JP2001347154A - Ultra-high critical hydrothermal reactor - Google Patents

Ultra-high critical hydrothermal reactor

Info

Publication number
JP2001347154A
JP2001347154A JP2000175063A JP2000175063A JP2001347154A JP 2001347154 A JP2001347154 A JP 2001347154A JP 2000175063 A JP2000175063 A JP 2000175063A JP 2000175063 A JP2000175063 A JP 2000175063A JP 2001347154 A JP2001347154 A JP 2001347154A
Authority
JP
Japan
Prior art keywords
reaction vessel
piston rod
reaction
temperature
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000175063A
Other languages
Japanese (ja)
Inventor
Takashi Ishiyama
孝 石山
Tsunetaka Baba
恒孝 馬場
Kyukichi Mitamura
久吉 三田村
Toshikatsu Maeda
敏克 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP2000175063A priority Critical patent/JP2001347154A/en
Publication of JP2001347154A publication Critical patent/JP2001347154A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot-press hydrothermal solidification reactor which is used in supercritical conditions for manufacturing artificial rock and alienating/decomposing organochlorine compounds and poisonous dioxines in incineration ash. SOLUTION: This hot-press hydrothermal solidification reactor is constituted of a reaction vessel having a high-temperature high-pressure reaction chamber compressed by pistons each provided with graphite packing, a heater arranged around the reaction vessel, upper and lower stands for fixing the reaction vessel, a piston rod which is inserted in a cylinder disposed on the lower stand and moves vertically, a piston rod base disposed at the tip of the piston rod, a hydraulic pump for pushing up the piston rod base and a temperature regulator for regulating the temperature of the heater. The hydrothermal solidification reaction and the alienation/decomposition reaction are performed on a sample set in the reaction vessel so that the sample is compressed by the upper and lower pistons inserted in the reaction vessel by operating the hydraulic pump to push up the piston rod base and the sample is heated by the heater.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、人工岩石製造、並
に焼却灰中の有機塩素化合物及び有毒なダイオキシン類
の乖離分解を目的とする、超臨界状態で反応させるホッ
トプレス水熱反応装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot-press hydrothermal reactor which reacts in a supercritical state for the purpose of producing artificial rock and separating and decomposing organochlorine compounds and toxic dioxins in incineration ash. Things.

【0002】[0002]

【従来の技術】従来の人工岩石製造用の固化装置の反応
容器内で行われるホットプレス水熱固化反応は、圧力が
〜約200kg/cm2Gで、温度が300℃前後で行
われていた。そして、この条件下で使用される装置の反
応容器用のパッキンの材質としては、現在のところテフ
ロン製のものが使用されている。
2. Description of the Related Art A conventional hot press hydrothermal solidification reaction carried out in a reaction vessel of a solidification apparatus for producing artificial rock has been carried out at a pressure of about 200 kg / cm 2 G and a temperature of about 300 ° C. . As a material of the packing for the reaction vessel of the apparatus used under these conditions, a material made of Teflon is currently used.

【0003】又、従来の焼却灰中の有機塩素化合物の分
解は原料の塩基度を高くし、分解を促進していたが、超
臨界状態以下の圧力、温度であるため効果は不十分であ
るばかりでなく、有毒ダイオキシン類の分解までにはい
たらなかった。
[0003] Conventional decomposition of organochlorine compounds in incineration ash has promoted decomposition by increasing the basicity of the raw material, but the effect is insufficient because the pressure and temperature are lower than the supercritical state. Not only did the toxic dioxins break down.

【0004】[0004]

【発明が解決しようとする課題】しかし、目的とする人
工岩石(例えばパイロフィライト類)を合成生成した
り、あるいは焼却灰中の有毒物質であるダイオキシン類
をホットプレス水熱固化反応容器内で分解(ダイオキシ
ン類をCO2+HClに分解し、無害化処理を行う)さ
せるためには、ホットプレス水熱固化反応温度を従来の
300℃から378℃以上500℃前後に昇温して超臨
界状態で反応させることが必要になった。しかし、従来
のテフロン製のパッキンではこの高温に耐えることがで
きないという問題点がある。しかもいままでは、超臨界
状態で使用できるホットプレス水熱固化反応容器はなか
った。
However, the target artificial rock (eg, pyrophyllites) is synthesized or produced, or dioxins, which are toxic substances in incinerated ash, are placed in a hot press hydrothermal solidification reactor. In order to decompose (decompose dioxins into CO 2 + HCl and perform detoxification), the temperature of the hot-pressed hydrothermal solidification reaction is raised from the conventional 300 ° C. to 378 ° C. or higher and around 500 ° C. to the supercritical state It became necessary to make it react. However, there is a problem that the conventional Teflon packing cannot withstand this high temperature. Moreover, until now, there has been no hot press hydrothermal solidification reactor that can be used in a supercritical state.

【0005】[0005]

【課題を解決するための手段】本発明においては、かか
る高温に耐えるパッキンとして、既に実用新案登録済み
(実用新案登録第3065965号)の黒鉛製のパッキ
ンを使用し、しかも一種類のパッキンで全ての反応容器
に使用できる特徴を持つものを使用した超臨界状態で反
応させることのできるホットプレス水熱反応容器が開発
された。
In the present invention, a packing made of graphite which has already been registered as a utility model (utility model registration No. 3065965) is used as a packing which withstands such a high temperature, and one kind of packing is used for all. A hot press hydrothermal reactor capable of reacting in a supercritical state using one having the characteristics that can be used for the above reactor has been developed.

【0006】本発明の超臨界状態で使用可能なホットプ
レス水熱反応容器は、高温、高圧で反応容器に気密性を
保つことができる黒鉛パッキンを用いている。しかも、
その黒鉛パッキンは、寸法の異なる反応容器に気密性を
保ちながら1種類の寸法のパッキンを使用することで済
ますことができるものである(図2に示されるように、
パッキン2にはテーパーが形成されているために、種々
の内径の反応容器において使用できる)。更に、ホット
プレス水熱反応容器内の原料を超臨界状態に保つことを
可能にすることにより、反応容器内の人工岩石の原料お
よび焼却灰などを加圧圧縮し、反応の促進、有毒物の分
解を促進することができる。
The hot-press hydrothermal reactor of the present invention which can be used in a supercritical state uses graphite packing which can maintain the airtightness of the reactor at high temperature and pressure. Moreover,
The graphite packing can be achieved by using one type of packing while maintaining airtightness in reaction vessels of different sizes (as shown in FIG. 2,
Since the packing 2 has a taper, it can be used in reaction vessels having various inner diameters.) Furthermore, by enabling the raw material in the hot press hydrothermal reaction vessel to be kept in a supercritical state, the raw material for artificial rock and incinerated ash in the reaction vessel are compressed under pressure to promote the reaction and promote the removal of toxic substances. Degradation can be promoted.

【0007】すなわち、本発明のホットプレス水熱反応
装置は、黒鉛製のパッキンを備えたピストンにより圧縮
される高温高圧反応室を有する反応容器、その反応容器
の周りに設けられたヒータ、前記反応容器を固定するた
めの上下の架台、下架台に設けられたシリンダ内に内装
された上下動するピストンロッド、そのピストンロッド
先端に設けられたピストンロッドベース、前記ロッドベ
ースを押上るための油圧ポンプ、及び前記ヒータの温度
を制御するための温度調節計から構成され、油圧ポンプ
の操作によりピストンロッドベースを押上て反応容器に
内装された上下のピストンにより反応容器中の試料を圧
縮し、更に反応容器中の試料をヒータにより加熱させ、
試料の水熱反応又は乖離分解反応を行うものである。
That is, the hot press hydrothermal reactor of the present invention comprises a reaction vessel having a high-temperature and high-pressure reaction chamber compressed by a piston having a graphite packing, a heater provided around the reaction vessel, An upper and lower mount for fixing a container, a vertically moving piston rod provided in a cylinder provided on a lower mount, a piston rod base provided at the end of the piston rod, and a hydraulic pump for pushing up the rod base , And a temperature controller for controlling the temperature of the heater, which pushes up a piston rod base by operating a hydraulic pump, compresses a sample in the reaction vessel by upper and lower pistons installed in the reaction vessel, and further reacts. The sample in the container is heated by a heater,
A hydrothermal reaction or a dissociation decomposition reaction of the sample is performed.

【0008】[0008]

【発明の実施の形態】本発明の超臨界状態で使用できる
ホットプレス水熱反応容器を図面で説明すると、図1に
示されるように反応容器は、水熱反応試験装置における
シリンダ形状の反応容器外筒1と実用新案登録済みの黒
鉛製パッキン2、圧縮用ピストン3、3等から構成され
る。かかるピストンにより、人工岩石の原料4(水分5
〜10%程度)、あるいは焼却灰5が反応容器内で上下
から圧縮され、さらに昇温されることにより、人工岩石
の製造および焼却灰においてはダイオキシン類などの有
毒物質が乖離、あるいは分解される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A hot press hydrothermal reaction vessel which can be used in a supercritical state of the present invention will be described with reference to the drawings. As shown in FIG. 1, the reaction vessel is a cylindrical reaction vessel in a hydrothermal reaction test apparatus. It comprises an outer cylinder 1, a packing 2 made of graphite which has been registered as a utility model, compression pistons 3, 3, and the like. With this piston, the raw material 4 (water 5
Or about 10%), or the incineration ash 5 is compressed from above and below in the reaction vessel, and further heated, whereby toxic substances such as dioxins are separated or decomposed in the production of artificial rock and incineration ash. .

【0009】図2に示されるように、ピストンの先端部
付近には、先に考案登録済みの黒鉛パッキンを介して圧
縮用先端部6が設けられており、それに設けられた軸部
材7がパッキンの中空孔を経てピストン3先端の孔8に
挿入され、その先端部6がピストン先端に固定される。
As shown in FIG. 2, a compression tip 6 is provided in the vicinity of the tip of the piston via a graphite packing which has been previously devised and registered, and a shaft member 7 provided thereon is provided with a packing. Is inserted into the hole 8 at the tip of the piston 3 through the hollow hole, and the tip 6 is fixed to the piston tip.

【0010】本発明の超臨界状態ホットプレス水熱反応
は、加圧下で、しかも高温下での超臨界状態で行われる
が、かかる超臨界状態とは、反応容器内が圧力220k
g/cm2G以上、温度約375℃以上の状態であり、
この状態下では原料中の水分は蒸気とも液体ともいえな
い領域にある。
The supercritical hot press hydrothermal reaction of the present invention is performed under pressure and in a supercritical state at a high temperature.
g / cm 2 G or more and the temperature is about 375 ° C. or more,
Under this condition, the moisture in the raw material is in a region that cannot be said to be a vapor or a liquid.

【0011】本発明の水熱反応装置の構造及び操作を図
3に基づいて説明する。下部架台から直立して設けられ
た2本の支柱の上部に上部架台がネジ止め固定される。
この下部架台に固定されたシリンダ中に上下動するピス
トンロッドを内装する。このピストンロッドの先端にピ
ストンロッドベースを設け、このロッドベースと上部架
台との間に、ヒータで囲まれた反応容器が設置される。
The structure and operation of the hydrothermal reactor of the present invention will be described with reference to FIG. An upper pedestal is screwed and fixed to upper portions of two columns provided upright from the lower pedestal.
A piston rod that moves up and down is housed in a cylinder fixed to the lower frame. A piston rod base is provided at the tip of the piston rod, and a reaction vessel surrounded by a heater is installed between the rod base and the upper gantry.

