JP2002122139A - Thrust magnetic bearing and flywheel battery device - Google Patents

Thrust magnetic bearing and flywheel battery device

Info

Publication number
JP2002122139A
JP2002122139A JP2000309869A JP2000309869A JP2002122139A JP 2002122139 A JP2002122139 A JP 2002122139A JP 2000309869 A JP2000309869 A JP 2000309869A JP 2000309869 A JP2000309869 A JP 2000309869A JP 2002122139 A JP2002122139 A JP 2002122139A
Authority
JP
Japan
Prior art keywords
electromagnet
magnetic path
iron core
thrust
magnetic bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000309869A
Other languages
Japanese (ja)
Inventor
Takahiro Yoshikawa
高広 吉川
Shoei Abe
昇栄 阿部
Arata Aoki
新 青木
Koichi Ono
浩一 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000309869A priority Critical patent/JP2002122139A/en
Publication of JP2002122139A publication Critical patent/JP2002122139A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0476Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To miniaturize an iron core for electromagnet and reduce the weight thereof, and to enlarge a coil housing volume without reducing a necessary magnetic path area. SOLUTION: In a thrust magnetic bearing for supporting a rotor without contact therewith, resisting the axial directional thrust, thickness of an iron core 42 for electromagnet is formed so as to be gradually reduced toward outside in the radial direction. Namely, inner surfaces 53A and 52aA of a back side magnetic path 53 and an inward magnetic path 52a are respectively formed into a tapered surface coming closer to outer surfaces 53A and 52aB as they are directed toward outside in the radial direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回転体を軸方向推
力に抗して非接触に支持するスラスト磁気軸受に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thrust magnetic bearing for supporting a rotating body in a non-contact manner against an axial thrust.

【0002】[0002]

【従来の技術】回転体を軸方向推力に抗して非接触に支
持する軸受として、例えば、特開平6−159364号
公報,特開平8−128445号公報に開示されたスラ
スト磁気軸受が知られている。図8に示すように、非接
触に支持される回転体1には、径方向外方に突出するカ
ラー2が固定されており、このカラー2と、該カラー2
に対向して配置されたステータ3とから上記スラスト磁
気軸受は構成される。
2. Description of the Related Art As a bearing for supporting a rotating body in a non-contact manner against an axial thrust, for example, a thrust magnetic bearing disclosed in JP-A-6-159364 and JP-A-8-128445 is known. ing. As shown in FIG. 8, a collar 2 projecting radially outward is fixed to the rotating body 1 supported in a non-contact manner.
The above-described thrust magnetic bearing is constituted by the stator 3 arranged so as to be opposed to the above.

【0003】このステータ3は、環状電磁石用コイル4
と、該環状電磁石用コイル4を内部に取り囲む形状の電
磁石用鉄芯5とから構成されている。電磁石用鉄芯5の
片断面形状は、図9の拡大断面図に示す通りであり、鉄
芯内のコイル収納空間は、軸線Oに対して垂直な内面y
1,y2と、平行な内面x1,x2とで囲まれた長方形断と
になっている。
[0003] The stator 3 comprises a coil 4 for an annular electromagnet.
And an electromagnet core 5 having a shape surrounding the annular electromagnet coil 4. The one-sided cross-sectional shape of the electromagnet iron core 5 is as shown in the enlarged cross-sectional view of FIG. 9, and the coil housing space in the iron core has an inner surface y perpendicular to the axis O.
1, y2 and a rectangular section surrounded by parallel inner surfaces x1, x2.

【0004】図9中、符号A1,…,B3は各磁路部の肉
厚を示しており、これらの間には、A1>B1,A2(=
A1)>B2,A2=A3,B2=B3の関係が成立する。こ
れを磁路に垂直な断面で考え、各断面積を符号A1,
…,B3に添字Sをつけて表記すると、SA1=SB1=
SA2=SB2=SA4=SB4の関係が成立する。ここ
で、SA1=SB1=SA2=SB2=SA4=SB4=Sと
総括表記すると、S<SA3、S<SB3の関係も成立す
る。
In FIG. 9, symbols A1,..., B3 indicate the thickness of each magnetic path portion, and A1> B1, A2 (=
A1)> B2, A2 = A3, B2 = B3. This is considered as a cross section perpendicular to the magnetic path, and each cross section is denoted by A1,
.., B3 with a suffix S, SA1 = SB1 =
The relationship of SA2 = SB2 = SA4 = SB4 holds. Here, when expressed as SA1 = SB1 = SA2 = SB2 = SA4 = SB4 = S, the relations of S <SA3 and S <SB3 also hold.

