JP2002116167A - Measuring instrument and measuring method for thermal conductivity - Google Patents

Measuring instrument and measuring method for thermal conductivity

Info

Publication number
JP2002116167A
JP2002116167A JP2000310297A JP2000310297A JP2002116167A JP 2002116167 A JP2002116167 A JP 2002116167A JP 2000310297 A JP2000310297 A JP 2000310297A JP 2000310297 A JP2000310297 A JP 2000310297A JP 2002116167 A JP2002116167 A JP 2002116167A
Authority
JP
Japan
Prior art keywords
thermal conductivity
measuring
specimen
heat
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000310297A
Other languages
Japanese (ja)
Other versions
JP4083378B2 (en
Inventor
Takahiro Omura
高弘 大村
Mikinori Tsuboi
幹憲 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2000310297A priority Critical patent/JP4083378B2/en
Publication of JP2002116167A publication Critical patent/JP2002116167A/en
Application granted granted Critical
Publication of JP4083378B2 publication Critical patent/JP4083378B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal conductivity measuring instrument capable of measuring the thermal conductivity of a body to be tested in the direction of its thickness and capable of accurately finding the thermal conductivity of the body to be tested in directions of its plane without cutting the body into a rectangular shape in the case of thermal conductivity measurement of an anisotropic material, and to provide a thermal conductivity measuring method using the same. SOLUTION: This thermal conductivity measuring instrument 10 has a heating means 5 for causing heat to flow into a surface of a tested body 1a on one side, a heat radiating means 6 for causing heat to flow out of a surface of a tested body 1b on the other side, tested-body surface part measuring means 7 and 8 for measuring the temperatures of the two surfaces of the tested bodies 1a and 1b, a linear heating body 3 disposed between the tested bodies 1a and 1b to propagate heat into the tested bodies, and a temperature measuring means 4 for measuring temperatures within the tested bodies and in the proximity of the heating body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、耐熱材
料、耐火材料等の熱絶縁材料の熱伝導率を測定する熱伝
導率測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal conductivity measuring device for measuring the thermal conductivity of a heat insulating material such as a heat-resistant material or a refractory material.

【0002】[0002]

【従来の技術】通常、物質の熱伝導率は、その物質(試
験体)に熱を流すことで測定される。その測定法として
は、平板直接法(GHP法)、平板熱流計法、周期加熱
法及び細線加熱法等がある。平板直接法及び平板熱流計
法は、平板状(直方体)である試験体の厚さ方向の熱伝
導率を測定するもので、試験体の一方の面を高温度と
し、他方の面を低温度とすると、高温度である一方の面
(加熱側)から低温度である他方の面(低温側)に向か
って、すなわち、厚さ方向に所定の熱量が流れる。 この場合、次式計算式;Q=(λ/d)(θH −θL ) (I) (θH :加熱側の温度、θL :放熱側の温度、d:試験
体の厚さ、Q:試験体に流れる単位面積、単位時間当た
りの熱量、λ:熱伝導率をそれぞれ示す。)の関係が成
り立つ。ここで、前記Qは、平板直接法においては、高
温側を加熱するヒータの発熱量から測定し、平板熱流計
法においては、熱流計の起電力を測定することにより測
定する。また、θH 及びθL は熱電対により測定するこ
とができ、さらに予め試験体の厚さdが分かっていれ
ば、熱伝導率λを算出することができる。このような平
板直接法及び平板熱流計法により熱伝導率λを測定する
方法及び測定装置は、JIS A 1412( 熱絶縁材料の熱伝導
率及び熱抵抗の測定方法)に詳述されている。
2. Description of the Related Art Generally, the thermal conductivity of a substance is measured by flowing heat through the substance (test body). As the measuring method, there are a flat plate direct method (GHP method), a flat plate heat flow meter method, a periodic heating method, a fine wire heating method, and the like. The flat plate direct method and the flat plate heat flow meter method measure the thermal conductivity in the thickness direction of a flat (rectangular) specimen. One surface of the specimen is set to a high temperature and the other is set to a low temperature. Then, a predetermined amount of heat flows from one surface at a high temperature (heating side) to another surface at a low temperature (low temperature side), that is, in the thickness direction. In this case, the following equation: Q = (λ / d) (θ H −θ L ) (I) (θ H : temperature on the heating side, θ L : temperature on the heat radiation side, d: thickness of test specimen, Q: the unit area flowing through the test body, the amount of heat per unit time, and λ: the thermal conductivity). Here, the Q is measured from the calorific value of the heater that heats the high temperature side in the flat plate direct method, and is measured by measuring the electromotive force of the heat flow meter in the flat plate heat flow meter method. Further, θ H and θ L can be measured by a thermocouple, and if the thickness d of the specimen is known in advance, the thermal conductivity λ can be calculated. Such a method and apparatus for measuring the thermal conductivity λ by the flat plate direct method and the flat plate heat flow meter method are described in detail in JIS A 1412 (a method for measuring the thermal conductivity and thermal resistance of a heat insulating material).

【0003】周期加熱法は熱拡散率を測定する方法であ
り、位相差法と振幅法のふたつの方法がある。位相差法
は一方の面に温度波を与え、その波が試験体内部を伝播
する際の時間的遅れ、すなわち位相差から熱拡散率を求
める方法であり、振幅法は、温度波が伝播する際の減衰
率から熱拡散率を求める方法である。いずれの方法にお
いても、熱拡散率に比熱と密度を掛け算することで熱伝
導率が求められる。このような周期加熱法により熱伝導
率λを測定する方法及び測定装置は、例えば、熱物性第
13巻、第4 号(1999),264 〜270 頁に詳述されている。
[0003] The periodic heating method is a method for measuring the thermal diffusivity, and there are two methods, a phase difference method and an amplitude method. The phase difference method is a method in which a temperature wave is applied to one surface, and the time delay when the wave propagates inside the specimen, that is, the thermal diffusivity is obtained from the phase difference. The amplitude method is a method in which the temperature wave propagates. This is a method of calculating the thermal diffusivity from the attenuation rate at the time. In either method, the thermal conductivity is determined by multiplying the specific heat and the density by the thermal diffusivity. The method and the measuring device for measuring the thermal conductivity λ by such a periodic heating method are, for example, thermophysical properties.
13, Vol. 4, No. 4 (1999), pp. 264-270.

【0004】細線加熱法は、非定常熱線法とも言われ、
試験体の大きさを無限大と見なせるほどの細線もしくは
熱線等の線状発熱体を、例えば電源により、所定の時間
加熱し、その温度上昇及び前記線状発熱体の発熱量から
熱伝導率を測定する方法である。線状発熱体を加熱した
際、該線状発熱体から発生した熱は同心円状に伝搬し、
該線状発熱体が単位時間あたりに発熱する熱量をQ’
(単位はワットW)、熱電対などの温度測定手段で測定
した発熱開始後の時刻t1 とt2 における温度をそれぞ
れ、θ1 、θ2 とし、熱線の長さをLとすると、試験体
の熱伝導率λは、次式計算式; ;λ=(Q’/4πL)×{log(t2 /t1 )/
(θ2 −θ1 )} が成立し、これにより熱伝導率λを求めることができ
る。細線加熱法は、ウレタン、ケイ酸カルシウム保温材
等の等方性材料の測定には適しているものの、異方性材
料の測定においては、線状発熱体からの熱が同心円状に
伝播しないため、上記式が成り立たず、精度のよい測定
を行うことはできない。
[0004] The fine wire heating method is also called a transient hot wire method,
A linear heating element such as a thin wire or a heating wire such that the size of the test piece can be regarded as infinite is heated, for example, by a power supply for a predetermined time, and the thermal conductivity is determined from the temperature rise and the calorific value of the linear heating element. It is a method of measuring. When heating the linear heating element, the heat generated from the linear heating element propagates concentrically,
The amount of heat generated by the linear heating element per unit time is Q ′
When the temperature at times t 1 and t 2 after the start of heat generation, measured by a temperature measuring means such as a thermocouple, is θ 1 and θ 2 , respectively, and the length of the heating wire is L, the test specimen Is the following equation: λ = (Q ′ / 4πL) × {log (t 2 / t 1 ) /
2 −θ 1 )} holds, whereby the thermal conductivity λ can be obtained. Although the fine wire heating method is suitable for measuring isotropic materials such as urethane and calcium silicate heat insulating materials, in the measurement of anisotropic materials, heat from a linear heating element does not propagate concentrically. , The above equation does not hold, and accurate measurement cannot be performed.

【0005】熱伝導率が測定される試験体には、等方性
材料の他、繊維質断熱材等の異方性材料がある。異方性
材料の熱伝導率を把握することは、材料開発において非
常に重要であり、異方性材料の熱伝導率は前記の平板直
接法(GHP法)、平板熱流計法及び周期加熱法などの
手法により測定されている。しかし、これらの測定方法
では、熱流方向(試験体の厚さ方向)の熱伝導率を測定
することはできるものの、試験体の厚さ方向に対して垂
直な方向である平面方向の熱伝導率を測定することはで
きない。
[0005] Test specimens whose thermal conductivity is measured include anisotropic materials such as fibrous heat insulating materials in addition to isotropic materials. Understanding the thermal conductivity of anisotropic materials is very important in material development, and the thermal conductivity of anisotropic materials can be measured by the flat plate direct method (GHP method), flat plate heat flow meter method, and periodic heating method. It is measured by such a method. However, these measuring methods can measure the thermal conductivity in the heat flow direction (thickness direction of the specimen), but the thermal conductivity in the plane direction perpendicular to the thickness direction of the specimen. Can not be measured.

【0006】そこで、異方性材料の平面方向の熱伝導率
を測定するためには、試験体の厚さ方向の熱伝導率を測
定した後、該試験体を短冊状に切りだし90度回転させ
平面方向が厚さ方向になるように再配列し、この再配列
された試験体の厚さ方向の熱伝導率を測定する必要があ
る。
Therefore, in order to measure the thermal conductivity of the anisotropic material in the plane direction, after measuring the thermal conductivity in the thickness direction of the specimen, the specimen is cut into strips and rotated by 90 degrees. It is necessary to rearrange the test specimens so that the plane direction becomes the thickness direction, and to measure the thermal conductivity in the thickness direction of the rearranged test specimen.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、試験体
を短冊状に切りだし新たな試験体を調製する方法は、切
りだし面同士に隙間ができたり、回転させた後の各短冊
に高さのばらつきができたり、試験体の表面に凹凸を作
り出す恐れがあり、精度よく測定できる試験体を調製す
るためには熟練を要するという問題がある。そのため、
試験体を切り出すことなく、試験体の厚さ方向及び平面
方向の熱伝導率を求めることができる熱伝導率測定装置
及びその測定方法が求められている。
However, a method for preparing a new test piece by cutting the test piece into a strip shape has a problem in that a gap is formed between the cut surfaces, or the height of each strip after being rotated is reduced. There is a risk that there is a possibility of unevenness or unevenness on the surface of the test piece, and there is a problem that skill is required to prepare a test piece that can be measured with high accuracy. for that reason,
There is a need for a thermal conductivity measuring device and a method for measuring the thermal conductivity that can determine the thermal conductivity in the thickness direction and the planar direction of a test body without cutting out the test body.

【0008】従って、本発明の目的は、異方性材料の熱
伝導率測定において、試験体の厚さ方向の熱伝導率を測
定するとともに、試験体を短冊状に切りだすことなく、
試験体の平面方向の熱伝導率を精度よく求めることがで
きる熱伝導率測定装置及びこれを用いた熱伝導率の測定
方法を提供することにある。
Accordingly, an object of the present invention is to measure the thermal conductivity of an anisotropic material in the thickness direction of a specimen and to cut the specimen into strips without measuring the thermal conductivity.
It is an object of the present invention to provide a thermal conductivity measuring device capable of accurately determining a thermal conductivity in a plane direction of a test body and a method for measuring thermal conductivity using the same.

【0009】[0009]

【課題を解決するための手段】かかる実情において、本
発明者等は鋭意検討を行った結果、異方性材料のうち、
平面配向性を有する材料であれば、細線加熱法による熱
の伝播の理論式が適用でき、それから導き出される修正
式が使用できること、従って、一つの装置内に細線加熱
法の発熱体と、平板直接法等のヒータや熱電対などを配
置すれば、試験体を装置内において移動させることなく
そのままで試験体の深さ方向と同時に平面方向の熱伝導
率が測定できること等を見出し、本発明を完成するに至
った。
Under such circumstances, the present inventors have conducted intensive studies and as a result, among anisotropic materials,
As long as the material has planar orientation, the theoretical equation of heat propagation by the fine wire heating method can be applied, and the correction formula derived therefrom can be used.Therefore, the heating element of the fine wire heating method and the flat plate direct The inventors have found that if a heater or thermocouple, etc., is used for the method or the like, the thermal conductivity can be measured in the plane direction as well as in the depth direction of the specimen without moving the specimen in the apparatus, and completed the present invention. I came to.

【0010】すなわち、本発明の請求項1は、試験体の
一方の面に熱を流入させるか、又は温度波を供給する加
熱手段と、前記試験体の他方の面から熱を流出させる
か、又は温度波を吸収する放熱手段と、前記試験体の両
面の温度、前記試験体通過熱量、又は前記試験体の両面
間の熱伝播位相差若しくは前記試験体の両面間の温度波
の振幅の減衰率を測定する試験体面部測定手段と、前記
試験体中に配置し、前記試験体に熱を伝播させる線状発
熱体と、前記試験体中で且つ、線状発熱体の近傍の温度
を測定する温度測定手段とを有する熱伝導率測定装置を
提供するものである。
That is, a first aspect of the present invention is to provide a heating means for supplying heat to one surface of a test body or for supplying a temperature wave, and for allowing heat to flow out from the other surface of the test body. Or a heat radiating means for absorbing a temperature wave, and a temperature of both surfaces of the specimen, a heat quantity passing through the specimen, or a heat propagation phase difference between both surfaces of the specimen or an attenuation of a temperature wave amplitude between both surfaces of the specimen. A test piece surface measuring means for measuring the rate, a linear heating element arranged in the test piece and transmitting heat to the test piece, and measuring a temperature in the test piece and in the vicinity of the linear heating element. The present invention provides a thermal conductivity measuring device having a temperature measuring means.

【0011】また、本発明の請求項2は、前記熱伝導率
測定装置を用いて熱伝導率を測定する方法であって、前
記加熱手段によって試験体中に熱を流入させるか、又は
温度波を供給し、前記放熱手段により試験体中から熱を
流出させるか、又は温度波を吸収することにより試験体
中に熱を流して熱伝導率を測定する第1測定と、試験体
中に配置する線状発熱体を加熱し、前記温度測定手段に
より前記試験体中で且つ線状発熱体の近傍の温度を測定
することにより熱伝導率を測定する第2測定とを行い、
前記第1測定から第2測定への切替え、又は第2測定か
ら第1測定への切替えは、前記試験体を移動することな
く行う熱伝導率の測定方法を提供するものである。
According to a second aspect of the present invention, there is provided a method for measuring thermal conductivity using the thermal conductivity measuring device, wherein heat is supplied to the specimen by the heating means, The first measurement of supplying heat and causing heat to flow out of the specimen by the heat radiating means or flowing heat into the specimen by absorbing a temperature wave to measure the thermal conductivity, and disposing in the specimen Performing a second measurement of measuring the thermal conductivity by measuring the temperature in the test body and in the vicinity of the linear heating element by the temperature measuring means,
The switching from the first measurement to the second measurement, or the switching from the second measurement to the first measurement, provides a method for measuring the thermal conductivity that is performed without moving the test body.

【0012】また、本発明の請求項3は、前記試験体は
平面配向性を有する試験体であって、第1測定結果の熱
伝導率λy 、第2測定結果の熱伝導率λh を次式
(1); λx =λh 2 /λy (1) に代入して、前記試験体の平面方向の熱伝導率λx を求
める熱伝導率の測定方法を提供するものである。
According to a third aspect of the present invention, the test object is a test object having a planar orientation, wherein the thermal conductivity λ y of the first measurement result and the thermal conductivity λ h of the second measurement result are determined. The following formula (1); λ x = λ h 2 / λ y (1) is provided to provide a method of measuring the thermal conductivity to obtain the thermal conductivity λ x in the planar direction of the test body.

【0013】また、本発明の請求項4は、前記第1測定
の測定法は、周期加熱法、平板直接法、又は平板熱流計
法のいずれかであり、前記第2測定の測定法は、細線加
熱法である熱伝導率の測定方法を提供するものである。
なお、本発明において、細線加熱法には非定常熱線法も
含まれる。
According to a fourth aspect of the present invention, the measuring method of the first measurement is any one of a periodic heating method, a flat plate direct method, and a flat plate heat flow meter method. An object of the present invention is to provide a method for measuring thermal conductivity, which is a thin wire heating method.
In the present invention, the non-stationary hot wire method is also included in the thin wire heating method.

【0014】[0014]

【発明の実施の形態】本発明の熱伝導率測定装置を図1
〜図4を参照して説明する。図1は本実施の形態例にお
ける熱伝導率測定装置の概略図、図2は細線加熱法と周
期加熱法の測定を行う熱伝導率測定装置の中核部の概略
図、図3は平面配向性材料に適用される計算式を説明す
るための図、図4は細線加熱法と平板直接法の測定を行
う熱伝導率測定装置の中核部の概略図、図5は図4の中
心の縦断面を示す図、図6は細線加熱法と平板熱流計法
の測定を行う熱伝導率測定装置の中核部の概略図をそれ
ぞれ示す。
FIG. 1 shows a thermal conductivity measuring apparatus according to the present invention.
This will be described with reference to FIGS. FIG. 1 is a schematic diagram of a thermal conductivity measuring device according to the present embodiment, FIG. 2 is a schematic diagram of a core portion of a thermal conductivity measuring device for performing measurements by a fine wire heating method and a periodic heating method, and FIG. FIG. 4 is a diagram for explaining a calculation formula applied to a material, FIG. 4 is a schematic diagram of a core portion of a thermal conductivity measuring device for performing measurement by a thin wire heating method and a flat plate direct method, and FIG. FIG. 6 is a schematic view of a core part of a thermal conductivity measuring device for performing measurement by a thin wire heating method and a flat plate heat flow meter method.

【0015】熱伝導率測定装置10は、試験体1の一方
の面に熱を流入させるか、又は温度波を供給する加熱手
段5と、試験体1の他方の面から熱を流出させるか、又
は温度波を吸収する放熱手段6と、試験体1の両面の温
度、前記試験体通過熱量、又は前記試験体の両面間の熱
伝播位相差若しくは前記試験体の両面間の温度波の振幅
の減衰率を測定する試験体面部測定手段7、8と、試験
体1中に配置し、試験体1に熱を伝播させる線状発熱体
3と、試験体1中で且つ、線状発熱体3の近傍の温度を
測定する温度測定手段4とを有し、更に試験体の側面部
には試験体1の側面からの熱の散逸を防ぐ目的で円筒状
ヒータ2を備える。そして、加熱手段5、放熱手段6、
線状発熱体3及び円筒状ヒータ2は、電源としての機能
発生器11並びに温度調節器12に電気的に接続されて
いる。更に、温度調節器12、試験体面部測定手段7、
8及び温度測定手段4はスキャナ13及びデジタル・マ
ルチメータ14を経由してコンピュータ15に電気的に
接続され、これらでデータを取り込み、処理を行い、コ
ンピュータ15の出力装置に試験体1の熱伝導率を表示
させている。
The thermal conductivity measuring device 10 is configured to determine whether heat flows into one surface of the specimen 1 or heating means 5 for supplying a temperature wave, and heat flows out from the other surface of the specimen 1. Alternatively, the heat radiating means 6 that absorbs the temperature wave and the temperature of both surfaces of the specimen 1, the amount of heat passing through the specimen, or the heat propagation phase difference between both surfaces of the specimen or the amplitude of the temperature wave between both surfaces of the specimen Specimen surface portion measuring means 7 and 8 for measuring the attenuation rate, linear heating element 3 arranged in specimen 1 and transmitting heat to specimen 1, and linear heating element 3 in specimen 1 and linear heating element 3 And a temperature measuring means 4 for measuring the temperature in the vicinity of the test piece. Further, the side face of the test piece is provided with a cylindrical heater 2 for the purpose of preventing heat dissipation from the side face of the test piece 1. And heating means 5, heat radiation means 6,
The linear heating element 3 and the cylindrical heater 2 are electrically connected to a function generator 11 as a power supply and a temperature controller 12. Further, a temperature controller 12, a test body surface portion measuring means 7,
8 and the temperature measuring means 4 are electrically connected to a computer 15 via a scanner 13 and a digital multimeter 14, which take in data, perform processing, and transfer heat of the specimen 1 to an output device of the computer 15. The rate is displayed.

【0016】次いで、本発明の第1の実施の形態におけ
る熱伝導率測定装置を図2を参照して説明する。図2
は、周期加熱法及び細線加熱法による熱伝導率測定装置
の中核部20aの概略図である。150 ×150 ×25mmt の
試験体1aと、同寸法の試験体1bは径0.3 ×150mm の
ニクロム線3と径0.1mm のKタイプの熱電対4を挟みな
がら重ねられて試験体1を形成する。この時、ニクロム
線3は試験体1のほぼ中央を縦断し、熱電対4の測温部
分はニクロム線3の中心近傍にある。更に、試験体1は
上下から150 ×100 ×30mmt のヒータ5と、同寸法のヒ
ータ6で挟まれ、この時、径0.1mm のKタイプの熱電対
7を試験体1aとヒータ5で挟み、径0.1mm のKタイプ
の熱電対8を試験体1bとヒータ6で挟む。中核部20
a以外のその他の構成は図1と同じであるのでその説明
を省略する。
Next, a thermal conductivity measuring apparatus according to a first embodiment of the present invention will be described with reference to FIG. FIG.
FIG. 2 is a schematic view of a core 20a of a thermal conductivity measuring device using a periodic heating method and a fine wire heating method. A test specimen 1a of 150 × 150 × 25 mmt and a test specimen 1b of the same dimensions are superimposed on a nichrome wire 3 having a diameter of 0.3 × 150 mm while sandwiching a K-type thermocouple 4 having a diameter of 0.1 mm to form a test specimen 1. At this time, the nichrome wire 3 traverses substantially the center of the test body 1, and the temperature measuring portion of the thermocouple 4 is near the center of the nichrome wire 3. Further, the specimen 1 is sandwiched between a heater 5 of 150 × 100 × 30 mmt and a heater 6 of the same size from above and below. At this time, a K-type thermocouple 7 having a diameter of 0.1 mm is sandwiched between the specimen 1 a and the heater 5. A K-type thermocouple 8 having a diameter of 0.1 mm is sandwiched between the test piece 1 b and the heater 6. Core 20
Structures other than a are the same as those in FIG.

【0017】試験体1a及び試験体1bは、異方性材料
の一種で、平面配向性を有する材料であれば、特に本発
明の効果が顕著に表れる。平面配向性の異方性材料とし
ては、例えば、ある平面内に繊維等がその平面方向に配
列する割合が高いが、該平面と直行する方向では配向性
が無くランダムに分布している材料、及びある一定の方
向にほとんどの繊維等が配列する、いわゆる規則正しく
束ねられた線香のような一軸配向の材料などが挙げられ
る。平面配向性を有する材料の具体例としては、例え
ば、アルミナシリカ繊維質、ロックウール及びグラスウ
ール等からなる無機断熱材、ナイロン等の有機繊維やカ
ーボン繊維からなる積層体や断熱材が挙げられる。これ
ら平面配向性の異方性材料は、SEM(電子顕微鏡)や
光学顕微鏡等で容易に配向性を確認することができる。
また、平面配向性を有する材料を試験体とする場合、繊
維等の配向方向又は当該配向方向の直角方向を試験体の
平面とすればよい。
The test body 1a and the test body 1b are a kind of anisotropic material, and if the material has planar orientation, the effect of the present invention is particularly remarkable. As the anisotropic material having planar orientation, for example, a material in which fibers and the like are arranged in a certain plane in a plane direction at a high rate, but are randomly distributed without orientation in a direction perpendicular to the plane, And a uniaxially oriented material such as a so-called regularly incense stick in which most fibers and the like are arranged in a certain direction. Specific examples of the material having planar orientation include, for example, an inorganic heat insulating material made of alumina silica fiber, rock wool and glass wool, a laminate made of organic fibers such as nylon and carbon fibers, and a heat insulating material. The orientation of these planar anisotropic materials can be easily confirmed by SEM (electron microscope), optical microscope, or the like.
Further, when a material having planar orientation is used as the test specimen, the orientation direction of the fiber or the like or a direction perpendicular to the orientation direction may be set as the plane of the test specimen.

【0018】第1の実施の形態における熱伝導率測定装
置を使用し、先ず、周期加熱法により試験体11の熱伝
導率を測定する(第1測定)。測定は、ヒータ5に周期
的な電圧を加えることで試験体1aの表面温度を周期的
に変化させ、ヒータ6により試験体1bの表面温度を一
定に制御する。熱電対7、8で温度波を計測し、その時
間的ずれ(位相差)、あるいは振幅の減衰比を測定し熱
拡散率を求める。その後、熱拡散率に比熱と密度を掛け
算することで試験体の厚さ方向における熱伝導率λy
算出すればよい。
First, the thermal conductivity of the test body 11 is measured by the periodic heating method using the thermal conductivity measuring apparatus according to the first embodiment (first measurement). In the measurement, the surface temperature of the specimen 1a is periodically changed by applying a periodic voltage to the heater 5, and the surface temperature of the specimen 1b is controlled to be constant by the heater 6. The temperature wave is measured by the thermocouples 7 and 8, and the time difference (phase difference) or the attenuation ratio of the amplitude is measured to determine the thermal diffusivity. Thereafter, it may be calculated thermal conductivity lambda y in the thickness direction of the test specimen by multiplying the specific heat and density to the thermal diffusivity.

【0019】次いで、細線加熱法により試験体1の熱伝
導率を測定する(第2測定)。先ず、円筒ヒータ2、ヒ
ータ5、6により試験体1a、1bを所定の温度にし、
温度勾配のない試験体とする。次いで、ニクロム線3に
一定電流を流し、所定時間後の熱線上昇温度を例えば、
0.5分後及び5分後のように2点以上測定し、時間と
温度上昇の関係式:λ=(Q’/4πL)×{log(t2/t1)/ (
θ21)}(式中、記号は前記と同義である。)から熱
伝導率λh を求める。
Next, the thermal conductivity of the test piece 1 is measured by the thin wire heating method (second measurement). First, the specimens 1a and 1b are brought to a predetermined temperature by the cylindrical heater 2 and the heaters 5 and 6,
Specimens without temperature gradient shall be used. Next, a constant current is passed through the nichrome wire 3 and the heating temperature rise after a predetermined time is, for example,
Two or more points were measured after 0.5 minutes and 5 minutes, and the relational expression of time and temperature rise: λ = (Q ′ / 4πL) × {log (t 2 / t 1 ) / (
θ 2 −θ 1 )} (where the symbols have the same meanings as described above), and the thermal conductivity λ h is determined.

【0020】上記方法で得られた熱伝導率λy 及び熱伝
導率λh は次式(1); λx =λh 2 /λy (1) に代入して、上記熱伝導率測定装置20a内で試験体1
1を移動させること無く、試験体11の平面方向の熱伝
導率λx を求めることができる。上記(1)は次のよう
にして導きだされたものである。
The thermal conductivity λ y and the thermal conductivity λ h obtained by the above method are substituted into the following equation (1); λ x = λ h 2 / λ y (1) Specimen 1 within 20a
Without moving the 1, it is possible to obtain a planar direction of the thermal conductivity lambda x of the specimen 11. The above (1) is derived as follows.

【0021】図3(A)は等方性の試験体Cを細線によ
り加熱した際の細線に対して垂直な断面における熱流拡
散の概略を示し、(B)は平面配向性の試験体Dを細線
により加熱した際の細線に対して垂直な断面における熱
流拡散の概略を示す。図中、y軸は、試験体の厚さ方向
を示し、x軸は試験体の平面方向を示す。図3(A)に
示すように、等方性の試験体Cの断面において、細線3
から出る熱流は、細線3に対し同心円状に試験体内部を
拡散していく。一方、図3(B)に示すように、平面配
向性の試験体Dの断面において、細線から出る熱流は、
平面方向の伝搬の速さと、厚さ方向の伝搬の速さとが異
なるため、図に示すように楕円状に拡散する。平面配向
の試験体における熱拡散率と熱拡散面積に着目し、細線
加熱法により測定する該試験体の熱拡散率κh と、周期
加熱法、平板加熱法又は平板熱流計法により測定するこ
とができる該試験体の厚さ方向の熱拡散率κy と、求め
ようとする該試験体の熱拡散率κx との相互の関係を導
き、これにより熱伝導率λ h 、λy 、及びλx の関係を
導く。
FIG. 3A shows an isotropic specimen C by a thin line.
Heat flow in a cross section perpendicular to the thin wire when heated
The outline of the dispersion is shown, and (B) is a thin line of the specimen D having the planar orientation
In a cross section perpendicular to the fine wire when heated by heating
An outline of flow diffusion is shown. In the figure, the y-axis is the thickness direction of the specimen.
And the x-axis indicates the plane direction of the test specimen. In FIG. 3 (A)
As shown, in the cross section of the isotropic specimen C, a thin line 3
Heat flows out of the test specimen concentrically with the fine wire 3
It spreads. On the other hand, as shown in FIG.
In the cross section of the directional specimen D, the heat flow emerging from the fine wire is
The speed of propagation in the plane direction is different from the speed of propagation in the thickness direction.
Therefore, the light diffuses in an elliptical shape as shown in the figure. Planar orientation
Focusing on the thermal diffusivity and thermal diffusion area of the test specimen of
Thermal diffusivity κ of the specimen measured by heating methodhAnd the period
It can be measured by the heating method, flat plate heating method or flat plate heat flow meter method.
Thermal diffusivity κ in the thickness direction of the specimenyAnd asked
Thermal diffusivity κ of the specimen to be testedxIntroduce mutual relationships with
The thermal conductivity λ h, Λy, And λxThe relationship
Lead.

【0022】図3(B)より、細線加熱法による平面配
向試験体Dの熱伝導率測定において、ある時間tにおい
て厚さ方向への熱拡散距離をa、平面方向への熱拡散距
離をbとすると、時間tにおける熱の拡散面積Sは、 S=πab (2) となる。従って、細線加熱法により測定する平面配向性
の試験体Dの熱拡散率κ h は、 κh =πab/t (3) で定義される。一方、平面配向試験体Dの厚さ方向と同
じ熱拡散率κy を有する等方性の試験体Cを細線加熱法
により測定する場合、該試験体Cの熱拡散率は、κy
等しくなる。この場合、熱線から出た熱流は、同心円状
に拡散し、ある時間tにおける熱拡散距離はaとなるた
め、時間tで拡散する面積Sy は、 Sy =πa2 (4) となる。従って、該試験体Cの熱拡散率、すなわち、平
面配向試験体Dの厚さ方向の熱拡散率κy は、下記計算
式(5); κy =πa2 /t (5) で定義される。一方、平面配向試験体Dの平面方向と同
じ熱拡散率κx を有する等方性の試験体を細線加熱法に
より測定する場合、該試験体の熱拡散率は、κxと等し
くなる。この場合、熱線から出た熱流は、同心円状に拡
散し、ある時間tにおける熱拡散距離はbとなるため、
時間tで拡散する面積Sx は、 Sx =πb2 (6) となる。従って、該試験体の熱拡散率、すなわち、平面
配向試験体Dの平面方向の熱拡散率κx は、下記計算式
(7); κx =πb2 /t (7) と定義される。上記式(3)、(5)、及び(7)より
a、bを消去すると、 κh =(κy ×κx 1/2 (8) となる。熱拡散率と熱伝導率は比例関係にあることか
ら、平面配向試験体Dにおいて細線加熱法により求めた
熱伝導率をλh 、平面配向試験体Dにおいて厚さ方向の
熱伝導率をλy 、求めようとする平面配向試験体Dにお
ける平面方向の熱伝導率をλx とすれば、λh =(λy
×λx 1/2 となり、前記計算式(1)が得られる。従
って、細線加熱法によりλh を測定し、平板直接法、平
板熱流計法、又は周期加熱法によりλy を測定すれば、
前記計算式より平面方向の熱伝導率λ x を求めることが
できる。
FIG. 3B shows that the planar arrangement by the fine wire heating method is used.
In the measurement of the thermal conductivity of the test specimen D for a certain time t
The heat diffusion distance in the thickness direction is a, and the heat diffusion distance in the plane direction is
Assuming that the separation is b, the heat diffusion area S at time t is S = πab (2) Therefore, the planar orientation measured by the fine wire heating method
Thermal diffusivity κ of specimen D hIs κh= Πab / t (3) On the other hand, the same
Thermal diffusivity κyIsotropic specimen C having fine wire
Is measured, the thermal diffusivity of the specimen C is κyWhen
Become equal. In this case, the heat flow from the hot wire is concentric
And the thermal diffusion distance at a certain time t becomes a
The area S diffused at time tyIs Sy= ΠaTwo (4) Therefore, the thermal diffusivity of the specimen C, that is, the average
Thermal diffusivity κ in the thickness direction of plane orientation specimen DyIs the following calculation
Equation (5); κy= ΠaTwo/ T (5). On the other hand, the same
Thermal diffusivity κxIsotropic test specimens with fine wire
When measured from the above, the thermal diffusivity of the specimen is κxEqual
It becomes. In this case, the heat flow from the hot wire expands concentrically.
And the heat diffusion distance at a certain time t is b,
Area S diffused at time txIs Sx= ΠbTwo (6) Therefore, the thermal diffusivity of the specimen,
Thermal diffusivity κ in the plane direction of orientation specimen DxIs the following formula
(7); κx= ΠbTwo/ T (7). From the above equations (3), (5) and (7)
When erasing a and b, κh= (Κy× κx)1/2 (8) Is thermal diffusivity and thermal conductivity proportional?
Were determined by the fine wire heating method in the plane orientation test specimen D.
Thermal conductivity λh, In the plane orientation test specimen D,
Thermal conductivity λyTo the plane orientation specimen D to be obtained.
The thermal conductivity in the plane directionxThen λh= (Λy
× λx)1/2And the above-mentioned calculation formula (1) is obtained. Obedience
ΛhMeasure the flat plate direct method, flat
Λ by plate heat flow meter method or periodic heating methodyIf you measure
From the above formula, the thermal conductivity in the plane direction λ xCan ask
it can.

【0023】第1の実施の形態例において、周期加熱法
により試験体1の熱伝導率を測定する第1測定と、細線
加熱法により試験体1の熱伝導率を測定する第2測定を
行う順序は特に制限されず、上記以外に第2測定を行っ
た後、第1測定を行ってもよい。また、試験体は1枚の
試験体であっても、複数枚の試験体であってもよい。試
験体が1枚の試験体の場合、試験体の厚さ方向の中心付
近に試験体を貫通する穴をあけ、該穴に熱線を通し、熱
線に対し約90度の方向から熱線の付近まであけた穴に
熱電対を差し込んでもよい。熱線に対する熱電対の角度
は特に制限されず、電気的絶縁性があれば、同じ穴に熱
線と熱電対を通すことも可能である。また、試験体を製
作する際に、熱線と熱電対を試験体の平面方向と実質的
に垂直に予め埋め込んでおいてもよい。試験体が3枚の
試験体の場合、隣接する2枚の試験体を選び、当該2枚
の試験体間に前記と同様の方法で熱線と熱電対を挿入す
ればよい。
In the first embodiment, a first measurement for measuring the thermal conductivity of the specimen 1 by the periodic heating method and a second measurement for measuring the thermal conductivity of the specimen 1 by the thin wire heating method are performed. The order is not particularly limited, and the first measurement may be performed after the second measurement is performed in addition to the above. The test body may be a single test body or a plurality of test bodies. If the test piece is a single test piece, make a hole through the test piece near the center in the thickness direction of the test piece, pass a hot wire through the hole, and from a direction about 90 degrees to the hot wire to the vicinity of the hot wire. A thermocouple may be inserted into the drilled hole. The angle of the thermocouple with respect to the heat wire is not particularly limited, and it is possible to pass the heat wire and the thermocouple through the same hole as long as the thermocouple has electrical insulation. Further, when manufacturing the test piece, the heating wire and the thermocouple may be embedded in advance substantially perpendicular to the plane direction of the test piece. When three specimens are used, two adjacent specimens are selected, and a heating wire and a thermocouple may be inserted between the two specimens in the same manner as described above.

【0024】次いで、本発明の第2の実施の形態におけ
る熱伝導率測定装置を図4を参照して説明する。図4
は、平板直接法及び細線加熱法による熱伝導率測定装置
の中核部20bの概略図である。300 ×300 ×25mmt の
試験体1aと、同寸法の試験体1bは径0.3 ×300mm の
ニクロム線3と径0.1mm のKタイプの熱電対4を挟みな
がら重ねられて試験体1を形成する。この時、ニクロム
線3は試験体1のほぼ中央を縦断し、熱電対4の測温部
分はニクロム線3の中心近傍にある。更に、試験体1は
上下から150 ×150 ×15mmt の主ヒータ5aと、300 ×
300 ×15mmt の中心部分150 ×150 ×15mmt がくり抜か
れた保護ヒータ5bと、300 ×300 ×15mmt のヒータ6
aで挟まれ、この時、径0.1mm のKタイプの熱電対7を
試験体1aとヒータ5aで挟み、径0.1mm のKタイプの
熱電対8を試験体1bとヒータ6aで挟む。ヒータ5
a、5bの上部には300 ×300 ×25mmt の断熱材9を挟
んで300 ×300 ×15mmtヒータ5cが設置されている。
中核部20b以外のその他の構成は図1と同じであるの
でその説明を省略する。
Next, a thermal conductivity measuring apparatus according to a second embodiment of the present invention will be described with reference to FIG. FIG.
FIG. 2 is a schematic view of a core 20b of a thermal conductivity measuring device by a flat plate direct method and a thin wire heating method. A specimen 1a of 300 × 300 × 25 mmt and a specimen 1b of the same dimensions are stacked with a nichrome wire 3 having a diameter of 0.3 × 300 mm and a K-type thermocouple 4 having a diameter of 0.1 mm to form a specimen 1. At this time, the nichrome wire 3 traverses substantially the center of the test body 1, and the temperature measuring portion of the thermocouple 4 is near the center of the nichrome wire 3. Further, the specimen 1 has a main heater 5a of 150 × 150 × 15 mmt from above and
300 × 15mmt central part 150 × 150 × 15mmt cut-out protective heater 5b and 300 × 300 × 15mmt heater 6
At this time, a K-type thermocouple 7 having a diameter of 0.1 mm is sandwiched between the test body 1a and the heater 5a, and a K-type thermocouple 8 having a diameter of 0.1 mm is sandwiched between the test body 1b and the heater 6a. Heater 5
A heater 5c of 300.times.300.times.15 mmt is installed above the a and 5b with a heat insulating material 9 of 300.times.300.times.25 mmt.
Other configurations other than the core portion 20b are the same as those in FIG. 1, and a description thereof will be omitted.

【0025】次に、第2の実施の形態例の熱伝導率測定
装置を用いて、平板直接法により試験体1の熱伝導率を
測定する(第1測定)。先ず、各ヒータの電源を入れ
る。主ヒータ5a、保護ヒータ5bは試験体1中に熱流
を供給する。放熱側ヒータ6aにより、放熱側ヒータ6
aの発熱量と放熱側ヒータ6aの周りに配置された放熱
部材への吸熱量をバランスさせる。これにより、放熱部
材を恒温体として機能させることができる。図5に示す
ように、x方向に温度勾配のない試験体1を伝搬してき
た熱流を恒温体として機能する放熱部材の冷媒に吸収さ
せる。測定は、熱電対7、8により試験体の加熱側及び
放熱側の温度を測定し、加熱側の主ヒーター5aの発熱
量を電力計などで熱量Qを測定することにより行う。熱
伝導率λyは、前記計算式(I)により求められる。
Next, using the thermal conductivity measuring apparatus of the second embodiment, the thermal conductivity of the test piece 1 is measured by the flat plate direct method (first measurement). First, the power of each heater is turned on. The main heater 5a and the protection heater 5b supply a heat flow into the specimen 1. The radiation side heater 6a allows the radiation side heater 6
The amount of heat generated by a and the amount of heat absorbed by the heat radiating member arranged around the heat radiating side heater 6a are balanced. Thereby, the heat radiation member can function as a constant temperature body. As shown in FIG. 5, the heat flow propagating through the test piece 1 having no temperature gradient in the x direction is absorbed by the refrigerant of the heat dissipating member functioning as a constant temperature body. The measurement is performed by measuring the temperatures on the heating side and the heat radiation side of the test body with the thermocouples 7 and 8, and measuring the calorific value Q of the heating side main heater 5a with a wattmeter or the like. Thermal conductivity lambda y is determined by the equation (I).

【0026】次いで、測定される細線加熱法は第1の実
施の形態と同様にして行い、熱伝導率λh 、λx が求め
られる。第2の実施の形態例によれば、第1の実施の形
態例と同様、平面配向性を有する試験体を短冊状に切り
だすことなく、深さ方向の熱伝導率と共に、水平方向の
熱伝導率を簡易に求めることができる。
Next, the thin wire heating method to be measured is performed in the same manner as in the first embodiment, and the thermal conductivity λ h and λ x are obtained. According to the second embodiment, similarly to the first embodiment, the test piece having planar orientation is not cut into strips, and the heat conductivity in the horizontal direction is obtained together with the heat conductivity in the depth direction. The conductivity can be easily obtained.

【0027】本発明の第3の実施の形態における熱伝導
率測定装置を図6を参照して説明する。図6は、平板熱
流計法及び細線加熱法による熱伝導率測定装置の中核部
20cの概略図である。図6において、図2と同一の構
成要素には同一の符号を付してその説明を省略し、図2
と異なる点について説明する。すなわち、図6中、図2
と異なるところは、試験体1aの上部にヒータ5dが取
り付けられ、さらにヒータ5dと試験体1aの間に熱流
計16、試験体1bと放熱ヒータ6aの間に熱流計17
が取り付けられる点にある。
A thermal conductivity measuring device according to a third embodiment of the present invention will be described with reference to FIG. FIG. 6 is a schematic view of the core 20c of the thermal conductivity measuring device based on the flat plate heat flow method and the thin wire heating method. 6, the same components as those in FIG. 2 are denoted by the same reference numerals, and the description thereof will be omitted.
The points different from the above will be described. That is, in FIG.
The difference is that the heater 5d is mounted on the upper part of the test body 1a, and the heat flow meter 16 is provided between the heater 5d and the test body 1a, and the heat flow meter 17 is provided between the test body 1b and the heat radiating heater 6a.
There is a point to be attached.

【0028】平板熱流計法により試験体1の熱伝導率を
測定するには、先ず、熱電対7、8により試験体の加熱
側及び放熱側の温度を測定(第1測定)し、試験体を通
過する熱量を熱流計16及び17で測定することにより
行う。熱伝導率λy は、上記計算式(I)により求め
る。次いで、測定される細線加熱法は第1の実施の形態
と同様にして行い、熱伝導率λh 、λx が求められる。
第3の実施の形態例によれば、第1の実施の形態例と同
様、平面配向性を有する試験体を短冊状に切りだすこと
なく、深さ方向の熱伝導率と共に、水平方向の熱伝導率
を簡易に求めることができる。
In order to measure the thermal conductivity of the specimen 1 by the flat plate heat flow meter method, first, the temperatures of the heating side and the heat radiation side of the specimen are measured by thermocouples 7 and 8 (first measurement). By measuring the amount of heat passing through the heat flowmeters 16 and 17. Thermal conductivity lambda y is determined by the above equation (I). Next, the thin wire heating method to be measured is performed in the same manner as in the first embodiment, and the thermal conductivities λ h and λ x are obtained.
According to the third embodiment, similarly to the first embodiment, the test piece having planar orientation is not cut into strips, and the heat conductivity in the horizontal direction is obtained together with the heat conductivity in the depth direction. The conductivity can be easily obtained.

【0029】[0029]

【実施例】以下、実施例を挙げて本発明をさらに具体的
に説明するが、これらは単に例示であって、本発明を制
限するものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but these are merely examples and do not limit the present invention.

【0030】実施例1 図1及び図2に示す構造の熱伝導率測定装置を使用し
た。試験体は、アルミナシリカブランケット(嵩密度1
30kg/m3 )からなる平面配向性を有する繊維質断熱材
を用いた。測定温度約−130℃〜室温の範囲で5点を
とり、各温度において、先ず、細線加熱法により試験体
の熱伝導率λh を測定し、その後、試験体を移動するこ
となく、周期加熱法による熱伝導率λy の測定を行っ
た。これらの測定方法は前記第1の実施の形態例に示す
方法で行った。そして、λh 、λy を上記計算式(1)
に代入し、試験体の平面方向のλx を求めた。λh 、λ
y 及び計算式で求められたλx の結果を図7に示す。
Example 1 A thermal conductivity measuring device having the structure shown in FIGS. 1 and 2 was used. The specimen was an alumina silica blanket (bulk density 1
A fibrous heat insulating material having a planar orientation of 30 kg / m 3 ) was used. Five points were taken in the measurement temperature range of about -130 ° C to room temperature. At each temperature, first, the thermal conductivity λ h of the specimen was measured by the fine wire heating method, and then the periodic heating was performed without moving the specimen. the thermal conductivities were measured for λ y by law. These measurement methods were performed by the method described in the first embodiment. Then, λ h and λ y are calculated by the above equation (1).
And λ x in the plane direction of the specimen was determined. λ h , λ
FIG. 7 shows the results of y and λ x obtained by the calculation formula.

【0031】参考例1 図1及び図2に示す構造の熱伝導率測定装置を使用し
た。試験体は実施例1のものを使用した。実施例1の試
験体を短冊状に切りだし、装置内に90度回転させ平面
方向が深さ方向になるように配列し、この配列された試
験体の厚さ方向の熱伝導率(実施例1の試験体の平面方
向の熱伝導率λx に該当)の測定を行った。なお、試験
体の短冊状の切りだし及び配列は慎重に行い、測定誤差
を極力低減させるように行った。結果を図7に併載す
る。
Reference Example 1 A thermal conductivity measuring device having the structure shown in FIGS. 1 and 2 was used. The test body used was the one in Example 1. The test specimen of Example 1 was cut into a strip shape, rotated by 90 degrees in the apparatus, arranged so that the plane direction became the depth direction, and the thermal conductivity in the thickness direction of the arranged test specimen (Example) It was measured applicable) in the direction of the plane of the thermal conductivity lambda x 1 of the specimen. The test pieces were carefully cut out and arranged in a strip shape so as to reduce measurement errors as much as possible. The results are shown in FIG.

【0032】図7から明らかなように、実施例1で求め
たλx の値は、参考例1で測定したλx の値とよく一致
しており、本発明の熱伝導率測定装置により、試験体を
動かすことなく、試験体の厚さ方向の熱伝導率を測定で
き、且つ試験体の平面方向の熱伝導率を精度よく求めら
れることがわかる。
As is clear from FIG. 7, the value of λ x obtained in Example 1 is in good agreement with the value of λ x measured in Reference Example 1, and the value of λ x was measured by the thermal conductivity measuring apparatus of the present invention. It can be seen that the thermal conductivity in the thickness direction of the specimen can be measured without moving the specimen, and the thermal conductivity in the plane direction of the specimen can be accurately obtained.

【0033】[0033]

【発明の効果】本発明の熱伝導率測定装置及び測定方法
によれば、平面配向を有する試験体の熱伝導率測定にお
いて、試験体の厚さ方向の熱伝導率を測定するととも
に、試験体を動かすことなく、試験体の平面方向の熱伝
導率を精度よく求めることができる。
According to the thermal conductivity measuring apparatus and the measuring method of the present invention, in the thermal conductivity measurement of a specimen having a planar orientation, the thermal conductivity in the thickness direction of the specimen is measured and the specimen is measured. The thermal conductivity in the plane direction of the test specimen can be accurately obtained without moving.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施の形態例における熱伝導率測定装置の概
略図である。
FIG. 1 is a schematic diagram of a thermal conductivity measuring device according to an embodiment of the present invention.

【図2】細線加熱法と周期加熱法の測定を行う熱伝導率
測定装置の中核部の概略図である。
FIG. 2 is a schematic diagram of a core part of a thermal conductivity measuring device for performing measurement by a thin wire heating method and a periodic heating method.

【図3】平面配向性材料に適用される計算式を説明する
ための図である。
FIG. 3 is a diagram for explaining a calculation formula applied to a planar orientation material.

【図4】細線加熱法と平板直接法の測定を行う熱伝導率
測定装置の中核部の概略図である。
FIG. 4 is a schematic view of a core part of a thermal conductivity measuring device for performing measurement by a thin wire heating method and a flat plate direct method.

【図5】図4の中心の縦断面を示す図である。FIG. 5 is a view showing a vertical cross section at the center of FIG. 4;

【図6】細線加熱法と平板熱流計法の測定を行う熱伝導
率測定装置の中核部の概略図である。
FIG. 6 is a schematic diagram of a core portion of a thermal conductivity measuring device for performing measurement by a thin wire heating method and a flat plate heat flow meter method.

【図7】本発明の熱伝導率測定装置により求めた試験体
の平面方向の熱伝導率と、試験体の平均温度との関係を
示す図である。
FIG. 7 is a diagram showing the relationship between the thermal conductivity in the plane direction of the test piece and the average temperature of the test piece obtained by the thermal conductivity measuring device of the present invention.

【符号の説明】[Explanation of symbols]

1、1a、1b 試験体 2 円筒状ヒータ 3 線状発熱体(ニクロム線) 4 温度測定手段(熱電対) 5 加熱手段(ヒータ) 6 放熱手段(ヒータ) 7、8 試験体面部測定手段(ニクロム線) 10 熱伝導率測定装置 11 機能発生器 12 温度調節器 13 スキャナ 14 デジタル・マルチメータ 15 コンピュータ 1, 1a, 1b test body 2 cylindrical heater 3 linear heating element (nichrome wire) 4 temperature measuring means (thermocouple) 5 heating means (heater) 6 heat radiating means (heater) 7, 8 test body surface measuring means (nichrome) Line) 10 thermal conductivity measuring device 11 function generator 12 temperature controller 13 scanner 14 digital multimeter 15 computer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 試験体の一方の面に熱を流入させるか、
又は温度波を供給する加熱手段と、前記試験体の他方の
面から熱を流出させるか、又は温度波を吸収する放熱手
段と、前記試験体の両面の温度、前記試験体通過熱量、
又は前記試験体の両面間の熱伝播位相差若しくは前記試
験体の両面間の温度波の振幅の減衰率を測定する試験体
面部測定手段と、前記試験体中に配置し、前記試験体に
熱を伝播させる線状発熱体と、前記試験体中で且つ線状
発熱体の近傍の温度を測定する温度測定手段とを有する
ことを特徴とする熱伝導率測定装置。
1. A method according to claim 1, wherein heat is applied to one surface of the specimen.
Or a heating means for supplying a temperature wave, or a heat radiating means for allowing heat to flow out from the other surface of the test piece or absorbing the temperature wave, and a temperature of both surfaces of the test piece, the heat quantity passing through the test piece,
Or, a specimen surface portion measuring means for measuring a heat propagation phase difference between both surfaces of the specimen or an attenuation rate of a temperature wave amplitude between both surfaces of the specimen, and disposed in the specimen, and heat is applied to the specimen. And a temperature measuring means for measuring the temperature in the test body and in the vicinity of the linear heating element.
【請求項2】 請求項1記載の熱伝導率測定装置を用い
て熱伝導率を測定する方法であって、前記加熱手段によ
って試験体中に熱を流入させるか、又は温度波を供給
し、前記放熱手段により試験体中から熱を流出させる
か、又は温度波を吸収することにより試験体中に熱を流
して熱伝導率を測定する第1測定と、試験体中に配置す
る線状発熱体を加熱し、前記温度測定手段により前記試
験体中で且つ線状発熱体の近傍の温度を測定することに
より熱伝導率を測定する第2測定とを行い、前記第1測
定から第2測定への切替え、又は第2測定から第1測定
への切替えは、前記試験体を移動することなく行うこと
を特徴とする熱伝導率の測定方法。
2. A method for measuring thermal conductivity using the thermal conductivity measuring device according to claim 1, wherein heat is supplied to the test piece by the heating means or a temperature wave is supplied. A first measurement in which heat is caused to flow out of the test piece by the heat radiating means or a heat wave is caused to flow through the test piece by absorbing a temperature wave to measure thermal conductivity; and a linear heat generation arranged in the test piece. A second measurement of measuring the thermal conductivity by heating the body and measuring the temperature in the test body and in the vicinity of the linear heating element by the temperature measuring means, and performing the second measurement from the first measurement Switching from the second measurement to the first measurement without moving the test specimen.
【請求項3】 前記試験体は平面配向性を有する試験体
であって、第1測定結果の熱伝導率λy 、第2測定結果
の熱伝導率λh を次式(1); λx =λh 2 /λy (1) に代入して、前記試験体の平面方向の熱伝導率λx を求
めることを特徴とする請求項2記載の熱伝導率の測定方
法。
3. The test piece is a test piece having planar orientation, and the thermal conductivity λ y of the first measurement result and the thermal conductivity λ h of the second measurement result are represented by the following formula (1): λ x = by substituting λ h 2 / λ y (1 ), method of measuring the thermal conductivity of claim 2, wherein the determination of the thermal conductivity lambda x in the plane direction of the specimen.
【請求項4】 前記第1測定の測定法は、周期加熱法、
平板直接法、又は平板熱流計法のいずれかであり、前記
第2測定の測定法は、細線加熱法であることを特徴とす
る請求項2又は3記載の熱伝導率の測定方法。
4. The method of measuring the first measurement is a periodic heating method,
The method for measuring thermal conductivity according to claim 2 or 3, wherein the method is one of a flat plate direct method and a flat plate heat flow meter method, and the measuring method of the second measurement is a thin wire heating method.
JP2000310297A 2000-10-11 2000-10-11 Measurement method of thermal conductivity Expired - Lifetime JP4083378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000310297A JP4083378B2 (en) 2000-10-11 2000-10-11 Measurement method of thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000310297A JP4083378B2 (en) 2000-10-11 2000-10-11 Measurement method of thermal conductivity

Publications (2)

Publication Number Publication Date
JP2002116167A true JP2002116167A (en) 2002-04-19
JP4083378B2 JP4083378B2 (en) 2008-04-30

Family

ID=18790285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000310297A Expired - Lifetime JP4083378B2 (en) 2000-10-11 2000-10-11 Measurement method of thermal conductivity

Country Status (1)

Country Link
JP (1) JP4083378B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261957A (en) * 2009-05-08 2010-11-18 Qinghua Univ Thermal conductivity measuring instrument for one-dimensional material and method of measurement
WO2013001950A1 (en) * 2011-06-30 2013-01-03 ニチアス株式会社 Heat conductivity measuring method and heat conductivity measuring apparatus
WO2013058134A1 (en) * 2011-10-17 2013-04-25 ニチアス株式会社 Thermal conductivity measurement method
KR20130125599A (en) * 2012-05-09 2013-11-19 재단법인 포항산업과학연구원 Method and apparatus of measuring thermal conductivity of carbon containing refractories for iron and steel making
WO2015046545A1 (en) * 2013-09-30 2015-04-02 ニチアス株式会社 Method and device for measuring thermal diffusivity
KR101706251B1 (en) * 2015-11-09 2017-02-14 부산대학교 산학협력단 Apparatus and method for measuring thermal conductivity
CN113702426A (en) * 2021-09-24 2021-11-26 中国建材检验认证集团股份有限公司 Test device and test method for evaluating overall heat insulation performance of refractory material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2767468C1 (en) * 2021-03-16 2022-03-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Method for non-destructive testing of complex of thermophysical characteristics of solid construction materials and device for implementation thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261957A (en) * 2009-05-08 2010-11-18 Qinghua Univ Thermal conductivity measuring instrument for one-dimensional material and method of measurement
WO2013001950A1 (en) * 2011-06-30 2013-01-03 ニチアス株式会社 Heat conductivity measuring method and heat conductivity measuring apparatus
JP2013011563A (en) * 2011-06-30 2013-01-17 Nichias Corp Heat conductivity measurement method and device
WO2013058134A1 (en) * 2011-10-17 2013-04-25 ニチアス株式会社 Thermal conductivity measurement method
JP2013088258A (en) * 2011-10-17 2013-05-13 Nichias Corp Thermal conductivity measurement method
KR20130125599A (en) * 2012-05-09 2013-11-19 재단법인 포항산업과학연구원 Method and apparatus of measuring thermal conductivity of carbon containing refractories for iron and steel making
WO2015046545A1 (en) * 2013-09-30 2015-04-02 ニチアス株式会社 Method and device for measuring thermal diffusivity
KR101706251B1 (en) * 2015-11-09 2017-02-14 부산대학교 산학협력단 Apparatus and method for measuring thermal conductivity
CN113702426A (en) * 2021-09-24 2021-11-26 中国建材检验认证集团股份有限公司 Test device and test method for evaluating overall heat insulation performance of refractory material
CN113702426B (en) * 2021-09-24 2024-05-14 中国建材检验认证集团股份有限公司 Test device and test method for evaluating integral heat insulation performance of refractory material

Also Published As

Publication number Publication date
JP4083378B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
Salmon Thermal conductivity of insulations using guarded hot plates, including recent developments and sources of reference materials
EP0644418B1 (en) Measuring thermal conductivity and apparatus therefor
Sarvar et al. PCB glass-fibre laminates: Thermal conductivity measurements and their effect on simulation
US4309901A (en) Heat transfer calibration plate
Reddy et al. Investigations on design and construction of a square guarded hot plate (SGHP) apparatus for thermal conductivity measurement of insulation materials
Scoarnec et al. A new guarded hot plate designed for thermal-conductivity measurements at high temperature
Jannot et al. Apparent thermal conductivity measurement of anisotropic insulating materials at high temperature by the parallel hot-wire method
JP2002116167A (en) Measuring instrument and measuring method for thermal conductivity
Rahbar et al. Development of differential thermal resistance method for thermal conductivity measurement down to microscale
Terzić et al. Development of a single-sided guarded hot plate apparatus for thermal conductivity measurements
Zeng et al. Thin-film-heater thermal conductivity apparatus and measurement of thermal conductivity of silica aerogel
JP2005227010A (en) Heat conductivity measuring instrument and heat conductivity measuring method
Zhang et al. Influence of participating radiation on measuring thermal conductivity of translucent thermal insulation materials with hot strip method
US3533273A (en) Thermal surface impedance method and means for nondestructive testing
Daryabeigi et al. Heat transfer measurement and modeling in rigid high-temperature reusable surface insulation tiles
Belling et al. Modified Angström’s method for measurement of thermal diffusivity of materials with low conductivity
Graves et al. Apparent thermal conductivity measurements by an unguarded technique
CN105588853A (en) Measuring method for thermal conductivity of high-temperature fire-proof material
RU2630857C1 (en) Laser emission standard source for power meter calibration
Jackson et al. Thermal conductivity measurements on high-temperature fibrous insulations by the hot-wire method
WO2015046548A1 (en) Method for measuring thermal diffusivity
Singh et al. Instruments to Measure Thermal Conductivity of Engineering Materials-A Brief Review
Jannot et al. In-plane thermal diffusivity measurement of thin plates by the transient fin method
Milošević et al. Measurements of thermophysical properties of solids at the Institute VINČA
Antoniadis Measurement of the thermal conductivity of composite solid materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4083378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250