JP2002115609A - Suction structure for multicylinder engine - Google Patents

Suction structure for multicylinder engine

Info

Publication number
JP2002115609A
JP2002115609A JP2000305977A JP2000305977A JP2002115609A JP 2002115609 A JP2002115609 A JP 2002115609A JP 2000305977 A JP2000305977 A JP 2000305977A JP 2000305977 A JP2000305977 A JP 2000305977A JP 2002115609 A JP2002115609 A JP 2002115609A
Authority
JP
Japan
Prior art keywords
intake
chambers
upstream
manifolds
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000305977A
Other languages
Japanese (ja)
Other versions
JP4165730B2 (en
Inventor
Etsuo Cho
悦夫 長
Rie Katayama
理恵 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2000305977A priority Critical patent/JP4165730B2/en
Publication of JP2002115609A publication Critical patent/JP2002115609A/en
Application granted granted Critical
Publication of JP4165730B2 publication Critical patent/JP4165730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently reduce suction pulsation in a multicylinder engine, if larger, in a compact structure. SOLUTION: This suction structure for the multicylinder engine with aftercoolers 13a-13c and turbochargers 10a-10c comprises a plurality of suction manifolds 6a-6b independently mounted in a plurality of cylinders, respectively, and the aftercoolers 13a-13c provided in the suction manifolds 6a-6c, respectively, wherein upstream side chambers 15a in suction paths parted with the aftercoolers 13a-13c communicate with each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多シリンダエンジ
ンの吸気構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake structure for a multi-cylinder engine.

【0002】[0002]

【従来の技術】多シリンダで、かつ大型のエンジンにお
いては、良好なトルク特性等の性能を得るために、吸気
構造にターボチャージャを用いて吸気の充填効率を向上
させている。このターボチャージャは、各シリンダ毎に
設けたシリンダヘッドの複数個ずつ、例えば3個のシリ
ンダヘッドに1個ずつ設けられる各吸気マニホールド毎
に1個ずつ用いられている。このため、片方ずつに9シ
リンダ直列にシリンダを配列したV型18シリンダのデ
ィーゼルエンジンの場合、片方の3個ずつの吸気マニホ
ールドが独立して設けられ、それぞれの吸気マニホール
ドの入口側(上流側)に1個ずつのターボチャージャの
ダクトが接続されている。
2. Description of the Related Art In a large-sized multi-cylinder engine, a turbocharger is used in an intake structure to improve the charging efficiency of intake air in order to obtain good performance such as torque characteristics. This turbocharger is used for each of a plurality of cylinder heads provided for each cylinder, for example, one for each intake manifold provided for every three cylinder heads. For this reason, in the case of a V-type 18-cylinder diesel engine in which cylinders are arranged in series in nine cylinders on one side, three intake manifolds on one side are provided independently, and the inlet side (upstream side) of each intake manifold is provided. Each of the ducts of the turbocharger is connected.

【0003】このような多シリンダ大型エンジンの吸気
構造では、シリンダ3個ごとに1個の吸気マニホールド
及びこれに接続するターボチャージャを有しており、し
かも直列に配列された9個のシリンダの吸気順序が連続
しないことにより、3個ずつのシリンダに対応して独立
して設けられた各吸気マニホールドの相互において吸気
圧力が変動する。また、シリンダからの排気ガスで駆動
されるターボチャージャも、シリンダの爆発順序が連続
しないことにより、これに入る排気エネルギーが変動し
て過給圧が吸気マニホールド毎に変動する。
In such an intake structure of a large-sized multi-cylinder engine, one intake manifold is provided for every three cylinders and a turbocharger connected to the intake manifold, and the intake manifolds of nine cylinders arranged in series are provided. Since the order is not continuous, the intake pressure fluctuates among the intake manifolds independently provided corresponding to three cylinders. Also, in a turbocharger driven by exhaust gas from a cylinder, since the order of explosion of the cylinder is not continuous, the exhaust energy that enters the turbocharger varies, and the supercharging pressure varies for each intake manifold.

【0004】このような不具合を解消するために、実用
新案登録第2593149号公報に示されたように、各
吸気マニホールド相互を断続可能にして連通するように
したものがある。
[0004] In order to solve such a problem, as disclosed in Japanese Utility Model Registration No. 2593149, there is a configuration in which the intake manifolds are intermittently communicated with each other.

【0005】上記した従来の技術にあっては、エンジン
の回転速度に応じて吸気マニホールドの相互を連通した
り、遮断したりして吸気系の充填効率を回転速度に応じ
て向上することができる。
[0005] In the above-mentioned conventional technique, the intake manifold can be communicated with each other or cut off in accordance with the rotational speed of the engine to improve the charging efficiency of the intake system in accordance with the rotational speed. .

【0006】[0006]

【発明が解決しようとする課題】しかしながら、吸気マ
ニホールド内にアフタークーラーを内装した場合、上記
従来の技術のように吸気マニホールドの相互を単に連通
しただけの構成では吸気圧のバラツキを解消することが
できなかった。
However, when an aftercooler is provided in the intake manifold, the configuration in which the intake manifolds are simply connected to each other as in the prior art described above can eliminate variations in intake pressure. could not.

【0007】この場合、ターボチャージャに入る排気エ
ネルギのばらつきや各ターボチャージャの性能のばらつ
き等により、アフタークーラー及び吸気マニホールドの
吸気通路構成を独立して設けた各通気通路間において
は、吸気圧力にばらつきができる。そこで、各吸気通路
間を吸気マニホールドのアフタークーラーの下流側室に
おいてのみ他の吸気マニホールド相互で連通すると、こ
の連通部分の流れが各通路間で主流の吸気流れに対して
略直角の方向になるため、各シリンダ間で流速分布がで
き、吸気量のばらつきが発生する。また、各シリンダに
よる吸気順序の非連続性により、各吸気通路において、
吸気圧力の脈動が発生する。
In this case, due to variations in the exhaust energy entering the turbocharger and variations in the performance of each turbocharger, etc., the intake pressure between the ventilation passages provided independently of each other in the aftercooler and the intake manifold is reduced. Variations are possible. Therefore, if the other intake manifolds communicate with each other only in the downstream chamber of the aftercooler of the intake manifold between the intake passages, the flow of this communicating portion becomes substantially perpendicular to the main intake flow between the passages. In addition, a flow velocity distribution is generated between the cylinders, and the intake air amount varies. Also, due to the discontinuity of the intake order by each cylinder, in each intake passage,
A pulsation of the intake pressure occurs.

【0008】本発明は上記のことにかんがみなされたも
ので、複数の吸気マニホールドを用い、かつこの吸気マ
ニホールドのそれぞれの内部にアフタークーラーを内装
したエンジンの吸気構造において、各吸気マニホールド
相互間の吸入空気流量の均一化を図ると共に、シリンダ
の吸気順序の不連続による吸気圧力の脈動の発生を防止
できるようにした多シリンダエンジンの吸気構造を提供
することを目的とするものである。
The present invention has been made in view of the above, and has been made in consideration of the above. In an intake structure of an engine using a plurality of intake manifolds and incorporating an aftercooler inside each of the intake manifolds, an intake structure between the intake manifolds is provided. It is an object of the present invention to provide an intake structure of a multi-cylinder engine capable of equalizing an air flow rate and preventing pulsation of intake pressure due to discontinuous intake order of cylinders.

【0009】[0009]

【課題を解決するための手段及び作用、効果】上記目的
を達成するために、本発明に係る多シリンダエンジンの
吸気構造の第1の発明は、アフタークーラー及びターボ
チャージャを備えた多シリンダエンジンの吸気構造にお
いて、複数のシリンダ毎に1個の吸気マニホールドを独
立して複数取付けると共に、各吸気マニホールド内にア
フタークーラーを設け、アフタークーラーにて仕切られ
る各吸気通路の上流側室同士を連通した構成になってい
る。
To achieve the above object, a first invention of an intake structure for a multi-cylinder engine according to the present invention is directed to a multi-cylinder engine having an aftercooler and a turbocharger. In the intake structure, one intake manifold is independently installed for each of a plurality of cylinders, an aftercooler is provided in each intake manifold, and the upstream side chambers of each intake passage partitioned by the aftercooler communicate with each other. Has become.

【0010】この第1の発明によれば、アフタークーラ
ーを内装した吸気マニホールドの上流側室の相互を連通
したことにより、この連通された上流側室へ流入した各
ターボチャージャからのばらつきのある圧力は均一化さ
れる。また、互いに連通する連通路からの流れで乱され
た吸気流はこれより下流側に位置する整流効果を持って
アフタークーラーを通過するのでこの流れが均一化され
る。
According to the first aspect of the present invention, since the upstream chambers of the intake manifold having the aftercooler are communicated with each other, the scattered pressure from each turbocharger flowing into the connected upstream chambers is uniform. Be transformed into Also, the intake air flow disturbed by the flow from the communication passages communicating with each other passes through the after cooler with a rectifying effect located downstream of the intake air flow, so that the flow is made uniform.

【0011】また、第2の発明は、アフタークーラー付
きターボチャージャを備えた多シリンダエンジンの吸気
構造において、複数のシリンダ毎に1個の吸気マニホー
ルドを独立して複数取付けると共に各吸気マニホールド
内にアフタークーラーを設け、アフタークーラーにて仕
切られる各吸気マニホールドの上流側室と下流側室のそ
れぞれを、上記複数の吸気マニホールド相互で上流側室
同士、及び下流側室同士で連通した構成になっている。
According to a second aspect of the present invention, in the intake structure of a multi-cylinder engine provided with a turbocharger with an aftercooler, a plurality of one intake manifolds are independently mounted for each of a plurality of cylinders, and the after manifold is provided in each intake manifold. A cooler is provided, and the upstream chamber and the downstream chamber of each intake manifold partitioned by the aftercooler are configured to communicate with each other between the upstream chambers and between the downstream chambers among the plurality of intake manifolds.

【0012】この第2の発明によれば、アフタークーラ
ーにて仕切られた吸気マニホールドの下流側室だけでは
なく、上流側室にても他の吸気マニホールドのそれぞれ
と連通することにより、ターボチャージャからの吸気は
アフタークーラーが整流効果を有するので、各吸気マニ
ホールドにおける吸気の流速分布が均一化され、各吸気
通路間の吸入流量の均一化を図ることができる。
According to the second aspect of the present invention, not only the downstream chamber of the intake manifold partitioned by the aftercooler but also the upstream chamber communicates with each of the other intake manifolds. Since the aftercooler has a rectifying effect, the flow velocity distribution of the intake air in each intake manifold is made uniform, and the intake flow rate between the intake passages can be made uniform.

【0013】また、吸気順序の非連続性により、各吸気
通路において発生する吸気圧力の脈動も、各吸気マニホ
ールドのアフタークーラーの下流側相互で連通したこと
により低減することができる。
Also, due to the discontinuity of the intake sequence, the pulsation of the intake pressure generated in each intake passage can be reduced by communicating with the downstream side of the after cooler of each intake manifold.

【0014】これらのことから、大型のシリンダエンジ
ンにあっても、、コンパクトな構成で効率よく吸気の脈
動を低減できて、体積効率を上げ、かつ過給効率を向上
することができる。
From these facts, even in a large cylinder engine, the pulsation of the intake air can be efficiently reduced with a compact configuration, the volumetric efficiency can be increased, and the supercharging efficiency can be improved.

【0015】[0015]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。図2は本発明装置を実施しようとするV
型多シリンダ、例えばV型18シリンダのディーゼルエ
ンジンの一例を示し、図1に本発明装置の具体的な構成
を模式的に示す。
Embodiments of the present invention will be described with reference to the drawings. FIG. 2 shows a V in which the apparatus of the present invention is to be implemented.
FIG. 1 shows an example of a multi-cylinder, for example, a V-type 18-cylinder diesel engine, and FIG.

【0016】図2において、シリンダ1a,1b,1
c,1d,1e,1f,1g,1h,1iは片側に9個
ずつ直列に配列されており、それぞれの頭部にはユニッ
トインジェクタ(燃料噴射装置)2及びこれに連通する
燃料穴(図示せず)、さらにシリンダ1a〜1iの各吸
入口に連通する吸気通路4等を備えたシリンダヘッド5
a,5b,5c,5d,5e,5f,5g,5h,5i
が固着してある。そして図1に示すように、この各シリ
ンダヘッドのうち、3個ずつのシリンダヘッド5a〜5
c,5d〜5f,5g〜5iの側面に1個ずつの吸気マ
ニホールド6a,6b,6cが固着してある。そして図
1において、各シリンダヘッド5a〜5iに対応するシ
リンダ1a〜1iに示した数字は、クランク軸の2回転
(720度)における爆発順序を示す。
In FIG. 2, cylinders 1a, 1b, 1
C, 1d, 1e, 1f, 1g, 1h, and 1i are arranged in series on each side, each having nine units, and a unit injector (fuel injection device) 2 and a fuel hole (see FIG. And a cylinder head 5 having an intake passage 4 and the like communicating with the respective intake ports of the cylinders 1a to 1i.
a, 5b, 5c, 5d, 5e, 5f, 5g, 5h, 5i
Is stuck. Then, as shown in FIG. 1, three cylinder heads 5a to 5
One intake manifold 6a, 6b, 6c is fixed to each side surface of c, 5d-5f, 5g-5i. In FIG. 1, the numbers shown on the cylinders 1a to 1i corresponding to the cylinder heads 5a to 5i indicate the order of the explosion in two rotations (720 degrees) of the crankshaft.

【0017】そして各吸気マニホールド6a〜6cは図
1及び図2に示すように、それぞれ個々のターボチャー
ジャ10a,10b,10cにダクト11a,11b,
11cを介して接続されており、この各吸気マニホール
ド6a〜6cとダクト11a〜11cの先端側に形成し
たアフタークーラーカバー12a,12b,12cとの
間の空間内にアフタークーラー13a,13b,13c
が内装してある。この各アフタークーラー13a〜13
cは吸気マニホールド6a〜6cとアフタークーラーカ
バー12a〜12cの間にこれのフランジ14が挟着さ
れて支持されており、各吸気マニホールド6a〜6cは
このアフタークーラー13a〜13cのフランジ14に
て上流側室15aと下流側室15bとに仕切られ、各ダ
クト11a〜11cからの吸気の全量がアフタークーラ
ー13a〜13cで整流されて通ってシリンダヘッド側
へ流入するようになっている。
As shown in FIGS. 1 and 2, each of the intake manifolds 6a to 6c is provided with a duct 11a, 11b, 10c in a respective turbocharger 10a, 10b, 10c.
11c, and is provided between the intake manifolds 6a to 6c and the after cooler covers 12a, 12b, 12c formed at the distal ends of the ducts 11a to 11c.
There is interior decoration. Each of these after coolers 13a to 13
c is supported between the intake manifolds 6a to 6c and the after-cooler covers 12a to 12c with a flange 14 sandwiched therebetween, and the intake manifolds 6a to 6c are upstream at the flanges 14 of the after-coolers 13a to 13c. Partitioned into a side chamber 15a and a downstream chamber 15b, the entire amount of intake air from each of the ducts 11a to 11c is rectified by the after coolers 13a to 13c and flows into the cylinder head.

【0018】そして図1に示すように、上記した3個の
吸気マニホールド6a,6b,6cのそれぞれの上流側
室15aの相互が上流側の連通管16aにて、また下流
側室15bの相互が下流側の連通管16bにてそれぞれ
連通されている。
As shown in FIG. 1, the upstream chambers 15a of the three intake manifolds 6a, 6b, 6c are connected to each other by a communication pipe 16a on the upstream side, and the downstream chambers 15b are connected to each other on the downstream side. The communication pipes 16b communicate with each other.

【0019】この構成によれば、各アフタークーラ13
a〜13cのフランジ14にて仕切られる各吸気マニホ
ールド6a,6b,6cの上流側室15aの相互、及び
下流側室15bの相互が連通されて各側の室相互の圧力
は均一化される。
According to this configuration, each aftercooler 13
The upstream chambers 15a and the downstream chambers 15b of the respective intake manifolds 6a, 6b, 6c partitioned by the flanges 14a to 13c communicate with each other, so that the pressure between the chambers on each side is equalized.

【0020】そして吸気マニホールドの上流側室の相互
を連通したことにより、この連通した各上流側室へ流入
した各ターボチャージャからのばらつきのある圧力は均
一化される。また連通管16a,16bからの流れで乱
された吸気流は下流側にあるアフタークーラー13a〜
13cを通過するのでその流れが均一化される。
Since the upstream chambers of the intake manifold are communicated with each other, the scattered pressure from each turbocharger flowing into each of the connected upstream chambers is equalized. Further, the intake air flow disturbed by the flows from the communication pipes 16a and 16b is connected to the downstream after-coolers 13a to 13a.
Since it passes through 13c, its flow is made uniform.

【0021】また、吸気マニホールドの下流側室相互を
も連通したことにより、吸気順序の非連続性による各吸
気流路における吸気圧力の脈動が低減される。
Further, since the downstream side chambers of the intake manifold are also communicated with each other, the pulsation of the intake pressure in each intake passage due to the discontinuity of the intake sequence is reduced.

【0022】本発明者らは、複数の吸気マニホールド相
互を連通した場所と連通しない場所の吸気系に対する体
積効率(ηv:%)を調べた。その結果を表1に示す。
The present inventors examined the volumetric efficiency (ηv:%) of the intake system at a place where a plurality of intake manifolds communicated with each other and at a place where the plurality of intake manifolds did not communicate. Table 1 shows the results.

【0023】[0023]

【表1】 [Table 1]

【0024】なお表1中、第1例は、複数の吸気マニホ
ールド相互の連通無しの場合、第2例は、上流側室相互
の連通無し、下流側室相互の連通有りの場合、第3例
は、上流側室相互の連通有り、下流側室相互の連通無し
の場合、第4例は上流側室の相互、下流側室の相互をそ
れぞれ連通有りにした場合である。
In Table 1, the first example is a case where there is no communication between a plurality of intake manifolds, the second example is a case where there is no communication between upstream chambers and the case where there is communication between downstream chambers, and the third example is In the case where there is communication between the upstream chambers and no communication between the downstream chambers, the fourth example is a case where the upstream chambers and the downstream chambers are each connected.

【0025】この実験結果によれば、表によって明らか
なように、吸気マニホールドの相互を連通した方が吸気
系の体積効率がよくなるが、下流側室の相互だけを連通
した場合(第2例)より、上流側室の相互だけを連通し
た場合(第3例)の方が体積効率がよくなり、上流側室
の相互と、下流側室の相互をそれぞれ連通した場合(第
4例)の体積効率がさらによくなることがわかった。
According to the results of this experiment, as is clear from the table, the volume efficiency of the intake system is improved when the intake manifolds are connected to each other, but compared to the case where only the downstream chambers are connected to each other (second example). The volume efficiency is better when only the upstream chambers communicate with each other (third example), and the volume efficiency when the upstream chamber and the downstream chamber communicate with each other (fourth example) is further improved. I understand.

【0026】図3は上記構成における吸気マニホールド
の上流側室と下流側室のぞれぞれの圧力変化を示す。図
中横軸はクランク軸の回転角であり、この間の9個のシ
リンダの爆発順序はNO1(1a),NO2(1b),
NO4(1d),NO6(1f),NO8(1h),N
O9(1i),NO7(1g),NO5(1e),NO
3(1c)となり、それぞれは80度毎に行われる。こ
のときの吸気マニホールドの上流側室の圧力変化は図中
太線(上側)で示すようになり、下流側室の圧力変化は
細線(下側)で示すようになった。そしてこのときの吸
気系にあっては、クランク軸の720度にわたる回転角
が180度から410度(230度)にわたる間AがN
O5のシリンダの吸気バルブ開期間、500度から10
度(230度)にわたる間BがNO4のシリンダの吸気
バルブ開期間、580度から90度(230度)にわた
る間CがNO6のシリンダの吸気バルブ開期間である。
FIG. 3 shows pressure changes in the upstream chamber and the downstream chamber of the intake manifold in the above configuration. The horizontal axis in the figure is the rotation angle of the crankshaft, and the explosion order of nine cylinders during this period is NO1 (1a), NO2 (1b)
NO4 (1d), NO6 (1f), NO8 (1h), N
O9 (1i), NO7 (1g), NO5 (1e), NO
3 (1c), each of which is performed every 80 degrees. At this time, the pressure change in the upstream chamber of the intake manifold is as shown by a thick line (upper side) in the figure, and the pressure change in the downstream chamber is as shown by a thin line (lower side). In the intake system at this time, while the rotation angle of the crankshaft over 720 degrees ranges from 180 degrees to 410 degrees (230 degrees), A is N
O5 cylinder intake valve open period, from 500 degrees to 10
B is the intake valve open period of the NO4 cylinder during the period (230 degrees), and C is the intake valve open period of the NO6 cylinder during the period from 580 degrees to 90 degrees (230 degrees).

【0027】この圧力測定は、複数の吸気マニホールド
の相互を全く連通しない場合(第1例)と、相互の下流
側室のみを連通した場合(第2例)と、上流側室の相互
及び下流側室の相互を連通した場合(第4例)を行っ
た。
This pressure measurement is performed when the plurality of intake manifolds are not connected to each other at all (first example), when only the downstream chambers are connected to each other (second example), and when the upstream chambers and the downstream chambers are connected. A case in which they communicate with each other (fourth example) was performed.

【0028】その結果、第1例における上流側室と下流
側室の圧力は点線で示すようになり、第2例では鎖線で
示すようになり、第4例では実線で示すようになった。
この測定結果において、各測定結果を示す波線の凹凸の
高さは、上流側室と下流側室の双方において、第1例
(点線)が大きく、第2例(鎖線)がそれより小さく、
さらに第4例(実線)の凹凸が第1・第2の例のものよ
り小さくなり、第4例、すなわち、複数の吸気マニホー
ルドの上流側室の相互、及び下流側室の相互を連通した
場合における各室の圧力が均一化されたことがわかる。
As a result, the pressure in the upstream chamber and the pressure in the downstream chamber in the first example are shown by dotted lines, in the second example are shown by chain lines, and in the fourth example are shown by solid lines.
In this measurement result, the height of the unevenness of the wavy line indicating each measurement result is larger in the first example (dotted line) and smaller in the second example (dashed line) in both the upstream chamber and the downstream chamber.
Further, the irregularities of the fourth example (solid line) are smaller than those of the first and second examples, and the fourth example, that is, each of the cases where the upstream chambers of the plurality of intake manifolds and the downstream chambers communicate with each other are connected. It can be seen that the pressure in the chamber was made uniform.

【0029】なお、図3において、aの部分は5番目に
爆発するシリンダの吸入の影響を受けて圧力が低下する
部分、bの部分は4番目に爆発するシリンダの吸入の影
響を受けて圧力が低下する部分、cの部分は6番目に爆
発するシリンダの影響を受けて圧力が低下する部分であ
る。
In FIG. 3, part a is a part where the pressure drops due to the suction of the fifth exploding cylinder, and part b is a part where the pressure is affected by the suction of the fourth exploding cylinder. Is a part where the pressure decreases due to the effect of the cylinder that explodes sixth.

【0030】上記実施の形態では各吸気マニホールド毎
にターボチャージャを設けた例を示したが、複数の各吸
気マニホールドに1個の共通のターボチャージャを用い
ても本発明を適用することができる。
In the above embodiment, an example is shown in which a turbocharger is provided for each intake manifold. However, the present invention can be applied to a case where one common turbocharger is used for a plurality of intake manifolds.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示す模式図である。FIG. 1 is a schematic diagram showing an embodiment of the present invention.

【図2】本発明を適用しようとするエンジンの要部を示
す断面図である。
FIG. 2 is a sectional view showing a main part of an engine to which the present invention is applied.

【図3】クランク軸2回転間における吸気マニホールド
の圧力変化を示す線図である。
FIG. 3 is a diagram showing a pressure change of an intake manifold during two rotations of a crankshaft.

【符号の説明】[Explanation of symbols]

1a〜1i…シリンダ、2…ユニットインジェクタ、4
…吸気通路、5a〜5i…シリンダヘッド、6a〜6c
…吸気マニホールド、10a〜10c…ターボチャージ
ャ、11a〜11c…ダクト、12a〜12c…アフタ
ークーラーカバー、13a〜13c…アフタークーラ
ー、14…フランジ、15a…上流側室、15b…下流
側室、16a,16b…連通管
1a to 1i: cylinder, 2: unit injector, 4
... intake passages, 5a-5i ... cylinder heads, 6a-6c
... intake manifolds, 10a to 10c ... turbochargers, 11a to 11c ... ducts, 12a to 12c ... after cooler covers, 13a to 13c ... after coolers, 14 ... flanges, 15a ... upstream chambers, 15b ... downstream chambers, 16a, 16b ... Communication pipe

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02M 35/10 311 F02M 35/10 301P Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F02M 35/10 311 F02M 35/10 301P

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アフタークーラー(13a〜13c)及
びターボチャージャ(10a〜10c)を備えた多シリ
ンダエンジンの吸気構造において、 複数のシリンダ毎に1個の吸気マニホールド(6a〜6
b)を独立して複数取付けると共に、各吸気マニホール
ド(6a〜6b)内にアフタークーラー(13a〜13
c)を設け、 アフタークーラー(13a〜13c)にて仕切られる各
吸気通路の上流側室(15a)同士を連通したことを特
徴とする多シリンダエンジンの吸気構造。
In an intake structure of a multi-cylinder engine provided with an aftercooler (13a to 13c) and a turbocharger (10a to 10c), one intake manifold (6a to 6c) is provided for each of a plurality of cylinders.
b) are independently mounted, and aftercoolers (13a-13) are installed in each intake manifold (6a-6b).
c), wherein the upstream chambers (15a) of each intake passage partitioned by aftercoolers (13a to 13c) communicate with each other.
【請求項2】 アフタークーラー(13a〜13c)付
きターボチャージャ(10a〜10c)を備えた多シリ
ンダエンジンの吸気構造において、 複数のシリンダ毎に1個の吸気マニホールド(6a〜6
c)を独立して複数取付けると共に各吸気マニホールド
(6a〜6c)内にアフタークーラー(13a〜13
c)を設け、 アフタークーラー(13a〜13c)にて仕切られる各
吸気マニホールド(6a〜6c)の上流側室(15a)
と下流側室(15b)のそれぞれを、上記複数の吸気マ
ニホールド(6a〜6c)相互で上流側室(15a)同
士、及び下流側室(15b)同士で連通したことを特徴
とする多シリンダエンジンの吸気構造。
2. In an intake structure of a multi-cylinder engine provided with a turbocharger (10a to 10c) with an aftercooler (13a to 13c), one intake manifold (6a to 6c) is provided for each of a plurality of cylinders.
c) are independently mounted, and aftercoolers (13a-13) are installed in each intake manifold (6a-6c).
c), and the upstream chamber (15a) of each intake manifold (6a-6c) partitioned by the after cooler (13a-13c).
A plurality of intake manifolds (6a to 6c) communicate with each other between the upstream chambers (15a) and between the downstream chambers (15b). .
JP2000305977A 2000-10-05 2000-10-05 Multi-cylinder engine intake structure Expired - Fee Related JP4165730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000305977A JP4165730B2 (en) 2000-10-05 2000-10-05 Multi-cylinder engine intake structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000305977A JP4165730B2 (en) 2000-10-05 2000-10-05 Multi-cylinder engine intake structure

Publications (2)

Publication Number Publication Date
JP2002115609A true JP2002115609A (en) 2002-04-19
JP4165730B2 JP4165730B2 (en) 2008-10-15

Family

ID=18786740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000305977A Expired - Fee Related JP4165730B2 (en) 2000-10-05 2000-10-05 Multi-cylinder engine intake structure

Country Status (1)

Country Link
JP (1) JP4165730B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6910469B2 (en) * 2002-01-17 2005-06-28 Wartsila Technology Oy Ab Inlet air arrangement for piston engine
KR100758799B1 (en) * 2006-06-22 2007-09-14 맨 디젤 에이/에스 Exhaust gas receiver for a large two-stroke diesel engine
KR100758800B1 (en) * 2006-06-22 2007-09-14 맨 디젤 에이/에스 Exhaust gas receiver for a large two-stroke diesel engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6910469B2 (en) * 2002-01-17 2005-06-28 Wartsila Technology Oy Ab Inlet air arrangement for piston engine
KR100758799B1 (en) * 2006-06-22 2007-09-14 맨 디젤 에이/에스 Exhaust gas receiver for a large two-stroke diesel engine
KR100758800B1 (en) * 2006-06-22 2007-09-14 맨 디젤 에이/에스 Exhaust gas receiver for a large two-stroke diesel engine

Also Published As

Publication number Publication date
JP4165730B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
US6116026A (en) Engine air intake manifold having built-in intercooler
US4028892A (en) Turbocharged two-cycle engine with positive blower and internally mounted aftercooler
US7584748B2 (en) Exhaust gas recirculation system for an internal combustion engine
US7448368B2 (en) Exhaust gas recirculation system for an internal combustion engine
US4827722A (en) Engine with turbo-charger for an outboard motor
JPH01117920A (en) Intake device of v-shaped engine
US5012771A (en) Intake system for multi-cylinder engine
JP4906548B2 (en) Intake manifold for multi-cylinder internal combustion engines
JP2008223740A (en) Internal combustion engine
JP2002115609A (en) Suction structure for multicylinder engine
JPS63314320A (en) Turbocharged engine
JPS591332B2 (en) Turbine compartment for turbocharger
JPS6234928B2 (en)
JP2903726B2 (en) Variable intake device for internal combustion engine
JP3237340B2 (en) Intake device for internal combustion engine
JPH0124333Y2 (en)
JP3137384B2 (en) Intake device for engine with mechanical supercharger
CN114962091B (en) Ventilation system of V-shaped engine, V-shaped engine and control method of V-shaped engine
JP2592608Y2 (en) Cooling passage structure for multiple turbocharged engines
JPH048245Y2 (en)
US10584629B2 (en) Charge air cooler system
JP2905320B2 (en) Intake device for supercharged engine
JP3608666B2 (en) Supply air cooler for internal combustion engine
JPS6320833Y2 (en)
JPH06330756A (en) Intake system of multicylinder internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080723

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees