜手段等によって異なる。ただ本発明による手段
では、より厚い塗膜でも容易に二酸化ケイ素膜に変化す
るので、塗膜厚さにはあまり影響されないので、塗膜手
段に困難がない限り高濃度で溶解するのがよい。又、あ
る基体とは該塗膜支持体であるが、その形状とか、透明
性等とかは一切問わない。但しこれが本発明の短波長紫
外線に少なくとも露光している間に分解して強度を低下
させるような素材は、避けねばならない。尚、該塗膜手
段は例えば、ロ−ルコーティング、グラビヤコーティン
グ、スプレ−コーティング、スピンコーティング、浸漬
コーティング等の方法であり、このコーティングの際に
は、可能な限り低湿度環境下で行うのがよい。これはP
sn自身が水分によって加水分解されやすいからであ
る。
The Psn is placed in a coating state on a certain substrate surface before the photooxidative decomposition is performed. In forming the coating film, first, a predetermined amount of the Psn is dissolved in a generally known organic solvent (a substance containing moisture or easily absorbing moisture is avoided). Here, the solvent is, for example, an aromatic hydrocarbon such as xylene, or a linear or cyclic ether such as dibutyl ether or dioxane. The concentration of the Psn solution varies depending on the desired thickness of the silicon dioxide film, the accuracy of the coating, the coating means, and the like. However, according to the method of the present invention, even a thicker coating film is easily changed to a silicon dioxide film, and is not so affected by the coating film thickness. Further, the certain substrate is the coating film support, but its shape, transparency, etc. do not matter at all. However, a material which decomposes at least during exposure to the short-wavelength ultraviolet light of the present invention to reduce the strength must be avoided. The coating means is, for example, a method such as roll coating, gravure coating, spray coating, spin coating, dip coating, etc. Good. This is P
This is because sn itself is easily hydrolyzed by moisture.

【0015】前記基体にPsn溶液が塗工されたなら
ば、まず乾操(常温又は加熱)して有機溶剤を蒸発除去
する必要がある。この操作は前記短波長紫外線での露光
によって乾燥し、そのまま酸化分解のための本露光を連
続して行っても良いし、該露光の前に別途乾燥工程を設
けて予め乾燥固化して置いても良い。尚、この乾燥工程
は一般に風乾(常温又は加熱)で行うが、例えば該短波
長紫外線で露光(単なる乾燥固化のための予備露光)し
ても乾燥できる。この予備露光は、特にPsnの分子量
が小さい場合に塗膜面に粘着性があり、これを除去する
ための事前操作である。従ってこの予備露光における露
光時間は、短時間(一般に数秒レベル)であり、実質的
なPsnの二酸化ケイ素への転換はあってはならない。
このような非粘着面にしておくことは、例えばシ−ト状
の基体を積み重ねて保管する場合とか、ロ−ル状の基体
をロ−ル巻きして保管するような場合に有効であるから
である。
After the Psn solution has been applied to the substrate, it is necessary to first dry (normal temperature or heating) to evaporate and remove the organic solvent. This operation is dried by exposure to the short-wavelength ultraviolet light, and the main exposure for oxidative decomposition may be continuously performed as it is, or a separate drying step is provided before the exposure, and dried and solidified in advance. Is also good. In addition, this drying step is generally performed by air drying (normal temperature or heating), but drying can be performed by, for example, exposure to the short-wavelength ultraviolet rays (simple preliminary exposure for drying and solidifying). This pre-exposure is a pre-operation for removing the adhesiveness of the coating film surface particularly when the molecular weight of Psn is small. Therefore, the exposure time in this pre-exposure is short (generally on the order of seconds), and there should be no substantial conversion of Psn to silicon dioxide.
Such a non-adhesive surface is effective, for example, when stacking and storing sheet-like substrates or when storing roll-like substrates by rolling them. It is.

【0016】次に前記Psn塗膜は、特に酸素分子の存
在下で、100〜280nmの波長を有する短波長紫外
線で露光される。この露光によって、Psnは直ちに光
酸化分解されて二酸化ケイ素に転化して二酸化ケイ素膜
となる。ここでまず露光中常に少なくとも酸素分子(従
って空気でも良い)の存在が必須である。この酸素分子
は二酸化ケイ素の形成に使用されるが、そのまま酸素分
子がケイ素原子と結合するのではなく、一旦活性酸素原
子に変化して反応に関与するものと考えられる。従っ
て、酸素分子の存在しない環境下では、二酸化ケイ素へ
の転化は実質的にない。
Next, the Psn coating is exposed to short-wave ultraviolet light having a wavelength of 100 to 280 nm, especially in the presence of oxygen molecules. By this exposure, Psn is immediately photo-oxidized and decomposed into silicon dioxide to form a silicon dioxide film. Here, the presence of at least oxygen molecules (and thus may be air) is always essential during exposure. This oxygen molecule is used to form silicon dioxide, but it is considered that the oxygen molecule does not bond with the silicon atom as it is, but is once converted into an active oxygen atom and participates in the reaction. Thus, in an environment free of molecular oxygen, there is substantially no conversion to silicon dioxide.

【0017】前記酸素分子の反応関与は、特に100〜
280nmの波長を有する短波長紫外線で露光すること
によってのみ行われる。従って酸素分子の存在、非存在
に関わらず、280nmを超える300nm以上の長波
長の光では、二酸化ケイ素へ光酸化分解するように作用
をしない。また100nmより短波長の光では、あまり
にも光エネルギ−が高いためか、円滑に二酸化ケイ素に
転換せずに高純度の二酸化ケイ素膜にならない。勿論2
80nmより長波長の紫外線は全く存在してはならない
と言うことではない。これは該波長の存在は悪影響を及
ぼすと言うことではなく、本発明に言う前記作用効果に
は、実質的に寄与しないと言うことからである。
The participation of the oxygen molecule in the reaction is preferably 100 to
It is performed only by exposing with short wavelength ultraviolet light having a wavelength of 280 nm. Therefore, regardless of the presence or absence of oxygen molecules, long-wavelength light exceeding 280 nm and 300 nm or more does not act to photooxidize and decompose into silicon dioxide. In addition, light having a wavelength shorter than 100 nm has a too high light energy, and does not smoothly convert to silicon dioxide to form a high-purity silicon dioxide film. Of course 2
This does not mean that ultraviolet rays having a wavelength longer than 80 nm must not be present at all. This is not to say that the presence of the wavelength has an adverse effect, but that it does not substantially contribute to the above-mentioned effects according to the present invention.

【0018】前記2つの条件下での反応機構は次のよう
に考えられる。まず露光がスタ−トすると100〜28
0nmの波長中、特に100〜200nmの波長エネル
ギ−は酸素分子を励起して活性酸素原子雰囲気に変え
る。一方、特に200〜280nmの波長エネルギ−
は、PsnのSi−N結合、Si−H結合又はSi−C
結合を切断して、活性(反応性)Siがつくられる。こ
の活性Siに活性酸素原子が直ちに化学結合し二酸化ケ
イ素に転換すると言う推定である。
The reaction mechanism under the above two conditions is considered as follows. First, when the exposure starts, 100 to 28
At a wavelength of 0 nm, in particular, a wavelength energy of 100 to 200 nm excites oxygen molecules to change into an active oxygen atom atmosphere. On the other hand, particularly, wavelength energy of 200 to 280 nm
Is the Si—N bond, Si—H bond or Si—C of Psn.
Breaking the bond creates active (reactive) Si. It is presumed that active oxygen atoms are immediately chemically bonded to this active Si and converted to silicon dioxide.

【0019】前記100〜200nmの波長では、より
具体的には、例えば140〜160nmにピ−ク波長を
有し、200〜280nmの波長では240〜260n
mにピ−ク波長を有しており(請求項2)、その光源と
しては例えば低圧水銀灯が好ましく挙げられる(請求項
3)。
More specifically, the wavelength of 100 to 200 nm has a peak wavelength of, for example, 140 to 160 nm, and the wavelength of 200 to 280 nm has a peak wavelength of 240 to 260 n.
m has a peak wavelength (Claim 2), and the light source is preferably a low-pressure mercury lamp (Claim 3).

【0020】前記露光条件下における操作上の条件は、
一般には(常圧)空気存在下で所定時間露光するが、こ
の時酸素分子の雰囲気濃度が低くなるような環境、例え
ば真空状態にするとか、非活性ガスを存在させるとか、
密閉容器中で行うとかと言ったような環境では行わない
ことが必要である。ここで露光時間であるが、これは勿
論Psn塗膜厚さにもよるが、主として前記短波長紫外
線の露光量(mj/cm)(光源ランプの出力と露光
距離)によって決まるので、具体的には事前テストによ
り具体的に設定するのが良い。
The operational conditions under the above exposure conditions are as follows:
In general, exposure is performed for a predetermined time in the presence of (normal pressure) air. At this time, an environment in which the atmospheric concentration of oxygen molecules is reduced, for example, a vacuum state or the presence of an inert gas,
It is necessary not to perform in an environment such as in a closed container. Here, the exposure time depends on the thickness of the Psn coating film, but it is mainly determined by the exposure amount (mj / cm 2 ) of the short-wavelength ultraviolet ray (output of the light source lamp and exposure distance). It is better to set it specifically by a preliminary test.

【0021】前記によりなる二酸化ケイ素膜は、その優
れた特性から各種基体の被覆(保護)用材としての使用
を始め、電子部品作製用材等に有効に利用される。電子
部品作製用材としての使い方は、該二酸化ケイ素膜を何
らか形にパタ−ン化して使われる場合が多い。そこで本
発明では、この二酸化ケイ素膜がパタ−ン化して使われ
る場合のその形成方法についても、請求項4〜7の記載
をもって提供するものである。以下このパタ−ン形成方
法について説明する。
The silicon dioxide film formed as described above can be effectively used as a material for coating (protecting) various substrates and as a material for producing electronic parts due to its excellent properties. When used as a material for producing electronic parts, the silicon dioxide film is often used after being patterned into any shape. Therefore, in the present invention, a method of forming the silicon dioxide film when the silicon dioxide film is used in the form of a pattern is provided according to claims 4 to 7. Hereinafter, this pattern forming method will be described.

【0022】まず前記したようにPsnの有機溶剤溶液
を、金属基板、ガラス基板、プラスチック基板、半導体
基板(シリコンウエハ等)、透明導電性膜付き液晶基
板、金属薄膜付きのプリント回路基板等の基体面に所定
厚さで塗布する。塗布法は前記の通りであるが、より高
精度で塗布したい場合には、一般にスピンコーティング
法が良い。
First, as described above, an organic solvent solution of Psn is applied to a substrate such as a metal substrate, a glass substrate, a plastic substrate, a semiconductor substrate (such as a silicon wafer), a liquid crystal substrate with a transparent conductive film, and a printed circuit board with a metal thin film. It is applied to the body surface with a predetermined thickness. The application method is as described above. However, when it is desired to apply with higher precision, the spin coating method is generally preferable.

【0023】前記塗布が終了すると、少なくとも有機溶
媒を蒸発除去して固形塗膜状態にするために乾燥が行わ
れる。乾燥は(前記したように)、一般には常温又は加
熱の風乾で行うが、本発明では、この乾燥を請求項5で
提供する方法でも行うこともできる。特にこの乾燥固化
方法を採ると、現象としては塗膜に粘着性がなくなり、
さらっとした面になる。このような塗膜面では、次の工
程の該塗膜面へのパタ−ンマスク(例えが合成石英ガラ
スを基板とする該マスクの場合)の載置において、該マ
スクが密着状態にはならないので、僅かのクリアランス
をもった状態で載置することができる。これはPsnの
酸化分解に必要な酸素分子の介在に有効になる。勿論前
記するように、使用する基体がロ−ル状のフイルムであ
る場合に、ロ−ル巻きしてもブロッキングするようなこ
ともなくなると言う効果がある。尚、パタ−ンマスクが
(後述するように)基板のないメタルマスクのような場
合には、ある程度の粘着性がある方が良い場合もある。
これは該マスクのような場合には、粘着性があることで
該マスクが良く密着する。これは該マスク部分(光線不
透過部分で現像される部分)への短波長紫外線の光線漏
れがないので、パタ−ンの再現精度が増すことになるか
らである。
When the coating is completed, drying is performed to evaporate and remove at least the organic solvent to form a solid coating. Drying (as described above) is generally performed by air drying at room temperature or by heating, but in the present invention, this drying can also be performed by the method provided in claim 5. In particular, when this drying and solidifying method is employed, the phenomenon is that the coating film has no tackiness,
It becomes a smooth surface. On such a coating film surface, the mask does not come into close contact with a pattern mask (for example, in the case of a mask using synthetic quartz glass as a substrate) placed on the coating film surface in the next step. Can be mounted with a slight clearance. This is effective for interposition of oxygen molecules required for oxidative decomposition of Psn. Of course, as described above, when the substrate to be used is a roll-shaped film, there is an effect that blocking does not occur even when rolled. When the pattern mask is a metal mask without a substrate (as will be described later), it may be better to have a certain degree of tackiness.
This is because, in the case of the mask, the mask adheres well because of the adhesiveness. This is because short-wavelength ultraviolet rays do not leak to the mask portion (the portion developed by the light-opaque portion), and the pattern reproduction accuracy is increased.

【0024】しかし請求項5に記載する条件は、単なる
乾燥固化である。つまり、これはPsnの二酸化ケイ素
への酸化分解は僅少に留まり実質的転化されないことで
達成される。これを具体的に示せば、例えば水酸化ナト
リウム水溶液(例えば3〜5重量%の希薄水溶液)に浸
漬(常温)して3〜10秒でPsn塗膜が溶解されるか
どうかを見る。溶解すれば単に粘着性をなくした適正な
乾燥固化だけと判断する。
However, the condition described in claim 5 is merely drying and solidification. That is, this is achieved because the oxidative decomposition of Psn to silicon dioxide is minimal and not substantially converted. Specifically, it is determined whether or not the Psn coating film is dissolved in 3 to 10 seconds after immersion (normal temperature) in, for example, an aqueous solution of sodium hydroxide (for example, a dilute aqueous solution of 3 to 5% by weight). If dissolved, it is judged that it is simply proper drying and solidification without stickiness.

【0025】次に、前記得られたPsn塗膜面にパタ−
ンマスクを載置する。ここで該マスクは、まず100〜
280nmの短波長紫外線には実質的に影響(該紫外線
で分解されるとか、それを吸収するとか)されない素材
でもって、所望するパタ−ン(例えば格子状、ライン
状、網点状)が形成されているもので、従って該マスク
は該紫外線の透過部分と非透過部分からなっている。具
体的には、該素材として金属シ−トを使い、これに網点
状パタ−ンを穿設した、一般にメタルマスクと呼ばれて
いる基板のないマスクや、1mm程度以下の合成石英板
の片面上にクロムでパタ−ンを形成した、基板のあるマ
スク等が例示できる。ここでメタルマスクのような基板
のないマスクでは、載置されても常に酸素分子が存在
(該紫外線の透過部分)している状態にあるが、該石英
板マスクのように基板のあるマスクでは、載置の状態で
は酸素分子が遮断されるような露光環境になり易い。従
って、このようなマスクを使う場合には、可能な限り軽
量なマスクを使い、Psn塗膜面も前記するように粘着
性でない等の手段を講じるのがよい。
Next, a pattern was applied to the surface of the obtained Psn coating film.
Place the mask. Here, the mask is 100-
A desired pattern (eg, lattice, line, halftone dot) is formed by a material which is not substantially affected by 280 nm short-wave ultraviolet rays (such as being decomposed or absorbed by the ultraviolet rays). Therefore, the mask is composed of the ultraviolet light transmitting portion and the ultraviolet light non-transmitting portion. Specifically, a metal sheet is used as the material, and a halftone pattern is perforated in the metal sheet. A mask without a substrate generally called a metal mask or a synthetic quartz plate of about 1 mm or less is used. An example is a mask having a substrate on which a pattern is formed of chromium on one side. Here, in a mask without a substrate such as a metal mask, oxygen molecules are always present (the part transmitting the ultraviolet rays) even when the mask is mounted, but in a mask with a substrate such as the quartz plate mask, oxygen molecules are always present. In the mounted state, an exposure environment in which oxygen molecules are blocked easily occurs. Therefore, when such a mask is used, it is better to use a mask that is as light as possible and take measures such as that the Psn coating surface is not tacky as described above.

【0026】前記パタ−ンマスクが載置されたら、露光
を行うが、この時の環境は常圧以上の空気存在下であ
る。この常圧以上の空気は、より多くの酸素分子が存在
する方がより好ましいからである。従って酸素分子の濃
度が低くなるような真空下とか、仮に常圧以上であって
も、酸素濃度が低くなる(例えば窒素ガスを混合する)
ような環境は避けねばならない。加圧にするにしても、
少なくとも露光時間内の酸化反応に必要な濃度を維持す
るに相当する圧力で良く。過多になるのは好ましくない
(特に前記ガラス製マスクパタ−ンような基板のある該
パタ−ンにとって)。一般には常圧で行う。この時の雰
囲気温度については、一般には常温であるが、加熱下で
あっても良い。但し温度は、後述する光源自身の温度に
も影響を及ぼすことになり、これがあまり高くなると該
光源の出力低下を引き起こすことになる。40℃以上に
はならないようにするのが良い。
When the pattern mask is mounted, exposure is performed. At this time, the environment is in the presence of air at normal pressure or higher. This is because it is more preferable that the air at normal pressure or higher has more oxygen molecules. Therefore, even under a vacuum in which the concentration of oxygen molecules is low, or even if the pressure is higher than normal pressure, the oxygen concentration is low (for example, nitrogen gas is mixed).
Such an environment must be avoided. Even if you pressurize,
A pressure corresponding to maintaining the concentration required for the oxidation reaction at least within the exposure time is sufficient. Too much is not preferred (especially for those patterns with a substrate such as the glass mask pattern). Generally, it is performed at normal pressure. The ambient temperature at this time is generally room temperature, but may be under heating. However, the temperature also affects the temperature of the light source itself, which will be described later. If the temperature is too high, the output of the light source is reduced. It is better not to exceed 40 ° C.

【0027】露光は、前記条件でPsn塗膜面に載置さ
れたパタ−ンマスクの上から100〜280nmの波長
を有する短波長紫外線、好ましくは140〜160nm
と240〜260nmとに最大ピ−ク波長を有する該紫
外線を照射することで行なう。この理由は前記の通りで
ある。具体的に該光線を有効に発生する光源は、低圧水
銀灯(封入される水銀蒸気圧の低いもの)であり、30
0nm以上の長波長を主とする高圧水銀灯は対象外であ
る。
Exposure is performed by short-wave ultraviolet light having a wavelength of 100 to 280 nm, preferably 140 to 160 nm, from above the pattern mask placed on the Psn coating surface under the above conditions.
The irradiation is performed by irradiating the ultraviolet light having the maximum peak wavelength in the range of 240 to 260 nm. The reason is as described above. Specifically, a light source that effectively generates the light beam is a low-pressure mercury lamp (a sealed mercury vapor pressure is low).
High-pressure mercury lamps mainly having a long wavelength of 0 nm or more are out of scope.

【0028】前記二酸化ケイ素膜への転換時間は、光源
出力とPsn塗膜厚さが一定であれば、露光時間(比
例)と露光距離(二乗に反比例)とによって決まる。具
体的には予備テストを行って決めることになる。例えば
そのテストでは、Psn塗膜厚さ60nmに、出力1W
/cmの低圧水銀灯を、露光面間距離100mmで60
秒間照射したところ、ほぼ完全に二酸化ケイ素に転化し
ていた。より完全に二酸化ケイ素への転化をしたいがた
めに、必要以上の長い時間の露光は極力避けた方が良
い。これは一般に行われる真空下(パタ−ンマスクの完
全な密着と、酸素の排除のため)での露光とは異なり、
パタ−ンマスクの完全な密着ではないので、非露光部へ
の光の漏れが起こりやすい状態にあるからである。尚、
この光りの漏れの防止には、可能な限り直線光線とする
のがよいが、そのためには例えば載置されたパタ−ンマ
スクと光源の間にハニカム状の透過板を平設することで
も改善できる。
The conversion time to the silicon dioxide film is determined by the exposure time (proportional) and the exposure distance (inversely proportional to the square) if the light source output and the Psn coating thickness are constant. Specifically, a preliminary test is performed to determine this. For example, in the test, an output of 1 W was applied to a Psn coating thickness of 60 nm.
/ Cm low-pressure mercury lamp with an exposure surface distance of 100 mm
After irradiation for 2 seconds, it was almost completely converted to silicon dioxide. It is better to avoid exposure for a longer time than necessary as much as possible, in order to convert the silicon dioxide to silicon dioxide more completely. This is different from the general exposure under vacuum (for perfect adhesion of the pattern mask and exclusion of oxygen).
This is because the pattern mask is not completely adhered, so that light is likely to leak to the non-exposed portion. still,
In order to prevent this light leakage, it is preferable to use a linear beam as much as possible. For this purpose, for example, it is possible to improve the situation by arranging a honeycomb-shaped transmission plate between the placed pattern mask and the light source. .

【0029】次に前記露光が終了したら、未露光部分を
現像溶剤にて溶解除去する(現像処理)。ここで該溶剤
としては、水酸化ナトリウム、水酸化カリウム等の無機
アルカリ水溶液(一般に3〜5重量%の希薄溶液)、ト
ルエン、キシレン、ジブチルエ−テル、ジオキサン又は
これらの混合の有機溶剤が例示できる。この現像処理
は、一般に20〜50℃程度の温度で該現像溶剤に接し
て未露光部分を溶解除去する。該接しの仕方には、単に
該溶剤に接するとか、スプレ−噴射するとか、ブラッシ
ングする等によって行うが、適宜効率の良い方法を選べ
ば良い。現像したら適宜表面洗浄して乾燥する。以上に
より、基体上には所望する二酸化ケイ素パタ−ンがしっ
かりと形成されているが、この形成だけで初期の目的が
達せられるならば、これで全行程は終了するが、更に導
電回路等を作製しようとするならば、エッチング工程が
必要になる。勿論この場合は、基体としては、導電体が
絶縁基体に積層されたものが使用されることになる。
Next, when the exposure is completed, the unexposed portions are dissolved and removed with a developing solvent (development processing). Here, examples of the solvent include an aqueous solution of an inorganic alkali such as sodium hydroxide or potassium hydroxide (generally, a dilute solution of 3 to 5% by weight), toluene, xylene, dibutyl ether, dioxane, or an organic solvent of a mixture thereof. . In this developing treatment, the unexposed portion is dissolved and removed by contacting the developing solvent at a temperature of generally about 20 to 50 ° C. The contacting is performed simply by contacting with the solvent, spraying, brushing, or the like, and an efficient method may be appropriately selected. After development, the surface is appropriately washed and dried. As described above, the desired silicon dioxide pattern is firmly formed on the substrate. If the initial purpose can be achieved only by this formation, the entire process is completed. If it is to be manufactured, an etching step is required. Needless to say, in this case, a substrate in which a conductor is laminated on an insulating substrate is used.

【0030】[0030]

【実施例】以下に比較例と共に実施例によって更に詳述
する。 (実施例1)まずH・Psn溶液(分子量・700、有
機溶剤・キシレン、固形分濃度・5重量%)を、100
mm角のPETフイルム(脱脂洗浄後、コロナ放電にて
前処理済み)に次の条件で塗布し乾燥した。つまりスピ
ンコ−タ−の回転テ−ブルの上に該PETフイルムを固
定し、該H・Psn溶液をほぼ全面に液滴下し、回転を
開始する。回転は徐々に速度を上げ、1500rpmに
到達したら、その速度で20秒間回転し続けた。回転を
終わったら約110℃で10分間乾燥した。表面は若干
粘着状態にあったが、該溶剤は除かれH・Psn塗膜が
強固に形成されていた。
The present invention will be described in more detail with reference to the following examples together with comparative examples. Example 1 First, an H · Psn solution (molecular weight: 700, organic solvent: xylene, solid content: 5% by weight) was added to 100
It was applied to a mm-square PET film (pre-treated by corona discharge after degreasing and washing) under the following conditions and dried. That is, the PET film is fixed on a rotating table of a spin coater, and the H.Psn solution is dropped almost over the entire surface to start rotation. The rotation gradually increased in speed, and when it reached 1500 rpm, the rotation was continued at that speed for 20 seconds. After finishing the rotation, it was dried at about 110 ° C. for 10 minutes. Although the surface was slightly tacky, the solvent was removed and the H.Psn coating was firmly formed.

【0031】次に前記得られたPETフイルム上のH・
Psn塗膜に次の条件で全面に露光した。光源として出
力1W/cmの低圧水銀灯(185nmと254nmと
に最大波長を有している)を使い、この光源の下に10
0mm離して(露光面間距離)該塗膜フイルムをセット
した。そして常温、常圧の空気の下で70秒間全面露光
を行った。得られた塗膜表面はガラス的で,硬質であ
り、膜厚は60nmであった。
Next, H. on the PET film obtained above was used.
The entire surface of the Psn coating film was exposed under the following conditions. A low-pressure mercury lamp having an output of 1 W / cm (having a maximum wavelength at 185 nm and 254 nm) is used as a light source.
The coating film was set at a distance of 0 mm (distance between exposed surfaces). Then, the entire surface was exposed under air at normal temperature and normal pressure for 70 seconds. The surface of the obtained coating film was glassy and hard, and the film thickness was 60 nm.

【0032】そして、前記露光して得られたPETフイ
ルムを1/2にカットして次のテストを行い、H・Ps
n膜の二酸化ケイ素膜への転化の確認を行った。テスト
の1つは、一つのPETフイルムを5重量%の水酸化ナ
トリウム水溶液に常温で5分間浸漬し、そして水洗して
乾燥した。これを拡大顕微鏡で表面状態を観察したが、
溶解したとか浸食したようなことは一切観察されず、又
膜厚を測定したが頭初の60nmと同じであった。もう
一つのテストとして、残る一枚のPETフイルムをIR
分析装置にかけて赤外スペクトル分析を行った。得られ
た赤外スペクトルチャ−トからH・Psnに由来する吸
収波長(3400cm−1のN−H、2200cm−1
のSi−H、830cm−1のSi−N)と二酸化ケイ
素転換に由来する吸収波長(1080cm−1のSi−
0)とをチェックした。その結果H・Psnに由来する
吸収波長の全てが消失し、1080cm−1のSi−0
の吸収のみが観察された。以上のテストから明らかなよ
うに、本発明は極めて簡単操作で短時間にして容易に、
高純度の二酸化ケイ素膜が得られることが判る。
Then, the PET film obtained by the exposure was cut in half, and the following test was performed.
Conversion of the n film to a silicon dioxide film was confirmed. In one test, one PET film was immersed in a 5% by weight aqueous sodium hydroxide solution at room temperature for 5 minutes, washed with water, and dried. Observing the surface condition with a magnifying microscope,
No dissolution or erosion was observed at all, and the film thickness was measured, but it was the same as the initial value of 60 nm. As another test, the remaining PET film was IR
Infrared spectrum analysis was performed using an analyzer. From the obtained infrared spectrum chart, the absorption wavelength derived from H · Psn (N−H at 3400 cm −1, 2200 cm −1)
Of Si—H, 830 cm −1 of Si—N) and the absorption wavelength derived from silicon dioxide conversion (1080 cm −1 of Si—N).
0) was checked. As a result, all of the absorption wavelengths derived from H · Psn disappear, and 1080 cm −1 of Si-0
Was observed only. As is clear from the above test, the present invention is very easy to operate in a short time,
It can be seen that a high-purity silicon dioxide film can be obtained.

【0033】(実施例2)まずO・Psn溶液(分子量
・900で末端にメチル基を有する)、有機溶剤・ジブ
チルエ−テル、固形分濃度・4重量%)を使い、100
mm角のPETフイルム2枚(脱脂洗浄後、コロナ放電
の前処理済み)に、実施例1と同様にスピンコーティン
グして乾燥した。表面は若干粘着状態にあったが、該溶
剤は除かれO・Psn塗膜が強固に形成されていた。
Example 2 First, an O.Psn solution (molecular weight: 900, having a methyl group at the terminal), an organic solvent: dibutyl ether, solid content: 4% by weight) was used, and
As in Example 1, spin coating was performed on two pieces of PET film (square mm) (after degreasing and washing and pretreatment of corona discharge), followed by drying. Although the surface was slightly tacky, the solvent was removed and the O.Psn coating film was firmly formed.

【0034】次に、まず前記得られたPETフイルム上
のO・Psn塗膜の粘着性を取るために次の条件で予備
露光を行った。つまり実施例1で行った露光条件である
が、露光時間を8秒とした。得られたO・Psn塗膜面
の粘着性は、消失し滑り易い状態になった。ここでのO
・Psn塗膜厚さは62nmであった。尚、該フイルム
の1部をカットして、5重量%の水酸化ナトリウム水溶
液に常温で7秒間浸漬して見た。その結果該塗膜面は完
全に溶解除去されたので、この予備露光は適正な粘着性
除去のための予備処理であったことも確認できた。
Next, preliminary exposure was carried out under the following conditions in order to obtain the tackiness of the O.Psn coating on the PET film obtained above. That is, under the exposure conditions used in Example 1, the exposure time was set to 8 seconds. The tackiness of the obtained O.Psn coating surface disappeared and became slippery. O here
-The Psn coating thickness was 62 nm. A part of the film was cut and immersed in a 5% by weight aqueous sodium hydroxide solution at room temperature for 7 seconds. As a result, since the coating film surface was completely dissolved and removed, it was also confirmed that this preliminary exposure was a preliminary treatment for properly removing tackiness.

【0035】そして、引き続き前記フイルムの1枚を使
い、次の条件で本露光を行った。つまり実施例1におけ
る露光時間を60秒とする以外は、同様条件で全面露光
を行った。得られた塗膜面はガラス的で硬質面であっ
た。そしてこれについても、実施例1と同様に5重量%
の水酸化ナトリウム水溶液での浸漬テストと、IR分析
装置による同定分析を行った。該浸漬テストでは、実施
例1と同様に浸食等も一切なく、またIRスペクトルに
も二酸化ケイ素に基づく1080cm−1の吸収のみで
他の吸収は観察されなかった。
Then, using one of the films, main exposure was performed under the following conditions. That is, the entire surface was exposed under the same conditions except that the exposure time in Example 1 was set to 60 seconds. The obtained coating film surface was glassy and hard. And also about 5% by weight similarly to Example 1.
A immersion test in an aqueous sodium hydroxide solution and identification analysis with an IR analyzer were performed. In the immersion test, no erosion or the like was observed in the same manner as in Example 1. Further, in the IR spectrum, only absorption at 1080 cm −1 based on silicon dioxide was observed, and no other absorption was observed.

【0036】(比較例1)実施例1において、露光条件
中、光源とH・Psn塗膜PETフイルムとの間に常に
ガスを流し続けることと、露光を5分間行う以外は
同一条件で塗膜形成から露光を行った。そして得られた
ものを、常温の5重量%の水酸化ナトリウム水溶液に4
0秒間浸漬して引き上げた。該塗膜は1部溶解され、1
部は膜の状態で剥離され、その膜に指先を触れると簡単
に崩れてしまった。つまりこのことは、酸素分子が実質
的に存在していなかったことで、二酸化ケイ素への酸化
分解が行われなかったことを意味している。
(Comparative Example 1) In Example 1, the same conditions as in Example 1 were used except that N 2 gas was continuously flowed between the light source and the H · Psn coated PET film, and the exposure was performed for 5 minutes. Exposure was performed from the coating film formation. The obtained product is added to a 5% by weight aqueous solution of sodium hydroxide at room temperature for 4 hours.
It was immersed for 0 second and pulled up. One part of the coating was dissolved and 1
The part was peeled off in the state of a film, and easily collapsed when a fingertip touched the film. In other words, this means that oxidative decomposition to silicon dioxide was not performed because oxygen molecules were not substantially present.

【0037】(比較例2)実施例2で予備乾燥して得た
Psn塗膜PETフイルムの残る1枚を使い、次の条件
で露光した。つまり実施例2において行った本露光にお
いて、光源を高圧水銀灯(出力1W/cm)に変え、露
光時間を3分間とすること以外は同一条件で露光を行っ
た。得られた塗膜面は、一応硬膜の状態にはあったが、
二酸化ケイ素への転化が行われたかどうかを確認するた
めに、実施例2で行ったと同じ2つのテストを行った。
尚、ここでの膜厚は63nmであった。
Comparative Example 2 The remaining Psn coated PET film obtained by predrying in Example 2 was used and exposed under the following conditions. That is, in the main exposure performed in Example 2, exposure was performed under the same conditions except that the light source was changed to a high-pressure mercury lamp (output: 1 W / cm) and the exposure time was set to 3 minutes. Although the obtained coating film surface was in a hardened state,
The same two tests were performed as in Example 2 to determine if conversion to silicon dioxide had occurred.
Here, the film thickness was 63 nm.

【0038】まずテストの1つの5重量%の水酸化ナト
リウム水溶液での浸漬テストでは、表面が浸食したため
か、表面荒れが観察され、膜厚を測定すると36nmで
あった。もう一つのIRスペクトル分析では、Si−0
の吸収波長もあるが、Si−Nの吸収の吸収が大きく存
在していることが観察された。以上の結果は、300〜
400nmに主波長を有する光源では、酸素分子存在下
でも、Psnの二酸化ケイ素への実質的転化は行われな
いことを証明している。
First, in one immersion test using a 5% by weight aqueous solution of sodium hydroxide, the surface was eroded, and surface roughness was observed. The film thickness was measured to be 36 nm. In another IR spectrum analysis, Si-0
However, it was observed that the absorption of Si—N was largely present. The above results are 300 ~
A light source having a dominant wavelength at 400 nm proves that no substantial conversion of Psn to silicon dioxide occurs even in the presence of oxygen molecules.

【0039】(実施例3)まず、100mm角のガラス
板2枚にITO(インジュウム酸化錫)をスパッタリン
グしたITO導電膜付きのガラス板を作製しこれを基体
として使用した。
Example 3 First, a glass plate with an ITO conductive film was prepared by sputtering ITO (indium tin oxide) on two 100 mm square glass plates, and this was used as a substrate.

【0040】そして、前記ガラス基板を使い、これに実
施例1と同じH・Psn溶液(分子量・700、有機溶
剤・キシレン、固形分濃度・5重量%)を、同一条件で
スピンコーティングして塗布し乾燥してITO導電膜面
にH・Psn塗膜を形成した。
Then, the same H.Psn solution (molecular weight: 700, organic solvent: xylene, solid content: 5% by weight) as in Example 1 was spin-coated on the glass substrate under the same conditions and applied. After drying, an H.Psn coating film was formed on the ITO conductive film surface.

【0041】次に、前記得られたH・Psn塗膜面は実
施例1と同様に若干粘着性があったので、この粘着性を
取るために、実施例1と同一条件で8秒間の予備露光を
行った。粘着性は完全に除去され、さらさらした面に変
わった。以下これを予備乾燥ガラス板と呼ぶ。
Next, the surface of the obtained H.Psn coating film was slightly tacky as in Example 1. In order to obtain this tackiness, a preliminary treatment for 8 seconds was performed under the same conditions as in Example 1. Exposure was performed. The tack was completely removed and turned into a smooth surface. Hereinafter, this is referred to as a pre-dried glass plate.

【0042】次に、前記予備乾燥ガラス板を使い、次の
条件でパタ−ン状二酸化ケイ素転化膜を形成した。パタ
−ンマスクとして、厚さ20μmのステンレス箔に直径
50μmの細孔を90μmの等ピッチで穿設したもの
を、該予備乾燥ガラス板のH・Psn塗膜面に載置し、
これを実施例1で使用した光源の80mm下に置いた。
そして該H・Psn塗膜面から上方10mmの位置にハ
ニカム状の透過板(厚さ15mm)を水平に置き、常温
・常圧の空気下で光源を点灯した。露光時間は70秒と
した。そして該マスクを取り、露光面に常温の5重量%
の水酸化ナトリウム水溶液を3分間噴射し現像を終え
た。
Next, using the pre-dried glass plate, a patterned silicon dioxide conversion film was formed under the following conditions. As a pattern mask, a 20 μm-thick stainless steel foil with 50 μm diameter pores perforated at an equal pitch of 90 μm was placed on the H.Psn coating surface of the pre-dried glass plate,
This was placed 80 mm below the light source used in Example 1.
Then, a honeycomb-shaped transmission plate (thickness: 15 mm) was placed horizontally at a position 10 mm above the H · Psn coating film surface, and the light source was turned on under normal temperature and normal pressure air. The exposure time was 70 seconds. Then, the mask is removed, and 5% by weight of room temperature
Was sprayed for 3 minutes to complete the development.

【0043】前記現像面を拡大顕微鏡で観察したとこ
ろ、まず該マスクの円形パタ−ンが二酸化ケイ素膜でし
っかりと形成されていることを確認した。そしてその径
を測定したところ55μmであった。若干円形パタ−ン
の径は大きくなっているが、ほぼ1対1で再現されてい
ることが判る。尚、この現像後に更に非円形部分(未露
光で溶解除去された部分−下地のITO膜部分)のエッ
チング(例えば塩化第二鉄水溶液)を行えば、下地のI
TO膜が非円形パタ−ン状でガラス板に形成されること
になる。
When the developed surface was observed with a magnifying microscope, it was first confirmed that the circular pattern of the mask was firmly formed of a silicon dioxide film. And when the diameter was measured, it was 55 micrometers. It can be seen that the diameter of the circular pattern is slightly larger, but is reproduced almost one-to-one. After this development, if the non-circular portion (the portion undissolved and removed by exposure to light—the underlying ITO film portion) is further etched (for example, an aqueous solution of ferric chloride), the underlying I
The TO film is formed on the glass plate in a non-circular pattern.

【0044】[0044]

【発明の効果】本発明は、前記の通り構成されること
で、次のような効果を奏する。
The present invention has the following effects by being configured as described above.

【0045】Psn塗膜からより高純度の二酸化ケイ素
膜が簡単にして迅速に、一挙に製造できるようになっ
た。
A higher purity silicon dioxide film can be easily, rapidly, and rapidly produced from a Psn coating film.

【0046】前記により生産管理もし易くなり製造時間
が大きく短縮されるようになった。
As described above, the production control becomes easy, and the manufacturing time is greatly reduced.

フロントページの続き Fターム(参考) 2H025 AA10 AA13 AA14 AA20 AB15 AB16 AB20 AC01 AD01 BD48 BF30 BJ10 FA05 FA15 2H096 AA25 AA26 BA20 DA02 EA02 GA01 LA30 4G072 AA25 BB09 GG01 GG03 HH28 JJ03 NN30 RR01 RR26 UU01 5F058 BB06 BC02 BF46 BG10 BH17Continued on the front page F-term (reference) 2H025 AA10 AA13 AA14 AA20 AB15 AB16 AB20 AC01 AD01 BD48 BF30 BJ10 FA05 FA15 2H096 AA25 AA26 BA20 DA02 EA02 GA01 LA30 4G072 AA25 BB09 GG01 GG03 HH28 JJ03 NN30B01 BB30B01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】ポリシラザン塗膜を、酸素分子存在下で、
100〜280nmの波長を有する短波長紫外線で露光
し光酸化分解してなる二酸化ケイ素転化膜。
A polysilazane coating film is formed in the presence of oxygen molecules.
A silicon dioxide conversion film formed by exposure to short wavelength ultraviolet light having a wavelength of 100 to 280 nm and photo-oxidative decomposition.
【請求項2】請求項1における短波長紫外線が、140
〜160nmと240〜260nmとに最大ピ−ク波長
をもってなる二酸化ケイ素転化膜。
2. The method according to claim 1, wherein the short-wavelength ultraviolet light is 140
A silicon dioxide conversion film having a maximum peak wavelength between about 160 nm and 240 to 260 nm.
【請求項3】前記短波長紫外線が、低圧水銀灯である請
求項2に記載の二酸化ケイ素転化膜。
3. The silicon dioxide conversion film according to claim 2, wherein said short wavelength ultraviolet light is a low pressure mercury lamp.
【請求項4】基体面に塗膜されたポリシラザン面に、常
圧以上の空気の存在下でパタ−ンマスクを載置し、これ
に100〜280nmの波長を有する短波長紫外線を露
光して後、未露光部分を現像溶剤にて溶解除去すること
を特徴とするパタ−ン状二酸化ケイ素転化膜の形成方
法。
4. A pattern mask is placed on the polysilazane surface coated on the substrate surface in the presence of air at normal pressure or higher, and exposed to short-wave ultraviolet light having a wavelength of 100 to 280 nm. Forming a patterned silicon dioxide conversion film by dissolving and removing unexposed portions with a developing solvent.
【請求項5】前記基体面に塗膜されたポリシラザン面
が、100〜280nmの波長を有する短波長紫外線で
予備露光され、僅少の酸化分解によって乾燥固化されて
なる塗膜面である請求項4に記載のパタ−ン状二酸化ケ
イ素転化膜の形成方法。
5. The polysilazane surface coated on the substrate surface is preliminarily exposed to short-wavelength ultraviolet light having a wavelength of 100 to 280 nm, and dried and solidified by a slight oxidative decomposition. 5. The method for forming a patterned silicon dioxide conversion film according to item 1.
【請求項6】前記短波長紫外線が、140〜160nm
と240〜260nmとに最大ピ−ク波長をもってなる
請求項4に記載のパタ−ン状二酸化ケイ素転化膜の形成
方法。
6. The method according to claim 1, wherein the short-wavelength ultraviolet light is 140 to 160 nm.
5. The method for forming a patterned silicon dioxide conversion film according to claim 4, which has a maximum peak wavelength in the range of 240 to 260 nm.
【請求項7】前記短波長紫外線の光源が低圧水銀灯であ
る請求項6に記載のパタ−ン状二酸化ケイ素転化膜の形
成方法。
7. The method for forming a patterned silicon dioxide conversion film according to claim 6, wherein said short wavelength ultraviolet light source is a low pressure mercury lamp.
JP2000317749A 2000-10-18 2000-10-18 Method for forming patterned silicon dioxide conversion film Expired - Fee Related JP4398580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000317749A JP4398580B2 (en) 2000-10-18 2000-10-18 Method for forming patterned silicon dioxide conversion film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000317749A JP4398580B2 (en) 2000-10-18 2000-10-18 Method for forming patterned silicon dioxide conversion film

Publications (2)

Publication Number Publication Date
JP2002124515A true JP2002124515A (en) 2002-04-26
JP4398580B2 JP4398580B2 (en) 2010-01-13

Family

ID=18796486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000317749A Expired - Fee Related JP4398580B2 (en) 2000-10-18 2000-10-18 Method for forming patterned silicon dioxide conversion film

Country Status (1)

Country Link
JP (1) JP4398580B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006019157A1 (en) 2004-08-20 2008-05-08 独立行政法人産業技術総合研究所 Semiconductor device and manufacturing method thereof
WO2018193753A1 (en) * 2017-04-17 2018-10-25 東京エレクトロン株式会社 Insulating film forming method, insulating film forming device, and substrate processing system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006019157A1 (en) 2004-08-20 2008-05-08 独立行政法人産業技術総合研究所 Semiconductor device and manufacturing method thereof
WO2018193753A1 (en) * 2017-04-17 2018-10-25 東京エレクトロン株式会社 Insulating film forming method, insulating film forming device, and substrate processing system
JPWO2018193753A1 (en) * 2017-04-17 2020-02-20 東京エレクトロン株式会社 Method for forming insulating film, apparatus for forming insulating film, and substrate processing system

Also Published As

Publication number Publication date
JP4398580B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
JP4547087B2 (en) Positive photosensitive polyimide composition
JPS60262150A (en) Intermediate layer for 3-layer resist material and method for using it
JPH0612449B2 (en) Heat-resistant positive resist and method for manufacturing heat-resistant relief structure
JPH0146862B2 (en)
JPWO2002023276A1 (en) Negative photosensitive polyimide composition and image forming method using the same
EP0510872A1 (en) Photodelineable coatings from hydrogen silsesquioxane resin
WO2009136557A1 (en) Polyimide precursor, photosensitive polyimide precursor composition, photosensitive dry film, and flexible printed circuit board using those materials
JP2010258410A (en) Method for forming pattern of metal film, and component
TW495494B (en) Photosensitive polysilazane composition and method of forming patterned polysilazane film
JPH02181149A (en) Polyimide type positive photoresist
JP2022061487A (en) Resin composition, production method of display device or light-receiving device using the same, substrate and device
JPH11202488A (en) Positive photosensitive polyimide composition and insulating film
JP4398580B2 (en) Method for forming patterned silicon dioxide conversion film
JPH10251519A (en) Silicon composition, pattern-forming method using the composition and production of electronic part
US4868096A (en) Surface treatment of silicone-based coating films
US3520685A (en) Etching silicon dioxide by direct photolysis
JPH0446345A (en) Positive type photosensitive resin composition
JP4078424B2 (en) Microstructured metal oxide thin film and method for producing the same
JP5065853B2 (en) Photosensitive polyamic acid composition and photosensitive dry film
JP3034090B2 (en) Pattern formation method
JP5068629B2 (en) Photosensitive resin composition, photosensitive dry film, photosensitive laminated film, and coverlay using the same
JPH1079381A (en) Method of forming insulating film pattern and photosensitive composition
JP5571431B2 (en) Photosensitive resin composition
JPH0344432B2 (en)
JPH0350787B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees