JP2002120068A - Multiple electrode submerged arc welding method excellent in weld bead shape - Google Patents

Multiple electrode submerged arc welding method excellent in weld bead shape

Info

Publication number
JP2002120068A
JP2002120068A JP2000316683A JP2000316683A JP2002120068A JP 2002120068 A JP2002120068 A JP 2002120068A JP 2000316683 A JP2000316683 A JP 2000316683A JP 2000316683 A JP2000316683 A JP 2000316683A JP 2002120068 A JP2002120068 A JP 2002120068A
Authority
JP
Japan
Prior art keywords
welding
electrode
magnetic field
unsolidified
submerged arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000316683A
Other languages
Japanese (ja)
Other versions
JP4224196B2 (en
Inventor
Shunsuke Fukami
俊介 深見
Yasutomo Ichiyama
靖友 一山
Yoshihiro Inmaki
慶浩 印牧
Tsutomu Shimazu
勉 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000316683A priority Critical patent/JP4224196B2/en
Publication of JP2002120068A publication Critical patent/JP2002120068A/en
Application granted granted Critical
Publication of JP4224196B2 publication Critical patent/JP4224196B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Arc Welding Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multiple electrode submerged arc welding method by which molten metal flowing to the rear part of the molten metal at high speed welding is effectively and efficiently restrained by utilizing electromagnetic action, and thus defect, etc., such as undercut, in a weld bead accompanying the speeding up of welding, is prevented. SOLUTION: In the multiple electrode submerged arc welding method using AC as welding current of at least the rearmost electrode, to non-solidified welded metal part at the rear part of the rearmost electrode, AC magnetic field having the same frequency as the welding current of the above electrode, is impressed from the vertical and the right and left direction with respect to a weld line. Further, at least one among the magnetic flux density in the AC magnetic field, the frequency phase difference between the above AC magnetic field and the welding current of the above electrode and the impressed position of the above AC magnetic field, is adjusted to obtain the excellent weld bead shape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、サブマージ溶接方
法に関し、特に溶接鋼管の製造や鋼板の各種板継ぎを行
うための多電極サブマージ溶接法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a submerged welding method, and more particularly to a multi-electrode submerged welding method for manufacturing a welded steel pipe and performing various splicing of steel sheets.

【0002】[0002]

【従来の技術】従来より、サブマージアーク溶接におい
ては、溶接作業の高能率化のためにより溶接速度を高速
化するための様々な方法が出されている。例えば、特公
昭54−32749号公報には、2本以上の電極を用い
て3m/min以上の高速溶接を行う多電極サブマージ
アーク溶接方法に関して、高速溶接時のアークによる後
方への溶融金属の湯流れによる溶接ビード不良を防止す
るために、溶接電源に直流逆極性電源を用い、先行電極
と後行電極との電極軸心間距離を10〜40mmとし、
かつ最終後行電極軸を鉛直軸に対して20〜40度の前
進角をなすようにして溶接を行う多電極サブマージアー
ク溶接法が開示されている。
2. Description of the Related Art Conventionally, in submerged arc welding, various methods have been proposed for increasing the welding speed in order to increase the efficiency of welding work. For example, Japanese Patent Publication No. 54-32749 discloses a multi-electrode submerged arc welding method for performing high-speed welding at 3 m / min or more using two or more electrodes. In order to prevent welding bead failure due to flow, a DC reverse polarity power supply is used as the welding power supply, and the distance between the electrode axes of the leading electrode and the trailing electrode is 10 to 40 mm,
Also disclosed is a multi-electrode submerged arc welding method in which welding is performed such that the final trailing electrode axis makes an advancing angle of 20 to 40 degrees with respect to the vertical axis.

【0003】また、特公昭56−52672号公報に
は、単電極または多電極の高速サブマージアーク溶接方
法に関して、溶接開先形状をI型にし、先行電極の先端
を非溶接物の表面下より深く潜行させ、かつ先行電極の
溶接電流・電圧を高電流・低電圧にすることにより、ア
ーク熱を板厚方向で均等に分布させ、それにより接合部
前方の非溶接物を十分溶融させながらその溶融金属を後
方に押し上げつつ流すことができ、よって高速溶接時に
おいて平滑な溶接ビードを形成できるサブマージアーク
溶接方法が開示されている。
Japanese Patent Publication No. Sho 56-52672 discloses a single electrode or multi-electrode high-speed submerged arc welding method in which the shape of a welding groove is I-shaped, and the tip of a leading electrode is deeper than the surface of a non-welded object. By submerging and setting the welding current and voltage of the leading electrode to high current and low voltage, the arc heat is evenly distributed in the thickness direction, thereby melting the non-welded material in front of the joint while sufficiently melting it. There is disclosed a submerged arc welding method capable of flowing a metal while pushing it backward, thereby forming a smooth weld bead during high-speed welding.

【0004】上記の特公昭54−32749号公報およ
び特公昭56−52672号公報に開示されている高速
サブマージアーク溶接方法は、電極間距離および電極軸
角度、開先形状および電極先端潜行深さなどの溶接電極
の位置の調整により、溶接中の溶融金属の流れを変えて
溶接速度の高速化に伴うアンダーカットやハンピングビ
ードなどの溶接ビード形状不良を防止する方法である。
[0004] The high-speed submerged arc welding method disclosed in Japanese Patent Publication No. 54-32749 and Japanese Patent Publication No. 56-52672 disclose the distance between electrodes, the electrode shaft angle, the groove shape, the depth of the electrode tip, and the like. In this method, the position of the welding electrode is adjusted to change the flow of the molten metal during welding to prevent a weld bead shape defect such as an undercut or a humping bead due to an increase in welding speed.

【0005】一方、高速サブマージアーク溶接を行う際
に、電磁力を作用させて溶接中の溶融金属の流れを変え
ることにより高速溶接時のアンダーカットやハンピング
ビードなどの溶接ビードの形状不良を防止する方法も提
案されている。
On the other hand, when performing high-speed submerged arc welding, electromagnetic force acts to change the flow of the molten metal during welding, thereby preventing the shape of a weld bead such as an undercut or a humping bead during high-speed welding. A method of doing so has also been proposed.

【0006】例えば、特公昭60−148679号公報
には、単電極または多電極の高速サブマージアーク溶接
方法に関し、溶接中の凝固前の溶接金属に対して平行に
移動磁界発生装置を設け、移動磁界とそれによって溶融
金属中に発生した渦電流との相互作用によって溶融金属
に前方(溶接方向)の推力(ローレンツ力)を与え、よ
って高速溶接時の溶融池の長大化に伴う溶融金属の後方
(溶接方向の逆)への湯流れおよびそれによるアンダー
カット欠陥を防止する方法が開示されている。
For example, Japanese Patent Publication No. 60-148679 relates to a single electrode or multi-electrode high-speed submerged arc welding method, in which a moving magnetic field generator is provided in parallel with a weld metal before solidification during welding, and a moving magnetic field generator is provided. And thrust (Lorentz force) forward (welding direction) to the molten metal due to the interaction with the eddy current generated in the molten metal by the interaction between the molten metal and the molten metal at the time of high-speed welding. Disclosed is a method for preventing the flow of the molten metal in the opposite direction to the welding direction and thereby the undercut defect.

