JP2002121017A - Method of synthesizing xonotlite using supercritical hydrothermal hot press method - Google Patents

Method of synthesizing xonotlite using supercritical hydrothermal hot press method

Info

Publication number
JP2002121017A
JP2002121017A JP2000311851A JP2000311851A JP2002121017A JP 2002121017 A JP2002121017 A JP 2002121017A JP 2000311851 A JP2000311851 A JP 2000311851A JP 2000311851 A JP2000311851 A JP 2000311851A JP 2002121017 A JP2002121017 A JP 2002121017A
Authority
JP
Japan
Prior art keywords
reaction
reaction vessel
xonotlite
raw material
hydrothermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000311851A
Other languages
Japanese (ja)
Inventor
Takashi Ishiyama
孝 石山
Tsunetaka Baba
恒孝 馬場
Kyukichi Mitamura
久吉 三田村
Toshikatsu Maeda
敏克 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP2000311851A priority Critical patent/JP2002121017A/en
Publication of JP2002121017A publication Critical patent/JP2002121017A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

PROBLEM TO BE SOLVED: To provide a method of sysnthesizing an artificial rock (xonotlite) capable of being recycled for an electric insulator or a binder for building construction material by using oxides such as CaO (CaCO3 or Ca(OH)2) and SiO2 or incineration ash or fly ash as raw materials and hydrothermally pressing under supercritical state in a supercritical hydrothermal reaction vessel. SOLUTION: Xonotlite [Ca6(Si6O17)(OH)2] is synthesized by using a hydrothermal reaction device usable under supercritical state, filling a mixture of CaO (Ca(OH)2 or CaCO3) and SiO2, the incineration ash or the incineration fly ash, which are the raw materials of xonotlite, in a reaction vessel of the supercritical hydrothermal reaction device and further uniformly mixing with water of about 0.5-1.5% per the raw material to cause the reaction and hydrothermally hot pressing under supercritical state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CaO[CaCO3あるい
はCa(OH)2]とSiO2の酸化物または、焼却灰及び飛灰を
原料とし、超高臨界水熱反応容器において超臨界水熱ホ
ットプレスすることにより、電気絶縁物(ガイシ)及び
ビルディング構築材料用バインダー等に再利用できる人
工岩石(Xonotlite:ゾノライト)を合成(創製)する
方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a method for producing supercritical water in an ultrahigh criticality hydrothermal reactor, using oxides of CaO [CaCO 3 or Ca (OH) 2 ] and SiO 2 or incinerated ash and fly ash as raw materials. The present invention relates to a method for synthesizing (creating) artificial rocks (Xonotlite: Zonolite) that can be reused as electrical insulators (insulators) and binders for building construction materials by hot hot pressing.

【0002】[0002]

【従来の技術】従来のXonotliteの合成方法では、珪藻
土およびけい酸を原料とした水熱反応(常圧、180℃付
近までの温度での予備反応)、乾燥、焼結等の複雑な工
程を経て、密度の低い軽量成型体が造られていた。この
成型体は密度が低く軽量であるため、その用途は保温
剤、断熱材等に限られている。最近においては、良質の
Xonotliteを得るための技術として、原料であるCaOの調
整はCaCO3を1,000℃で約4時間程度熱処理したものを使
用し、さらに、Ca/Siの組成をモル比で1.0と厳密に調整
し、原料と反応媒体である水の比を1/40にし、これを13
0℃〜220℃の温度域で水熱反応を1時間から12時間程
度行うことにより、その生成(合成)が行われている。
2. Description of the Related Art The conventional method of synthesizing Xonotlite involves complicated processes such as hydrothermal reaction (preliminary reaction at normal pressure and a temperature up to around 180 ° C.), drying and sintering using diatomaceous earth and silica. As a result, a low-density light-weight molded body was produced. Since this molded body has a low density and a light weight, its use is limited to a heat insulating agent, a heat insulating material and the like. Recently, good quality
As a technique for obtaining Xonotlite, CaO, a raw material, was prepared by heat-treating CaCO 3 at 1,000 ° C for about 4 hours, and the Ca / Si composition was strictly adjusted to 1.0 in molar ratio, The ratio of the raw material to the water used as the reaction medium was reduced to 1/40,
The production (synthesis) is performed by performing a hydrothermal reaction in a temperature range of 0 ° C. to 220 ° C. for about 1 hour to 12 hours.

【0003】しかし、従来の合成方法で得たXonotlite
は、電子顕微鏡を用いて組織観察(TEM観察)すると、
1時間程度の水熱反応後のXonotliteの形態は核生成が
始まったばかりの状態組織が大部分であり、殆どが板状
の組織であり、針状のものは少ない。板状のXonotlite
の耐熱温度は約650℃程度であり、針状組織のXonotlite
の耐熱温度は約1,000℃である。また、完全なXonotlite
組織にするには、10時間以上の反応時間も要していた。
特に、焼却灰、飛灰を原料とする合成方法は完成されて
おらず、無処理、短時間合成方法は見いだされていなか
った。
However, Xonotlite obtained by a conventional synthesis method
Is the structure observation (TEM observation) using an electron microscope,
Most of the morphology of Xonotlite after the hydrothermal reaction for about 1 hour is a state structure in which nucleation has just started, most of which is a plate-like structure, and few are needle-like structures. Plate-shaped Xonotlite
Has a heat-resistant temperature of about 650 ° C, and Xonotlite
Has a heat resistant temperature of about 1,000 ° C. Also complete Xonotlite
It took more than 10 hours of reaction time to become a tissue.
In particular, a synthesis method using incinerated ash or fly ash as a raw material has not been completed, and a no-treatment, short-time synthesis method has not been found.

【0004】[0004]

【発明が解決しようとする課題】人工岩石の一種である
Xonotliteを合成する方法として、従来は珪酸カルシウ
ムを原料とし、これらも混合し200℃以下の温度で予備
反応及び常圧処理を行い成型し、その後180℃前後で水
熱反応オートクレーブ処理を行った後で乾燥し、保温材
等として製品化されていた。しかし、この方法で得た成
型体の密度は0.13以下の超軽量であり、保温材以外の用
途は限られていた。
[Problem to be Solved by the Invention] It is a kind of artificial rock
Conventionally, as a method of synthesizing Xonotlite, calcium silicate is used as a raw material, these are also mixed, pre-reaction and normal pressure treatment are performed at a temperature of 200 ° C. or less and molded, and then hydrothermal reaction autoclave treatment is performed at about 180 ° C. And was commercialized as a heat insulating material. However, the density of the molded body obtained by this method is ultra-lightweight of 0.13 or less, and its use other than the heat insulating material is limited.

【0005】最近の需要としては、高密度の針状Xonotl
iteの要望が高く、そのための研究・開発が盛んになっ
てきている。しかし、高密度の針状Xonotliteの合成方
法は原料である酸化物の前処理及び高品質の珪酸カルシ
ウムである必要があること、さらに原料/水の比が40程
度必要なこと、及びCa/Siモル比を1.0に調整すること、
短時間で合成させる方法及び反応装置がないこと、特に
高温高圧で反応させる反応装置及び超臨界水熱ホットプ
レス法が確立されていなかった。また特に、焼却灰及び
飛灰そのものを原料としてのXonotlite合成方法は存在
していなかった。
[0005] Recent demands include high-density needle-shaped Xonotl
The demand for ite is high, and research and development for that purpose is becoming active. However, the method of synthesizing the high-density needle-like Xonotlite requires pretreatment of the raw material oxide and high-quality calcium silicate, a raw material / water ratio of about 40 is required, and Ca / Si Adjusting the molar ratio to 1.0,
The lack of a method and a reactor for synthesizing in a short time, in particular, a reactor for reaction at high temperature and pressure and a supercritical hydrothermal hot pressing method have not been established. In particular, there has been no Xonotlite synthesis method using incinerated ash or fly ash itself as a raw material.

【0006】[0006]

【課題を解決するための手段】本発明においては、超高
臨界状態で反応させる反応装置として、既に特許出願済
み(特願2000−175063)の超高臨界水熱反応装置を使用
し、未処理の模擬焼却灰組成を人工岩石のXonotlite合
成原料とし、少量の水媒体のみで合成、生成させる反応
方法が開発された。
In the present invention, an ultra-high critical hydrothermal reactor already applied for patent (Japanese Patent Application No. 2000-175063) is used as a reactor for reacting in an ultra-high critical state. A reaction method has been developed in which the simulated incineration ash composition is used as a raw material for Xonotlite synthesis of artificial rock, and is synthesized and produced using only a small amount of aqueous medium.