【0005】[0005]

【発明が解決しようとする課題】一般に、スラスト磁気
軸受の電磁石用鉄芯5は必要最低限の磁路面積を確保す
れば良いところ、上記の如く構成されたスラスト磁気軸
受にあっては、径方向に沿う磁路部5a,5bの厚みが
径方向に均一であることから(A2=A3,B2=B3)、
磁路面積が径方向外方に向かうに従い漸次増大する構造
になっており(SA2<SA3,SB2<SB3)、単に磁
束密度の低減を招くだけの無駄な部分が多く存在してい
た。
Generally, the iron core 5 for the electromagnet of the thrust magnetic bearing only needs to secure a minimum required magnetic path area. However, in the thrust magnetic bearing configured as described above, the diameter is small. Since the thickness of the magnetic path portions 5a and 5b along the direction is uniform in the radial direction (A2 = A3, B2 = B3),
The structure has a structure in which the magnetic path area gradually increases as going outward in the radial direction (SA2 <SA3, SB2 <SB3), and there are many wasteful portions that merely reduce the magnetic flux density.

【0006】本発明は、このような事情に鑑みてなされ
たものであり、その目的は、必要な磁路面積を減らすこ
となく、電磁石用鉄芯を小型軽量にすることによる鉄損
の減少、あるいはコイル収納容積の拡大による銅損の減
少、それらによる効率の向上である。
The present invention has been made in view of such circumstances, and has as its object to reduce iron loss by reducing the size and weight of an iron core for an electromagnet without reducing the required magnetic path area. Alternatively, the copper loss can be reduced by increasing the coil storage volume, and the efficiency can be improved accordingly.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、以下の手段を採用した。請求項1に記載
した発明は、支持すべき回転体(例えば、実施の形態に
おけるフライホイール12のロータ部21)に設けられ
て該回転体の径方向外方に突出するカラー(例えば、実
施の形態におけるカラー31)と、前記回転体に作用す
る軸方向推力に抗して前記カラーを非接触に支持するス
テータ(例えば、実施の形態におけるステータ32)と
を備えると共に、該ステータが環状電磁石用コイル(例
えば、実施の形態における環状電磁石用コイル41)
と、該環状電磁石用コイルを内部に取り囲む形状の電磁
石用鉄芯(例えば、実施の形態における電磁石用鉄芯4
2)とからなるスラスト磁気軸受(例えば、実施の形態
におけるスラスト磁気軸受15)において、前記電磁石
用鉄芯の肉厚は、径方向外方に向かうに従い暫減するこ
とを特徴とする。
Means for Solving the Problems In order to solve the above problems, the present invention employs the following means. According to the first aspect of the present invention, a collar (for example, an embodiment) provided on a rotating body to be supported (for example, the rotor portion 21 of the flywheel 12 in the embodiment) and protruding radially outward of the rotating body. And a stator (for example, a stator 32 in the embodiment) that supports the collar in a non-contact manner against an axial thrust acting on the rotating body, and the stator is for an annular electromagnet. Coil (for example, annular electromagnet coil 41 in the embodiment)
And an iron core for an electromagnet having a shape surrounding the coil for an annular electromagnet (for example, the iron core for an electromagnet 4 in the embodiment).
In the thrust magnetic bearing (2) (for example, the thrust magnetic bearing 15 in the embodiment), the thickness of the iron core for the electromagnet gradually decreases as it goes radially outward.

【0008】このような構成によれば、必要な磁路面積
を減らさずに電磁石用鉄芯の肉厚を薄くできる。また、
電磁石用鉄芯の磁路面積が径方向のどの位置においても
一定となるように肉厚を設定すれば、肉厚に無駄がなく
なると共に、磁束密度が均等になる。
According to such a configuration, the thickness of the electromagnet iron core can be reduced without reducing the required magnetic path area. Also,
If the thickness is set such that the magnetic path area of the electromagnet iron core is constant at any position in the radial direction, the thickness is not wasted and the magnetic flux density becomes uniform.