【0007】しかしながら、特公昭60−148679
号公報の溶接方法は、2本以上の多電極を用いた高速サ
ブマージアーク溶接の場合、上記のように溶融池(未凝
固の溶融金属)が長大化するため、溶融金属の流動を抑
制するための十分な推力(ローレンツ力)を得るために
は、大型かつ高価格の移動磁界発生装置が必要になる。
また、溶接時は、溶融金属の周辺は高温であり、また、
溶融金属の直上にはフラックスがあるため、移動磁界発
生装置を溶融金属の直近に近づけるには限界があること
から、工業的に実現が困難である。
However, Japanese Patent Publication No. 60-148679
In the case of high-speed submerged arc welding using two or more multi-electrodes, the welding method disclosed in Japanese Patent Application Laid-Open Publication No. H11-129455 increases the length of the molten pool (unsolidified molten metal) as described above, and thus suppresses the flow of the molten metal. In order to obtain sufficient thrust (Lorentz force), a large and expensive moving magnetic field generator is required.
In addition, during welding, the temperature around the molten metal is high,
Since there is a flux right above the molten metal, there is a limit in moving the moving magnetic field generator close to the molten metal, so that it is difficult to realize industrially.

【0008】また、特開平8−243750号公報に
は、板厚60mm以上の極厚鋼材を低電流で1パス溶接
する2電極サブマージアーク溶接方法に関し、先行電極
から発生するアークに、このアーク電流(交流)と同期
させた交流磁場を印加することにより、ローレンツ力を
発生させてこのアークを後行電極の方向(溶接方向と
逆)に向けることにより、後行電極から発生するアーク
力に起因して後行電極から先行電極へ向かう溶融金属の
流れを抑制し、先行電極直下の湯溜まりを低減すること
により先行電極による溶け込み深さを向上させる方法が
開示されている。また、この特開平8−243750号
公報では、先行電極から発生するアークに交流磁場を印
加するのに加えて、先行電極と後行電極との間の溶融金
属に交流磁場を印加してローレンツ力による同様な効果
を得る方法も開示されている。
Japanese Patent Application Laid-Open No. Hei 8-243750 discloses a two-electrode submerged arc welding method in which a very thick steel material having a thickness of 60 mm or more is welded with a low current in one pass. By applying an AC magnetic field synchronized with (AC), a Lorentz force is generated and this arc is directed in the direction of the succeeding electrode (opposite to the welding direction), resulting in the arc force generated from the succeeding electrode. A method is disclosed in which the flow of molten metal from the succeeding electrode to the preceding electrode is suppressed, and the pool of molten metal immediately below the preceding electrode is reduced, thereby improving the penetration depth of the preceding electrode. In Japanese Patent Application Laid-Open No. 8-243750, in addition to applying an AC magnetic field to an arc generated from a leading electrode, an AC magnetic field is applied to a molten metal between a leading electrode and a trailing electrode to apply a Lorentz force to the molten metal. Also disclosed is a method for obtaining the same effect as described above.

【0009】しかしながら、特開平8−243750号
公報の発明は、板厚60mm以上の極厚鋼材を低電流で
1パス溶接するために問題となる先行電極直下の湯溜ま
りによる被溶接材のガウジング(溶込み)低下を解消す
ることを目的として、交流磁場の印加によって先行電極
から発生するアークまたは先行電極と後行電極との間の
溶融金属にローレンツ力を作用させるものであり、高速
溶接時の溶融池の長大化に伴う最終後行電極以降の溶融
金属の後方(溶接方向の逆)への湯流れを抑制し、溶接
ビードのアンダーカット欠陥を防止することはできな
い。
However, the invention disclosed in Japanese Patent Application Laid-Open No. H8-243750 discloses a method of performing gouging of a material to be welded by a pool of water immediately below a preceding electrode, which is a problem for one-pass welding of an extremely thick steel material having a thickness of 60 mm or more at a low current. For the purpose of eliminating the reduction in penetration, Lorentz force is applied to the arc generated from the leading electrode by applying an AC magnetic field or to the molten metal between the leading electrode and the trailing electrode. It is not possible to suppress the flow of molten metal behind (in the opposite direction to the welding direction) the molten metal after the last trailing electrode due to the increase in the length of the molten pool, and to prevent undercut defects in the weld bead.

【0010】また、特開昭60−240382号公報に
は、多電極の高速サブマージアーク溶接方法に関し、高
速溶接時の先行電極ワイヤから後方に流れて発生してい
るアークに対して上下垂直方向に磁界を与え、そのアー
クに対して左右垂直方向(溶接線の横方向)にローレン
ツ力を作用させるとともに、先行電極ワイヤの溶接電流
値(交流)と磁束密度値(直流磁界)の比率を規定する
ことにより、先行電極ワイヤのアークを溶接線の横(垂
直)方向に振動させながら溶接する方法が開示されてい
る。この発明は、先行電極ワイヤ自体を振動させずに、
先行電極ワイヤのアークのみを電磁気的に溶接線の横
(垂直)方向に振動させることにより、ワイヤ先端の溶
滴の飛散やフラックスの攪乱等を防止しつつ、高速溶接
時の先行電極ワイヤから後方溶融金属へのアーク力を分
散低減し、それによって溶融金属の後方への湯流れを抑
制し、溶接ビードのアンダーカット欠陥を防止する方法
である。
Japanese Patent Application Laid-Open No. 60-240382 relates to a multi-electrode high-speed submerged arc welding method, which relates to an arc generated by flowing backward from a preceding electrode wire during high-speed welding in a vertical and vertical direction. A magnetic field is applied to apply a Lorentz force to the arc in a direction perpendicular to the left and right (lateral direction of the welding line), and the ratio between the welding current value (AC) and the magnetic flux density value (DC magnetic field) of the leading electrode wire is defined. Thus, a method is disclosed in which welding is performed while vibrating the arc of the preceding electrode wire in the lateral (vertical) direction of the welding line. This invention does not vibrate the lead electrode wire itself,
Only the arc of the leading electrode wire is electromagnetically vibrated in the lateral (vertical) direction of the welding line to prevent scattering of droplets at the wire tip and disturbance of the flux, etc. This is a method of dispersing and reducing the arc force on the molten metal, thereby suppressing the flow of molten metal behind the molten metal and preventing an undercut defect in a weld bead.

【0011】しかしながら、本発明者らの実験によれ
ば、この先行電極のアークを電磁気的に溶接線の横(垂
直)方向に振動させる方法は、十分な溶接ビードのアン
ダーカット防止効果は得るに至らなかった。
However, according to the experiments conducted by the present inventors, the method of electromagnetically vibrating the arc of the preceding electrode in the lateral (vertical) direction of the welding line does not provide a sufficient effect of preventing the undercut of the weld bead. Did not reach.

【0012】[0012]

【発明が解決しようとする課題】上記の従来技術の問題
点に鑑みて、本発明は、多電極のサブマージアーク溶接
の高速化に伴う溶接ビードのアンダーカット等の欠陥を
防止することを技術課題とし、その原因となる高速溶接
時の溶融金属の後方(溶接方向の逆)への湯流れを電磁
気作用を利用して有効かつ効率的に抑制するための方法
を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems in the prior art, an object of the present invention is to prevent a defect such as an undercut of a weld bead due to an increase in the speed of submerged arc welding of multiple electrodes. It is an object of the present invention to provide a method for effectively and efficiently suppressing the flow of molten metal behind the molten metal (reverse to the welding direction) during high-speed welding, which causes the molten metal, by using an electromagnetic effect.

【0013】[0013]

【課題を解決するための手段】本発明は、上記の過大を
解決するものであり、その要旨とするところは、以下の
通りである。 (1)少なくとも最も後行の電極の溶接電流に交流を用
いる多電極サブマージアーク溶接方法において、最も後
行の電極の後方の未凝固溶接金属部に対して、溶接線の
左右垂直方向から前記電極の溶接電流と同周波数の交流
磁場を印加するとともに、溶接速度に応じて、前記交流
磁場の磁束密度、前記交流磁場と前記電極の溶接電流と
の周波数位相差、および前記交流磁場の印加位置のうち
の少なくとも一方を調整することを特徴とする溶接ビー
ド形状に優れた多電極サブマージアーク溶接方法。 (2)前記の最も後行の電極の先端部直下に印加する交
流磁場と、最も後行の電極の溶接電流の周波数の位相差
を−10゜〜10゜の範囲内に調整することを特徴とす
る上記(1)に記載の溶接ビード形状に優れた多電極サ
ブマージアーク溶接方法。 (3)前記交流磁場の印加位置を未凝固溶接金属の最先
端位置から凝固終了位置までの距離をLとした場合に、
未凝固溶接金属の最先端位置から0.5L以下の範囲に
調整することを特徴とする上記(1)または(2)の何
れかに記載の溶接ビード形状に優れた多電極サブマージ
アーク溶接方法。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problem, and its gist is as follows. (1) In a multi-electrode submerged arc welding method using an alternating current as a welding current for at least the most recent electrode, the unsolidified weld metal portion behind the most recent electrode is welded from the left and right vertical direction of the welding line. While applying an alternating magnetic field having the same frequency as the welding current, the magnetic flux density of the alternating magnetic field, the frequency phase difference between the alternating magnetic field and the welding current of the electrode, and the application position of the alternating magnetic field, according to the welding speed. A multi-electrode submerged arc welding method having an excellent weld bead shape, wherein at least one of the methods is adjusted. (2) The phase difference between the alternating magnetic field applied immediately below the tip of the last electrode and the frequency of the welding current of the last electrode is adjusted within a range of -10 ° to 10 °. The multi-electrode submerged arc welding method according to the above (1), which has an excellent weld bead shape. (3) In the case where the application position of the AC magnetic field is a distance L from the leading edge position of the unsolidified weld metal to the solidification end position,
The multi-electrode submerged arc welding method according to any one of the above (1) or (2), wherein the non-solidified weld metal is adjusted to a range of 0.5 L or less from the foremost position of the unsolidified weld metal.

【0014】[0014]

【発明の実施の形態】図4に従来の3電極の高速サブマ
ージアーク溶接を行った時の溶接線を含む垂直断面から
見た側面図および上方から見た平面図とその溶接部断面
図(A−A’断面)を示し、図7(b)に従来法による
高速溶接(アンダーカット欠陥の発生)時の溶接ビード
部の幅方向溶接線の断面図を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 4 shows a side view as viewed from a vertical section including a welding line, a plan view as viewed from above, and a cross-sectional view of the welded portion (A) when conventional three-electrode high-speed submerged arc welding is performed. FIG. 7 (b) is a cross-sectional view of a welding line in the width direction of the weld bead portion at the time of high-speed welding (the occurrence of an undercut defect) according to the conventional method.

【0015】一般に、図4に示すように、サブマージア
ーク溶接を高速で行った場合、最も後行の電極(第3電
極3)の後方の未凝固溶接金属部14は、後方(溶接方
向の逆)へ流れる傾向が大きくなることが知られてい
る。つまり、図4において溶接線12上における被溶接
材溶融部の最先端位置23と未凝固溶接金属の最先端位
置18との距離を未凝固溶接金属の後退距離17とし、
溶接ビード(未凝固溶接金属部)表面で最も早く凝固が
始まる溶接止端部の位置をビード止端部の凝固開始位置
19と定義すると、溶接速度が高速になるに連れて、未
凝固溶接金属の後退距離17は大きくなり、それに伴っ
てビード止端部の凝固開始位置19も後退(溶接方向の
逆向きに移動)する。その結果、ビード止端部の凝固開
始位置19で未凝固溶接金属が少ない状態で凝固してし
まい(溶接部A−A’断面図)、溶接ビード止端部19
に図7(b)のようなアンダーカット欠陥25が発生す
ることとなる。
In general, as shown in FIG. 4, when submerged arc welding is performed at a high speed, the unsolidified weld metal portion 14 behind the rearmost electrode (third electrode 3) is rearward (reverse in the welding direction). ) Is known to increase. That is, in FIG. 4, the distance between the foremost position 23 of the welded material fusion zone on the welding line 12 and the foremost position 18 of the unsolidified weld metal is defined as the retreat distance 17 of the unsolidified weld metal,
If the position of the weld toe where solidification starts the earliest on the surface of the weld bead (unsolidified weld metal part) is defined as the solidification start position 19 of the bead toe, the unsolidified weld metal is increased as the welding speed increases. The retreat distance 17 increases, and accordingly, the solidification start position 19 of the bead toe also retreats (moves in the opposite direction to the welding direction). As a result, the unsolidified weld metal is solidified in a small amount at the solidification start position 19 of the bead toe (welded section AA ′ cross-sectional view), and the weld bead toe 19 is solidified.
7B, an undercut defect 25 as shown in FIG.

【0016】未凝固溶接金属の後退距離17およびビー
ド止端部の凝固開始位置19は、溶接条件により決まる
アーク力と、スラグと溶融金属(固体、液体)との界面
張力や重力等により決まる溶融金属の流動のバランスで
ほぼ決定され、溶接速度の増加に伴い所定溶着金属を確
保するために溶接電流を増加させアーク力が強まる傾向
があるため、未凝固溶接金属の後退距離17の増大およ
びビード止端部の凝固開始位置19の後退によるアンダ
ーカット欠陥を防止するため、溶接時の溶接速度を規制
せざるをえなかった。
The receding distance 17 of the unsolidified weld metal and the solidification start position 19 of the bead toe are determined by the arc force determined by the welding conditions and the melting force determined by the interfacial tension between the slag and the molten metal (solid or liquid), gravity, and the like. It is almost determined by the balance of the metal flow. Since the welding current increases to increase the welding current and the arc force tends to increase as the welding speed increases, the retreat distance 17 of the unsolidified weld metal increases and the bead increases. In order to prevent an undercut defect caused by the retreat of the solidification start position 19 at the toe, the welding speed at the time of welding must be regulated.