【0012】下部架台に固定されたシリンダに内装され
たピストンロッドは、油圧ポンプの操作により油圧配管
を経て送られる油圧によつて押上られる。その結果、図
2に示されるように、反応容器内に置かれた試料は、反
応容器に挿入される圧縮用ピストン3、3により圧縮さ
れる。その際に、反応容器は、その周囲に設けられたヒ
ータにより加熱される。又、その圧縮圧は油圧ポンプに
設けられた油圧ゲージによって測定され、反応容器中の
温度はリード線を介して温度調節器により適宜に調節さ
れる。又、上部架台に設けられたスライドプレートは、
反応容器の一端のピストン部を固定させるためのもの
で、反応容器の位置調節にも使用される。以下、本発明
を実施例に基づいて説明する。
The piston rod contained in the cylinder fixed to the lower frame is pushed up by the hydraulic pressure sent through the hydraulic piping by operating the hydraulic pump. As a result, as shown in FIG. 2, the sample placed in the reaction vessel is compressed by the compression pistons 3, 3 inserted into the reaction vessel. At that time, the reaction vessel is heated by a heater provided around the reaction vessel. The compression pressure is measured by a hydraulic gauge provided on a hydraulic pump, and the temperature in the reaction vessel is appropriately adjusted by a temperature controller via a lead wire. Also, the slide plate provided on the upper base is
It is used to fix the piston at one end of the reaction vessel, and is also used to adjust the position of the reaction vessel. Hereinafter, the present invention will be described based on examples.

【0013】[0013]

【実施例1】人工岩石用の主原料は、Al23−SiO
2−CaOの混合物からなり、その混合物が水と混合さ
れて水分を5〜10%程度含有する状態のものとした。
これを反応容器に充填し、その上下方向からピストン状
の圧縮部材で圧力220kg/cm2G程度に加圧する
と同時に容器を500〜600℃前後に加熱した。ピス
トン状の圧縮部材の先端部には、黒鉛製のパッキンが設
けられているので、超高臨界状態においてもシリンダ状
の反応容器内の原料および焼却灰を気密状に圧縮するこ
とができた。反応容器内の圧力及び温度を超高臨界状態
まで使用することができるので、ホットプレス水熱固化
反応の反応パターンを自在に制御することができた。
Embodiment 1 The main raw material for artificial rock is Al 2 O 3 —SiO
It was made of a mixture of 2- CaO, and the mixture was mixed with water to contain about 5 to 10% of water.
This was filled in a reaction vessel, and the pressure was increased to about 220 kg / cm 2 G by a piston-like compression member from above and below, and the vessel was heated to about 500 to 600 ° C. Since the packing made of graphite is provided at the tip of the piston-shaped compression member, the raw material and the incineration ash in the cylindrical reaction vessel could be compressed in an airtight manner even in an ultra-high critical state. Since the pressure and temperature in the reaction vessel can be used up to the ultra-high critical state, the reaction pattern of the hot press hydrothermal solidification reaction could be freely controlled.

【0014】[0014]

【実施例2】模擬焼却灰の原料(SiO2−Al23
CaO−MgO−Fe23)を用いて、これらの混合物
に水分を5〜10%程度含有するものとした。その後、
NaOHを用い原料の塩基度をPh:10程度に調整し
た。これを反応容器に充填し、その上下方向から圧力を
220kg/cm2G程度に加圧した。さらにその後、
反応容器内を超臨界状態にするため、一端、圧力を15
0気圧まで降下させた。
Example 2 Raw material of simulated incinerated ash (SiO 2 —Al 2 O 3
CaO-MgO-Fe 2 O 3 ) was used, and the mixture contained about 5 to 10% of water. afterwards,
The basicity of the raw material was adjusted to about Ph : 10 using NaOH. This was filled in a reaction vessel, and the pressure was increased to about 220 kg / cm 2 G from above and below. And then
At one end, the pressure is set to 15
The pressure was reduced to 0 atm.

【0015】次に、温度を500℃(反応容器内はこれ
よりも若干高く、550〜600℃と推定される)まで
昇温した。反応容器内の圧力は臨界状態に入ると、40
0℃付近で300気圧を超えた。(この事実は、原料の
他に水(液体)が存在しているために、超臨界状態(超
臨界流体とも言う)になっている証拠でもある。逆を言
えば、この状態でないと超臨界状態での水熱反応は起こ
らず、単なる原料を焼き固めるホットプレスにすぎな
い。)この状態を約2時間保持した。
Next, the temperature was raised to 500 ° C. (the temperature inside the reaction vessel was slightly higher and estimated to be 550 to 600 ° C.). When the pressure in the reaction vessel enters a critical state, 40
The pressure exceeded 300 atm near 0 ° C. (This fact is also evidence that water (liquid) is present in addition to the raw material, so it is in a supercritical state (also called supercritical fluid). Conversely, if it is not in this state, it is supercritical Hydrothermal reaction does not occur in this state, but merely a hot press for baking and solidifying the raw materials.) This state was maintained for about 2 hours.