【0009】請求項2に記載した発明は、請求項1記載
の磁気軸受ステータにおいて、前記電磁石用鉄芯の内面
(例えば、実施の形態における背側磁路部53の内面5
3A,内向磁路部52aの内面52aA)は、径方向外
方に向かうに従い外面(例えば、実施の形態における背
側磁路部53の外面53B,内向磁路部52aの外面5
2aB)に暫近することを特徴とする。
According to a second aspect of the present invention, there is provided the magnetic bearing stator according to the first aspect, wherein the inner surface of the electromagnet iron core (for example, the inner surface 5 of the back magnetic path portion 53 in the embodiment) is provided.
3A, the inner surface 52aA of the inward magnetic path portion 52a) has an outer surface (for example, the outer surface 53B of the back magnetic path portion 53 and the outer surface 5 of the inward magnetic path portion 52a in the embodiment).
2aB).

【0010】このような構成によれば、電磁石用鉄芯の
外径を従来通りにした場合は、肉厚を薄くした分だけコ
イル収納容積に余裕が生じるので、巻数を増やしたり線
径を太くできる。逆に、コイル収納容積を従来通りにし
た場合は、巻数や線径を従来通りにしつつ、電磁石用鉄
芯の外径を小さくできる。
According to such a configuration, when the outer diameter of the iron core for the electromagnet is made to be the same as the conventional one, there is a margin in the coil storage volume by the reduced thickness, so that the number of turns is increased or the wire diameter is increased. it can. Conversely, when the coil storage volume is made conventional, the outer diameter of the electromagnet iron core can be reduced while the number of turns and the wire diameter are made conventional.

【0011】請求項3に記載した発明は、フライホイー
ルに蓄積された回転エネルギーを電気エネルギーに変換
して外部へ供給するフライホイールバッテリ装置におい
て、前記フライホイールに作用する軸方向推力が請求項
1又は請求項2記載のスラスト磁気軸受により支持され
てなることを特徴とする。
According to a third aspect of the present invention, there is provided a flywheel battery device for converting rotational energy stored in a flywheel into electric energy and supplying the electric energy to the outside, wherein an axial thrust acting on the flywheel is provided. Alternatively, it is supported by the thrust magnetic bearing according to claim 2.

【0012】このような構成によれば、電磁石用鉄芯に
ついて小型軽量化,あるいはコイル収納容積が拡大化さ
れたスラスト磁気軸受を備えることになるので、フライ
ホイールバッテリ装置自体の小型軽量化、あるいは非接
触に支持し得る軸方向推力の許容値が向上する。
According to such a configuration, the size and weight of the iron core for the electromagnet or the provision of the thrust magnetic bearing having an enlarged coil storage volume are provided, so that the flywheel battery device itself is reduced in size and weight, or The allowable value of the axial thrust that can be supported without contact is improved.

【0013】[0013]

【発明の実施の形態】以下、本発明の一実施の形態につ
いて、図面と共に説明する。図1は、フライホイールバ
ッテリ装置の全体構成を示す断面図である。このフライ
ホイールバッテリ装置は、真空容器11内に、フライホ
イール12,電動/発電機13,ラジアル磁気軸受1
4,スラスト磁気軸受15を備えて構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing the entire configuration of the flywheel battery device. This flywheel battery device includes a flywheel 12, an electric / generator 13, a radial magnetic bearing 1 in a vacuum vessel 11.
4, a thrust magnetic bearing 15 is provided.

【0014】フライホイール12は、径方向(ラジアル
方向)に対してはラジアル磁気軸受14によって、ま
た、軸方向(スラスト方向)に対してはスラスト磁気軸
受15によって、非接触に支持されている。ラジアル磁
気軸受14については公知のラジアル磁気軸受が用いら
れるので、ここでの説明は省略し、スラスト磁気軸受1
5については後述する。
The flywheel 12 is supported in a non-contact manner by a radial magnetic bearing 14 in a radial direction (radial direction) and by a thrust magnetic bearing 15 in an axial direction (thrust direction). Since a known radial magnetic bearing is used for the radial magnetic bearing 14, the description thereof is omitted here, and the thrust magnetic bearing 1 is omitted.
5 will be described later.

【0015】電動/発電機13は、フライホイール12
に設けられたロータ部21と、該ロータ部21の周囲に
設けられたステータ部22とからなり、外部から電力供
給を受けて電動機として動作する一方で、回生電力を外
部に供給する発電機として動作する。
The electric / generator 13 includes a flywheel 12
And a stator section 22 provided around the rotor section 21. The generator operates as a motor while receiving electric power from the outside, and as a generator for supplying regenerative electric power to the outside. Operate.

【0016】スラスト磁気軸受15は、図2に示すよう
に、フライホイール12のロータ部21に固定されてそ
の径方向外方に突出するカラー31と、該カラー31を
フライホイール12に作用する軸方向推力(スラスト
力)に抗して非接触に支持するステータ32とを備え、
このステータ32は、環状電磁石用コイル41と電磁石
用鉄芯42とから構成されている。
As shown in FIG. 2, the thrust magnetic bearing 15 has a collar 31 fixed to the rotor portion 21 of the flywheel 12 and protruding radially outward, and a shaft acting on the flywheel 12 by attaching the collar 31 to the flywheel 12. A stator 32 which is supported in a non-contact manner against a directional thrust (thrust force),
The stator 32 includes an annular electromagnet coil 41 and an electromagnet iron core 42.

【0017】電磁石用鉄芯42は、図3及び図4に示す
ように、環状電磁石用コイル41を内部に取り囲むよう
な形状をしており、カラー31に対向する側の各端面が
内側磁極51A及び外側磁極52Aをなす内側磁路部5
1及び外側磁路部52と、カラー31と反対側に位置す
ることになる背側磁路部53とから構成されている。ま
た、外側磁極52Aは、径方向内方に延在する内向磁路
部52aによって内側磁極51aに近接させられてい
る。
As shown in FIGS. 3 and 4, the electromagnet iron core 42 has a shape surrounding the annular electromagnet coil 41, and each end face on the side facing the collar 31 has an inner magnetic pole 51A. And inner magnetic path portion 5 forming outer magnetic pole 52A
1 and an outer magnetic path section 52, and a back magnetic path section 53 located on the opposite side of the collar 31. The outer magnetic pole 52A is brought closer to the inner magnetic pole 51a by an inward magnetic path portion 52a extending radially inward.

【0018】電磁石用鉄芯42の肉厚は、これら内側磁
路部51と、外側磁路部52と、背側磁路部53とで異
なる設定になっており、さらにこれらのうち、径方向に
延在する背側磁路部53及び内向磁路部52aについて
は、径方向外方に向かうに従って、すなわち、軸線Oか
ら離間するに従って、肉厚が次第に薄くなるように形成
されている。
The thickness of the electromagnet core 42 is set differently for the inner magnetic path 51, the outer magnetic path 52, and the back magnetic path 53. The back side magnetic path portion 53 and the inward magnetic path portion 52a extending in the radial direction are formed so that the thickness gradually decreases as going outward in the radial direction, that is, as the distance from the axis O increases.

【0019】つまり、背側磁路部53と内向磁路部52
aの各内面53A,52aAは、径方向外方に向かうに
従って、これら背側磁路部53と内向磁路部52aの各
外面53B,52aBに次第に接近するようなテーパ面
とされている。以下、図5を参照しながら、図9に示し
た従来例と比較しつつ、各部の肉厚について詳細に説明
する
That is, the back magnetic path 53 and the inward magnetic path 52
The inner surfaces 53A, 52aA of a are tapered such that they gradually approach the outer surfaces 53B, 52aB of the back magnetic path portion 53 and the inward magnetic path portion 52a as going radially outward. Hereinafter, the thickness of each part will be described in detail with reference to FIG. 5 and in comparison with the conventional example shown in FIG.

【0020】図5中、肉厚A1,A2,A4,B1,B2,
B4は、図9に示した従来例に係る電磁石用鉄芯と同一
に設定されているが、肉厚A3’,B3’は、図9中の肉
厚A3,B3よりも薄く設定されている。さらに、肉厚A
3’,B3’は、その部分における磁路面積SA3’,S
B3’がSA2=SA3’、SB2=SB3’を満たすよう
に設定されている。
In FIG. 5, the thicknesses A1, A2, A4, B1, B2,
B4 is set the same as the electromagnet core according to the conventional example shown in FIG. 9, but the thicknesses A3 'and B3' are set smaller than the thicknesses A3 and B3 in FIG. . Furthermore, thickness A
3 ', B3' are the magnetic path areas SA3 ', S
B3 'is set so as to satisfy SA2 = SA3' and SB2 = SB3 '.

【0021】これにより、本実施の形態による電磁石用
鉄芯42においては、各断面における磁路面積につい
て、SA1=SA2=SA4=SB1=SB2=SB4=SA
3’=SB3’の関係が成立し、肉厚に無駄がなくなると
共に、鉄芯内の磁束密度が均等になっている。
Thus, in the magnet core 42 for an electromagnet according to the present embodiment, the magnetic path area in each cross section is determined by SA1 = SA2 = SA4 = SB1 = SB2 = SB4 = SA
The relationship of 3 '= SB3' is established, the wall thickness is not wasted, and the magnetic flux density in the iron core is uniform.