【0007】本発明の超臨界ホットプレス法を利用した
Xonotlite合成方法は、合成原料としてCaO,SiO2等の酸
化物だけでなく、焼却灰、特に有毒物質であるダイオキ
シン類が含まれている焼却飛灰(組成がSiO2:約30.1%,
Al2O3:約19.4%,CaO:約41.3%,MgO:約2.8%,Fe2O3:約6.
4%)(西野らが分析した都市ごみ焼却施設からの飛灰
の組成)等を既に特許出願済みの超高臨界水熱反応装置
を用いることにより、有毒物質であるダイオキシン類を
反応容器内で分解(ダイオキシン類をCO2+HClに分解
し、無害化処理を行う)促進させることができる。
Utilizing the supercritical hot pressing method of the present invention
The Xonotlite synthesis method is based on the incineration fly ash that contains not only oxides such as CaO and SiO 2 as synthesis raw materials but also incineration ash, especially dioxins that are toxic substances (composition of SiO 2 : about 30.1%,
Al 2 O 3 : about 19.4%, CaO: about 41.3%, MgO: about 2.8%, Fe 2 O 3 : about 6.
(4%) (the composition of fly ash from municipal solid waste incineration facilities analyzed by Nishino et al.), Etc., by using an ultra-high criticality hydrothermal reactor for which a patent has already been applied for the application of toxic dioxins in the reactor. Decomposition (dioxins are decomposed into CO 2 + HCl and detoxification is performed) can be promoted.

【0008】さらに、近い将来、焼却灰そのものを無害
化可能にする焼却設備が整い、焼却灰及び飛灰を原料と
しての電気絶縁物(ガイシ等)あるいはビルディング構
築物材料等のバインダーとして再生でき、再利用が可能
となる環境が整った時点においては、さらに効率良くXo
notliteの合成及び大量の創製が可能となってくるた
め、Xonotliteの使用範囲が拡大されることも期待でき
る。
Further, in the near future, incineration facilities will be provided to make the incineration ash itself harmless, and the incineration ash and fly ash can be regenerated as a binder for electric insulators (such as insulators) or building construction materials as raw materials. Once the environment is ready for use, Xo will be more efficient
Since it becomes possible to synthesize notlite and to create a large amount of it, it is expected that the range of use of Xonotlite will be expanded.

【0009】[0009]

【発明の実施の形態】本発明の超臨界水熱ホットプレス
法を利用したXonotliteの合成方法について、反応装置
として用いる既に特許申請済みの超高臨界水熱反応装置
を図面で説明すると、図1に示されるように、反応容器
は、水熱反応試験装置におけるシリンダ形状反応容器外
筒1と実用新案登録済み(実用新案登録第3065965号)
の黒鉛製パッキン2、圧縮用ピストン3等から構成され
る。かかるピストンにより、人工岩石の原料4(水分5
〜15%程度)、あるいは、焼却灰5が反応容器内で上下
から圧縮され、さらに昇温されることにより、人工岩石
の製造及び焼却灰においてはダイオキシン類などの有毒
物質が乖離あるいは分解される。
BEST MODE FOR CARRYING OUT THE INVENTION A method for synthesizing Xonotlite using a supercritical hydrothermal hot pressing method of the present invention will be described with reference to the drawings of a patent application for an ultra-high criticality hydrothermal reactor which is already applied for use as a reactor. As shown in the above, the reaction vessel has been registered as a utility model with the cylinder-shaped reaction vessel outer cylinder 1 in the hydrothermal reaction test apparatus (utility model registration No. 3065965).
And a compression piston 3 and the like. With this piston, the raw material 4 (water 5
Alternatively, toxic substances such as dioxins are decomposed or decomposed in the production of artificial rock and incinerated ash by compressing the incinerated ash 5 from above and below in the reaction vessel and further raising the temperature. .

【0010】図2に示されるように、ピストンの先端部
付近には、先に考案登録済みの黒鉛パッキン2を介して
圧縮用先端部6が設けられており、それに設けられた軸
部材7がパッキンの中空孔を経てピストン3先端の孔8
に挿入され、その先端部6がピストン先端に固定され
る。
As shown in FIG. 2, a compression tip 6 is provided in the vicinity of the tip of the piston via a graphite packing 2 previously invented and registered, and a shaft member 7 provided thereon is provided. The hole 8 at the tip of the piston 3 through the hollow hole of the packing
, And the tip 6 is fixed to the tip of the piston.