【0017】本発明は、溶接速度の増加にともない増加
する傾向にある最も後行の電極の後方に形成された未凝
固溶融金属の後方への流動を抑制するために有効な方法
を鋭意検討した結果、最も後行の電極の後方の未凝固溶
接金属部に対して、溶接線の左右垂直方向から最も後行
の電極の交流溶接電流と同周波数の交流磁場を印加して
その電磁気的作用により、未凝固溶融金属部の上方から
下方への押しつけ力を発生させるとともに、溶接速度に
応じてその交流磁場の磁束密度、位相、交流磁場の印可
位置を調整する方法が、未凝固溶融金属の後退距離17
の増大およびビード止端部の凝固開始位置19の後退に
よるアンダーカット欠陥を防止するために有効であるこ
とが判った。
The present invention has intensively studied an effective method for suppressing the backward flow of the unsolidified molten metal formed behind the most trailing electrode, which tends to increase as the welding speed increases. As a result, an AC magnetic field having the same frequency as that of the AC welding current of the most posterior electrode is applied to the unsolidified weld metal portion behind the most posterior electrode from the right and left vertical direction of the welding line, and the electromagnetic action thereof is performed. The method of generating a pressing force from the top to the bottom of the unsolidified molten metal and adjusting the magnetic flux density, phase, and application position of the alternating magnetic field according to the welding speed is a method of retreating the unsolidified molten metal. Distance 17
It has been found that this is effective in preventing an undercut defect due to an increase in the size and a retreat of the solidification start position 19 at the bead toe.

【0018】本発明は、上記の知見に基づいてなされた
ものであり、図1に示すように2本以上の溶接電極1〜
3を用いてサブマージアーク溶接をする際に、最も後方
に位置する溶接電極(第3電極3)の後方の未凝固溶接
金属部に対して、溶接線の左右垂直方向から最も後行の
溶接電極(第3電極3)の交流溶接電流と同周波数の交
流磁場を印加するとともに、溶接速度に応じて、交流磁
場の磁束密度、交流磁場と前記電極の交流溶接電流との
周波数位相差、および交流磁場の印加位置のうちの少な
くとも一方を調整することを特徴とする多電極の高速サ
ブマージアーク溶接方法である。
The present invention has been made based on the above-mentioned findings, and as shown in FIG.
When performing submerged arc welding using No. 3, the welding electrode that is the most rearward in the left-right vertical direction of the welding line with respect to the unsolidified weld metal part behind the rearmost welding electrode (third electrode 3). An AC magnetic field having the same frequency as the AC welding current of the (third electrode 3) is applied, and the magnetic flux density of the AC magnetic field, the frequency phase difference between the AC magnetic field and the AC welding current of the electrode, and A multi-electrode high-speed submerged arc welding method characterized by adjusting at least one of a magnetic field application position.

【0019】本発明により最も後行に位置する溶接電極
(第3電極3)の後方の未凝固溶接金属部に対して溶接
線の左右垂直方向に印加された交流磁場8と、溶接電極
から溶融プール中を溶接方向と逆の方向に流れる溶接電
流との電磁的相互作用により生じた上から下の方向のロ
ーレンツ力9で、最も後行に位置する溶接電極(第3電
極3)の後方の未凝固溶融金属は下方へ押され、見かけ
上、未凝固溶融金属の最先端位置18および凝固開始位
置19は前方に押し出される。この結果、溶接速度の増
加にともなう未凝固溶接金属の後退距離17の増加およ
び凝固開始位置19の後退(溶接方向の逆方向に移動)
は抑制され、アンダーカット欠陥などの発生を防止し、
良好な溶接ビード形状を確保しつつ高速溶接が可能とな
る。
According to the present invention, an AC magnetic field 8 applied to the unsolidified weld metal portion behind the welding electrode (third electrode 3) located at the rearmost position in the right and left vertical direction of the welding line, The Lorentz force 9 from the top to the bottom generated by the electromagnetic interaction with the welding current flowing in the direction opposite to the welding direction in the pool causes the rearward position of the rearmost welding electrode (third electrode 3). The unsolidified molten metal is pushed downward, and apparently, the leading edge position 18 and the solidification start position 19 of the unsolidified molten metal are pushed forward. As a result, the retreat distance 17 of the unsolidified weld metal increases with the increase in the welding speed, and the solidification start position 19 retreats (moves in the opposite direction to the welding direction).
Is suppressed, preventing the occurrence of undercut defects, etc.
High-speed welding can be performed while maintaining a good weld bead shape.

【0020】この際、最も後方に位置する溶接電極の後
方の未凝固溶接金属部に対して、印加する交流磁場8の
磁束密度を溶接速度に応じて、例えば溶接速度が増加し
た場合には、交流磁場の磁束密度を増加するように調整
して、未凝固溶融金属に発生する上から下方向の押しつ
け力9を調整する。これにより、溶接速度増大にともな
い未凝固溶融金属の後方への流動を抑制し、溶接部にお
けるアンダーカット欠陥等の欠陥発生を抑制でき、高速
溶接においても溶接速度に応じて常に安定して良好な溶
接ビード形状を確保することが可能になる。
At this time, when the magnetic flux density of the AC magnetic field 8 to be applied to the unsolidified weld metal portion behind the rearmost welding electrode is changed according to the welding speed, for example, when the welding speed is increased, Adjustment is performed so as to increase the magnetic flux density of the AC magnetic field, and the pressing force 9 from the top to the bottom generated in the unsolidified molten metal is adjusted. As a result, the backward flow of the unsolidified molten metal can be suppressed with an increase in welding speed, and the occurrence of defects such as undercut defects in the welded portion can be suppressed. It is possible to secure the shape of the weld bead.

【0021】交流磁場の磁束密度の調整は、溶接速度に
応じてそのときの溶接部の溶接ビード欠陥の発生状況を
確認しながら、溶接ビード欠陥が発生しないように調整
すれば良いが、予め溶接速度やその他の溶接条件におけ
る交流磁場の磁束密度と溶接部のアンダーカット欠陥等
の欠陥発生率との関係を調べておき、この関係に従って
溶接欠陥が発生しないように交流磁場の磁束密度を調整
することが望ましい。
In order to adjust the magnetic flux density of the AC magnetic field, it is sufficient to adjust the magnetic flux density of the AC magnetic field so as to prevent the occurrence of weld bead defects while checking the occurrence of weld bead defects in the welded portion at that time. Investigate the relationship between the magnetic flux density of the AC magnetic field at speed and other welding conditions and the incidence of defects such as undercut defects in the weld, and adjust the magnetic flux density of the AC magnetic field according to this relationship so that welding defects do not occur. It is desirable.

【0022】また、本発明では、最終後方電極3の溶接
電流に直流電流に比べて溶接電源が安価であり、溶着量
が得られやすく、またソフトなアークを得られられる交
流電流を用いることとするため、その電極の後方未凝固
溶接金属部に対して印加する磁場としては、その電極に
用いる交流溶接電流の周波数とほぼ同じ周波数の交流磁
場を用いることとする。これにより、常に下方のローレ
ンツ力9を発生させることが可能となり、未凝固溶融金
属の後方への流れを抑制することができる。
Further, according to the present invention, as the welding current for the final rear electrode 3, an alternating current is used, which is cheaper than a direct current as compared with a direct current, can easily obtain a welding amount, and can obtain a soft arc. Therefore, as the magnetic field applied to the rear unsolidified weld metal portion of the electrode, an AC magnetic field having substantially the same frequency as the frequency of the AC welding current used for the electrode is used. This makes it possible to always generate the lower Lorentz force 9 and suppress the backward flow of the unsolidified molten metal.