【0016】固化反応後の試料をX線回折分析したとこ
ろ、その組成はゲーレナイト、アノーサイト、アナルサ
イト、カオリナイト、パイロフィライト、タルクなどが
混合している人工岩石であることを確認した。したがっ
て、焼却灰組成成分が他の結晶構造を持つ人工鉱物に転
化されたことが明らかである。
When the sample after the solidification reaction was analyzed by X-ray diffraction, it was confirmed that the composition was an artificial rock containing a mixture of gehlenite, anorthite, analcite, kaolinite, pyrophyllite, talc and the like. Thus, it is clear that the incineration ash constituents have been converted to artificial minerals having other crystal structures.

【0017】[0017]

【実施例3】有機有機物を含有する実際の一般焼却灰
(原研構内で採取したもの)を(代表組成:SiO2
31.78%、Al23:28.39%、MgO:2.
6%、CaO:42.14%、Fe23:1.9%)原
料に用いて、これらの混合物に水分を5〜10%含有す
るものとした。この焼却灰の塩基度はPh:12以上の
高いアルカリ性であった。これを反応容器に充填し、そ
の上下方向から圧力を220kg/cm2G程度に加圧
した。その後一端反応容器内の気圧を150気圧まで降
下させた。
Example 3 Organic General incinerated ash containing organic matter (collected at JAERI campus) (typical composition: SiO 2 :
31.78%, Al 2 O 3 : 28.39%, MgO: 2.
6%, CaO: 42.14%, Fe 2 O 3: 1.9%) with the raw material, water was of containing 5-10% of these mixtures. The basicity of the ash is P h: was 12 higher than alkaline. This was filled in a reaction vessel, and the pressure was increased to about 220 kg / cm 2 G from above and below. Thereafter, the pressure inside the reaction vessel was once reduced to 150 atm.

【0018】次に、温度を500度(反応容器内におい
てはそれよりも高めである。)まで昇温した。反応容器
内の圧力は630気圧まで上昇した。この超臨界状態で
約2時間保持させた。
Next, the temperature was raised to 500 ° C. (which is higher in the reaction vessel). The pressure inside the reaction vessel rose to 630 atm. This supercritical state was maintained for about 2 hours.

【0019】焼却灰を原料とした固化反応後の試料をX
線回折装置を用いて分析した結果、その組成は、ゲーレ
ナイト、アナルサイト、アノーサイト、タルク、パイロ
フィライト等の安定人工岩石に転化された。したがっ
て、焼却灰試料中に存在していた有害有機物が分解され
て存在していないことが明らかである。
The sample after the solidification reaction using incinerated ash
As a result of analysis using a line diffractometer, the composition was converted to stable artificial rocks such as gehlenite, analsite, anorthite, talc, and pyrophyllite. Therefore, it is clear that the harmful organic substances present in the incineration ash sample are not decomposed and present.

【0020】[0020]

【発明の効果】本発明の超臨界状態で使用可能なホット
プレス水熱反応容器を用いることにより、従来ホットプ
レス水熱反応では不可能であった人工岩石の合成が可能
となり、さらに、焼却灰中の有機塩素化合物の分解およ
び有毒なダイオキシン類の乖離分解(二酸化炭素と塩化
水素に分解促進する)が可能となったという、本発明に
特有の顕著な効果を生ずる。
By using the hot-press hydrothermal reaction vessel usable in the supercritical state according to the present invention, it is possible to synthesize artificial rock which could not be obtained by the conventional hot-press hydrothermal reaction. A remarkable effect peculiar to the present invention is obtained in that the decomposition of organic chlorine compounds therein and the dissociation decomposition of toxic dioxins (promoting decomposition into carbon dioxide and hydrogen chloride) have become possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の反応容器内の構造を示す図である。FIG. 1 is a diagram showing a structure inside a reaction vessel of the present invention.

【図2】 本発明における黒鉛パッキンを備えたピスト
ン状圧縮部材を示す図である。
FIG. 2 is a view showing a piston-shaped compression member provided with graphite packing in the present invention.

【図3】 本発明のホットプレス水熱反応装置を示す図
である。
FIG. 3 is a view showing a hot press hydrothermal reactor of the present invention.

【符号の説明】[Explanation of symbols]

1 反応容器外筒 2 黒鉛製パッキン 3 圧縮用ピストン 4 人工岩石原料 5 焼却灰 6 圧縮用先端部 7 軸部材 8 軸部材の挿入孔 DESCRIPTION OF SYMBOLS 1 Reaction vessel outer cylinder 2 Graphite packing 3 Compression piston 4 Artificial rock raw material 5 Incineration ash 6 Compression tip 7 Shaft member 8 Shaft member insertion hole

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B09B 3/00 ZAB C07B 35/06 37/06 C07B 35/06 C07C 25/18 37/06 B09B 3/00 ZAB C07C 25/18 304G (72)発明者 三田村 久吉 茨城県那珂郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内 (72)発明者 前田 敏克 茨城県那珂郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内 Fターム(参考) 2E191 BA12 BC01 BD11 4D004 AA36 AB07 AC04 CA22 CA39 CB04 CB32 CB50 CC03 DA02 DA06 DA07 4H006 AA05 AC13 AD30 BA91 BE60──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B09B 3/00 ZAB C07B 35/06 37/06 C07B 35/06 C07C 25/18 37/06 37/06 B09B 3/00 ZAB C07C 25/18 304 G 2 Shirane 4 Japan Atomic Energy Research Institute Tokai Research Laboratory F term (reference) 2E191 BA12 BC01 BD11 4D004 AA36 AB07 AC04 CA22 CA39 CB04 CB32 CB50 CC03 DA02 DA06 DA07 4H006 AA05 AC13 AD30 BA91 BE60

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛製のパッキンを備えたピストンによ
り圧縮される高温高圧反応室を有する反応容器、その反
応容器の周りに設けられたヒータ、前記反応容器を固定
するための上下の架台、下架台に固定されたシリンダ内
に内装された上下動するピストンロッド、そのピストン
ロッド先端に設けられたピストンロッドベース、このロ
ッドベースを押上るための油圧ポンプ、及び前記ヒータ
の温度を制御するための温度調節計から構成され、油圧
ポンプの操作によりピストンロッドベースを押上て反応
容器に内装された上下の黒鉛製のパッキンを備えたピス
トンにより反応容器中の試料を気密圧縮し、更に反応容
器中の固体の原料又は廃棄物を前記ヒータにより加熱さ
せることにより、前記原料又は廃棄物の水熱固化反応又
は乖離分解反応を行う、超高臨界状態で使用可能な水熱
反応装置
1. A reaction vessel having a high-temperature and high-pressure reaction chamber compressed by a piston having a packing made of graphite, a heater provided around the reaction vessel, an upper and lower pedestal for fixing the reaction vessel, Up and down moving piston rod contained in a cylinder fixed to a gantry, piston rod base provided at the tip of the piston rod, hydraulic pump for pushing up the rod base, and for controlling the temperature of the heater It consists of a temperature controller, pushes up the piston rod base by operating a hydraulic pump, airtightly compresses the sample in the reaction vessel with a piston equipped with upper and lower graphite packings installed in the reaction vessel, and further compresses the sample in the reaction vessel. By heating a solid raw material or waste by the heater, a hydrothermal solidification reaction or a dissociation decomposition reaction of the raw material or waste is performed. U, a hydrothermal reactor that can be used in ultra-high critical state
【請求項2】 ピストンロッドが油圧ポンプからの油圧
により押上られる請求項1記載の装置。
2. The apparatus according to claim 1, wherein the piston rod is pushed up by hydraulic pressure from a hydraulic pump.
JP2000175063A 2000-06-12 2000-06-12 Ultra-high critical hydrothermal reactor Pending JP2001347154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000175063A JP2001347154A (en) 2000-06-12 2000-06-12 Ultra-high critical hydrothermal reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000175063A JP2001347154A (en) 2000-06-12 2000-06-12 Ultra-high critical hydrothermal reactor

Publications (1)

Publication Number Publication Date
JP2001347154A true JP2001347154A (en) 2001-12-18

Family

ID=18676994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000175063A Pending JP2001347154A (en) 2000-06-12 2000-06-12 Ultra-high critical hydrothermal reactor

Country Status (1)

Country Link
JP (1) JP2001347154A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002070119A1 (en) * 2001-03-07 2002-09-12 Yanmar Co., Ltd. Reaction system of organic substance employing supercritical fluid or sub-critical fluid
JP2003275797A (en) * 2002-03-26 2003-09-30 Shin Meiwa Ind Co Ltd Wet oxidative treatment apparatus
CN109127664A (en) * 2018-08-20 2019-01-04 长安大学 A kind of incineration of refuse flyash curing method and device
CN111514820A (en) * 2020-04-28 2020-08-11 北华航天工业学院 Heavy type quick press

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002070119A1 (en) * 2001-03-07 2002-09-12 Yanmar Co., Ltd. Reaction system of organic substance employing supercritical fluid or sub-critical fluid
US7547539B2 (en) 2001-03-07 2009-06-16 Yanmar Co., Ltd. Reaction apparatus for organic and/or other substances employing supercritical fluid or subcritical fluid
JP2003275797A (en) * 2002-03-26 2003-09-30 Shin Meiwa Ind Co Ltd Wet oxidative treatment apparatus
CN109127664A (en) * 2018-08-20 2019-01-04 长安大学 A kind of incineration of refuse flyash curing method and device
WO2020038026A1 (en) * 2018-08-20 2020-02-27 长安大学 Method and device for solidifying fly ash from waste incineration
CN111514820A (en) * 2020-04-28 2020-08-11 北华航天工业学院 Heavy type quick press

Similar Documents

Publication Publication Date Title
Akiyama et al. Hydriding combustion synthesis for the production of hydrogen storage alloy
CA2399400A1 (en) Process for production of hydrogen from anaerobically decomposed organic material
Anthony et al. Pacification of high calcic residues using carbon dioxide
JP2001347154A (en) Ultra-high critical hydrothermal reactor
Meducin et al. Tricalcium silicate (C3S) hydration under high pressure at ambient and high temperature (200 C)
CN107640787B (en) A method of preparing mangandolomite at high temperature under high pressure
JP2006008440A (en) Metal amide compound and manufacturing method therefor
CN107640781B (en) One kind preparing calcium carbonate and magnesium carbonate mineral Ca at high temperature under high pressure1-xMgxCO3Method
CN107512741A (en) A kind of method for preparing ankerite at high temperature under high pressure
JP2002121017A (en) Method of synthesizing xonotlite using supercritical hydrothermal hot press method
US6099817A (en) Process for preparing sodium carbonate
FI70998C (en) SAETTING OVER ANGLING FOR AVAILING AVFALLSMATERIAL TILL STABILA SLUTPRODUKTER
JP2003103299A (en) Treatment method of high concentration sludge and its apparatus
JP2024522413A (en) Method for manufacturing a material in a high pressure state that can be removed from a high pressure device
EA018714B1 (en) Method for preparing hydride materials for hydrogen storage using low-boiling-point solvents
JP2009018955A (en) Manufacturing process of hydrogen gas
Kubo et al. Noncatalytic kinetic study on site-selective H/D exchange reaction of phenol in sub-and supercritical water
KR102260733B1 (en) Method of preparing calcium peroxide originated from oyster shell powder
GB2036073A (en) Method for reducing the caking property of coal
MXPA02008173A (en) Squalane containing ultra fine particles of burning residue of carbon and method for producing the same.
Li et al. Hydrogen adsorption and desorption characteristics of heat-treated calcium carbonate derived from Akoya-Pearl-Oyster nacre
EP3939945A1 (en) Method for producing a material
JP4441619B2 (en) Bunsen reactor with separation function
WO2007148157A1 (en) Method and plant for treatment of asbestos-containing waste materials in supercritical water
Gard et al. Ca7Si16O40H2, a new calcium silicate hydrate phase of the truscottite group