【0022】以上説明したように、本実施の形態にあっ
ては、背側磁路部53及び内向磁路部52aの内面53
A,52aAを、径方向外方に向かうに従い、各々の外
面53B,52aBに次第に接近するテーパ面としたこ
とにより、必要な磁路面積を減らさずに、すなわち、性
能を劣化させることなく、電磁石用鉄芯42から無駄な
部分(図2の符号W)を切除し得るようになり、小型軽
量になる。また、電磁石用鉄芯42の磁路面積が径方向
のどの位置においても一定になるので、磁束密度が磁路
に沿って均等になり、効率も向上する。
As described above, in the present embodiment, the inner surface 53 of the back magnetic path portion 53 and the inward magnetic path portion 52a is provided.
A, 52aA is a tapered surface that gradually approaches each outer surface 53B, 52aB as going outward in the radial direction, so that the electromagnet can be used without reducing the required magnetic path area, that is, without deteriorating the performance. A useless portion (reference symbol W in FIG. 2) can be cut off from the iron core 42, and the size and weight can be reduced. Further, since the magnetic path area of the electromagnet core 42 becomes constant at any position in the radial direction, the magnetic flux density becomes uniform along the magnetic path, and the efficiency is improved.

【0023】この場合において、電磁石用鉄芯42の外
径を従来通りにしたときは、鉄芯内のコイル収納容積が
前記無駄な部分Wに相当する分だけ増加して余裕ができ
るので、巻数を増やしたり、線径を太くすることが可能
になる。従って、銅損が低減すると共に、非接触に支持
し得る軸方向推力の許容値も上がり、性能が向上する。
In this case, when the outer diameter of the electromagnet iron core 42 is the same as the conventional one, the coil storage volume in the iron core is increased by an amount corresponding to the useless portion W, so that a margin can be provided. And the wire diameter can be increased. Therefore, the copper loss is reduced, the allowable value of the axial thrust that can be supported in a non-contact manner is increased, and the performance is improved.

【0024】逆に、コイル収納容積を従来通りにしたと
きは、巻数や線径を従来通りにしつつ、電磁石用鉄芯4
2の外径を小さくできるので、鉄損の減少による効率の
向上と、小型軽量化を図ることができる。さらに、以上
の如くスラスト磁気軸受が小型軽量化されれば、フライ
ホイールバッテリ装置も小型軽量になるので、車載用に
も好適なバッテリ装置の提供が可能になる。
Conversely, when the coil storage volume is made conventional, the number of turns and the wire diameter are made the same as before, while the iron core 4 for the electromagnet is used.
Since the outer diameter of No. 2 can be reduced, the efficiency can be improved by reducing the iron loss, and the size and weight can be reduced. Furthermore, if the thrust magnetic bearing is reduced in size and weight as described above, the flywheel battery device is also reduced in size and weight, so that it is possible to provide a battery device suitable for in-vehicle use.

【0025】なお、本発明は上記実施の形態に限られる
ものではない。例えば、上記実施の形態では、電磁石用
鉄芯42の背面磁路部53及び内向磁路部52aの内面
53A,52aAをテーパ面としているが、これらのう
ち一方の内面のみがテーパ面であってもよい。図6及び
図7では、背側磁路部53の内面53Aのみをテーパ面
にしている。
The present invention is not limited to the above embodiment. For example, in the above-described embodiment, the back magnetic path portion 53 of the electromagnet iron core 42 and the inner surfaces 53A and 52aA of the inward magnetic path portion 52a are tapered, but only one of these inner surfaces is a tapered surface. Is also good. 6 and 7, only the inner surface 53A of the back magnetic path 53 is a tapered surface.

【0026】上記実施の形態では、電磁石用鉄芯42の
肉厚が径方向外方に向かうに従い暫減する構成の一形態
として、背面磁路部53及び内向磁路部52aの内面5
3A,52aAが外面53B,52aBに接近するテー
パ面として構成したが、この構成のように肉厚が連続的
に減少せず、例えば、階段状に肉厚が減少するような構
成であってもよい。
In the above-described embodiment, as an embodiment of a configuration in which the thickness of the electromagnet iron core 42 gradually decreases outward in the radial direction, the inner surface 5 of the back magnetic path portion 53 and the inward magnetic path portion 52a is formed.
Although 3A and 52aA are configured as tapered surfaces approaching the outer surfaces 53B and 52aB, even if the thickness does not decrease continuously as in this configuration, for example, the thickness decreases stepwise. Good.

【0027】また、上記実施の形態では、電磁石用鉄芯
42においてその径方向に延在する磁路部は背面磁路部
53及び内向磁路部52aしかないが、径方向に延在し
なくても、電磁石用鉄芯42の軸線Oと交差するような
傾斜部分が他にあれば、その部分の肉厚についても径方
向外方に向けて暫減させてもよい。例えば、内側磁路部
51や、内向磁路部52aよりもカラー31側に位置す
る外側磁路部52が傾斜している場合は、これらの肉厚
を暫減させてもよい。
In the above embodiment, the magnetic path portion extending in the radial direction of the electromagnet core 42 is only the back magnetic path section 53 and the inward magnetic path section 52a, but does not extend in the radial direction. However, if there is another inclined portion that intersects with the axis O of the electromagnet iron core 42, the thickness of that portion may be temporarily reduced radially outward. For example, when the inner magnetic path 51 and the outer magnetic path 52 located closer to the collar 31 than the inward magnetic path 52a are inclined, the thickness of these may be reduced temporarily.

【0028】上記実施の形態では、電磁石用鉄芯42の
外側磁路部52については、内向磁路部52aを設ける
ことで、外側磁極52Aを内側磁極51Aに近接させて
いるが、例えば、図7に示すように内向磁路部を設け
ず、外側磁極52Aと内側磁極51Aとが離間した構成
であっても構わない。
In the above embodiment, the outer magnetic path 52A of the electromagnet iron core 42 is provided with the inward magnetic path 52a so that the outer magnetic pole 52A is brought closer to the inner magnetic pole 51A. As shown in FIG. 7, the outer magnetic pole 52A and the inner magnetic pole 51A may be separated from each other without providing the inward magnetic path.

【0029】さらに、上記実施の形態では、電磁石用鉄
芯42の肉厚を磁路面積が磁路に沿って均等になるよう
に設定しているが、必ずしも均等に設定しなくてもよ
い。
Further, in the above embodiment, the thickness of the electromagnet iron core 42 is set so that the magnetic path area becomes uniform along the magnetic path. However, the thickness is not necessarily required to be equal.

【0030】[0030]

【発明の効果】以上の説明から明らかなように、本発明
によれば、以下の効果を得る。 (1)請求項1記載の発明によれば、必要な磁路面積を
減らさずに電磁石用鉄芯の肉厚を薄くできるので、鉄損
の減少による効率の向上と小型軽量化を図ることができ
る。特に、電磁石用鉄芯の磁路面積が径方向のどの位置
においても一定となるように肉厚を設定すれば、肉厚に
無駄がなくなると共に鉄損が更に減少し、更なる効率の
向上と小型軽量化を実現できる。
As is apparent from the above description, according to the present invention, the following effects can be obtained. (1) According to the first aspect of the invention, the thickness of the electromagnet iron core can be reduced without reducing the required magnetic path area, so that it is possible to improve the efficiency and reduce the size and weight by reducing iron loss. it can. In particular, if the thickness is set such that the magnetic path area of the electromagnet iron core is constant at any position in the radial direction, the thickness is not wasted, and iron loss is further reduced, further improving efficiency. Small size and light weight can be realized.

【0031】(2)請求項2記載の発明によれば、電磁
石用鉄芯の外径を従来通りにした場合は、肉厚を薄くし
た分だけコイル収納容積に余裕が生じ、巻数を増やした
り線径を太くできるので、銅損の低減と性能の向上を図
ることができる。逆に、コイル収納容積を従来通りにし
た場合は、巻数や線径を従来通りにしつつ、電磁石用鉄
芯の外径を小さくできるので、鉄損の減少による効率の
向上と小型軽量化を図ることができる。
(2) According to the second aspect of the present invention, when the outer diameter of the iron core for the electromagnet is made to be the same as the conventional one, there is a margin in the coil storage volume by the reduced thickness, and the number of turns can be increased. Since the wire diameter can be increased, the copper loss can be reduced and the performance can be improved. Conversely, when the coil storage volume is the same as before, the outer diameter of the iron core for the electromagnet can be reduced while keeping the number of turns and the wire diameter as before, thereby improving the efficiency and reducing the size and weight by reducing iron loss. be able to.

【0032】(3)請求項3記載の発明によれば、電磁
石用鉄芯について小型軽量化,あるいはコイル収納容積
が拡大化されたスラスト磁気軸受を備えることになるの
で、性能が高く小型軽量なフライホイールバッテリ装置
を構成し得るようになり、車載用にも好適なバッテリ装
置の提供が可能になる。
(3) According to the third aspect of the present invention, the iron core for the electromagnet is provided with a thrust magnetic bearing having a reduced size and weight or an increased coil storage capacity. A flywheel battery device can be configured, and a battery device suitable for in-vehicle use can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係るスラスト磁気軸受及びこれを備
えたフライホイールバッテリ装置の一実施の形態を示す
断面図である。
FIG. 1 is a sectional view showing an embodiment of a thrust magnetic bearing according to the present invention and a flywheel battery device including the same.

【図2】 図1の要部拡大断面図である。FIG. 2 is an enlarged sectional view of a main part of FIG.

【図3】 ステータの平面図である。FIG. 3 is a plan view of a stator.

【図4】 同ステータの断面図である。FIG. 4 is a sectional view of the stator.

【図5】 同ステータの片拡大断面図である。FIG. 5 is an enlarged sectional view of the same stator.

【図6】 本発明の他の実施形態に係るスラスト磁気軸
受を示す断面図である。
FIG. 6 is a sectional view showing a thrust magnetic bearing according to another embodiment of the present invention.

【図7】 本発明のさらに他の実施形態に係るスラスト
磁気軸受の要部を示す片断面図である。
FIG. 7 is a partial sectional view showing a main part of a thrust magnetic bearing according to still another embodiment of the present invention.

【図8】 スラスト磁気軸受の一従来例を示す断面図で
ある。
FIG. 8 is a sectional view showing a conventional example of a thrust magnetic bearing.

【図9】 同スラスト磁気軸受の要部を示す片断面図で
ある。
FIG. 9 is a sectional view showing a main part of the thrust magnetic bearing.

【符号の説明】[Explanation of symbols]

12 フライホイール 15 スラスト磁気軸受 21 ロータ部(回転体) 31 カラー 32 ステータ 41 環状電磁石用コイル 42 電磁石用鉄芯 53A 背側磁路部の内面(電磁石用鉄芯の内面) 52aA 内向磁路部の内面(電磁石用鉄芯の内面) 53B 背側磁路部の外面(電磁石用鉄芯の外面) 52aB 内向磁路部の外面(電磁石用鉄芯の外面) DESCRIPTION OF SYMBOLS 12 Flywheel 15 Thrust magnetic bearing 21 Rotor part (rotating body) 31 Collar 32 Stator 41 Circular electromagnet coil 42 Electromagnet core 53A Inner surface of backside magnetic path (inner surface of electromagnet core) 52aA Inward magnetic path part Inner surface (inner surface of iron core for electromagnet) 53B Outer surface of back magnetic path (outer surface of iron core for electromagnet) 52aB Outer surface of inward magnetic path portion (outer surface of iron core for electromagnet)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青木 新 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 小野 浩一 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 3J102 AA01 BA03 BA18 CA19 CA28 DA02 DA09 DA30 GA09 5H607 AA12 BB01 BB02 CC03 DD19 EE42 GG02 GG17  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shin Aoki 1-4-1 Chuo, Wako-shi, Saitama Prefecture Inside Honda R & D Co., Ltd. (72) Koichi Ono 1-4-1 Chuo, Wako-shi, Saitama F term in Honda R & D Co., Ltd. (reference) 3J102 AA01 BA03 BA18 CA19 CA28 DA02 DA09 DA30 GA09 5H607 AA12 BB01 BB02 CC03 DD19 EE42 GG02 GG17

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 支持すべき回転体に設けられて該回転体
の径方向外方に突出するカラーと、前記回転体に作用す
る軸方向推力に抗して前記カラーを非接触に支持するス
テータとを備える共に、該ステータが環状電磁石用コイ
ルと、該環状電磁石用コイルを内部に取り囲む形状の電
磁石用鉄芯とからなるスラスト磁気軸受において、 前記電磁石用鉄芯の肉厚は、径方向外方に向かうに従い
暫減することを特徴とするスラスト磁気軸受。
1. A collar provided on a rotating body to be supported and protruding radially outward of the rotating body, and a stator for supporting the collar in a non-contact manner against an axial thrust acting on the rotating body. A thrust magnetic bearing in which the stator comprises an annular electromagnet coil and an electromagnet iron core having a shape surrounding the annular electromagnet coil, wherein the thickness of the electromagnet iron core is outside the radial direction. A thrust magnetic bearing, characterized in that the number decreases gradually toward the direction.
【請求項2】 前記電磁石用鉄芯の内面は、径方向外方
に向かうに従い外面に暫近することを特徴とする請求項
1記載の磁気軸受ステータ。
2. The magnetic bearing stator according to claim 1, wherein an inner surface of the iron core for the electromagnet gradually approaches an outer surface in a radially outward direction.
【請求項3】 フライホイールに蓄積された回転エネル
ギーを電気エネルギーに変換して外部へ供給するフライ
ホイールバッテリ装置において、 前記フライホイールに作用する軸方向推力が請求項1又
は請求項2記載のスラスト磁気軸受により支持されてな
ることを特徴とするフライホイールバッテリ装置。
3. The thrust according to claim 1, wherein the thrust acting on the flywheel in the flywheel battery device converts the rotational energy stored in the flywheel into electric energy and supplies the energy to the outside. A flywheel battery device supported by a magnetic bearing.
JP2000309869A 2000-10-10 2000-10-10 Thrust magnetic bearing and flywheel battery device Withdrawn JP2002122139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000309869A JP2002122139A (en) 2000-10-10 2000-10-10 Thrust magnetic bearing and flywheel battery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000309869A JP2002122139A (en) 2000-10-10 2000-10-10 Thrust magnetic bearing and flywheel battery device

Publications (1)

Publication Number Publication Date
JP2002122139A true JP2002122139A (en) 2002-04-26

Family

ID=18789936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000309869A Withdrawn JP2002122139A (en) 2000-10-10 2000-10-10 Thrust magnetic bearing and flywheel battery device

Country Status (1)

Country Link
JP (1) JP2002122139A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014100004A (en) * 2012-11-14 2014-05-29 Central Research Institute Of Electric Power Industry Flywheel integrated induction motor/generator
JP2014126174A (en) * 2012-12-27 2014-07-07 Daikin Ind Ltd Thrust magnetic bearing and compressor
CN113328559A (en) * 2021-07-15 2021-08-31 苏州苏磁智能科技有限公司 Magnetic suspension motor, magnetic suspension compressor and turbine motor with high effective magnetic force area

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014100004A (en) * 2012-11-14 2014-05-29 Central Research Institute Of Electric Power Industry Flywheel integrated induction motor/generator
JP2014126174A (en) * 2012-12-27 2014-07-07 Daikin Ind Ltd Thrust magnetic bearing and compressor
CN113328559A (en) * 2021-07-15 2021-08-31 苏州苏磁智能科技有限公司 Magnetic suspension motor, magnetic suspension compressor and turbine motor with high effective magnetic force area

Similar Documents

Publication Publication Date Title
JP6055725B2 (en) Axial type rotating electric machine using rotor and rotor
US20050285474A1 (en) Rotating electric machine
JP2007295768A (en) Outer rotor type magnet generator
JP2008079471A (en) Fan system, motor, and claw pole type motor
JPS60219945A (en) Permanent magnet type synchronous motor
JP3089470B2 (en) Permanent magnet motor
JP4655646B2 (en) Permanent magnet embedded motor
JP2001268824A (en) Compressor
US20020096950A1 (en) Vibration type brushless motor
JP2002122139A (en) Thrust magnetic bearing and flywheel battery device
JP2009213259A (en) Magnet generator
JPH03159531A (en) Reluctance rotating machinery
JP2006280199A (en) Permanent magnet embedded motor
JP2009177861A (en) Rotor plate and rotor
JP2008017645A (en) Permanent magnet embedded motor
JP2006314196A (en) Electric motor with embedded permanent magnet
WO2018159349A1 (en) Motor, power device, and bulldozer
JP2003134764A (en) Brushless electric rotating machine
JP7456978B2 (en) rotating electric machine
WO2018198217A1 (en) Permanent magnet-type motor
JPH1023692A (en) Rotor for electric rotary machine
JP2008017672A (en) Permanent magnet embedded motor
CN217545745U (en) Motor device and motor housing
JP3671928B2 (en) Outer rotor structure of rotating electrical machine
US20230155431A1 (en) Motor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108