【0011】図3に示されるように、上記反応容器が下
部架台上に設けられたシリンダに内装されたピストンの
ピストンロッドベースと上部架台との間に固定され、油
圧ポンプを操作してピストンを上昇させ、図1及び図2
の構造を有する反応容器中の原料を所定の圧力に加圧
し、同時にヒーターに電力を供給して原料を加熱するこ
とにより本発明の超臨界水熱ホットプレス法が行われ
る。
As shown in FIG. 3, the reaction vessel is fixed between a piston rod base of a piston provided in a cylinder provided on a lower frame and an upper frame, and a piston is operated by operating a hydraulic pump. 1 and 2
The supercritical hydrothermal hot pressing method of the present invention is performed by pressurizing the raw material in the reaction vessel having the structure described above to a predetermined pressure and simultaneously supplying power to the heater to heat the raw material.

【0012】本発明の超臨界水熱ホットプレス法を利用
したXonotlite合成反応は、高圧下で、しかも高温下で
の超高臨界状態で行われるが、かかる超臨界状態とは、
反応容器内が圧力220Kg/cm2G以上、温度約375℃以上の
状態であり、この状態下では原料中の水分は蒸気とも液
体とも言えない領域にある。
The Xonotlite synthesis reaction using the supercritical hydrothermal hot pressing method of the present invention is carried out under a high pressure and at a high temperature in an ultrahigh critical state.
The pressure inside the reaction vessel is 220 kg / cm 2 G or more, and the temperature is about 375 ° C. or more. Under this condition, the moisture in the raw material is in a region where it cannot be said that it is a vapor or a liquid.

【0013】本発明のXonotlite合成反応条件は、CaO,S
iO2等の酸化物をそのまま原料として用いるか、あるい
は焼却灰(飛灰を含む)を原料として用いることができ
る。したがって、原料は熱処理などの前処理及び原料の
調整は不要である。さらに、原料となるCa/Siモル組成
比は0.5〜1.5と幅が広いため、組成幅が広い焼却灰及び
飛灰を原料とすることが可能である。
The Xonotlite synthesis reaction conditions of the present invention are CaO, S
An oxide such as iO 2 can be used as a raw material, or incinerated ash (including fly ash) can be used as a raw material. Therefore, the raw material does not require pretreatment such as heat treatment and adjustment of the raw material. Furthermore, since the molar composition ratio of Ca / Si as a raw material is as wide as 0.5 to 1.5, incinerated ash and fly ash having a wide composition range can be used as a raw material.

【0014】本発明のXonotliteの合成方法は、既に特
許出願済みの超高臨界水熱反応装置を用いるため、高温
高圧で合成が可能となるため、短時間で成型体が完成す
る。以下、本発明の実施例に基づいて説明する。
The method for synthesizing Xonotlite of the present invention uses an ultra-high criticality hydrothermal reactor for which a patent application has already been filed, so that synthesis at high temperature and high pressure is possible, and a molded body is completed in a short time. Hereinafter, a description will be given based on examples of the present invention.

【0015】[0015]

【実施例1】Xonotliteの原料は、CaO-SiO2の混合物か
らなり、その混合物が水と混合されて水分を5〜10%程
度含有する状態のものとした。これを反応容器に充填
し、その上下方向からピストン状の圧縮部で圧力220Kg/
cm2G程度に加圧すると同時に容器を500℃前後に加熱し
た。ピストン状の圧縮部材の先端部には、黒鉛製のパッ
キンが設けられているので、超高臨界状態においてもシ
リンダ状の反応容器内の原料を気密状に圧縮することが
できた。反応容器内の圧力及び温度を超高臨界領域まで
使用することができるので、水熱ホットプレス反応の反
応パターンを自在に制御することができた。
Example 1 The raw material of Xonotlite consisted of a mixture of CaO—SiO 2 , and the mixture was mixed with water to contain about 5 to 10% of water. This was filled into a reaction vessel, and a pressure of 220 kg /
The vessel was heated to around 500 ° C. while being pressurized to about cm 2 G. Since the packing made of graphite is provided at the tip of the piston-shaped compression member, the raw material in the cylindrical reaction vessel could be compressed in an airtight manner even in an ultra-high critical state. Since the pressure and temperature in the reaction vessel can be used up to the ultra-high critical region, the reaction pattern of the hydrothermal hot press reaction could be freely controlled.

【0016】[0016]

【実施例2】模擬焼却飛灰の原料(CaO−Al2O3−SiO3−F
e2O3−MgO)を用いて、これらの混合物に水分を5〜10%
程度含有するものとした。これを反応容器に充填し、そ
の上下方向から圧力を220Kg/cm2程度に加圧した。そ
の後、反応容器内を超高臨界状態にするため、一端圧力
を30Kg/cm2まで降圧させた。
Example 2 Raw material for simulated incineration fly ash (CaO-Al 2 O 3 -SiO 3 -F
e 2 O 3 -MgO) to add 5-10% moisture to these mixtures.
Content. This was filled in a reaction vessel, and the pressure was increased to about 220 kg / cm 2 from above and below. Thereafter, in order to bring the inside of the reaction vessel into an ultra-high critical state, the pressure at one end was reduced to 30 kg / cm 2 .

【0017】次に、温度を500℃(反応容器内はこれよ
りも若干高く、550〜600℃と推定される)まで昇温し
た。反応容器内の圧力は臨界点領域に入ると、400℃付
近で300気圧を超えた。これは、原料のほかに水分(液
体)が存在しているために、臨界状態(臨界流体ともい
う)になっている証拠でもある。逆を言えば、この状態
でないと超高臨界状態での水熱反応は起こらず、単なる
原料を焼き固めるホットプレスに過ぎない。この状態を
約2時間保持した。
Next, the temperature was raised to 500 ° C. (the temperature inside the reaction vessel was slightly higher and estimated to be 550 to 600 ° C.). When the pressure in the reaction vessel entered the critical point region, it exceeded 300 atm near 400 ° C. This is also evidence that the presence of moisture (liquid) in addition to the raw material has caused a critical state (also called a critical fluid). Conversely, if not in this state, no hydrothermal reaction occurs in the ultra-high critical state, and it is merely a hot press for baking and solidifying the raw materials. This state was maintained for about 2 hours.

【0018】超臨界水熱ホットプレス法による反応後の
固化成形試料をX線回析により、定性分析したところ、
その化学組成はCa6Si6O17(OH)2[ゾノライト]、CaSiO3
[ワストナイト]及びCa2(FeAl)3Si2O7(OH)2H2O[ジュ
ルゴールドライト]であることが確認できた。また、そ
の試料を走査型顕微鏡を用いて組織観察したところ、針
状のXonotliteが多数存在していることも確認できた。
The solidified molded sample after the reaction by the supercritical hydrothermal hot press method was qualitatively analyzed by X-ray diffraction.
Its chemical composition is Ca 6 Si 6 O 17 (OH) 2 [Zonolite], CaSiO 3
[Wastonite] and Ca 2 (FeAl) 3 Si 2 O 7 (OH) 2 H 2 O [jurugold light] were confirmed. Further, when the structure of the sample was observed using a scanning microscope, it was confirmed that a large number of needle-like Xonotlites were present.

【0019】Al2O3のようなわりかし安定な酸化物は臨
界点以下の条件では反応することは殆どなく、今回の模
擬焼却飛灰を原料とした水熱合成反応において、Ca2(Fe
Al)3Si2O7(OH)2H2Oの化学式を持つジュルゴールドライ
トが生成したことにより、焼却灰組成成分を他の結晶構
造を持つ人工鉱物に転化できたことは、既に特許出願済
みの超高臨界水熱反応装置の性能を実証したことにもな
る。
On the other hand, stable oxides such as Al 2 O 3 hardly react under the condition below the critical point. In the hydrothermal synthesis reaction using the simulated incinerated fly ash as a raw material, Ca 2 ( Fe
A patent application has already been filed for the conversion of incineration ash constituents into artificial minerals with other crystal structures due to the generation of jurugold light having the chemical formula of (Al) 3 Si 2 O 7 (OH) 2 H 2 O. This proves the performance of the already installed ultra-high criticality hydrothermal reactor.

【0020】図4は、上記飛灰を用いての水熱ホットプ
レス反応における昇温昇圧曲線(反応時:500℃、6
4MPa)である。この曲線は、超臨界条件もでもって
行くまでの反応容器(反応系)内の温度、圧力の値を示
している。
FIG. 4 is a graph showing the temperature rise and pressure rise in a hydrothermal hot press reaction using the fly ash (at the time of reaction: 500 ° C., 6 ° C.).
4 MPa). This curve shows the values of the temperature and the pressure in the reaction vessel (reaction system) up to the supercritical condition.

【0021】図5は、(a)上記飛灰の出発原料、
(b)250℃,64MPaで2時間反応させた後の試
料、及び(c)500℃,64MPaで2時間超臨界状
態で水熱ホットプレス反応させた後の試料のX線回折パ
ターンを示している。この図には、超臨界水熱反応を行
う前と250℃、64MPaで2時間及び超臨界状態で
2時間反応させた後の試料のX線回折分析した時の回折
パターンが示されてる。
FIG. 5 shows (a) the starting material of the fly ash,
(B) X-ray diffraction patterns of a sample after a reaction at 250 ° C. and 64 MPa for 2 hours and (c) a sample after a hydrothermal hot press reaction at 500 ° C. and 64 MPa in a supercritical state for 2 hours. I have. This figure shows X-ray diffraction analysis patterns of the sample before the supercritical hydrothermal reaction and after the reaction at 250 ° C. and 64 MPa for 2 hours and in the supercritical state for 2 hours.

【0022】図6は、上記飛灰を500℃、64MPa
で超臨界水熱ホットプレス反応させた成型体の電子顕微
鏡観察写真であり、観察組織は針状ゾノライトである。
FIG. 6 shows the above fly ash at 500 ° C. and 64 MPa.
3 is an electron microscopic observation photograph of a molded body subjected to a supercritical hydrothermal hot press reaction, and the observed structure is acicular zonolite.

【0023】[0023]

【発明の効果】本発明の超臨界水熱ホットプレス法を利
用したXonotliteの合成方法は、既に特許出願済みの超
高臨界水熱反応装置を用いて水熱ホットプレス反応を行
わせることにより、原料を前処理することなく、焼却灰
及び飛灰そのものを直接原料として用いて、再利用可能
なXonotliteを合成することが可能となった、という本
発明に特有の顕著な効果を生ずる。
The method of synthesizing Xonotlite using the supercritical hydrothermal hot pressing method of the present invention is performed by performing a hydrothermal hot pressing reaction using an ultra-high critical hydrothermal reactor already applied for a patent. A remarkable effect peculiar to the present invention is obtained in that it is possible to synthesize reusable Xonotlite by directly using incinerated ash and fly ash as raw materials without pretreating the raw materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の合成反応に用いた装置の反応容器内構
造を示す図である。
FIG. 1 is a diagram showing the internal structure of a reaction vessel of an apparatus used for a synthesis reaction of the present invention.

【図2】合成反応に用いた容器の黒鉛パッキンを備えた
ピストン状圧縮部材を示す図である。
FIG. 2 is a view showing a piston-shaped compression member provided with graphite packing of a container used for a synthesis reaction.

【図3】合成反応に用いた水熱ホットプレス反応装置を
示す図である。
FIG. 3 is a diagram showing a hydrothermal hot press reaction apparatus used for a synthesis reaction.

【図4】模擬焼却飛灰を用いての水熱ホットプレス反応
における昇温昇圧曲線(反応時:500℃、64MP
a)を示す図である
FIG. 4 is a temperature rise / pressure curve in a hydrothermal hot press reaction using simulated incineration fly ash (at the time of reaction: 500 ° C., 64MP)
FIG.

【図5】模擬焼却飛灰の出発原料、250℃,64MP
aで2時間反応させた後の試料、及び500℃,64M
Paで2時間超臨界状態で水熱ホットプレス反応させた
後の試料のX線回折パターンを示す図である。
Fig. 5 Starting material for simulated incineration fly ash, 250 ° C, 64MP
a, after reacting for 2 hours at 500 ° C, 64M
It is a figure which shows the X-ray-diffraction pattern of the sample after performing hydrothermal hot-press reaction in the supercritical state at Pa for 2 hours.

【図6】模擬焼却飛灰を500℃、64MPaで超臨界
水熱ホットプレス反応させた成型体の電子顕微鏡観察写
真を示す図である。
FIG. 6 is a view showing an electron microscopic observation photograph of a molded product obtained by subjecting a simulated incinerated fly ash to a supercritical hydrothermal hot press reaction at 500 ° C. and 64 MPa.

【符号の説明】[Explanation of symbols]

1 反応容器外筒 2 黒鉛製パッキン 3 圧縮用ピストン 4 Xonotlite原料 5 焼却飛灰 6 圧縮用先端部 7 軸部材 8 軸部材の挿入孔 DESCRIPTION OF SYMBOLS 1 Reaction vessel outer cylinder 2 Graphite packing 3 Compression piston 4 Xonotlite raw material 5 Incineration fly ash 6 Compression tip 7 Shaft member 8 Shaft member insertion hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三田村 久吉 茨城県那珂郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内 (72)発明者 前田 敏克 茨城県那珂郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内 Fターム(参考) 4D004 AA36 AA37 BA02 CA39 CC11 DA03 DA09 4G073 AA02 BA11 BA63 CC15 FB10 FB11 FB18 FB45 FC03 FC25 FC26 FD30 UB06 UB12  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hisakichi Mitamura 2-4, Shirane, Shirokata, Tokai-mura, Naka-gun, Ibaraki Pref. 2 Shirane 4 Japan Atomic Energy Research Institute Tokai Research Laboratory F term (reference) 4D004 AA36 AA37 BA02 CA39 CC11 DA03 DA09 4G073 AA02 BA11 BA63 CC15 FB10 FB11 FB18 FB45 FC03 FC25 FC26 FD30 UB06 UB12

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛製のパッキンを備えたピストンによ
り圧縮される高温高圧反応室を有する反応容器、その反
応容器の周りに設けられたヒータ、前記反応容器を固定
するための上下の架台、下架台に固定されたシリンダ内
に内装された上下運動するピストンロッド、そのピスト
ンロッド先端に設けられたピストンロッドベース、この
ロッドベースを押し上げるための油圧ポンプ、及び前記
ヒータの温度を制御するための温度調節計から構成さ
れ、油圧ポンプの操作によりピストンロッドベースを押
し上げて反応容器に内装された上下の黒鉛製パッキンを
備えたピストンにより反応容器中の試料を気密圧縮し、
更に反応容器中の固体の原料又は廃棄物の水熱固化反応
又は乖離分解反応を行う、超高臨界状態で使用可能な水
熱反応装置を用いて、水の臨界点(温度:375℃、圧
力:220Kg/cm2)以上の反応環境状態で、Xonotlite合成
原料であるCaO{(Ca(OH)2またはCaCO3)}とSiO2との混
合物、焼却灰または焼却飛灰を超高臨界水熱反応装置の
反応容器に充填し、さらに、反応を起こさせるための水
分を原料の0.5%〜1.5%程度を均一になるように混ぜた
後、超臨界水熱ホットプレスすることにより、ゾノライ
ト(Xonotlite:[Ca6(Si6O17)(OH)2])を合成する方
法。
1. A reaction vessel having a high-temperature and high-pressure reaction chamber compressed by a piston having a packing made of graphite, a heater provided around the reaction vessel, an upper and lower pedestal for fixing the reaction vessel, A vertically moving piston rod contained in a cylinder fixed to a gantry, a piston rod base provided at the tip of the piston rod, a hydraulic pump for pushing up the rod base, and a temperature for controlling the temperature of the heater. It is composed of a controller, pushes up the piston rod base by the operation of the hydraulic pump, and airtightly compresses the sample in the reaction vessel by the piston equipped with upper and lower graphite packings installed in the reaction vessel,
Further, using a hydrothermal reactor capable of performing a hydrothermal solidification reaction or a dissociation decomposition reaction of a solid raw material or waste in a reaction vessel, which can be used in an ultra-high critical state, the critical point of water (temperature: 375 ° C, pressure : A mixture of Xonotlite synthesis raw material CaO {(Ca (OH) 2 or CaCO 3 )} and SiO 2 , incinerated ash or incinerated fly ash in a reaction environment of 220 kg / cm 2 ) After filling into a reaction vessel of a reactor and mixing water for initiating the reaction so that about 0.5% to 1.5% of the raw material becomes uniform, supercritical hydrothermal hot pressing is carried out to obtain zonolite (Xonotlite). : A method of synthesizing [Ca 6 (Si 6 O 17 ) (OH) 2 ].
JP2000311851A 2000-10-12 2000-10-12 Method of synthesizing xonotlite using supercritical hydrothermal hot press method Pending JP2002121017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000311851A JP2002121017A (en) 2000-10-12 2000-10-12 Method of synthesizing xonotlite using supercritical hydrothermal hot press method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000311851A JP2002121017A (en) 2000-10-12 2000-10-12 Method of synthesizing xonotlite using supercritical hydrothermal hot press method

Publications (1)

Publication Number Publication Date
JP2002121017A true JP2002121017A (en) 2002-04-23

Family

ID=18791549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000311851A Pending JP2002121017A (en) 2000-10-12 2000-10-12 Method of synthesizing xonotlite using supercritical hydrothermal hot press method

Country Status (1)

Country Link
JP (1) JP2002121017A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993084A (en) * 2010-11-29 2011-03-30 中煤平朔煤业有限责任公司 Method for preparing silicon dioxide and aluminum oxide from coal ash
CN102825650A (en) * 2012-07-20 2012-12-19 郭立平 Making method of high-strength light-weight integral-hydrophobic xonotlite fireproof insulation board
CN105084856A (en) * 2014-05-12 2015-11-25 中国科学院过程工程研究所 Preparation method for xonotlite type heat-preserving material
CN106495172A (en) * 2016-10-27 2017-03-15 辽宁工程技术大学 The method that xonotlite fiber is produced using sour solution-off aluminium powder coal ash and carbide slag
CN116770440A (en) * 2023-08-21 2023-09-19 杭州灰弘环保科技有限公司 Method for preparing xonotlite whisker by taking household garbage incineration fly ash as raw material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993084A (en) * 2010-11-29 2011-03-30 中煤平朔煤业有限责任公司 Method for preparing silicon dioxide and aluminum oxide from coal ash
CN102825650A (en) * 2012-07-20 2012-12-19 郭立平 Making method of high-strength light-weight integral-hydrophobic xonotlite fireproof insulation board
CN105084856A (en) * 2014-05-12 2015-11-25 中国科学院过程工程研究所 Preparation method for xonotlite type heat-preserving material
CN105084856B (en) * 2014-05-12 2017-05-31 中国科学院过程工程研究所 A kind of preparation method of eakleite type insulation material
CN106495172A (en) * 2016-10-27 2017-03-15 辽宁工程技术大学 The method that xonotlite fiber is produced using sour solution-off aluminium powder coal ash and carbide slag
CN116770440A (en) * 2023-08-21 2023-09-19 杭州灰弘环保科技有限公司 Method for preparing xonotlite whisker by taking household garbage incineration fly ash as raw material
CN116770440B (en) * 2023-08-21 2023-12-08 杭州灰弘环保科技有限公司 Method for preparing xonotlite whisker by taking household garbage incineration fly ash as raw material

Similar Documents

Publication Publication Date Title
Poon et al. Activation of fly ash/cement systems using calcium sulfate anhydrite (CaSO4)
DK2276714T3 (en) PROCEDURE FOR MANUFACTURING A MAIN CARBONATE BASED ARTICLE BY CARBONIZATION OF ALKALIMATIALS
JP4302771B2 (en) Method for preparing pozzolanic material from paper residue and method for producing cement from pozzolanic material
CN113968701B (en) CO (carbon monoxide) 2 Light concrete for driving consolidation and preparation method thereof
Liu et al. Development of a CO2 solidification method for recycling autoclaved lightweight concrete waste
JP3221908B2 (en) Method for producing recycled aggregate and recycled aggregate
Sayed et al. Green binding material using alkali activated blast furnace slag with silica fume
Anthony et al. Pacification of high calcic residues using carbon dioxide
JP2002121017A (en) Method of synthesizing xonotlite using supercritical hydrothermal hot press method
KR930009350B1 (en) Silica shaped bodies and process for preparing same
Black et al. Current themes in cement research
US20230150883A1 (en) Process for cold sintering of calcium carbonate for precast construction materials
Shao et al. The influence of ZSM-5 waste on the properties of fly ash-based foamed geopolymer
CN109809754A (en) Air-entrained concrete building block and preparation method thereof
ATE356083T1 (en) POROUS INORGANIC MACROSTRUCTURES AND METHOD FOR PRODUCING THE SAME
Kusbiantoro et al. Adaptation of eco-friendly approach in the production of soluble pozzolanic material
WO1994021575A1 (en) Improved method for rapid hydration of cement and improved concrete
EP3939945A1 (en) Method for producing a material
JP2001205241A (en) Method for solidifying incineration ash
JP2001347154A (en) Ultra-high critical hydrothermal reactor
JP2000334418A (en) Method for solidifying steel making slag
Guo et al. Enhanced carbonation curing of cement pastes with dolomite additive
CN110342864A (en) A kind of coal ash for manufacturing for the carrier of oxygen method
JPH08268737A (en) Treatment of incineration ash
JP3105953B2 (en) Method for solidifying crystalline silicate waste