【0023】また、本発明では、上記の理由から最終電
極3の溶接電流に交流電流を用いたが、当然ながら最終
後方電極3の溶接電流に直流電流を用いる場合にも、そ
の電極後方の未凝固溶接金属部に対して印加する磁場を
直流磁場にして、図1の8に示す方向に磁場を印加する
ことで上記交流電流と交流磁場の場合と同様な効果が得
られる。
In the present invention, an alternating current is used as the welding current for the final electrode 3 for the above reason. By setting the magnetic field to be applied to the solidified weld metal portion to a DC magnetic field and applying the magnetic field in the direction indicated by 8 in FIG. 1, the same effect as in the case of the AC current and the AC magnetic field can be obtained.

【0024】また、本発明では、最終後方電極の後方の
未凝固溶接金属部に対して印加する交流磁場と最終後方
電極の交流溶接電流との位相差は、アンダーカット欠陥
発生を防止するために−10度から10度に規定する必
要がある。図6には、表1および溶接速度:2.1m/
minの溶接条件でサブマージアーク溶接した時の最終
後方電極の交流溶接電流と交流磁場との位相差とアンダ
ーカット欠陥の発生率の関係を示す。ここで、アンダー
カット発生率は、溶接ビードの単位長さ当たりのアンダ
ーカット欠陥長さの合計値である。
In the present invention, the phase difference between the AC magnetic field applied to the unsolidified weld metal portion behind the final rear electrode and the AC welding current of the final rear electrode is used to prevent the occurrence of undercut defects. It is necessary to set it from -10 degrees to 10 degrees. FIG. 6 shows Table 1 and welding speed: 2.1 m /
The relationship between the phase difference between the AC welding current of the final rear electrode and the AC magnetic field and the occurrence rate of undercut defects when submerged arc welding is performed under the welding conditions of min is shown. Here, the undercut occurrence rate is the total value of the undercut defect lengths per unit length of the weld bead.

【0025】図6に示す結果から、最終後方電極の交流
溶接電流と交流磁場との周波数位相差が0の場合は、未
凝固溶融金属に対して常に下向きのローレンツ力が作用
するが、その位相差が10度の範囲より増加(位相の絶
対値で)すると共に未凝固溶融金属に上向きのローレン
ツ力が発生する割合が増加し、未凝固溶融金属の後方へ
の流動を抑制する効果が減少するためアンダーカット欠
陥の発生率が増加することが分かった。これは、発明者
らの検討の結果によれば、最終後方電極の交流溶接電流
と交流磁場との周波数位相差の増加に伴うローレンツ力
の向きの変化に起因して未凝固溶融金属が上下に振動
し、特にビード止端部凝固開始位置に悪影響を与えるこ
とが分かっており、これがアンダーカット欠陥の発生を
助長すると考えられる。
From the results shown in FIG. 6, when the frequency phase difference between the AC welding current of the final rear electrode and the AC magnetic field is 0, a downward Lorentz force always acts on the unsolidified molten metal. As the phase difference increases from the range of 10 degrees (in absolute value of the phase), the rate at which the upward Lorentz force is generated in the unsolidified molten metal increases, and the effect of suppressing the backward flow of the unsolidified molten metal decreases. Therefore, the occurrence rate of undercut defects was found to increase. According to the results of the study by the inventors, this is because the unsolidified molten metal moves up and down due to the change in the direction of the Lorentz force due to the increase in the frequency phase difference between the AC welding current and the AC magnetic field of the final rear electrode. Vibration has been found to adversely affect particularly the bead toe solidification start position, which is believed to promote the occurrence of undercut defects.

【0026】従って、本発明では、これらの理由で最終
後方電極の交流溶接電流と交流磁場との周波数位相差の
増加に伴って発生するアンダーカット欠陥を防止するた
めに、最終後方電極の交流溶接電流と交流磁場との位相
差を−10度から10度に規定する。
Accordingly, in the present invention, in order to prevent an undercut defect occurring due to an increase in the frequency phase difference between the AC welding current and the AC magnetic field of the final rear electrode for these reasons, the AC welding of the final rear electrode is performed. The phase difference between the current and the alternating magnetic field is defined to be from -10 degrees to 10 degrees.

【0027】また、本発明では、最終後方電極の後方の
未凝固溶接金属部に対して印加する交流磁場の位置を、
未凝固溶接金属の最先端位置から凝固終了位置まで距離
をLとした場合に、未凝固溶接金属の最先端位置から
0.5L以下の範囲に調整する必要がある。ここで、凝
固終了位置とは、図4に示される28の溶接ビード(未
凝固溶接金属部)表面で最も遅く凝固が終了する位置と
定義される。
In the present invention, the position of the alternating magnetic field applied to the unsolidified weld metal portion behind the final rear electrode is
When the distance from the leading end position of the unsolidified weld metal to the solidification end position is L, it is necessary to adjust the distance from the leading end position of the unsolidified weld metal to 0.5 L or less. Here, the solidification end position is defined as a position where solidification ends most slowly on the surface of the 28 weld beads (unsolidified weld metal portion) shown in FIG.

【0028】図8には、表1および溶接速度:2.1m
/minの溶接条件で、磁気発生コイルを未凝固溶接金
属の最先端位置から凝固終了位置までの範囲の種々の位
置に配置して交流磁場を印加し、サブマージアーク溶接
した場合の交流磁場の印加位置とアンダーカット欠陥の
発生率との関係を示す。ここで、アンダーカット発生率
は、溶接ビードの単位長さ当たりのアンダーカット欠陥
長さの合計値である。ここで、図8の横軸の磁気発生用
コイル設置位置(%)は、未凝固溶接金属の最先端位置
からの距離を未凝固溶接金属の最先端位置から凝固終了
位置までの距離との相対比率で示したものである。
FIG. 8 shows Table 1 and a welding speed of 2.1 m.
/ Min welding conditions, the magnetic field generating coil is placed at various positions in the range from the leading edge position of the unsolidified weld metal to the solidification end position, and an AC magnetic field is applied, and the AC magnetic field is applied when submerged arc welding is performed. The relationship between the position and the incidence of undercut defects is shown. Here, the undercut occurrence rate is the total value of the undercut defect lengths per unit length of the weld bead. Here, the magnetic generation coil installation position (%) on the horizontal axis in FIG. 8 indicates the distance from the leading end position of the unsolidified weld metal to the distance from the leading end position of the unsolidified weld metal to the solidification end position. It is shown as a ratio.

【0029】図8の結果から、最終後方電極の後方の未
凝固溶接金属部に印加する交流磁場の位置を、未凝固溶
接金属の最先端位置から凝固終了位置までの距離をLと
した場合に、未凝固溶接金属の最先端位置から0.5L
以下の範囲では、アンダーカット欠陥が発生しないが、
0.5Lを越える範囲ではアンダーカット欠陥の発生を
減少することができない。これは未凝固溶接金属中を流
れる溶接電流は電極先端部直下位置から放射状に分散し
て流れているために、交流磁場の印加位置が電極先端部
直下位置から過度に離れると電流が小さくなり、それと
の電磁作用で発生するローレンツ力も減少するためであ
ると考えられる。これらの理由から本発明では、交流磁
場の印加位置を未凝固溶接金属の最先端位置から0.5
L以下の範囲に規定する。
From the results shown in FIG. 8, the position of the AC magnetic field applied to the unsolidified weld metal portion behind the final rear electrode is defined assuming that the distance from the foremost position of the unsolidified weld metal to the solidification end position is L. 0.5L from the leading edge of unsolidified weld metal
In the following range, undercut defects do not occur,
If it exceeds 0.5 L, the occurrence of undercut defects cannot be reduced. This is because the welding current flowing in the unsolidified weld metal is distributed radially from the position directly below the tip of the electrode, so if the application position of the AC magnetic field is excessively far from the position directly below the tip of the electrode, the current will decrease, It is considered that this is because the Lorentz force generated by the electromagnetic action also decreases. For these reasons, in the present invention, the position to which the AC magnetic field is applied is set at 0.5 degrees from the most advanced position of the unsolidified weld metal.
It is defined in the range of L or less.

【0030】なお、上記本発明は、図1から図3に示す
装置構成で実施できる。交流磁場8は、3本の溶接電極
1〜3の最も後方に位置する第3電極の後方の未凝固溶
接金属部に対して、軸中心に鉄芯5を配した1対の磁場
発生コイル4を図2および3に示すように配置し、1対
の鉄芯5の先端部を結ぶ直線が、溶接線12と垂直でか
つ被溶接材6面と平行になるように配置する。
The present invention can be implemented with the device configuration shown in FIGS. The alternating magnetic field 8 is applied to a pair of magnetic field generating coils 4 having an iron core 5 disposed at the center of the axis with respect to an unsolidified weld metal portion behind the third electrode located rearmost of the three welding electrodes 1 to 3. Are arranged as shown in FIGS. 2 and 3, and the straight line connecting the tips of the pair of iron cores 5 is perpendicular to the welding line 12 and parallel to the surface of the workpiece 6.

【0031】このときの鉄芯5の先端の位置は、磁場発
生コイルが溶接金属に近づきすぎることによるコイル電
流の短絡を防止し、安定した磁束密度を得るために、図
2に示すように第3電極3のワイヤ11の軸中心から被
溶接材の幅(横)方向にそれぞれ20mm以上かつ、被
溶接材表面から10mm以上の高さに設置し、図3のよ
うに、それぞれの鉄芯5の中心軸と被溶接材6面の垂線
とがなす角度を45度以内とするように配置することが
望ましい。
At this time, the position of the tip of the iron core 5 is determined as shown in FIG. 2 in order to prevent a short circuit of the coil current due to the magnetic field generating coil being too close to the weld metal and to obtain a stable magnetic flux density. The three electrodes 3 are installed at a height of 20 mm or more in the width (lateral) direction of the material to be welded from the axial center of the wire 11 and at a height of 10 mm or more from the surface of the material to be welded, and as shown in FIG. Is desirably arranged so that the angle formed by the central axis of the above and the perpendicular to the surface of the material to be welded 6 is within 45 degrees.

【0032】[0032]

【実施例】以下に本発明の実施例を説明する。図1は本
発明で用いる溶接装置の一例を示し、そのさいの第3電
極のワイヤ11先端と磁場発生用コイル4に配した鉄芯
5の先端との位置関係を図2および図3に示した。
Embodiments of the present invention will be described below. FIG. 1 shows an example of a welding apparatus used in the present invention. In this case, FIGS. 2 and 3 show a positional relationship between a tip of a wire 11 of a third electrode and a tip of an iron core 5 arranged on a magnetic field generating coil 4. Was.

【0033】本発明例として上記図1〜3の装置を用い
て表1に示す各電極のワイヤ径、溶接電流、溶接電圧、
開先形状、未凝固溶接金属部の磁場条件で、表2に示す
溶接速度で平板鋼板の溶接を行い、溶接部のアンダーカ
ット欠陥の発生有無を評価した。また、本発明と従来法
との効果を比較するために、比較例として磁場条件を除
き表1および2と同じ条件で実施した。表2にそのとき
の結果を示す。
As an example of the present invention, the wire diameter, welding current, welding voltage,
The flat steel plate was welded at the welding speeds shown in Table 2 under the conditions of the groove shape and the magnetic field of the unsolidified weld metal portion, and the occurrence of undercut defects in the welded portion was evaluated. Further, in order to compare the effects of the present invention and the conventional method, a comparative example was performed under the same conditions as in Tables 1 and 2 except for the magnetic field conditions. Table 2 shows the results at that time.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】図4には従来法である比較例として最終後
行電極後方に磁場を印加しない場合、図5には、本発明
例の磁場を印加した場合のそれぞれのサブマージアーク
溶接時における側面図および平面図とその溶接部断面図
(A−A’断面)を示し、図7に得られた溶接ビード部
の幅方向溶接線の断面図を示す。
FIG. 4 is a comparative example of the conventional method, in which no magnetic field is applied behind the last trailing electrode. FIG. 5 is a side view of the example of the present invention when a magnetic field is applied in each submerged arc welding. FIG. 7 shows a plan view and a cross-sectional view (AA ′ cross-section) of the welded portion, and FIG. 7 shows a cross-sectional view of the obtained weld bead portion in the width direction welding line.

【0037】表2に示す結果から明らかなように、最も
後方に位置する第3電極3のワイヤ11の後方の未凝固
溶接金属部に対して磁場8を作用させなかった比較例で
は、溶接速度1.9m/minの比較的低速の溶接で
は、アンダーカット欠陥が発生しなかったが、溶接速度
が2.1m/minの高速溶接時にはアンダーカット欠
陥25(図7(b))が発生した。一方、本発明例で
は、溶接速度が1.9m/minおよび2.1m/mi
nのいずれの場合にも溶接ビード止端部27にアンダー
カット欠陥は発生せず、良好なビード26(図7
(a))を得ることができた。
As is clear from the results shown in Table 2, in the comparative example in which the magnetic field 8 was not applied to the unsolidified weld metal portion behind the wire 11 of the third electrode 3 located at the rearmost position, the welding speed was Undercut welding at a relatively low speed of 1.9 m / min did not produce undercut defects, but underhigh-speed welding at a welding speed of 2.1 m / min produced undercut defects 25 (FIG. 7B). On the other hand, in the example of the present invention, the welding speed was 1.9 m / min and 2.1 m / mi.
No undercut defect was generated in the weld bead toe 27 in any of the cases n, and the good bead 26 (FIG.
(A)) was obtained.

【0038】図4に示すように、従来法(比較例)の最
終後行電極後方に磁場を印加しない場合は、溶接速度が
2.1m/minの高速溶接時には、溶接アーク13の
増加によって未凝固の溶接金属14が後方に流されやす
くなり、未凝固溶接金属の後退距離17が増大するとと
もにビード止端部の凝固開始位置19が後退(溶接方向
と逆向きに移動)し、未凝固溶接金属が少ない状態でビ
ード止端部の凝固開始位置14が凝固してしまい(溶接
部のA−A’断面図)、溶接ビード止端部19に図7
(b)のようなアンダーカット欠陥25が発生した。
As shown in FIG. 4, when no magnetic field is applied behind the last trailing electrode of the conventional method (comparative example), the welding arc 13 increases due to the increase of the welding arc 13 at the welding speed of 2.1 m / min. The solidified weld metal 14 is easily flowed backward, the retreat distance 17 of the unsolidified weld metal increases, and the solidification start position 19 at the bead toe moves backward (moves in the opposite direction to the welding direction), so that the unsolidified welding is performed. When the amount of metal is small, the solidification start position 14 at the bead toe is solidified (cross-sectional view taken along the line AA ′ of the welded portion).
An undercut defect 25 as shown in FIG.

【0039】一方、本発明例では、図5に示すように最
も後方に位置する電極3のワイヤ後方の未凝固溶接金属
部に対して交流磁場8を印加することにより、下向き方
向にローレンツ力9を発生させて、その作用により、未
凝固溶接金属14の溶接方向と逆方向への流動を抑制す
ることができる。その結果、溶接速度2.1m/min
の高速溶接時でも未凝固溶接金属の後退距離17の増大
を抑制させるとともにビード止端部の凝固開始位置19
の後退を防止でき(溶接部A− A’断面図)、図7
(a)のようにアンダーカット欠陥27がない良好な形
状の溶接ビード28を得ることができた。
On the other hand, in the embodiment of the present invention, as shown in FIG. 5, the AC magnetic field 8 is applied to the unsolidified weld metal portion behind the wire of the electrode 3 located at the rearmost position, so that the Lorentz force 9 Is generated, and the flow of the unsolidified weld metal 14 in the direction opposite to the welding direction can be suppressed by the action. As a result, the welding speed was 2.1 m / min.
At the time of high-speed welding, the increase in the retreat distance 17 of the unsolidified weld metal is suppressed, and the solidification start position 19 at the bead toe is also suppressed.
7 can be prevented (welded section AA 'cross-sectional view), and FIG.
As shown in (a), a weld bead 28 having a good shape without undercut defects 27 was obtained.

【0040】[0040]

【発明の効果】本発明によれば、多電極のサブマージア
ーク溶接の高速化に伴う溶接ビードに発生するアンダー
カットなどの欠陥防止し、良好な溶接ビードを維持しつ
つ、溶接速度を高速化することが可能となるため、溶接
施工の高能率化が可能である。
According to the present invention, it is possible to prevent defects such as undercuts generated in a weld bead due to high speed of submerged arc welding of multiple electrodes, and to increase a welding speed while maintaining a good weld bead. This makes it possible to improve the efficiency of welding work.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態であるサブマージアーク溶接
装置の構成図
FIG. 1 is a configuration diagram of a submerged arc welding apparatus according to an embodiment of the present invention.

【図2】本発明の実施形態であるサブマージアーク溶接
装置の交流磁場印加装置の配置を示す正面図
FIG. 2 is a front view showing an arrangement of an AC magnetic field applying device of the submerged arc welding device according to the embodiment of the present invention.

【図3】本発明の実施形態であるサブマージアーク溶接
装置の交流磁場印加装置の配置を示す側面図
FIG. 3 is a side view showing an arrangement of an AC magnetic field applying device of the submerged arc welding device according to the embodiment of the present invention.

【図4】従来法によるサブマージアーク溶接時の側面図
および平面図とその溶接部断面図(A−A’断面)
FIG. 4 is a side view and a plan view of a conventional method of submerged arc welding and a sectional view of the welded portion (AA ′ section).

【図5】本発明の実施形態であるサブマージアーク溶接
時の側面図および平面図とその溶接部断面図(A−A’
断面)
FIG. 5 is a side view, a plan view, and a sectional view of a welded portion (AA ′) during submerged arc welding according to an embodiment of the present invention.
cross section)

【図6】本発明における交流磁場と溶接電流との周波数
位相差とアンダーカット欠陥の発生率との関係を示した
グラフ
FIG. 6 is a graph showing a relationship between a frequency phase difference between an alternating magnetic field and a welding current and an occurrence rate of an undercut defect in the present invention.

【図7】(a)本発明実施例と(b)従来例(比較例)
の高速溶接における溶接ビード部の断面形状図
FIG. 7A shows an example of the present invention and FIG. 7B shows a comparative example.
Section of weld bead in high speed welding of steel

【図8】本発明における交流磁場の印可位置とアンダー
カット欠陥の発生率との関係を示したグラフ
FIG. 8 is a graph showing the relationship between the application position of an AC magnetic field and the incidence of undercut defects in the present invention.

【符号の説明】[Explanation of symbols]

1 第1溶接電極 2 第2溶接電極 3 第3溶接電極 4 磁気発生用コイル 5 鉄芯 6 被溶接材 7 溶接方向 8 交流磁場 9 ローレンツ力 10 開先 11 溶接ワイヤ 12 溶接線 13 溶接アーク 14 未凝固溶接金属部 15 凝固溶接金属 16 フラックス 17 未凝固溶接金属の後退距離 18 未凝固溶接金属の最先端位置 19 ビード止端部の凝固開始位置 20 第1電極アーク発生点 21 第2電極アーク発生点 22 第3電極アーク発生点 23 被溶接材溶融部の最先端位置 24 未凝固溶接金属 25 アンダーカット欠陥部 26 未凝固溶接金属中の溶接電流方向 27 未凝固溶接金属の最先端位置から凝固終了位置ま
で距離(L) 28 凝固終了位置 29 凝固溶接金属 30 溶接ビード止端部
DESCRIPTION OF SYMBOLS 1 1st welding electrode 2 2nd welding electrode 3 3rd welding electrode 4 Magnet generating coil 5 Iron core 6 Workpiece 7 Welding direction 8 AC magnetic field 9 Lorentz force 10 Groove 11 Welding wire 12 Welding line 13 Welding arc 14 Not yet Solidified weld metal part 15 Solidified weld metal 16 Flux 17 Retreat distance of unsolidified weld metal 18 Most advanced position of unsolidified weld metal 19 Solidification start position of bead toe end 20 First electrode arc generation point 21 Second electrode arc generation point 22 Third electrode arc generation point 23 Most advanced position of welded material fusion zone 24 Unsolidified weld metal 25 Undercut defect 26 Welding current direction in unsolidified weld metal 27 Solidification end position from most advanced position of unsolidified weld metal Distance (L) 28 Solidification end position 29 Solidification weld metal 30 Weld bead toe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 印牧 慶浩 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 島津 勉 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4E001 AA03 BB05 DA01 DB01 DC05 DE01 DE03 DF01 4E082 AA06 AA15 BA01 BA02 EA01 EB11 HA03  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Yoshihiro Inmaki 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (72) Inventor Tsutomu Shimazu 20-1 Shintomi, Futtsu-shi, Chiba New Japan F-term in Technical Development Division of Steel Corporation (reference) 4E001 AA03 BB05 DA01 DB01 DC05 DE01 DE03 DF01 4E082 AA06 AA15 BA01 BA02 EA01 EB11 HA03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも最も後行の電極の溶接電流に
交流を用いる多電極サブマージアーク溶接方法におい
て、最も後行の電極の後方の未凝固溶接金属部に対し
て、溶接線の左右垂直方向から前記電極の溶接電流と同
周波数の交流磁場を印加するとともに、溶接速度に応じ
て、前記交流磁場の磁束密度、前記交流磁場と前記電極
の溶接電流との周波数位相差、および前記交流磁場の印
加位置のうちの少なくとも一方を調整することを特徴と
する溶接ビード形状に優れた多電極サブマージアーク溶
接方法。
1. A multi-electrode submerged arc welding method using an alternating current for a welding current of at least a rearmost electrode, wherein a non-solidified weld metal portion behind the rearmost electrode is formed from a left-right vertical direction of a welding line. While applying an alternating magnetic field having the same frequency as the welding current of the electrode, the magnetic flux density of the alternating magnetic field, the frequency phase difference between the alternating magnetic field and the welding current of the electrode, and the application of the alternating magnetic field in accordance with the welding speed. A multi-electrode submerged arc welding method having an excellent weld bead shape, wherein at least one of the positions is adjusted.
【請求項2】 前記の最も後行の電極の先端部直下に印
加する交流磁場と、最も後行の電極の溶接電流の周波数
の位相差を−10゜〜10゜の範囲内に調整することを
特徴とする請求項1に記載の溶接ビード形状に優れた多
電極サブマージアーク溶接方法。
2. A phase difference between a frequency of an alternating magnetic field applied immediately below a tip portion of the last electrode and a frequency of a welding current of the last electrode is adjusted within a range of -10 ° to 10 °. The multi-electrode submerged arc welding method according to claim 1, wherein the weld bead shape is excellent.
【請求項3】 前記交流磁場の印加位置を未凝固溶接金
属の最先端位置から凝固終了位置までの距離をLとした
場合に、未凝固溶接金属の最先端位置から0.5L以下
の範囲に調整することを特徴とする請求項1または請求
項2の何れかに記載の溶接ビード形状に優れた多電極サ
ブマージアーク溶接方法。
3. When the distance from the foremost position of the unsolidified weld metal to the solidification end position is L, the application position of the AC magnetic field is within a range of 0.5 L or less from the foremost position of the unsolidified weld metal. The multi-electrode submerged arc welding method according to claim 1 or 2, wherein the method is adjusted.
JP2000316683A 2000-10-17 2000-10-17 Multi-electrode submerged arc welding method with excellent weld bead shape Expired - Fee Related JP4224196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000316683A JP4224196B2 (en) 2000-10-17 2000-10-17 Multi-electrode submerged arc welding method with excellent weld bead shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000316683A JP4224196B2 (en) 2000-10-17 2000-10-17 Multi-electrode submerged arc welding method with excellent weld bead shape

Publications (2)

Publication Number Publication Date
JP2002120068A true JP2002120068A (en) 2002-04-23
JP4224196B2 JP4224196B2 (en) 2009-02-12

Family

ID=18795599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000316683A Expired - Fee Related JP4224196B2 (en) 2000-10-17 2000-10-17 Multi-electrode submerged arc welding method with excellent weld bead shape

Country Status (1)

Country Link
JP (1) JP4224196B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138151A (en) * 2003-11-07 2005-06-02 Mitsubishi Heavy Ind Ltd Welding method and welding system
WO2007132658A1 (en) 2006-05-17 2007-11-22 Ihi Corporation Submerged arc welding apparatus and submerged arc welding method
JP2009241092A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Submerged arc welding machine
WO2013080524A1 (en) 2011-11-29 2013-06-06 Jfeスチール株式会社 Submerged arc welding method for steel sheets
CN111683780A (en) * 2018-01-31 2020-09-18 株式会社神户制钢所 Single-side submerged arc welding method and single-side submerged arc welding device
WO2023016295A1 (en) * 2021-08-07 2023-02-16 哈尔滨焊接研究院有限公司 Consumable electrode twisted wire arc magnetic spin control welding method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138151A (en) * 2003-11-07 2005-06-02 Mitsubishi Heavy Ind Ltd Welding method and welding system
WO2007132658A1 (en) 2006-05-17 2007-11-22 Ihi Corporation Submerged arc welding apparatus and submerged arc welding method
US8502103B2 (en) 2006-05-17 2013-08-06 Ihi Corporation Submerged arc welding apparatus and method for submerged arc welding
JP2009241092A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Submerged arc welding machine
WO2013080524A1 (en) 2011-11-29 2013-06-06 Jfeスチール株式会社 Submerged arc welding method for steel sheets
CN103958108A (en) * 2011-11-29 2014-07-30 杰富意钢铁株式会社 Submerged arc welding method for steel sheets
US9764410B2 (en) 2011-11-29 2017-09-19 Jfe Steel Corporation Submerged arc welding method for steel plate
CN103958108B (en) * 2011-11-29 2017-10-13 杰富意钢铁株式会社 The submerged arc soldering method of steel plate
KR20190089078A (en) 2011-11-29 2019-07-29 제이에프이 스틸 가부시키가이샤 Submerged arc welding method for steel plate
CN111683780A (en) * 2018-01-31 2020-09-18 株式会社神户制钢所 Single-side submerged arc welding method and single-side submerged arc welding device
CN111683780B (en) * 2018-01-31 2022-01-28 株式会社神户制钢所 Single-side submerged arc welding method and single-side submerged arc welding device
WO2023016295A1 (en) * 2021-08-07 2023-02-16 哈尔滨焊接研究院有限公司 Consumable electrode twisted wire arc magnetic spin control welding method

Also Published As

Publication number Publication date
JP4224196B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP5124765B2 (en) Welding method and welding apparatus using electromagnetic force
JP2008055506A (en) Two-welding wire feeding arc welding method, multilayer welding method, and narrow groove welding method
JP5283306B2 (en) Submerged arc welding method for steel
CN107322148B (en) Welding method based on tungsten electrode argon arc welding and cold metal transition welding composite heat source and application
US9676049B2 (en) Arc welding method, arc welding device and arc welding magnetic field strength adjustment method
JP2007268564A (en) Multi-electrode submerged arc welding method
JP2007237225A (en) High-speed hot wire multi-electrode tig welding method of thin steel plate
JP2002120068A (en) Multiple electrode submerged arc welding method excellent in weld bead shape
JP2007260684A (en) Multiple electrode submerged arc welding method of thick steel plate
WO2024011766A1 (en) Brazed joint, brazing method and device for promoting brazing filler metal flow and deformation and gas escape
JP5066375B2 (en) Copper-plated solid wire for pulse MAG welding
JP2001321947A (en) Multiple electrode submerged arc welding method excellent in shape of weld bead
JPS59110474A (en) Arc welding method
JP2014184466A (en) Pulse arc weld method
JP2005021977A (en) Non-consumable electrode type arc welding method and welding equipment
JP2007069256A (en) Welding apparatus
JP2005319507A (en) Multiple electrodes one side submerged arc welding method
JP5419858B2 (en) Magnetic field strength adjustment method for arc welding
JP2685989B2 (en) Plasma overlay equipment
JP5514634B2 (en) Arc welding method and apparatus
CN114932296B (en) Large-cladding high-efficiency narrow-gap welding method for thick plate titanium alloy based on vibration wire feeding
JP2005246385A (en) Multi-electrode one side submerged arc welding method
JP2005246469A (en) Consumable electrode type arc welding process
JPS6157112B2 (en)
JPH0810969A (en) Non-consumable type electroslug welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060908

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees