JP2002124298A - Nonaqueous electrolytic solution and lithium secondary battery using it - Google Patents

Nonaqueous electrolytic solution and lithium secondary battery using it

Info

Publication number
JP2002124298A
JP2002124298A JP2000315411A JP2000315411A JP2002124298A JP 2002124298 A JP2002124298 A JP 2002124298A JP 2000315411 A JP2000315411 A JP 2000315411A JP 2000315411 A JP2000315411 A JP 2000315411A JP 2002124298 A JP2002124298 A JP 2002124298A
Authority
JP
Japan
Prior art keywords
embedded image
battery
group
carbon atoms
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000315411A
Other languages
Japanese (ja)
Other versions
JP4419309B2 (en
Inventor
Shunichi Hamamoto
俊一 浜本
Koji Abe
浩司 安部
Yoshihiro Ushigoe
由浩 牛越
Yasuo Matsumori
保男 松森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2000315411A priority Critical patent/JP4419309B2/en
Publication of JP2002124298A publication Critical patent/JP2002124298A/en
Application granted granted Critical
Publication of JP4419309B2 publication Critical patent/JP4419309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery having excellent battery characteristics such as a cycle characteristic, electric capacity and a shelf life characteristic of the battery. SOLUTION: In this nonaqueous electrolytic solution wherein an electrolyte is dissolved in a nonaqueous solvent, the nonaqueous electrolytic solution is characterized by including 0.001-0.8 wt.% of one or more kinds of heterocyclic compounds such as 3-chlorothiophene in the nonaqueous electrolytic solution. This lithium secondary battery uses the nonaqueous electrolytic solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池のサイクル特
性や電気容量、保存特性などの電池特性にも優れたリチ
ウム二次電池を提供することができる非水電解液、およ
びそれを用いたリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte capable of providing a lithium secondary battery having excellent battery characteristics such as cycle characteristics, electric capacity and storage characteristics of a battery, and lithium using the same. Related to secondary batteries.

【0002】[0002]

【従来の技術】近年、リチウム二次電池は小型電子機器
などの駆動用電源として広く使用されている。リチウム
二次電池は、主に正極、非水電解液及び負極から構成さ
れており、特に、LiCoO2などのリチウム複合酸化
物を正極とし、炭素材料又はリチウム金属を負極とした
リチウム二次電池が好適に使用されている。そして、そ
のリチウム二次電池用非水電解液の非水溶媒としては、
エチレンカーボネート(EC)、プロピレンカーボネー
ト(PC)、ジメチルカーボネート(DMC)、ジエチ
ルカーボネート(DEC)、メチルエチルカーボネート
(MEC)などのカーボネート類が好適に使用されてい
る。
2. Description of the Related Art In recent years, lithium secondary batteries have been widely used as power sources for driving small electronic devices and the like. Lithium secondary batteries are mainly composed of a positive electrode, a non-aqueous electrolyte, and a negative electrode. In particular, a lithium secondary battery using a lithium composite oxide such as LiCoO 2 as a positive electrode and a carbon material or lithium metal as a negative electrode has been developed. It is preferably used. And as the non-aqueous solvent of the non-aqueous electrolyte for the lithium secondary battery,
Carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) are suitably used.

【0003】しかしながら、電池のサイクル特性および
電気容量などの電池特性について、さらに優れた特性を
有する二次電池が求められている。正極として、例えば
LiCoO2、LiMn24、LiNiO2などを用いた
リチウム二次電池は、通常は4.1Vを越える最大作動
電圧まで充放電が繰り返される。ところが、この電池は
長期に渡って充放電を繰り返すと、徐々に容量の低下が
見られる重大な問題があった。この現象は、非水電解液
中の溶媒が4.1Vを越える最大作動電圧まで充電した
際に局部的に一部酸化分解し、該分解物が電池の望まし
い電気化学的反応を阻害するために電池性能の低下を生
じる。これは正極材料と非水電解液との界面における溶
媒の電気化学的酸化に起因するものと思われる。このた
め、4.1Vを越える最大作動電圧まで充放電を繰り返
す電池のサイクル特性および電気容量などの電池特性は
必ずしも満足なものではないのが現状である。
[0003] However, there is a demand for a secondary battery having more excellent battery characteristics such as cycle characteristics and electric capacity. In a lithium secondary battery using, for example, LiCoO 2 , LiMn 2 O 4 , LiNiO 2, or the like as a positive electrode, charge and discharge are repeated until a maximum operating voltage that normally exceeds 4.1 V. However, there is a serious problem that the capacity of this battery gradually decreases when charge and discharge are repeated over a long period of time. This phenomenon occurs because the solvent in the non-aqueous electrolyte partially oxidizes and decomposes when charged to a maximum operating voltage exceeding 4.1 V, and the decomposition product hinders the desired electrochemical reaction of the battery. Battery performance is degraded. This is thought to be due to electrochemical oxidation of the solvent at the interface between the positive electrode material and the non-aqueous electrolyte. For this reason, at present, the battery characteristics such as the cycle characteristics and the electric capacity of the batteries that repeatedly charge and discharge up to the maximum operating voltage exceeding 4.1 V are not always satisfactory.

【0004】特開平9−106835号公報には、3−
クロロチオフェン、チオフェン、フランなどを約1〜4
容量%添加することにより、過充電が起きた時の異常に
高い電圧で電気化学的に重合させて、電解液の抵抗を高
くして電池を保護する技術が公開されている。しかし、
特開平11−162512号公報では、これらの化合物
を約1〜4容量%添加した場合において、4.1Vを越
える電圧上限までサイクルが繰り返されたり、40℃以
上の長期間高温状態に暴露されるような、高電圧及び/
又は高温状態の充放電では、サイクル特性などの電池特
性を悪化させる傾向があり、添加量の増大に伴って、そ
の傾向が顕著になることが記載されている。このため、
電池のサイクル特性および電気容量などの電池特性は必
ずしも満足なものでないのが現状である。
Japanese Patent Application Laid-Open No. 9-106835 discloses 3-
About 1 to 4 chlorothiophene, thiophene, furan, etc.
A technique has been disclosed for protecting a battery by increasing the resistance of an electrolyte by electrochemically polymerizing at an unusually high voltage when overcharging occurs by adding volume%. But,
In JP-A-11-162512, when these compounds are added in an amount of about 1 to 4% by volume, the cycle is repeated up to the upper limit of the voltage exceeding 4.1 V, or the composition is exposed to a long-term high temperature of 40 ° C. or more. Such as high voltage and / or
Alternatively, it is described that battery characteristics such as cycle characteristics tend to deteriorate in charge / discharge in a high-temperature state, and the tendency becomes more pronounced as the amount of addition increases. For this reason,
At present, battery characteristics such as battery cycle characteristics and electric capacity are not always satisfactory.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前記のよう
な4.1Vより高電圧及び/又は40℃以上の高温状態
の充放電においてサイクル特性の低下をもたらすリチウ
ム二次電池用非水電解液に関する課題を解決し、上限電
圧が4.1Vより高電圧及び/又は40℃以上の高温状
態の充放電において、電池のサイクル特性に優れ、さら
に電気容量や充電状態での保存特性などの電池特性にも
優れたリチウム二次電池を構成することができるリチウ
ム二次電池、およびその非水電解液を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention relates to a non-aqueous electrolyte for a lithium secondary battery, which causes a decrease in cycle characteristics in charging and discharging at a voltage higher than 4.1 V and / or at a high temperature of 40 ° C. or more as described above. Solves the problems related to liquids and has excellent cycle characteristics of batteries when charged and discharged in a high voltage state where the upper limit voltage is higher than 4.1 V and / or a high temperature state of 40 ° C. or higher, and furthermore, the batteries have excellent electric capacity and storage characteristics in a charged state. An object of the present invention is to provide a lithium secondary battery capable of forming a lithium secondary battery having excellent characteristics, and a non-aqueous electrolyte thereof.

【0006】[0006]

【課題を解決するための手段】本発明は、非水溶媒に電
解質が溶解されている非水電解液において、前記非水電
解液中に、下記一般式(I)、(II)、(III)、
(IV)、(V)、(VI)、(VII)、
According to the present invention, there is provided a non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolyte contains the following general formulas (I), (II) and (III): ),
(IV), (V), (VI), (VII),

【0007】[0007]

【化15】 Embedded image

【0008】[0008]

【化16】 Embedded image

【0009】[0009]

【化17】 Embedded image

【0010】[0010]

【化18】 Embedded image

【0011】[0011]

【化19】 Embedded image

【0012】[0012]

【化20】 Embedded image

【0013】[0013]

【化21】 Embedded image

【0014】(式中、Y1〜Y10はそれぞれ酸素原子、
硫黄原子、アルキルアミノ基を示し、X1〜X14はそれ
ぞれ独立して水素原子、炭素数1〜12のアルキル基、
炭素数7〜15のアラルキル基、ハロゲン原子、炭素数
1〜12のアルキルシリル基を示す。また、X1とX2
2とX3、X3とX4、X5とX6、X7とX8、X9
10、X11とX12は互いに結合して炭素数3〜12の直
鎖または分枝のアルキレン基、あるいは炭素数1〜6の
直鎖または分枝のアルキレンジオキシ基を示しても良
い。m、nはそれぞれ0〜2の整数を示す。)で表され
る複素環化合物のうち少なくとも1種以上が前記非水電
解液に対して0.001〜0.8重量%含有されている
ことを特徴とする非水電解液に関する。また、本発明
は、正極、負極、および非水溶媒に電解質が溶解されて
いる非水電解液を用いたリチウム二次電池において、前
記非水電解液中に、前記一般式(I)、(II)、(I
II)、(IV)、(V)、(VI)、(VII)で表
される複素環化合物のうち少なくとも1種以上が前記非
水電解液に対して0.001〜0.8重量%含有されて
いることを特徴とするリチウム二次電池に関する。
Wherein Y 1 to Y 10 are each an oxygen atom,
X 1 to X 14 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms,
It represents an aralkyl group having 7 to 15 carbon atoms, a halogen atom, and an alkylsilyl group having 1 to 12 carbon atoms. X 1 and X 2 ,
X 2 and X 3 , X 3 and X 4 , X 5 and X 6 , X 7 and X 8 , X 9 and X 10 , X 11 and X 12 are bonded to each other to form a straight or branched chain having 3 to 12 carbon atoms. A branched alkylene group or a linear or branched alkylenedioxy group having 1 to 6 carbon atoms may be shown. m and n each represent an integer of 0 to 2. The present invention relates to a non-aqueous electrolyte characterized in that at least one of the heterocyclic compounds represented by the formula (1) is contained in an amount of 0.001 to 0.8% by weight based on the non-aqueous electrolyte. Further, the present invention provides a lithium secondary battery using a positive electrode, a negative electrode, and a non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolyte contains the general formula (I), (I) II), (I
At least one of the heterocyclic compounds represented by II), (IV), (V), (VI), and (VII) is contained in an amount of 0.001 to 0.8% by weight based on the nonaqueous electrolyte. And a lithium secondary battery.

【0015】[0015]

【発明の実施の形態】本発明の非水電解液は、リチウム
二次電池の構成部材として使用される。二次電池を構成
する非水電解液以外の構成部材については特に限定され
ず、従来使用されている種々の構成部材を使用できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The non-aqueous electrolyte of the present invention is used as a component of a lithium secondary battery. The constituent members other than the non-aqueous electrolyte constituting the secondary battery are not particularly limited, and various constituent members conventionally used can be used.

【0016】非水溶媒に電解質が溶解されている非水電
解液に含有される前記式(I)、(II)、(II
I)、(IV)、(V)、(VI)、(VII)で表さ
れる複素環化合物において、Y1〜Y10は酸素原子、硫
黄原子、窒素原子をあらわす。窒素原子の置換基にはメ
チル基、エチル基、プロピル基、ブチル基のような直鎖
状のアルキル基、イソプロピル基、イソブチル基のよう
な分枝状のアルキル基、シクロプロピル基、シクロヘキ
シル基のようなシクロアルキル基を含有したアルキル
基、アラルキル基などが好ましい。X1〜X14はそれぞ
れ独立して、炭素数1〜12のアルキル基〔メチル基、
エチル基、プロピル基、ブチル基のような直鎖状のアル
キル基;イソプロピル基、イソブチル基のような分枝状
のアルキル基;シクロプロピル基、シクロヘキシル基
(以下、cyclo-Hexと表す。)のようなシクロアルキ
ル基など〕、炭素数7〜15のアラルキル基(ベンジル
基、フェネチル基など)、ハロゲン原子(フッ素原子、
塩素原子、臭素原子、ヨウ素原子)、炭素数3〜15の
アルキルシリル基(トリメチルシリル基、トリエチルシ
リル基、トリブチルシリル基、ブチルジメチルシリル基
など)が好ましい。更には、X1とX2、X2とX3、X3
とX4、X5とX6、X7とX8、X9とX10、X11とX12
互いに結合してトリメチレン基、テトラメチレン基、1
−メチルトリメチレン基などの炭素数3〜12の直鎖ま
たは分枝のアルキレン基、メチレンジオキシ基、エチレ
ンジオキシ基、トリメチレンジオキシ基、プロピレンジ
オキシ基などの炭素数1〜6の直鎖または分枝のアルキ
レンジオキシ基を示しても良い。ただし、m、nはそれ
ぞれ0〜2の整数を示す。
The above formulas (I), (II) and (II) contained in a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent
In the heterocyclic compounds represented by I), (IV), (V), (VI), and (VII), Y 1 to Y 10 represent an oxygen atom, a sulfur atom, and a nitrogen atom. Substituents for the nitrogen atom include straight-chain alkyl groups such as methyl, ethyl, propyl and butyl, branched alkyl groups such as isopropyl and isobutyl, cyclopropyl and cyclohexyl. Alkyl groups and aralkyl groups containing such cycloalkyl groups are preferred. X 1 to X 14 are each independently an alkyl group having 1 to 12 carbon atoms [methyl group,
A linear alkyl group such as an ethyl group, a propyl group or a butyl group; a branched alkyl group such as an isopropyl group or an isobutyl group; a cyclopropyl group or a cyclohexyl group (hereinafter referred to as cyclo-Hex). Such as a cycloalkyl group], an aralkyl group having 7 to 15 carbon atoms (such as a benzyl group or a phenethyl group), a halogen atom (a fluorine atom,
A chlorine atom, a bromine atom, an iodine atom) and an alkylsilyl group having 3 to 15 carbon atoms (such as a trimethylsilyl group, a triethylsilyl group, a tributylsilyl group, and a butyldimethylsilyl group) are preferable. Further, X 1 and X 2 , X 2 and X 3 , X 3
And X 4 , X 5 and X 6 , X 7 and X 8 , X 9 and X 10 , X 11 and X 12 are bonded to each other to form a trimethylene group, a tetramethylene group,
A straight-chain or branched alkylene group having 3 to 12 carbon atoms such as a methyltrimethylene group, a methylenedioxy group, an ethylenedioxy group, a trimethylenedioxy group, a propylenedioxy group or the like having 1 to 6 carbon atoms; It may represent a linear or branched alkylenedioxy group. Here, m and n each represent an integer of 0 to 2.

【0017】前記一般式(I)で表される複素環化合物
の具体例としては、例えば、Y1=Oの場合、フラン
〔X1=X2=X3=X4=H〕、2−メチルフラン〔X1
=Me、X2=X3=X4=H〕、3−メチルフラン〔X2
=Me、X1=X3=X4=H〕、2,5−ジメチルフラ
ン〔X1=X4=Me、X2=X3=H〕、3,4−ジメチ
ルフラン〔X2=X3=Me、X1=X4=H〕、2,3,
4−トリメチルフラン〔X1=X2=X3=Me、X4
H〕、2,3,4,5−テトラメチルフラン〔X1=X2
=X3=X4=Me〕、2−シクロヘキシルフラン〔X1
=cyclo-Hex、X 2=X3=X4=H〕、2−エチニル
フラン〔X1=CCH、X2=X3=X4=H〕、3−クロ
ロフラン〔X2=Cl、X1=X3=X4=H〕、3−ブロ
モフラン〔X 2=Br、X1=X3=X4=H〕、2−トリ
メチルシリルフラン〔X1=SiMe3、X2=X3=X4
=H〕、3,4−エチレンジオキシフラン〔X2とX3
OCH2CH2Oで結合、X1=X4=H〕、4,5,6,
7−テトラヒドロイソベンゾフラン〔X2とX3が(CH
24で結合、X1=X4=H〕などが挙げられる。Y1
Sの場合、チオフェン〔X1=X2=X3=X4=H〕、2
−メチルチオフェン〔X 1=Me、X2=X3=X4
H〕、3−メチルチオフェン〔X2=Me、X1=X3
4=H〕、2,5−ジメチルチオフェン〔X1=X4
Me、X2=X3=H〕、3,4−ジメチルチオフェン
〔X2=X3=Me、X1=X4=H〕、2,3,4−トリ
メチルチオフェン〔X1=X2=X3=Me、X4=H〕、
2,3,4,5−テトラメチルチオフェン〔X1=X2
3=X4=Me〕、3−シクロヘキシルチオフェン〔X
2=cyclo-Hex、X1=X3=X4=H〕、2−エテニル
チオフェン〔X1=CHCH2、X2=X3=X4=H〕、
3−エテニルチオフェン〔X2=CHCH2、X1=X3
4=H〕、2−エチニルチオフェン〔X1=CCH、X
2=X 3=X4=H〕、3−エチニルチオフェン〔X2=C
CH、X1=X3=X4=H〕、3−クロロチオフェン
〔X2=Cl、X1=X3=X4=H〕、3−ブロモチオフ
ェン〔X2=Br、X1=X3=X4=H〕、3−フルオロ
チオフェン〔X2=F、X1=X3=X4=H〕、3−ヨー
ドチオフェン〔X2=I、X1=X3=X4=H〕、2−ト
リメチルシリルチオフェン〔X1=SiMe3、X2=X3
=X4=H〕、3,4−エチレンジオキシチオフェン
〔X2とX3がOCH2CH2Oで結合、X1=X4=H〕、
4,5,6,7−テトラヒドロベンゾ[c]チオフェン
〔X2とX3が(CH24で結合、X1=X4=H〕などが
挙げられる。Y1=NMeの場合、N−メチルピロール
〔X1=X2=X3=X4=H〕、2−メチル−N−メチル
ピロール〔X1=Me、X2=X3=X4=H〕、3−メチ
ル−N−メチルピロール〔X2=Me、X1=X3=X4
H〕、2,5−ジメチル−N−メチルピロール〔X1
4=Me、X2=X3=H〕、3,4−ジメチル−N−
メチルピロール〔X2=X3=Me、X1=X4=H〕、
2,3,4−トリメチル−N−メチルピロール〔X1
2=X3=Me、X4=H〕、2,3,4,5−テトラ
メチル−N−メチルピロール〔X1=X2=X3=X4=M
e〕、3−シクロヘキシル−N−メチルピロール〔X2
=cyclo-Hex、X1=X3=X4=H〕、1,2,3,
4,5,6,7,8−オクタヒドロ−9−メチルカルバ
ゾール〔X1とX2が(CH24で結合、X3とX4が(C
24で結合〕などが挙げられる。ただし、本発明はこ
れらの化合物に限定されるものではない。
Heterocyclic compound represented by formula (I)
As a specific example of, for example, Y1If = O, franc
[X1= XTwo= XThree= XFour= H], 2-methylfuran [X1
= Me, XTwo= XThree= XFour= H], 3-methylfuran [XTwo
= Me, X1= XThree= XFour= H], 2,5-dimethylfura
[X1= XFour= Me, XTwo= XThree= H], 3,4-dimethyl
Lefran [XTwo= XThree= Me, X1= XFour= H], 2, 3,
4-trimethylfuran [X1= XTwo= XThree= Me, XFour=
H], 2,3,4,5-tetramethylfuran [X1= XTwo
= XThree= XFour= Me], 2-cyclohexylfuran [X1
= Cyclo-Hex, X Two= XThree= XFour= H], 2-ethynyl
Franc [X1= CCH, XTwo= XThree= XFour= H], 3-black
Lofran [XTwo= Cl, X1= XThree= XFour= H], 3-bro
Mofuran [X Two= Br, X1= XThree= XFour= H], 2-tri
Methylsilylfuran [X1= SiMeThree, XTwo= XThree= XFour
= H], 3,4-ethylenedioxyfuran [XTwoAnd XThreeBut
OCHTwoCHTwoJoin with O, X1= XFour= H], 4, 5, 6,
7-tetrahydroisobenzofuran [XTwoAnd XThreeIs (CH
Two)Four, X1= XFour= H] and the like. Y1=
In the case of S, thiophene [X1= XTwo= XThree= XFour= H], 2
-Methylthiophene [X 1= Me, XTwo= XThree= XFour=
H], 3-methylthiophene [XTwo= Me, X1= XThree=
XFour= H], 2,5-dimethylthiophene [X1= XFour=
Me, XTwo= XThree= H], 3,4-dimethylthiophene
[XTwo= XThree= Me, X1= XFour= H], 2,3,4-tri
Methylthiophene [X1= XTwo= XThree= Me, XFour= H],
2,3,4,5-tetramethylthiophene [X1= XTwo=
XThree= XFour= Me], 3-cyclohexylthiophene [X
Two= Cyclo-Hex, X1= XThree= XFour= H], 2-ethenyl
Thiophene [X1= CHCHTwo, XTwo= XThree= XFour= H],
3-ethenylthiophene [XTwo= CHCHTwo, X1= XThree=
XFour= H], 2-ethynylthiophene [X1= CCH, X
Two= X Three= XFour= H], 3-ethynylthiophene [XTwo= C
CH, X1= XThree= XFour= H], 3-chlorothiophene
[XTwo= Cl, X1= XThree= XFour= H], 3-bromothiophene
[XTwo= Br, X1= XThree= XFour= H], 3-fluoro
Thiophene [XTwo= F, X1= XThree= XFour= H], 3-Yaw
Dothiophene [XTwo= I, X1= XThree= XFour= H], 2-t
Limethylsilylthiophene [X1= SiMeThree, XTwo= XThree
= XFour= H], 3,4-ethylenedioxythiophene
[XTwoAnd XThreeIs OCHTwoCHTwoJoin with O, X1= XFour= H],
4,5,6,7-tetrahydrobenzo [c] thiophene
[XTwoAnd XThreeIs (CHTwo)Four, X1= XFour= H]
No. Y1= N-methylpyrrole when NMe
[X1= XTwo= XThree= XFour= H], 2-methyl-N-methyl
Pyrrole [X1= Me, XTwo= XThree= XFour= H], 3-methyl
Ru-N-methylpyrrole [XTwo= Me, X1= XThree= XFour=
H], 2,5-dimethyl-N-methylpyrrole [X1=
XFour= Me, XTwo= XThree= H], 3,4-dimethyl-N-
Methylpyrrole [XTwo= XThree= Me, X1= XFour= H],
2,3,4-trimethyl-N-methylpyrrole [X1=
XTwo= XThree= Me, XFour= H], 2,3,4,5-tetra
Methyl-N-methylpyrrole [X1= XTwo= XThree= XFour= M
e], 3-cyclohexyl-N-methylpyrrole [XTwo
= Cyclo-Hex, X1= XThree= XFour= H], 1, 2, 3,
4,5,6,7,8-octahydro-9-methylcarba
Zol [X1And XTwoIs (CHTwo)Four, XThreeAnd XFourIs (C
HTwo)FourAnd bonding]. However, the present invention
It is not limited to these compounds.

【0018】前記一般式(II)で表される複素環化合
物の具体例としては、例えばY2=Oの場合、2,2’
−ビフラン〔X5=X6=X9=X10=H、m=0〕、4
−メチル−2,2’−ビフラン〔X5=Me、X6=X9
=X10=H、m=0〕、3,4’−ジメチル−2,2’
−ビフラン〔X5=X9=Me、X6=X10=H、m=
0〕、2,2’:5’,2''−ターフラン〔X5=X6
7=X8=X9=X10=H、m=1〕、2,2’:
5’,2'':5'',2'''−クォーターフラン〔X5=X
6=X7=X8=X9=X10=H、m=2〕などが挙げられ
る。Y2=Sの場合、2,2’−ビチオフェン〔X5=X
6=X9=X10=H、m=0〕、4−メチル−2,2’−
ビチオフェン〔X5=Me、X6=X9=X10=H、m=
0〕、4,4’−ジメチル−2,2’−ビチオフェン
〔X5=X10=Me、X6=X9=H、m=0〕、3,
3’,4,4’−テトラメチル−2,2’−ビチオフェ
ン〔X5=X6=X9=X10=Me、m=0〕、2,
2’:5’,2''−ターチオフェン〔X 5=X6=X7
8=X9=X10=H、m=1〕、3−メチル−2,
2’:5’,2''−ターチオフェン〔X6=Me、X5
7=X8=X9=X10=H、m=1〕、3’−メチル−
2,2’:5’,2''−ターチオフェン〔X7=Me、
5=X 6=X8=X9=X10=H、m=1〕、4,3''−
ジメチル−2,2’:5’,2''−ターチオフェン〔X
5=X9=Me、X6=X7=X8=X10=H、m=1〕、
4,4''−ジメチル−2,2’:5’,2''−ターチオ
フェン〔X5=X10=Me、X6=X7=X8=X9=H、
m=1〕、3,3’,3'',4,4’,4''−ヘキサメ
チル−2,2’:5’,2''−ターチオフェン〔X5
6=X7=X8=X9=X10=Me、m=1〕、2,
2’:5’,2'':5'',2'''−クォーターチオフェ
ン〔X5=X6=X7=X8=X9=X10=H、m=2〕な
どが挙げられる。Y2=NMeの場合、1,1’−ジメ
チル−2,2’−ビピロール〔X5=X6=X9=X10
H、m=0〕、1,1’,1''−トリメチル−2,
2’:5’,2''−ター−1H−ピロール〔X5=X6
7=X8=X9=X10=H、m=1〕などが挙げられ
る。ただし、本発明はこれらの化合物に限定されるもの
ではない。
Heterocyclic compound represented by formula (II)
As a specific example of the object, for example, YTwo= 0, 2, 2 '
-Bifran [XFive= X6= X9= XTen= H, m = 0], 4
-Methyl-2,2'-bifuran [XFive= Me, X6= X9
= XTen= H, m = 0], 3,4'-dimethyl-2,2 '
-Bifran [XFive= X9= Me, X6= XTen= H, m =
0], 2, 2 ': 5', 2 ''-tarfuran [XFive= X6=
X7= X8= X9= XTen= H, m = 1], 2, 2 ':
5 ', 2' ': 5' ', 2' ''-quarter franc [XFive= X
6= X7= X8= X9= XTen= H, m = 2].
You. YTwo= S, 2,2'-bithiophene [XFive= X
6= X9= XTen= H, m = 0], 4-methyl-2,2'-
Bithiophene [XFive= Me, X6= X9= XTen= H, m =
0], 4,4'-dimethyl-2,2'-bithiophene
[XFive= XTen= Me, X6= X9= H, m = 0], 3,
3 ', 4,4'-tetramethyl-2,2'-bithiofe
[XFive= X6= X9= XTen= Me, m = 0], 2,
2 ': 5', 2 ''-terthiophene [X Five= X6= X7=
X8= X9= XTen= H, m = 1], 3-methyl-2,
2 ': 5', 2 ''-terthiophene [X6= Me, XFive=
X7= X8= X9= XTen= H, m = 1], 3'-methyl-
2,2 ': 5', 2 ''-terthiophene [X7= Me,
XFive= X 6= X8= X9= XTen= H, m = 1], 4,3 ″ −
Dimethyl-2,2 ': 5', 2 ''-terthiophene [X
Five= X9= Me, X6= X7= X8= XTen= H, m = 1],
4,4 "-dimethyl-2,2 ': 5', 2" -terthio
Fen [XFive= XTen= Me, X6= X7= X8= X9= H,
m = 1], 3,3 ', 3 ", 4,4', 4" -hexame
Cyl-2,2 ': 5', 2 ''-terthiophene [XFive=
X6= X7= X8= X9= XTen= Me, m = 1], 2,
2 ': 5', 2 '': 5 '', 2 '' '-quarter thiophene
[XFive= X6= X7= X8= X9= XTen= H, m = 2]
And so on. YTwo= NMe, 1,1'-dimension
Chill-2,2'-bipyrrole [XFive= X6= X9= XTen=
H, m = 0], 1,1 ', 1 "-trimethyl-2,
2 ': 5', 2 ''-ter-1H-pyrrole [XFive= X6=
X7= X8= X9= XTen= H, m = 1].
You. However, the present invention is limited to these compounds
is not.

【0019】前記一般式(III)で表される複素環化
合物の具体例としては、例えば2,2’−ジチオビスフ
ラン〔Y3=S、Y4=S、n=0〕、2−[[(2−チ
エニルメチル)ジチオ]メチル]フラン〔Y3=O、Y4
S、n=1〕、フルフリルジスルフィド〔Y3=O、Y4
=O、n=1〕などが挙げられる。ただし、本発明はこ
れらの化合物に限定されるものではない。
Specific examples of the heterocyclic compound represented by the general formula (III) include, for example, 2,2'-dithiobisfuran [Y 3 = S, Y 4 = S, n = 0], 2- [ [(2-thienylmethyl) dithio] methyl] furan [Y 3 = 0, Y 4 =
S, n = 1], furfuryl disulfide [Y 3 = 0, Y 4
OO, n = 1]. However, the present invention is not limited to these compounds.

【0020】前記一般式(IV)で表される複素環化合
物の具体例としては、例えばフロ[2,3−b]フラン
〔Y5=Y6=O、X11=X12=H〕、チエノ[2,3−
b]チオフェン〔Y5=Y6=S、X11=X12=H〕、チ
エノ[2,3−b]フラン〔Y5=O、Y6=S、X11
12=H〕、3−メチルチエノ[2,3−b]チオフェ
ン〔Y5=Y6=S、X11=Me、X12=H〕、3,4−
ジメチルチエノ[2,3−b]チオフェン〔Y5=Y6
S、X11=X12=Me〕などが挙げられる。ただし、本
発明はこれらの化合物に限定されるものではない。
Specific examples of the heterocyclic compound represented by the general formula (IV) include, for example, furo [2,3-b] furan [Y 5 = Y 6 = 0, X 11 = X 12 = H], Thieno [2,3-
b] Thiophene [Y 5 = Y 6 = S, X 11 = X 12 = H], thieno [2,3-b] furan [Y 5 = 0, Y 6 = S, X 11 =
X 12 = H], 3-methylthieno [2,3-b] thiophene [Y 5 = Y 6 = S, X 11 = Me, X 12 = H], 3,4-
Dimethylthieno [2,3-b] thiophene [Y 5 = Y 6 =
S, X 11 = X 12 = Me]. However, the present invention is not limited to these compounds.

【0021】前記一般式(V)で表される複素環化合物
の具体例としては、例えばフロ[3,2−b]フラン
〔Y7=Y8=O、X13=X14=H〕、チエノ[3,2−
b]チオフェン〔Y7=Y8=S、X13=X14=H〕、チ
エノ[3,2−b]フラン〔Y 7=O、Y8=S、X13
14=H〕、3−メチルチエノ[3,2−b]チオフェ
ン〔Y7=Y8=S、X13=Me、X14=H〕、3,6−
ジメチルチエノ[3,2−b]チオフェン〔Y7=Y8
S、X13=X14=Me〕などが挙げられる。ただし、本
発明はこれらの化合物に限定されるものではない。
Heterocyclic compound represented by formula (V)
As a specific example of, for example, flow [3,2-b] furan
[Y7= Y8= O, X13= X14= H], thieno [3,2-
b] thiophene [Y7= Y8= S, X13= X14= H],
Eno [3,2-b] furan [Y 7= O, Y8= S, X13=
X14= H], 3-methylthieno [3,2-b] thiophene
[Y7= Y8= S, X13= Me, X14= H], 3,6-
Dimethylthieno [3,2-b] thiophene [Y7= Y8=
S, X13= X14= Me]. However, the book
The invention is not limited to these compounds.

【0022】前記一般式(VI)で表される複素環化合
物の具体例としては、例えばジチエノ[3,2−b:
2’,3’−d]チオフェン〔Y9=S〕が挙げられ
る。ただし、本発明はこの化合物に限定されるものでは
ない。
Specific examples of the heterocyclic compound represented by the general formula (VI) include, for example, dithieno [3,2-b:
2 ′, 3′-d] thiophene [Y 9 = S]. However, the present invention is not limited to this compound.

【0023】前記一般式(VII)で表される複素環化
合物の具体例としては、例えばチエノ[3,2−b]チ
エノ[2’,3’,4,5]チエノ[2,3−d]チオ
フェン〔Y10=S〕が挙げられる。ただし、本発明はこ
の化合物に限定されるものではない。
Specific examples of the heterocyclic compound represented by the general formula (VII) include, for example, thieno [3,2-b] thieno [2 ′, 3 ′, 4,5] thieno [2,3-d Thiophene [Y 10 = S]. However, the present invention is not limited to this compound.

【0024】非水電解液中に含有される前記複素環化合
物として一般式(I)、(II)、(III)、(I
V)、(V)、(VI)、(VII)で表される複素環
化合物を含有させる場合、その含有量は、過度に多いと
4.1Vより高電圧及び/又は40℃以上の高温状態の
充放電において十分な電池性能が得られない。また、過
度に少なくても期待した十分な電池性能が得られない。
したがって、その含有量は非水電解液の重量に対して
0.001〜0.8重量%の範囲が好ましく、更に好ま
しくは、0.005〜0.5重量%、最も好ましくは
0.01〜0.3重量%の範囲がサイクル特性を向上さ
せるのでよい。
As the heterocyclic compound contained in the non-aqueous electrolyte, the compounds represented by the general formulas (I), (II), (III) and (I)
When the heterocyclic compound represented by V), (V), (VI) or (VII) is contained, if the content is excessively high, the voltage is higher than 4.1 V and / or a high temperature state of 40 ° C. or higher. Sufficient battery performance cannot be obtained in charging / discharging. Further, even if the amount is excessively small, the expected sufficient battery performance cannot be obtained.
Therefore, the content is preferably in the range of 0.001 to 0.8% by weight, more preferably 0.005 to 0.5% by weight, and most preferably 0.01 to 0.8% by weight based on the weight of the non-aqueous electrolyte. The range of 0.3% by weight may improve the cycle characteristics.

【0025】本発明の複素環化合物を0.001〜0.
8重量%含有した非水電解液は、複素環化合物を全く添
加しない電解液や0.8重量%を越えて過度に多く複素
環化合物を添加した電解液に比べて、上限電圧が4.1
Vより高電圧及び/又は40℃以上の高温状態の充放電
において、サイクル特性が飛躍的に向上する特異的かつ
予期し得ぬ効果を示すことが分かった。この作用機構
は、推測の域を脱しないが、最大作動電圧以下の電池電
圧で、電気化学的に重合して良好な薄い導電性被膜を形
成するためであると考えられる。つまり、0.8重量%
を過度に越える量を添加すると、最大作動電圧以下の電
池電圧で、電気化学的に重合する添加剤量が増大し、電
池の可逆性を損なうような厚い導電性被膜を形成してし
まうため、複素環化合物を全く添加しない電解液よりも
サイクル特性などの電池特性が悪化するものと考えられ
る。このように、本発明の添加剤は、非水電解液に対し
て0.001〜0.8重量%添加することにより、サイ
クル特性が著しく向上する効果を有している。
The heterocyclic compound of the present invention is used in an amount of 0.001 to 0.
The non-aqueous electrolyte containing 8% by weight has an upper limit voltage of 4.1 compared to an electrolyte containing no heterocyclic compound at all or an electrolyte containing more than 0.8% by weight of heterocyclic compound.
It has been found that in charging / discharging at a voltage higher than V and / or at a high temperature of 40 ° C. or more, a unique and unexpected effect of dramatically improving cycle characteristics is exhibited. This mechanism of action does not deviate from the guesswork, but is believed to be due to electrochemical polymerization at a battery voltage below the maximum operating voltage to form a good thin conductive coating. That is, 0.8% by weight
If the amount is excessively exceeded, the amount of the additive that electrochemically polymerizes increases at a battery voltage equal to or lower than the maximum operating voltage, and a thick conductive film that impairs the reversibility of the battery is formed. It is considered that battery characteristics such as cycle characteristics are worse than those of the electrolyte solution to which no heterocyclic compound is added. As described above, when the additive of the present invention is added in an amount of 0.001 to 0.8% by weight based on the nonaqueous electrolyte, the cycle characteristics are significantly improved.

【0026】本発明で使用される非水溶媒としては、例
えば、エチレンカーボネート(EC)、プロピレンカー
ボネート(PC)、ブチレンカーボネート(BC)、ビ
ニレンカーボネート(VC)などの環状カーボネート類
や、γ−ブチロラクトンなどのラクトン類、ジメチルカ
ーボネート(DMC)、メチルエチルカーボネート(M
EC)、ジエチルカーボネート(DEC)などの鎖状カ
ーボネート類、テトラヒドロフラン、2−メチルテトラ
ヒドロフラン、1,4−ジオキサン、1,2−ジメトキ
シエタン、1,2−ジエトキシエタン、1,2−ジブト
キシエタンなどのエーテル類、アセトニトリルなどのニ
トリル類、プロピオン酸メチル、ピバリン酸メチル、ピ
バリン酸オクチルなどのエステル類、ジメチルホルムア
ミドなどのアミド類が挙げられる。
Examples of the non-aqueous solvent used in the present invention include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC), and γ-butyrolactone. Lactones such as dimethyl carbonate (DMC), methyl ethyl carbonate (M
EC), chain carbonates such as diethyl carbonate (DEC), tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane Ethers, such as acetonitrile, esters such as methyl propionate, methyl pivalate and octyl pivalate, and amides such as dimethylformamide.

【0027】これらの非水溶媒は、1種類で使用しても
よく、また2種類以上を組み合わせて使用してもよい。
非水溶媒の組み合わせは特に限定されないが、例えば、
環状カーボネート類と鎖状カーボネート類との組み合わ
せ、環状カーボネート類とラクトン類との組み合わせ、
環状カーボネート類3種類と鎖状カーボネート類との組
み合わせなど種々の組み合わせが挙げられる。
These non-aqueous solvents may be used alone or in combination of two or more.
The combination of the non-aqueous solvent is not particularly limited, for example,
A combination of a cyclic carbonate and a chain carbonate, a combination of a cyclic carbonate and a lactone,
Various combinations such as a combination of three types of cyclic carbonates and chain carbonates are exemplified.

【0028】本発明で使用される電解質としては、例え
ば、LiPF6、LiBF4、LiClO4、LiN(S
2CF32、LiN(SO2252、LiC(SO2
CF33、LiPF4(CF32、LiPF3(C25
3、LiPF3(CF33、LiPF3(iso−C
373、LiPF5(iso−C37)などが挙げられ
る。これらの電解質は、1種類で使用してもよく、2種
類以上組み合わせて使用してもよい。これら電解質は、
前記の非水溶媒に通常0.1〜3M、好ましくは0.5
〜1.5Mの濃度で溶解されて使用される。
As the electrolyte used in the present invention, for example, LiPF 6 , LiBF 4 , LiClO 4 , LiN (S
O 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2
CF 3 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 )
3 , LiPF 3 (CF 3 ) 3 , LiPF 3 (iso-C
3 F 7) 3, LiPF 5 (iso-C 3 F 7) , and the like. These electrolytes may be used alone or in combination of two or more. These electrolytes are
The non-aqueous solvent is usually 0.1 to 3 M, preferably 0.5 to 3 M.
It is used after being dissolved at a concentration of ~ 1.5M.

【0029】本発明の非水電解液は、例えば、前記の非
水溶媒を混合し、これに前記の電解質を溶解し、前記式
(I)、(II)、(III)、(IV)、(V)、
(VI)、(VII)で表される複素環化合物のうち少
なくとも1種を溶解することにより得られる。
The non-aqueous electrolyte of the present invention is prepared by, for example, mixing the above-mentioned non-aqueous solvent, dissolving the above-mentioned electrolyte therein, and mixing the above-mentioned formulas (I), (II), (III), (IV), (V),
It is obtained by dissolving at least one of the heterocyclic compounds represented by (VI) and (VII).

【0030】例えば、正極活物質としてはコバルト、マ
ンガン、ニッケル、クロム、鉄およびバナジウムからな
る群から選ばれる少なくとも1種類の金属とリチウムと
の複合金属酸化物が使用される。このような複合金属酸
化物としては、例えば、LiCoO2、LiMn24
LiNiO2、LiCo1-xNix2(0.01<x<
1)などが挙げられる。また、LiCoO2とLiMn2
4、LiCoO2とLiNiO2、LiMn24とLi
NiO2のように適当に混ぜ合わせて使用しても良い。
For example, a composite metal oxide of lithium and at least one metal selected from the group consisting of cobalt, manganese, nickel, chromium, iron and vanadium is used as the positive electrode active material. Examples of such a composite metal oxide include LiCoO 2 , LiMn 2 O 4 ,
LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 <x <
1) and the like. LiCoO 2 and LiMn 2
O 4 , LiCoO 2 and LiNiO 2 , LiMn 2 O 4 and Li
They may be appropriately mixed and used like NiO 2 .

【0031】正極は、前記の正極活物質をアセチレンブ
ラック、カーボンブラックなどの導電剤、ポリテトラフ
ルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PVDF)、スチレンとブタジエンの共重合体(SB
R)、アクリロニトリルとブタジエンの共重合体(NB
R)、カルボキシメチルセルロース(CMC)などの結
着剤および溶剤と混練して正極合剤とした後、この正極
材料を集電体としてのアルミニウム箔やステンレス製の
ラス板に塗布して、乾燥、加圧成型後、50℃〜250
℃程度の温度で2時間程度真空下で加熱処理することに
より作製される。
For the positive electrode, a conductive agent such as acetylene black or carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), or a copolymer of styrene and butadiene (SB) is used.
R), a copolymer of acrylonitrile and butadiene (NB
R), a binder such as carboxymethylcellulose (CMC) and a solvent are kneaded to form a positive electrode mixture, and the positive electrode material is applied to an aluminum foil or a stainless steel lath plate as a current collector, dried, and dried. After pressure molding, 50 ° C ~ 250
It is produced by performing a heat treatment under vacuum at a temperature of about 2 ° C. for about 2 hours.

【0032】負極活物質としては、リチウム金属やリチ
ウム合金、またはリチウムを吸蔵・放出可能な炭素材料
〔熱分解炭素類、コークス類、グラファイト類(人造黒
鉛、天然黒鉛など)、有機高分子化合物燃焼体、炭素繊
維〕、または複合スズ酸化物などの物質が使用される。
特に、格子面(002)の面間隔(d002)が0.33
5〜0.340nm(ナノメータ)である黒鉛型結晶構
造を有する炭素材料を使用することが好ましい。なお、
炭素材料のような粉末材料はエチレンプロピレンジエン
ターポリマー(EPDM)、ポリテトラフルオロエチレ
ン(PTFE)、ポリフッ化ビニリデン(PVDF)、
スチレンとブタジエンの共重合体(SBR)、アクリロ
ニトリルとブタジエンの共重合体(NBR)、カルボキ
シメチルセルロース(CMC)などの結着剤と混練して
負極合剤として使用される。
As the negative electrode active material, lithium metal, lithium alloy, or a carbon material capable of occluding and releasing lithium (pyrolytic carbons, cokes, graphites (artificial graphite, natural graphite, etc.), organic polymer compound combustion) Body, carbon fiber], or a composite tin oxide.
In particular, the spacing (d 002 ) between the lattice planes ( 002 ) is 0.33.
It is preferable to use a carbon material having a graphite type crystal structure of 5 to 0.340 nm (nanometer). In addition,
Powder materials such as carbon materials include ethylene propylene diene terpolymer (EPDM), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF),
It is kneaded with a binder such as a copolymer of styrene and butadiene (SBR), a copolymer of acrylonitrile and butadiene (NBR), and carboxymethyl cellulose (CMC) to be used as a negative electrode mixture.

【0033】リチウム二次電池の構造は特に限定される
ものではなく、単層又は複層の正極、負極、セパレータ
を有するコイン型電池やポリマー電池、さらに、ロール
状の正極、負極およびロール状のセパレータを有する円
筒型電池や角型電池などが一例として挙げられる。な
お、セパレータとしては公知のポリオレフィンの微多孔
膜、織布、不織布などが使用される。
The structure of the lithium secondary battery is not particularly limited, and may be a coin-type battery or a polymer battery having a single or multiple layers of a positive electrode, a negative electrode, a separator, a roll-shaped positive electrode, a negative electrode, and a roll-shaped battery. Examples include a cylindrical battery and a prismatic battery having a separator. As the separator, a known microporous polyolefin membrane, woven fabric, nonwoven fabric, or the like is used.

【0034】本発明におけるリチウム二次電池の充放電
サイクルの電圧範囲は、最大作動電圧が4.1Vより大
きいことが好ましく、更に好ましくは4.2V以上、最
も好ましくは4.3V以上で大きな効果が得られる。カ
ットオフ電圧は、2.0V以上が好ましく、更に好まし
くは2.5V以上である。電流値については特に限定さ
れるものではないが、通常0.1〜2Cの定電流放電で
使用される。充放電サイクルの温度範囲は、0〜100
℃が好ましく、更に好ましくは、40〜80℃で大きな
効果が得られる。
The voltage range of the charge / discharge cycle of the lithium secondary battery in the present invention is preferably such that the maximum operating voltage is greater than 4.1 V, more preferably 4.2 V or more, and most preferably 4.3 V or more. Is obtained. The cutoff voltage is preferably 2.0 V or higher, and more preferably 2.5 V or higher. Although the current value is not particularly limited, it is usually used at a constant current discharge of 0.1 to 2C. The temperature range of the charge / discharge cycle is 0 to 100.
C. is preferable, and more preferably 40 to 80 C., a large effect is obtained.

【0035】[0035]

【実施例】次に、実施例および比較例を挙げて、本発明
を具体的に説明する。 実施例1 〔非水電解液の調製〕EC/DEC(容量比)=3/7
の非水溶媒を調製し、これにLiPF6を1Mの濃度に
なるように溶解して非水電解液を調製した後、さらに3
−クロロチオフェン〔一般式(I)中、Y1=S、X2
Cl、X1=X3=X4=H〕を非水電解液に対して0.
1重量%となるように加えた。
Next, the present invention will be specifically described with reference to examples and comparative examples. Example 1 [Preparation of non-aqueous electrolyte] EC / DEC (volume ratio) = 3/7
Was prepared and a non-aqueous electrolyte was prepared by dissolving LiPF 6 at a concentration of 1 M in the non-aqueous solvent.
-Chlorothiophene [in the general formula (I), Y 1 = S, X 2 =
Cl, X 1 = X 3 = X 4 = H] with respect to the non-aqueous electrolyte.
1% by weight was added.

【0036】〔リチウム二次電池の作製および電池特性
の測定〕LiCoO2(正極活物質)を80重量%、ア
セチレンブラック(導電剤)を10重量%、ポリフッ化
ビニリデン(結着剤)を10重量%の割合で混合し、こ
れに1−メチル−2−ピロリドン溶剤を加えて混合した
ものをアルミニウム箔上に塗布し、乾燥、加圧成型、加
熱処理して正極を調製した。天然黒鉛(負極活物質)を
90重量%、ポリフッ化ビニリデン(結着剤)を10重
量%の割合で混合し、これに1−メチル−2−ピロリド
ン溶剤を加え、混合したものを銅箔上に塗布し、乾燥、
加圧成型、加熱処理して負極を調製した。そして、ポリ
プロピレン微多孔性フィルムのセパレータを用い、上記
の非水電解液を注入させてコイン電池(直径20mm、
厚さ3.2mm)を作製した。このコイン電池を用い
て、高温(40℃)下、0.8mAの定電流で4.3V
まで充電した後、終止電圧4.3Vとして定電圧下に合
計6時間充電した。次に0.8mAの定電流下、終止電
圧2.7Vまで放電し、この充放電を繰り返した。初期
放電容量は、1M LiPF6+EC/DEC(容量
比)=1/2の非水電解液(比較例1)を1とした時の
相対比で1.03であった。また、初期放電容量を10
0%としたときの100サイクル後の放電容量維持率は
90.7%であった。コイン電池の作製条件および電池
特性を表1に示す。
[Preparation of Lithium Secondary Battery and Measurement of Battery Characteristics] LiCoO 2 (positive electrode active material): 80% by weight, acetylene black (conductive agent): 10% by weight, polyvinylidene fluoride (binder): 10% by weight % Of the mixture, a 1-methyl-2-pyrrolidone solvent was added to the mixture, and the mixture was applied onto an aluminum foil, dried, press-molded, and heat-treated to prepare a positive electrode. 90% by weight of natural graphite (negative electrode active material) and 10% by weight of polyvinylidene fluoride (binder) were added, and a 1-methyl-2-pyrrolidone solvent was added thereto. Applied, dried,
A negative electrode was prepared by pressure molding and heat treatment. Then, using a separator made of a polypropylene microporous film, the above non-aqueous electrolyte was injected, and a coin battery (20 mm in diameter,
(Thickness: 3.2 mm). Using this coin battery, 4.3 V at a constant current of 0.8 mA under high temperature (40 ° C.)
After charging to a final voltage of 4.3 V, the battery was charged at a constant voltage for a total of 6 hours. Next, the battery was discharged to a final voltage of 2.7 V under a constant current of 0.8 mA, and the charging and discharging were repeated. The initial discharge capacity was 1.03 as a relative ratio when the ratio of 1M LiPF 6 + EC / DEC (capacity ratio) = 1 / to the non-aqueous electrolyte (Comparative Example 1) was set to 1. In addition, the initial discharge capacity is 10
The discharge capacity retention rate after 100 cycles when the value was 0% was 90.7%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0037】比較例1 EC/DEC(容量比)=1/2の非水溶媒を調製し、
これにLiPF6を1Mの濃度になるように溶解した。
このとき複素環化合物は全く添加しなかった。この非水
電解液を使用して実施例1と同様にコイン電池を作製
し、電池特性を測定した。初期放電容量に対し、100
サイクル後の放電容量維持率は63.8%であった。コ
イン電池の作製条件および電池特性を表1に示す。
Comparative Example 1 A non-aqueous solvent having EC / DEC (volume ratio) = 1/2 was prepared.
LiPF 6 was dissolved therein to a concentration of 1M.
At this time, no heterocyclic compound was added. Using this non-aqueous electrolyte, a coin battery was produced in the same manner as in Example 1, and the battery characteristics were measured. 100 for the initial discharge capacity
The discharge capacity retention after the cycle was 63.8%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0038】比較例2〜5 充電終止電圧、充放電時の温度および3−クロロチオフ
ェンの添加量を表1記載のように代えたほかは比較例1
と同様にコイン電池を作製し、電池性能を測定した。コ
イン電池の作製条件および電池特性を表1に示す。
Comparative Examples 2 to 5 Comparative Example 1 was repeated except that the end-of-charge voltage, the temperature during charging and discharging, and the amount of 3-chlorothiophene were changed as shown in Table 1.
In the same manner as in the above, a coin battery was prepared, and the battery performance was measured. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0039】[0039]

【表1】 [Table 1]

【0040】実施例2 EC/DEC(容量比)=1/2の非水溶媒を調製し、
これにLiPF6を1Mの濃度になるように溶解して非
水電解液を調製した後、さらに複素環化合物として3,
4−エチレンジオキシチオフェン〔一般式(I)中、Y
1=S、X2とX 3がOCH2CH2Oで結合、X1=X4
H〕を0.05重量%使用したほかは実施例1と同様に
コイン電池を作製し、電池性能を測定した。初期放電容
量に対し、100サイクル後の放電容量維持率は92.
4%であった。コイン電池の作製条件および電池特性を
表2に示す。
Example 2 A non-aqueous solvent having EC / DEC (volume ratio) = 1/2 was prepared.
LiPF6Dissolved to a concentration of 1M
After preparing the aqueous electrolyte, as a heterocyclic compound 3,
4-ethylenedioxythiophene [in the general formula (I), Y
1= S, XTwoAnd X ThreeIs OCHTwoCHTwoJoin with O, X1= XFour=
H] was used in the same manner as in Example 1 except that 0.05% by weight was used.
A coin battery was prepared, and the battery performance was measured. Initial discharge volume
The discharge capacity retention rate after 100 cycles was 92.
4%. Coin battery manufacturing conditions and battery characteristics
It is shown in Table 2.

【0041】実施例3〜5 3,4−エチレンジオキシチオフェンの添加量を代えた
ほかは実施例2と同様にコイン電池を作製し、電池性能
を測定したコイン電池の作製条件および電池特性を表2
に示す。
Examples 3 to 5 Coin batteries were fabricated in the same manner as in Example 2 except that the amount of 3,4-ethylenedioxythiophene was changed, and the battery performance was measured. Table 2
Shown in

【0042】[0042]

【表2】 [Table 2]

【0043】実施例6 EC/MEC(容量比)=1/2の非水溶媒を調製し、
これにLiPF6を1Mの濃度になるように溶解して非
水電解液を調製した後、さらに複素環化合物として2,
2’−ビチオフェン〔一般式(II)中、Y2=S、X5
=X6=X9=X 10=H、m=0〕を0.1重量%添加し
たほかは実施例1と同様にコイン電池を作製し、電池特
性を測定した。初期放電容量に対し、100サイクル後
の放電容量維持率は91.8%であった。コイン電池の
作製条件および電池特性を表3に示す。
Example 6 A non-aqueous solvent having EC / MEC (volume ratio) = 1/2 was prepared.
LiPF6Dissolved to a concentration of 1M
After preparing the aqueous electrolyte solution, 2,2 was further added as a heterocyclic compound.
2'-bithiophene [Y in the general formula (II)Two= S, XFive
= X6= X9= X Ten= H, m = 0] in an amount of 0.1% by weight.
Otherwise, a coin battery was manufactured in the same manner as in Example 1, and the battery characteristics were changed.
The properties were measured. 100 cycles after initial discharge capacity
Of the battery was 91.8%. Coin cell battery
Table 3 shows manufacturing conditions and battery characteristics.

【0044】実施例7 複素環化合物として3−メチルチオフェン〔一般式
(I)中、Y1=S、X2=Me、X1=X3=X4=H〕
を0.1重量%添加したほかは実施例6と同様にコイン
電池を作製し、電池特性を測定した。初期放電容量に対
し、100サイクル後の放電容量維持率は92.0%で
あった。コイン電池の作製条件および電池特性を表3に
示す。
Example 7 3-Methylthiophene as a heterocyclic compound [in the formula (I), Y 1 = S, X 2 = Me, X 1 = X 3 = X 4 = H]
Was prepared in the same manner as in Example 6 except that 0.1% by weight was added, and the battery characteristics were measured. The discharge capacity retention rate after 100 cycles with respect to the initial discharge capacity was 92.0%. Table 3 shows the manufacturing conditions and battery characteristics of the coin battery.

【0045】実施例8 複素環化合物としてN−メチルピロール〔一般式(I)
中、Y1=NMe、X1=X2=X3=X4=H〕を0.1
重量%添加したほかは実施例6と同様にコイン電池を作
製し、電池特性を測定した。初期放電容量に対し、10
0サイクル後の放電容量維持率は91.3%であった。
コイン電池の作製条件および電池特性を表3に示す。
Example 8 As a heterocyclic compound, N-methylpyrrole [general formula (I)
Where Y 1 = NMe, X 1 = X 2 = X 3 = X 4 = H]
A coin battery was prepared in the same manner as in Example 6 except that the weight% was added, and the battery characteristics were measured. 10 to the initial discharge capacity
The discharge capacity retention rate after 0 cycles was 91.3%.
Table 3 shows the manufacturing conditions and battery characteristics of the coin battery.

【0046】実施例9 複素環化合物として3−ブロモフラン〔一般式(I)
中、Y1=O、X2=Br、X1=X3=X4=H〕を0.
1重量%添加したほかは実施例6と同様にコイン電池を
作製し、電池特性を測定した。初期放電容量に対し、1
00サイクル後の放電容量維持率は90.7%であっ
た。コイン電池の作製条件および電池特性を表3に示
す。
Example 9 As a heterocyclic compound, 3-bromofuran [general formula (I)
Where Y 1 = O, X 2 = Br, X 1 = X 3 = X 4 = H].
A coin battery was prepared in the same manner as in Example 6 except that 1% by weight was added, and the battery characteristics were measured. 1 for the initial discharge capacity
The discharge capacity retention rate after 00 cycles was 90.7%. Table 3 shows the manufacturing conditions and battery characteristics of the coin battery.

【0047】実施例10 複素環化合物としてフルフリルジスルフィド〔一般式
(III)中、Y3=O、Y4=O、n=1〕を0.1重
量%添加したほかは実施例6と同様にコイン電池を作製
し、電池特性を測定した。初期放電容量に対し、100
サイクル後の放電容量維持率は92.6%であった。コ
イン電池の作製条件および電池特性を表3に示す。
Example 10 The same as Example 6 except that furfuryl disulfide [in the formula (III), Y 3 OO, Y 4 OO, n = 1] was added as a heterocyclic compound in an amount of 0.1% by weight. Was prepared and the battery characteristics were measured. 100 for the initial discharge capacity
The discharge capacity retention after the cycle was 92.6%. Table 3 shows the manufacturing conditions and battery characteristics of the coin battery.

【0048】実施例11 複素環化合物としてチエノ[3,2−b]チオフェン
〔一般式(V)中、Y7=Y8=S、X13=X14=H〕を
0.1重量%添加したほかは実施例6と同様にコイン電
池を作製し、電池特性を測定した。初期放電容量に対
し、100サイクル後の放電容量維持率は91.4%で
あった。コイン電池の作製条件および電池特性を表3に
示す。
Example 11 As a heterocyclic compound, 0.1% by weight of thieno [3,2-b] thiophene [Y 7 = Y 8 = S, X 13 = X 14 = H] in the general formula (V) was added. A coin battery was manufactured in the same manner as in Example 6, except that the battery characteristics were measured. The discharge capacity retention ratio after 100 cycles with respect to the initial discharge capacity was 91.4%. Table 3 shows the manufacturing conditions and battery characteristics of the coin battery.

【0049】実施例12 複素環化合物としてジチエノ[3,2−b:2’,3’
−d]チオフェン〔一般式(VI)中、Y9=S〕を
0.1重量%添加したほかは実施例6と同様にコイン電
池を作製し、電池特性を測定した。初期放電容量に対
し、100サイクル後の放電容量維持率は91.2%で
あった。コイン電池の作製条件および電池特性を表3に
示す。
Example 12 As a heterocyclic compound, dithieno [3,2-b: 2 ′, 3 ′
-D] A coin battery was prepared in the same manner as in Example 6 except that 0.1% by weight of thiophene [Y 9 = S in the general formula (VI)] was added, and the battery characteristics were measured. The discharge capacity retention rate after 100 cycles with respect to the initial discharge capacity was 91.2%. Table 3 shows the manufacturing conditions and battery characteristics of the coin battery.

【0050】[0050]

【表3】 [Table 3]

【0051】実施例13 負極活物質として、天然黒鉛に代えて人造黒鉛を使用
し、3,4−エチレンジオキシチオフェンを0.1重量
%添加したほかは実施例2と同様にコイン電池を作製
し、電池特性を測定した。初期放電容量に対し、100
サイクル後の放電容量維持率は93.7%であった。コ
イン電池の作製条件および電池特性を表4に示す。
Example 13 A coin battery was fabricated in the same manner as in Example 2 except that artificial graphite was used instead of natural graphite as the negative electrode active material, and 0.1% by weight of 3,4-ethylenedioxythiophene was added. Then, the battery characteristics were measured. 100 for the initial discharge capacity
The discharge capacity retention after the cycle was 93.7%. Table 4 shows the manufacturing conditions and battery characteristics of the coin battery.

【0052】実施例14 正極活物質として、LiCoO2に代えてLiNi0.8
0.22を使用したほかは実施例13と同様にコイン電
池を作製し、電池特性を測定した。初期放電容量に対
し、100サイクル後の放電容量維持率は91.9%で
あった。コイン電池の作製条件および電池特性を表4に
示す。
Example 14 As a positive electrode active material, LiNi 0.8 C was used in place of LiCoO 2.
A coin battery was prepared in the same manner as in Example 13 except that o 0.2 O 2 was used, and the battery characteristics were measured. The discharge capacity retention ratio after 100 cycles with respect to the initial discharge capacity was 91.9%. Table 4 shows the manufacturing conditions and battery characteristics of the coin battery.

【0053】実施例15 正極活物質として、LiCoO2に代えてLiMn24
を使用したほかは実施例13と同様にコイン電池を作製
し、電池特性を測定した。初期放電容量に対し、100
サイクル後の放電容量維持率は93.3%であった。コ
イン電池の作製条件および電池特性を表4に示す。
Example 15 LiMn 2 O 4 was used instead of LiCoO 2 as the positive electrode active material.
A coin battery was prepared in the same manner as in Example 13 except that the above was used, and the battery characteristics were measured. 100 for the initial discharge capacity
The discharge capacity retention after the cycle was 93.3%. Table 4 shows the manufacturing conditions and battery characteristics of the coin battery.

【0054】[0054]

【表4】 [Table 4]

【0055】以上のように、複素環化合物を0.001
〜0.8重量%添加すると、0.8重量%を越えて過度
に複素環化合物を添加した非水電解液又は複素環化合物
を全く添加しない非水電解液に比べて、電圧上限が4.
1Vより高電圧及び/又は40℃以上の高温状態の充放
電においてサイクル特性が明らかに優れていることが分
かった。
As described above, the amount of the heterocyclic compound is 0.001.
When the addition of .about.0.8% by weight, the upper limit of the voltage is higher than that of a non-aqueous electrolyte containing more than 0.8% by weight of a heterocyclic compound or a non-aqueous electrolyte containing no heterocyclic compound at all.
It was found that the cycle characteristics were clearly superior in charging and discharging at a voltage higher than 1 V and / or at a high temperature of 40 ° C. or higher.

【0056】なお、本発明は記載の実施例に限定され
ず、発明の趣旨から容易に類推可能な様々な組み合わせ
が可能である。特に、上記実施例の溶媒の組み合わせは
限定されるものではない。更には、上記実施例はコイン
電池に関するものであるが、本発明は円筒形、角柱形、
ポリマー用の電池にも適用される。
It should be noted that the present invention is not limited to the embodiments described above, and various combinations that can be easily inferred from the gist of the invention are possible. In particular, the combinations of the solvents in the above examples are not limited. Further, while the above embodiments relate to coin batteries, the present invention relates to cylindrical, prismatic,
Also applies to batteries for polymers.

【0057】[0057]

【発明の効果】本発明によれば、電池のサイクル特性、
電気容量、保存特性などの電池特性に優れたリチウム二
次電池を提供することができる。
According to the present invention, the cycle characteristics of the battery,
A lithium secondary battery having excellent battery characteristics such as electric capacity and storage characteristics can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松森 保男 山口県宇部市大字小串1978番地の10 宇部 興産株式会社宇部ケミカル工場内 Fターム(参考) 5H029 AJ05 AK03 AL02 AL06 AL07 AL08 AM02 AM03 AM04 AM05 AM07 DJ09 HJ02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasuo Matsumori 10-figure, 1978 Kogushi, Obe City, Ube City, Yamaguchi Prefecture F-term in the Ube Chemical Plant Ube Chemical Plant 5H029 AJ05 AK03 AL02 AL06 AL07 AL08 AM02 AM03 AM04 AM05 AM07 DJ09 HJ02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非水溶媒に電解質が溶解されている非水
電解液において、前記非水電解液中に、下記一般式
(I)、(II)、(III)、(IV)、(V)、
(VI)、(VII)、 【化1】 【化2】 【化3】 【化4】 【化5】 【化6】 【化7】 (式中、Y1〜Y10はそれぞれ酸素原子、硫黄原子、ア
ルキルアミノ基を示し、X1〜X14はそれぞれ独立して
水素原子、炭素数1〜12のアルキル基、炭素数7〜1
5のアラルキル基、ハロゲン原子、炭素数1〜12のア
ルキルシリル基を示す。また、X1とX2、X2とX3、X
3とX4、X5とX6、X7とX8、X9とX10、X11とX12
は互いに結合して炭素数3〜12の直鎖または分枝のア
ルキレン基、あるいは炭素数1〜6の直鎖または分枝の
アルキレンジオキシ基を示しても良い。m、nはそれぞ
れ0〜2の整数を示す。)で表される複素環化合物のう
ち少なくとも1種以上が前記非水電解液に対して0.0
01〜0.8重量%含有されていることを特徴とする非
水電解液。
1. A non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolyte contains the following general formulas (I), (II), (III), (IV), and (V) ),
(VI), (VII), Embedded image Embedded image Embedded image Embedded image Embedded image Embedded image (Wherein, Y 1 to Y 10 each represent an oxygen atom, a sulfur atom, or an alkylamino group; X 1 to X 14 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms,
5 represents an aralkyl group, a halogen atom, and an alkylsilyl group having 1 to 12 carbon atoms. X 1 and X 2 , X 2 and X 3 , X
3 and X 4 , X 5 and X 6 , X 7 and X 8 , X 9 and X 10 , X 11 and X 12
May be bonded to each other to represent a linear or branched alkylene group having 3 to 12 carbon atoms, or a linear or branched alkylenedioxy group having 1 to 6 carbon atoms. m and n each represent an integer of 0 to 2. ) At least one of the heterocyclic compounds represented by the formula (1)
A non-aqueous electrolyte solution containing from 0.1 to 0.8% by weight.
【請求項2】 正極、負極、および非水溶媒に電解質が
溶解されている非水電解液を用いたリチウム二次電池に
おいて、前記非水電解液中に、下記一般式(I)、(I
I)、(III)、(IV)、(V)、(VI)、(V
II)、 【化8】 【化9】 【化10】 【化11】 【化12】 【化13】 【化14】 (式中、Y1〜Y10はそれぞれ酸素原子、硫黄原子、ア
ルキルアミノ基を示し、X1〜X14はそれぞれ独立して
水素原子、炭素数1〜12のアルキル基、炭素数7〜1
5のアラルキル基、ハロゲン原子、炭素数1〜12のア
ルキルシリル基を示す。また、X1とX2、X2とX3、X
3とX4、X5とX6、X7とX8、X9とX10、X11とX12
は互いに結合して炭素数3〜12の直鎖または分枝のア
ルキレン基、あるいは炭素数1〜6の直鎖または分枝の
アルキレンジオキシ基を示しても良い。m、nはそれぞ
れ0〜2の整数を示す。)で表される複素環化合物のう
ち少なくとも1種以上が前記非水電解液に対して0.0
01〜0.8重量%含有されていることを特徴とするリ
チウム二次電池。
2. A lithium secondary battery using a positive electrode, a negative electrode, and a non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolyte contains the following general formulas (I) and (I).
I), (III), (IV), (V), (VI), (V
II), embedded image Embedded image Embedded image Embedded image Embedded image Embedded image Embedded image (Wherein, Y 1 to Y 10 each represent an oxygen atom, a sulfur atom, or an alkylamino group; X 1 to X 14 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms,
5 represents an aralkyl group, a halogen atom, and an alkylsilyl group having 1 to 12 carbon atoms. X 1 and X 2 , X 2 and X 3 , X
3 and X 4 , X 5 and X 6 , X 7 and X 8 , X 9 and X 10 , X 11 and X 12
May be bonded to each other to represent a linear or branched alkylene group having 3 to 12 carbon atoms, or a linear or branched alkylenedioxy group having 1 to 6 carbon atoms. m and n each represent an integer of 0 to 2. ) At least one of the heterocyclic compounds represented by the formula (1)
A lithium secondary battery characterized by being contained in an amount of from 0.01 to 0.8% by weight.
JP2000315411A 2000-10-16 2000-10-16 Nonaqueous electrolyte and lithium secondary battery using the same Expired - Fee Related JP4419309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000315411A JP4419309B2 (en) 2000-10-16 2000-10-16 Nonaqueous electrolyte and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000315411A JP4419309B2 (en) 2000-10-16 2000-10-16 Nonaqueous electrolyte and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2002124298A true JP2002124298A (en) 2002-04-26
JP4419309B2 JP4419309B2 (en) 2010-02-24

Family

ID=18794519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000315411A Expired - Fee Related JP4419309B2 (en) 2000-10-16 2000-10-16 Nonaqueous electrolyte and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4419309B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005076030A (en) * 2003-08-28 2005-03-24 Merck Patent Gmbh Mono-, oligo- and polythieno(2,3-b)thiophene
US7553588B2 (en) * 2003-03-13 2009-06-30 Samsung Sdi Co., Ltd. Non-aqueous electrolyte and a lithium secondary battery comprising the same
CN102477045A (en) * 2010-11-30 2012-05-30 中国科学院上海有机化学研究所 Bithiophene quinoid compound, its preparation method, intermediate thereof and its application
JP2013016303A (en) * 2011-07-01 2013-01-24 Toyota Industries Corp Electrolyte and lithium ion secondary battery
JP2013020701A (en) * 2011-07-07 2013-01-31 Toyota Industries Corp Electrolyte and lithium ion secondary battery
JP2015149250A (en) * 2014-02-07 2015-08-20 日本電気株式会社 Electrolyte, and secondary battery using the same
JP2016146315A (en) * 2015-02-06 2016-08-12 寧徳新能源科技有限公司 Electrolyte additive application and application thereof
CN109004274A (en) * 2017-06-07 2018-12-14 宁德时代新能源科技股份有限公司 Electrolyte solution and secondary battery
CN111162318A (en) * 2019-12-31 2020-05-15 天目湖先进储能技术研究院有限公司 Lithium ion battery electrolyte containing thiophene conjoined compound
US11600862B2 (en) 2016-06-02 2023-03-07 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery, and lithium secondary battery containing same
WO2023123841A1 (en) * 2021-12-27 2023-07-06 珠海市赛纬电子材料股份有限公司 Electrolyte additive, electrolyte comprising additive, and lithium ion battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113764737B (en) 2021-09-29 2022-04-26 珠海市赛纬电子材料股份有限公司 Additive, electrolyte containing additive and lithium ion battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7553588B2 (en) * 2003-03-13 2009-06-30 Samsung Sdi Co., Ltd. Non-aqueous electrolyte and a lithium secondary battery comprising the same
JP2005076030A (en) * 2003-08-28 2005-03-24 Merck Patent Gmbh Mono-, oligo- and polythieno(2,3-b)thiophene
JP2012162720A (en) * 2003-08-28 2012-08-30 Merck Patent Gmbh MONO-, OLIGO-, AND POLYTHIENO[2,3-b]THIOPHENE
CN102477045A (en) * 2010-11-30 2012-05-30 中国科学院上海有机化学研究所 Bithiophene quinoid compound, its preparation method, intermediate thereof and its application
JP2013016303A (en) * 2011-07-01 2013-01-24 Toyota Industries Corp Electrolyte and lithium ion secondary battery
JP2013020701A (en) * 2011-07-07 2013-01-31 Toyota Industries Corp Electrolyte and lithium ion secondary battery
JP2015149250A (en) * 2014-02-07 2015-08-20 日本電気株式会社 Electrolyte, and secondary battery using the same
JP2016146315A (en) * 2015-02-06 2016-08-12 寧徳新能源科技有限公司 Electrolyte additive application and application thereof
US11600862B2 (en) 2016-06-02 2023-03-07 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery, and lithium secondary battery containing same
CN109004274A (en) * 2017-06-07 2018-12-14 宁德时代新能源科技股份有限公司 Electrolyte solution and secondary battery
CN109004274B (en) * 2017-06-07 2020-04-24 宁德时代新能源科技股份有限公司 Electrolyte solution and secondary battery
CN111162318A (en) * 2019-12-31 2020-05-15 天目湖先进储能技术研究院有限公司 Lithium ion battery electrolyte containing thiophene conjoined compound
CN111162318B (en) * 2019-12-31 2022-06-17 天目湖先进储能技术研究院有限公司 Lithium ion battery electrolyte containing thiophene conjoined compound
WO2023123841A1 (en) * 2021-12-27 2023-07-06 珠海市赛纬电子材料股份有限公司 Electrolyte additive, electrolyte comprising additive, and lithium ion battery

Also Published As

Publication number Publication date
JP4419309B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
KR102109835B1 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising the same
EP2775559B1 (en) Non-aqueous electrolyte secondary battery
JP4352622B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
US20180006329A1 (en) Electrochemical cells that include lewis acid: lewis base complex electrolyte additives
KR102242252B1 (en) Electrolyte for lithium secondary battery, and lithium secondary battery comprising the same
KR101718061B1 (en) Organic electrolytic solution and and Lithium battery comprising the solution
JP7027628B2 (en) Electrolytes for lithium secondary batteries and lithium secondary batteries containing them
KR101640134B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
US11476499B2 (en) Electrolyte additive and electrolyte for lithium secondary battery including the same
KR101073233B1 (en) Non-aqueous electrolyte and electrochemical device comprising the same
JP3951486B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
US20130236777A1 (en) Non-aqueous electrolyte secondary battery
JP6424436B2 (en) Electrolyte and secondary battery using the same
KR102383162B1 (en) Electrolyte additive and electrolyte solution for lithium secondary battery comprising the same
JP5428274B2 (en) Nonaqueous electrolyte and lithium battery using the same
JP5810032B2 (en) Positive electrode protective agent for lithium ion secondary battery, positive electrode material for lithium ion secondary battery, non-aqueous electrolyte for lithium ion secondary battery, lithium ion secondary battery, and production method thereof
KR102380511B1 (en) Electrolyte for lithium battery, and lithium battery including the electrolyte
JP4419309B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
US6866966B2 (en) Non-aqueous secondary battery having enhanced discharge capacity retention
EP1691441B1 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising the same
JP4304404B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
EP1199766B1 (en) Non-aqueous secondary battery having enhanced discharge capacity retention
JP2002124297A (en) Nonaqueous electrolytic solution and lithium secondary battery using it
JP4826760B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2013235789A (en) Electrode protective agent for lithium ion secondary battery, positive electrode material for lithium ion secondary battery, electrolyte for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees