JP2002115087A - Regenerating method for cleaning solution of metallic product - Google Patents

Regenerating method for cleaning solution of metallic product

Info

Publication number
JP2002115087A
JP2002115087A JP2001195886A JP2001195886A JP2002115087A JP 2002115087 A JP2002115087 A JP 2002115087A JP 2001195886 A JP2001195886 A JP 2001195886A JP 2001195886 A JP2001195886 A JP 2001195886A JP 2002115087 A JP2002115087 A JP 2002115087A
Authority
JP
Japan
Prior art keywords
waste liquid
hydrofluoric acid
acid waste
cleaning solution
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001195886A
Other languages
Japanese (ja)
Other versions
JP3413411B2 (en
Inventor
Jiichi Chiyuuki
治一 仲喜
Yoshifumi Kagawa
佳史 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibata & Co Ltd
Shibata Corp
Panasonic Holdings Corp
Original Assignee
Shibata & Co Ltd
Shibata Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibata & Co Ltd, Shibata Corp, Matsushita Electric Industrial Co Ltd filed Critical Shibata & Co Ltd
Priority to JP2001195886A priority Critical patent/JP3413411B2/en
Publication of JP2002115087A publication Critical patent/JP2002115087A/en
Application granted granted Critical
Publication of JP3413411B2 publication Critical patent/JP3413411B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cleaning In General (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Detergent Compositions (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively obtain a cleaning solution without largely consuming energy and without using a reaction furnace causing an environmental problem by effectively utilizing an waste solution to be disposed. SOLUTION: Nitric acid is added in the ratio of 10 to 200 ml based on a waste solution 11 of hydrofluoric acid in which the concentration of fluorine ions is >=3% to obtain a regenerated cleaning solution of which pH is controlled to 1.2 to 5.0.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ステンレスパイ
プ等の金属製品を洗浄するために、各種工業製品の製造
工程で排出されるフッ酸廃液を金属製品の洗浄液として
再生させる方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cleaning a metal product such as a stainless steel pipe by regenerating a hydrofluoric acid waste liquid discharged in a manufacturing process of various industrial products as a cleaning solution for the metal product.

【0002】[0002]

【従来の技術】金属製品の表面には、製造工程の熱処理
や空気中の酸素と接触することで酸化膜が生成される。
この酸化膜は製品の品質低下を招くため洗浄除去するこ
とが行われている。例えば、ステンレスパイプを例に挙
げて説明すると、表面に酸化膜が生成している複数本の
ステンレスパイプをワイヤで一纏めにして吊り下げ、こ
れを希フッ酸が貯溜された水槽中に数分間漬け込んで酸
化膜を洗浄除去し、表面に光沢のあるステンレスパイプ
としている。
2. Description of the Related Art An oxide film is formed on the surface of a metal product by heat treatment in a manufacturing process or by contact with oxygen in the air.
This oxide film is washed and removed to reduce the quality of the product. For example, taking a stainless steel pipe as an example, a plurality of stainless steel pipes having an oxide film formed on the surface are collectively suspended by a wire, and immersed for several minutes in a water tank in which diluted hydrofluoric acid is stored. The oxide film is washed and removed with a stainless steel pipe with a glossy surface.

【0003】このようなステンレスパイプの洗浄に用い
られる希フッ酸は、一般には、図7のフローチャートに
示す製造工程を経て製造される。つまり、まず、蛍石・
硫酸撹拌工程S11で蛍石と硫酸とを混合撹拌し、次い
で、これを反応炉投入工程S12でロータリキルン等の
反応炉に投入して600℃以上の温度条件下で化学反応
させてフッ化水素酸を生成し、その後、吸収精製工程S
13を経て濃度調整工程S14でフッ化水素酸に純水を
多量に加えてフッ素イオン濃度3%程度に希釈すること
で希フッ酸が得られる。
[0003] Dilute hydrofluoric acid used for washing such a stainless steel pipe is generally manufactured through a manufacturing process shown in a flowchart of FIG. In other words, first, fluorite
In a sulfuric acid stirring step S11, fluorite and sulfuric acid are mixed and stirred, and then, in a reaction furnace charging step S12, the mixture is charged into a reaction furnace such as a rotary kiln and chemically reacted under a temperature condition of 600 ° C. or higher to obtain hydrogen fluoride. Acid, and then the absorption purification step S
The diluted hydrofluoric acid is obtained by adding a large amount of pure water to hydrofluoric acid and diluting it to a fluorine ion concentration of about 3% in a concentration adjusting step S14 after passing through No. 13.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
如くして製造される洗浄液としての希フッ酸は、洗浄に
供される金属製品が大型になればなるほど使用量が膨大
となり、希釈用の純水使用量はさらに膨大な量になるた
め、希フッ酸製造コストが金属製品洗浄工程で大きなウ
エイトを占め、何らかの解決策が望まれていた。
However, the use of dilute hydrofluoric acid as the cleaning liquid produced as described above increases as the size of the metal product used for cleaning increases, and the amount of dilute hydrofluoric acid increases. Since the amount of water used is even more enormous, the cost of dilute hydrofluoric acid occupies a large weight in the metal product cleaning process, and some solution has been desired.

【0005】また、上記の希フッ酸製造工程では、新液
であるフッ化水素酸を得るのに反応炉投入工程S12を
経るためエネルギーを多量に消費するという問題があ
り、さらには、原料である蛍石及び硫酸や純水の資源消
費の問題がある。加えて、蛍石と硫酸とを600℃以上
の温度条件下で化学反応させるため、煤煙が発生して環
境が悪化するという問題もある。
[0005] In the above-mentioned diluted hydrofluoric acid production process, there is a problem that a large amount of energy is consumed due to the reaction furnace charging step S12 in order to obtain a new solution of hydrofluoric acid. There are certain fluorite and sulfuric acid and pure water resource consumption problems. In addition, since fluorite and sulfuric acid are chemically reacted under a temperature condition of 600 ° C. or more, there is a problem that smoke is generated and the environment is deteriorated.

【0006】この発明はかかる点に鑑みてなされたもの
であり、その目的とするところは、本来なら廃棄処分に
付される廃液を有効利用することで、エネルギーを多量
に消費したり、環境悪化の原因となる反応炉を用いるこ
となく洗浄液を安価に得ることである。
[0006] The present invention has been made in view of such a point, and an object of the present invention is to use a waste liquid that is originally disposed of effectively, thereby consuming a large amount of energy and deteriorating the environment. It is to obtain a cleaning solution at a low cost without using a reaction furnace which causes the above.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、この発明は、半導体製造工程等の各種工業製品の製
造工程で排出される廃液を混合調整して金属製品の洗浄
液として再利用することを特徴とし、具体的には、次の
ような解決手段を講じた。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a method of mixing and adjusting waste liquid discharged in various industrial product manufacturing processes such as a semiconductor manufacturing process and reusing it as a cleaning solution for metal products. Specifically, the following solution was taken.

【0008】すなわち、請求項1に記載の発明は、フッ
素イオン濃度が3%以上のフッ酸廃液1lに対し硝酸を
10〜200mlの割合で添加することにより、pH値
が1.2〜5.0に調整された再生洗浄液を得ることを
特徴とする。
That is, according to the first aspect of the invention, nitric acid is added at a ratio of 10 to 200 ml to 1 liter of a hydrofluoric acid waste liquid having a fluorine ion concentration of 3% or more, so that a pH value of 1.2 to 5. It is characterized in that a regenerated cleaning liquid adjusted to 0 is obtained.

【0009】上記の構成により、請求項1に記載の発明
では、フッ素イオン濃度が3%以上のフッ酸廃液が再生
洗浄液として蘇る。
With the above structure, in the first aspect of the invention, the hydrofluoric acid waste liquid having a fluorine ion concentration of 3% or more is revived as a regenerating cleaning liquid.

【0010】この再生洗浄液は、本来なら廃棄処分に付
される廃液から得られることから、洗浄液を製造するた
めの蛍石や硫酸がいらず、かつ洗浄液生成工程で反応炉
を用いることによる多量のエネルギー消費の問題がな
く、洗浄液が安価に得られる。また、反応炉を用いるこ
とによる煤煙発生による環境悪化の問題もない。
[0010] Since the regenerated cleaning liquid is obtained from a waste liquid which is originally subjected to disposal, it does not require fluorite or sulfuric acid for producing the cleaning liquid, and a large amount of water is generated by using a reaction furnace in the cleaning liquid generation step. There is no problem of energy consumption, and the cleaning solution can be obtained at low cost. Further, there is no problem of environmental deterioration due to the generation of soot by using the reaction furnace.

【0011】さらに、上述の如きフッ酸廃液と硝酸との
混合割合により、硝酸廃液の添加量とpHとの関係が直
線的に変化し、金属製品の材質に応じたpH調整が容易
になり、洗浄時間及び洗浄能力が要求に応じて自在にコ
ントロール可能になる。
Furthermore, the relationship between the amount of the nitric acid waste liquid and the pH changes linearly with the mixing ratio of the hydrofluoric acid waste liquid and the nitric acid as described above, so that the pH adjustment according to the material of the metal product is facilitated. The washing time and washing ability can be freely controlled according to demand.

【0012】請求項2に記載の発明は、請求項1に記載
の発明において、硝酸を添加する前に、フッ素イオン濃
度が3%以上のフッ酸廃液から不純物を除去することを
特徴とする。
According to a second aspect of the present invention, in the first aspect of the invention, before adding nitric acid, impurities are removed from a hydrofluoric acid waste liquid having a fluorine ion concentration of 3% or more.

【0013】上記の構成により、請求項2に記載の発明
では、不純物が含まれているフッ素イオン濃度が3%以
上のフッ酸廃液が再生洗浄液として蘇る。
With the above arrangement, in the second aspect of the invention, the hydrofluoric acid waste liquid containing impurities and having a fluorine ion concentration of 3% or more is revived as the regenerating cleaning liquid.

【0014】請求項3に記載の発明は、請求項2に記載
の発明において、フッ素イオン濃度が3%以上のフッ酸
廃液から不純物を除去する前に、このフッ酸廃液をフッ
素イオン濃度が3%未満になるように希釈し、この希釈
フッ酸廃液から不純物を除去した後の希釈フッ酸廃液を
濃縮してフッ素イオン濃度が3%以上のフッ酸廃液とす
ることを特徴とする。
According to a third aspect of the present invention, in the second aspect, before removing impurities from the hydrofluoric acid waste liquid having a fluorine ion concentration of 3% or more, the hydrofluoric acid waste liquid has a fluorine ion concentration of 3%. %, And the diluted hydrofluoric acid waste liquid after removing impurities from the diluted hydrofluoric acid waste liquid is concentrated to obtain a hydrofluoric acid waste liquid having a fluorine ion concentration of 3% or more.

【0015】上記の構成により、請求項3に記載の発明
では、不純物が含まれているフッ素イオン濃度が3%以
上のフッ酸廃液が一旦希釈されてこの希釈フッ酸廃液か
ら不純物が除去されるので、再生洗浄液が速やかに蘇
る。
According to the above construction, in the third aspect of the present invention, the hydrofluoric acid waste liquid containing impurities and having a fluorine ion concentration of 3% or more is once diluted and the impurities are removed from the diluted hydrofluoric acid waste liquid. Therefore, the regenerating cleaning solution is quickly revived.

【0016】請求項4に記載の発明は、フッ素イオン濃
度が3%未満のフッ酸廃液を濃縮してフッ素イオン濃度
が3%以上のフッ酸廃液とし、このフッ素イオン濃度が
3%以上のフッ酸廃液1lに対し硝酸を10〜200m
lの割合で添加することにより、pH値が1.2〜5.
0に調整された再生洗浄液を得ることを特徴とする。
According to a fourth aspect of the present invention, a hydrofluoric acid waste liquid having a fluorine ion concentration of less than 3% is concentrated into a hydrofluoric acid waste liquid having a fluorine ion concentration of 3% or more. 10-200 m of nitric acid per 1 liter of acid waste liquid
By adding at a rate of 1 l, the pH value becomes 1.2-5.
It is characterized in that a regenerated cleaning liquid adjusted to 0 is obtained.

【0017】上記の構成により、請求項4に記載の発明
では、フッ素イオン濃度が3%未満のフッ酸廃液が再生
洗浄液として蘇る。
With the above arrangement, in the invention according to the fourth aspect, the hydrofluoric acid waste liquid having a fluorine ion concentration of less than 3% is revived as a regeneration cleaning liquid.

【0018】請求項5に記載の発明は、請求項4に記載
の発明において、フッ素イオン濃度が3%未満のフッ酸
廃液を濃縮する前に、このフッ酸廃液から不純物を除去
することを特徴とする。
According to a fifth aspect of the present invention, in the fourth aspect of the invention, before concentrating the hydrofluoric acid waste liquid having a fluorine ion concentration of less than 3%, impurities are removed from the hydrofluoric acid waste liquid. And

【0019】上記の構成により、請求項5に記載の発明
では、不純物が含まれているフッ素イオン濃度が3%未
満のフッ酸廃液が再生洗浄液として蘇る。
With the above configuration, in the invention according to the fifth aspect, the hydrofluoric acid waste liquid containing impurities and having a fluorine ion concentration of less than 3% is revived as the regeneration cleaning liquid.

【0020】[0020]

【発明の実施の形態】以下、この発明の実施の形態に係
る金属製品の再生洗浄液の製造方法をステンレスパイプ
を例に挙げて説明するが、これらに限らず他の金属製品
にも適用できるものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for producing a reclaimed cleaning liquid for a metal product according to an embodiment of the present invention will be described with reference to a stainless steel pipe as an example, but the present invention is not limited to these and can be applied to other metal products. It is.

【0021】従来例のところで説明したように、ステン
レスパイプは、製造工程で空気中の酸素と接触すること
で表面に酸化膜が生成されるため、洗浄液が貯溜された
水槽中に漬け込まれて酸化膜が洗浄除去され、光沢を取
り戻すようになっている。
As described in connection with the conventional example, the stainless steel pipe is immersed in a water tank in which a cleaning liquid is stored because an oxide film is formed on the surface when the stainless steel pipe comes into contact with oxygen in the air in the manufacturing process. The oxide film is washed away to restore the luster.

【0022】この発明では、上記酸化膜を洗浄除去する
ための洗浄液として、各種工業製品の製造工程で排出さ
れる廃液を利用していることを最大の特徴としている。
具体例を挙げると、例えば、 半導体製造工程では、シリコンウエハ洗浄工程で純
水で希釈されて排出される希釈フッ酸廃液である。
The greatest feature of the present invention is that a waste liquid discharged in a manufacturing process of various industrial products is used as a cleaning liquid for cleaning and removing the oxide film.
Specific examples include, for example, a diluted hydrofluoric acid waste liquid that is diluted with pure water and discharged in a silicon wafer cleaning step in a semiconductor manufacturing process.

【0023】 液晶パネル製造工程では、液晶パネル
の洗浄及びエッチング工程で排出されるフッ酸廃液であ
る。
In the liquid crystal panel manufacturing process, it is hydrofluoric acid waste liquid discharged in the cleaning and etching processes of the liquid crystal panel.

【0024】 太陽電池製品製造工程では、ソーラー
セルの洗浄及びエッチング工程で排出されるフッ酸廃液
である。
In a solar cell product manufacturing process, it is a hydrofluoric acid waste liquid discharged in a solar cell cleaning and etching process.

【0025】 ガラス製品製造工程では、ガラスの洗
浄及びエッチング工程で排出されるフッ酸廃液である。
In a glass product manufacturing process, it is a hydrofluoric acid waste liquid discharged in a glass cleaning and etching process.

【0026】 電球製品製造工程では、内面艶消し工
程及び洗浄工程で排出されるフッ酸廃液である。
In the bulb product manufacturing process, it is hydrofluoric acid waste liquid discharged in the inner surface matting process and the washing process.

【0027】 テレビ製品製造工程では、ブラウン管
内面洗浄工程で排出されるフッ酸廃液である。
In the television product manufacturing process, it is a hydrofluoric acid waste liquid discharged in a cathode ray tube inner surface cleaning process.

【0028】 石材製品製造工程では、石材の表面洗
浄工程で排出されるフッ酸廃液である。
In a stone product manufacturing process, it is a hydrofluoric acid waste liquid discharged in a stone surface cleaning process.

【0029】 プリント基板製品製造工程では、プリ
ント基板表面洗浄及び脱脂工程で排出されるフッ酸廃液
である。
In the printed circuit board product manufacturing process, it is hydrofluoric acid waste liquid discharged in the printed circuit board surface cleaning and degreasing processes.

【0030】 自動車製造工程では、自動車ボディの
塗装工程の脱脂工程で排出されるフッ酸廃液である。
In the automobile manufacturing process, it is hydrofluoric acid waste liquid discharged in the degreasing step of the painting process of the automobile body.

【0031】(実施の形態1)図1はこの発明の実施の
形態1に係る再生洗浄液の製造方法の製造工程を示すフ
ローチャートである。ここでは、半導体製造工程の石英
ガラス洗浄工程を例に挙げて説明する。
(Embodiment 1) FIG. 1 is a flowchart showing a manufacturing process of a method for manufacturing a regenerating cleaning solution according to Embodiment 1 of the present invention. Here, a quartz glass cleaning process in a semiconductor manufacturing process will be described as an example.

【0032】上記石英ガラス洗浄工程から1次洗浄水と
して排出されるフッ酸廃液は、不純物を含有していない
高濃度のフッ酸廃液である。以下、高濃度フッ酸廃液と
は、フッ素イオン濃度が3%以上のフッ酸廃液をいう。
The hydrofluoric acid waste liquid discharged as primary cleaning water from the quartz glass cleaning step is a high concentration hydrofluoric acid waste liquid containing no impurities. Hereinafter, the high-concentration hydrofluoric acid waste liquid refers to a hydrofluoric acid waste liquid having a fluorine ion concentration of 3% or more.

【0033】まず、上記の不純物を含有していない高濃
度フッ酸廃液を水質簡易検査工程(ステップS1−1)
に搬入し、ここで、検知剤が混入されたスポイト式の水
質簡易検査器を用いて、上記高濃度フッ酸廃液に対して
ロット毎に有害物質の含有検査を行う。ただし、上述の
如く石英ガラス洗浄工程から排出されるフッ酸廃液は不
純物を含有していないので、通常は有害物質は検出され
ず、次工程である硝酸廃液添加工程(ステップS1−
2)に搬入される。
First, the high-concentration hydrofluoric acid waste liquid containing no impurity is subjected to a simple water quality inspection step (step S1-1).
Here, the high-concentration hydrofluoric acid waste liquid is inspected for the content of harmful substances for each lot using a dropper-type simple water quality tester mixed with a detecting agent. However, since the hydrofluoric acid waste liquid discharged from the quartz glass cleaning step does not contain impurities as described above, harmful substances are not usually detected, and the subsequent step of adding nitric acid waste liquid (step S1-
It is carried into 2).

【0034】次いで、硝酸廃液添加工程(ステップS1
−2)で、上記高濃度フッ酸廃液1lに対し硝酸を10
〜200mlの割合で添加することにより、pH値が
1.2〜5.0の酸性度範囲に調整された再生洗浄液を
得る。ここでは、硝酸として、半導体製造工程のシリコ
ンウエハのメサエッチング工程で排出される硝酸廃液を
用い、この硝酸廃液の添加量は硝酸濃度100%に換算
して10〜200mlに相当する量である。
Next, a nitric acid waste liquid adding step (step S1)
In -2), 10 l of nitric acid is added to 1 l of the high-concentration hydrofluoric acid waste liquid.
By adding at a rate of ~ 200 ml, a regenerated cleaning solution whose pH value has been adjusted to an acidity range of 1.2 to 5.0 is obtained. Here, a nitric acid waste liquid discharged in a mesa etching step of a silicon wafer in a semiconductor manufacturing process is used as nitric acid, and the amount of the nitric acid waste liquid is an amount corresponding to 10 to 200 ml in terms of a nitric acid concentration of 100%.

【0035】このように、フッ素イオン濃度を3%以上
に設定したのは、3%未満ではステンレスパイプの表面
から酸化膜を洗浄除去するのに時間が掛かり、速やかに
除去することができないからである。
As described above, the reason why the fluorine ion concentration is set to 3% or more is that if the concentration is less than 3%, it takes time to wash and remove the oxide film from the surface of the stainless steel pipe, and it is not possible to quickly remove the oxide film. is there.

【0036】また、フッ酸廃液に対して硝酸の添加量と
pHとの関係を上述の如く設定したのは、図6のデータ
から明らかなように、上記設定範囲で硝酸廃液の添加量
とpHとの関係が、塩酸廃液及び硫酸廃液に比べて直線
的に変化するので、ステンレスパイプの材質に応じたp
H調整を容易に行うことができ、洗浄時間及び洗浄能力
を要求に応じて自在にコントロールすることができるか
らである。
The relationship between the amount of nitric acid added and the pH of the hydrofluoric acid waste liquid was set as described above, as is apparent from the data of FIG. 6, as shown in the data of FIG. Is linearly changed as compared to the hydrochloric acid waste liquid and the sulfuric acid waste liquid.
This is because the H adjustment can be easily performed, and the cleaning time and the cleaning ability can be freely controlled as required.

【0037】さらに、高濃度フッ酸廃液1lに対し硝酸
を30ml添加することにより、フッ素イオン濃度を3
%以上に保ったままpH値を3.0以下に低下させるこ
とができることが図5のデータから判る。これにより、
短時間に洗浄処理を行うことができる。
Further, by adding 30 ml of nitric acid to 1 liter of the high-concentration hydrofluoric acid waste liquid, the fluorine ion concentration becomes 3
%, It can be seen from the data in FIG. 5 that the pH value can be lowered to 3.0 or less. This allows
The cleaning process can be performed in a short time.

【0038】なお、従来例における蛍石と硫酸とから製
造する希フッ酸では、純水で薄められた希釈なフッ酸で
あるため、pH値が上昇して酸性度が低下し、洗浄能力
を高めることができないが、この発明の再生洗浄液は、
フッ酸廃液に硝酸廃液を添加してpH値を変化させるこ
とができるため、フッ素イオン濃度を上昇させて酸性度
を大きく取る調整をしなくても、フッ素イオン濃度を一
定のままで酸性度を大きく取ることができる。また、図
5のデータによると、塩酸廃液及び硫酸廃液では、フッ
素イオン濃度は減少する傾向を示しているため、フッ素
イオン濃度を3%以上に保つ上では適さないことが判
る。
The dilute hydrofluoric acid produced from fluorite and sulfuric acid in the conventional example is a dilute hydrofluoric acid diluted with pure water, so that the pH value increases, the acidity decreases, and the cleaning ability decreases. Although it cannot be increased, the regenerating cleaning solution of the present invention
Since the pH value can be changed by adding nitric acid waste liquid to the hydrofluoric acid waste liquid, the acidity can be maintained at a constant fluorine ion concentration without adjusting to increase the acidity by increasing the fluoride ion concentration. You can take big. Further, according to the data of FIG. 5, it can be seen that the fluoride ion concentration tends to decrease in the hydrochloric acid waste liquid and the sulfuric acid waste liquid, so that it is not suitable for maintaining the fluorine ion concentration at 3% or more.

【0039】これらのことは、下記の化学反応式でも判
るように、塩酸廃液及び硫酸廃液はフッ素イオン以外に
フッ化水素イオンが生成することが考えられるため、フ
ッ素イオンが減少しているものと思われるからである。
As can be seen from the following chemical reaction formula, it can be considered that the hydrochloric acid waste liquid and the sulfuric acid waste liquid generate hydrogen fluoride ions in addition to the fluorine ions, so that the fluorine ions are reduced. Because it seems.

【0040】<硝酸廃液とフッ酸廃液との反応> HNO3+HF→H2NO3 ++F- HF→H++F- <塩酸廃液とフッ酸廃液との反応> HCl+HF→H2Cl++F- HF→H++F- 2HF+H+→H++HF2 - <硫酸廃液とフッ酸廃液との反応> H2SO4+HF→H3SO4 ++F- HF→H++F- 2HF+H+→H++HF2 - これにより硝酸廃液をフッ酸廃液に加えても、フッ素イ
オン濃度をほとんど低下させることなく安定したフッ素
イオン濃度を保った硝酸添加のフッ酸廃液、すなわちス
テンレスパイプ洗浄液を得ることができる。
<Reaction between nitric acid waste liquid and hydrofluoric acid waste liquid> HNO 3 + HF → H 2 NO 3 + + F HF → H + + F <Reaction between hydrochloric acid waste liquid and hydrofluoric acid waste liquid> HCl + HF → H 2 Cl + + F HF → H + + F - 2HF + H + → H + + HF 2 - < reaction between sulfuric acid waste and hydrofluoric acid waste liquid> H 2 SO 4 + HF → H 3 SO 4 + + F - HF → H + + F - 2HF + H + → H + + HF 2 - Thus, even when the nitric acid waste liquid is added to the hydrofluoric acid waste liquid, a nitric acid-added hydrofluoric acid waste liquid having a stable fluorine ion concentration, that is, a stainless steel pipe cleaning liquid can be obtained without substantially lowering the fluorine ion concentration.

【0041】このように、本来なら廃棄処分に付される
フッ酸廃液を再利用するだけでよいので、従来必要とし
た蛍石や硫酸がいらず、かつ洗浄液生成過程で反応炉を
用いることによる多量のエネルギー消費の問題がなく、
洗浄液を安価に製造することができる。また、反応炉を
用いることによる煤煙発生による環境悪化の問題も起こ
らないようにすることができる。
As described above, since it is only necessary to reuse the hydrofluoric acid waste liquid that would otherwise be disposed of, the fluorite or sulfuric acid required conventionally is not required, and the reaction furnace is used in the cleaning liquid generation process. There is no problem of large energy consumption,
The cleaning liquid can be manufactured at low cost. In addition, it is possible to prevent the problem of environmental degradation due to the generation of soot by using the reaction furnace.

【0042】(実施の形態2)図2はこの発明の実施の
形態2に係る再生洗浄液の製造方法の製造工程を示すフ
ローチャートである。ここでは、半導体製造工程のシリ
コンウエハ洗浄工程を例に挙げて説明する。
(Embodiment 2) FIG. 2 is a flowchart showing a manufacturing process of a method for manufacturing a regenerating cleaning solution according to Embodiment 2 of the present invention. Here, a silicon wafer cleaning process in a semiconductor manufacturing process will be described as an example.

【0043】上記シリコンウエハ洗浄工程から排出され
るフッ酸廃液は、不純物を含有している高濃度のフッ酸
廃液である。
The hydrofluoric acid waste liquid discharged from the silicon wafer cleaning step is a high concentration hydrofluoric acid waste liquid containing impurities.

【0044】まず、上記の不純物を含有している高濃度
フッ酸廃液を希釈工程(ステップS2−1)に搬入し、
ここで、純水又は不純物をほとんど含有していないフッ
素イオン濃度が3%未満のフッ酸廃液を添加することに
より、フッ素イオン濃度が3%未満になるように希釈す
る。以下、フッ素イオン濃度が3%未満のフッ酸廃液を
低濃度フッ酸廃液という。
First, the high-concentration hydrofluoric acid waste liquid containing the above impurities is carried into a dilution step (step S2-1),
Here, pure water or a hydrofluoric acid waste liquid containing almost no impurities and having a fluorine ion concentration of less than 3% is added to dilute the fluorine ion concentration to be less than 3%. Hereinafter, a hydrofluoric acid waste liquid having a fluorine ion concentration of less than 3% is referred to as a low-concentration hydrofluoric acid waste liquid.

【0045】このように、高濃度フッ酸廃液をフッ素イ
オン濃度が3%未満になるように希釈するのは、次工程
(ステップS2−2)で不純物をろ過材で除去する際、
フッ酸廃液が高濃度であると粘度が高くなってろ過スピ
ードが低下するからである。
The reason why the high-concentration hydrofluoric acid waste liquid is diluted so that the fluorine ion concentration is less than 3% is that the impurities are removed with a filter in the next step (step S2-2).
If the concentration of the hydrofluoric acid waste liquid is high, the viscosity increases and the filtration speed decreases.

【0046】なお、上記希釈工程(ステップS2−1)
で添加する不純物をほとんど含有していない低濃度フッ
酸廃液とは、不純物含有濃度が水質汚濁防止法による排
水基準値以下(0.1mg/l以下)のものである。
The above dilution step (step S2-1)
The low-concentration hydrofluoric acid waste liquid containing almost no impurities to be added in the above is one having an impurity-containing concentration equal to or lower than a wastewater standard value (0.1 mg / l or less) according to the Water Pollution Control Law.

【0047】次いで、上記希釈フッ酸廃液を不純物除去
工程(ステップS2−2)でろ過材に通過させてこの希
釈フッ酸廃液から不純物を除去する。なお、ろ過材以外
に特定のイオンを選択的に吸着するキレート剤を用いて
不溶解性の有機物及び無機物等の不純物を除去すること
も採用することができる。
Next, the diluted hydrofluoric acid waste liquid is passed through a filter in an impurity removing step (step S2-2) to remove impurities from the diluted hydrofluoric acid waste liquid. In addition, it is also possible to use a chelating agent that selectively adsorbs specific ions other than the filtering material to remove insoluble impurities such as organic substances and inorganic substances.

【0048】その後、上記ろ過材を通過した後の希釈フ
ッ酸廃液を濃縮工程(ステップS2−3)に搬入し、イ
オン交換樹脂又は逆浸透膜に通過させて高濃度フッ酸溶
液とする。
Thereafter, the diluted hydrofluoric acid waste liquid after passing through the above-mentioned filter medium is carried into the concentration step (step S2-3), and is passed through an ion exchange resin or a reverse osmosis membrane to obtain a high-concentration hydrofluoric acid solution.

【0049】ここで、イオン交換樹脂は、例えば陽イオ
ン交換樹脂等を用いて溶解性の陽イオン(重金属類はほ
とんど陽イオン)を樹脂内に吸着させ、フッ素イオンは
陰イオンのため吸着せずそのまま樹脂内を通過しフッ素
イオンのみを集めることで濃縮することが可能である。
一方、逆浸透膜は、膜に浸透圧以上の圧力を掛けて水だ
け膜を透過させることで濃縮することが可能であり、吸
着に限界のあるイオン交換樹脂に比べて高濃度フッ酸廃
液の濃縮に適している。したがって、不純物含有量が多
い高濃度フッ酸廃液は逆浸透膜を用いて濃縮する一方、
不純物含有量が少ない低濃度フッ酸廃液はイオン交換樹
脂で濃縮するのが好ましいが、これに限るものではな
い。また、一般に、アセチルセルロース系や芳香族ポリ
アミド系等を素材とする逆浸透膜は、メタクリル酸系や
アクリル系を素材とするイオン交換樹脂に比べて安価で
あるという利点を有する。
Here, as the ion exchange resin, for example, a cation exchange resin or the like is used to adsorb soluble cations (mostly heavy metals are cations) into the resin, and fluorine ions are not adsorbed because they are anions. Concentration is possible by passing through the resin as it is and collecting only fluorine ions.
On the other hand, reverse osmosis membranes can be concentrated by applying a pressure higher than the osmotic pressure to the membrane and allowing only the water to permeate the membrane. Suitable for concentration. Therefore, high-concentration hydrofluoric acid waste liquid with a high impurity content is concentrated using a reverse osmosis membrane,
It is preferable to concentrate the low-concentration hydrofluoric acid waste liquid having a small impurity content with an ion exchange resin, but the present invention is not limited to this. In general, a reverse osmosis membrane made of an acetylcellulose-based or aromatic polyamide-based material has an advantage that it is less expensive than an ion exchange resin made of a methacrylic acid-based or acrylic-based material.

【0050】しかる後、濃縮した高濃度フッ酸廃液を水
質簡易検査工程(ステップS2−4)に搬入し、ここ
で、検知剤が混入されたスポイト式の水質簡易検査器を
用いて、上記濃縮した高濃度フッ酸廃液に対してロット
毎に有害物質の含有検査を行う。ただし、不純物は前記
不純物除去工程(ステップS2−2)で除去されて含有
していないので、通常は有害物質は検出されず、次工程
である硝酸廃液添加工程(ステップS2−5)に搬入さ
れる。
Thereafter, the concentrated high-concentration hydrofluoric acid waste liquid is carried into a simple water quality inspection step (step S2-4), where it is concentrated using a dropper-type simple water quality inspection device mixed with a detecting agent. Inspection of harmful substances is conducted for each lot of the high-concentration hydrofluoric acid waste liquid. However, since the impurities are not contained after being removed in the impurity removing step (step S2-2), harmful substances are not usually detected, and are carried into the next step, the nitric acid waste liquid adding step (step S2-5). You.

【0051】次いで、硝酸廃液添加工程(ステップS2
−5)で、上記高濃度フッ酸廃液1lに対し硝酸を10
〜200mlの割合で添加することにより、pH値が
1.2〜5.0の酸性度範囲に調整された再生洗浄液を
得る。この際、硝酸として硝酸廃液を用いることは実施
の形態1と同じである。
Next, a nitric acid waste liquid adding step (step S2)
-5), 10 l of nitric acid is added to 1 l of the high concentration hydrofluoric acid waste liquid
By adding at a rate of ~ 200 ml, a regenerated cleaning solution whose pH value has been adjusted to an acidity range of 1.2 to 5.0 is obtained. At this time, the use of a nitric acid waste liquid as nitric acid is the same as in the first embodiment.

【0052】したがって、この実施の形態2では、実施
の形態1と同様に作用効果を奏することができる。
Therefore, in the second embodiment, the same functions and effects as in the first embodiment can be obtained.

【0053】(実施の形態3)図3はこの発明の実施の
形態3に係る再生洗浄液の製造方法の製造工程を示すフ
ローチャートである。ここでは、半導体製造工程の石英
ガラス洗浄工程を例に挙げて説明する。
(Embodiment 3) FIG. 3 is a flowchart showing a manufacturing process of a method for manufacturing a regenerating cleaning solution according to Embodiment 3 of the present invention. Here, a quartz glass cleaning process in a semiconductor manufacturing process will be described as an example.

【0054】上記石英ガラス洗浄工程から排出される2
次洗浄水以降のフッ酸廃液は、不純物を含有していない
低濃度のフッ酸廃液である。
2 discharged from the above quartz glass cleaning step
The hydrofluoric acid waste liquid after the next washing water is a low-concentration hydrofluoric acid waste liquid containing no impurities.

【0055】まず、この低濃度フッ酸廃液を濃縮工程
(ステップS3−1)に搬入し、イオン交換樹脂又は逆
浸透膜に通過させて高濃度フッ酸廃液とする。
First, the low-concentration hydrofluoric acid waste liquid is carried into a concentration step (step S3-1), and is passed through an ion exchange resin or a reverse osmosis membrane to obtain a high-concentration hydrofluoric acid waste liquid.

【0056】次いで、濃縮した高濃度フッ酸廃液を水質
簡易検査工程(ステップS3−2)に搬入し、ここで、
検知剤が混入されたスポイト式の水質簡易検査器を用い
て、上記濃縮した高濃度フッ酸廃液に対してロット毎に
有害物質の含有検査を行う。ただし、上述の如く石英ガ
ラス洗浄工程から排出されるフッ酸廃液は、不純物を含
有していないので、通常は有害物質は検出されず、次工
程である硝酸廃液添加工程(ステップS3−3)に搬入
される。
Next, the concentrated high-concentration hydrofluoric acid waste liquid is carried into a simple water quality inspection step (step S3-2).
The concentrated high-concentration hydrofluoric acid waste liquid is inspected for the content of harmful substances for each lot using a dropper-type simple water-quality tester in which a detecting agent is mixed. However, since the hydrofluoric acid waste liquid discharged from the quartz glass washing step does not contain any impurities as described above, harmful substances are not usually detected, and the nitric acid waste liquid adding step (step S3-3) is performed next. It is carried in.

【0057】その後、硝酸廃液添加工程(ステップS3
−3)で、上記高濃度フッ酸廃液1lに対し、硝酸を1
0〜200mlの割合で添加することにより、pH値が
1.2〜5.0の酸性度範囲に調整された再生洗浄液を
得る。この際、硝酸として硝酸廃液を用いることは実施
の形態1と同じである。
Thereafter, a nitric acid waste liquid adding step (step S3)
In -3), 1 l of nitric acid is added to 1 l of the high-concentration hydrofluoric acid waste liquid.
By adding at a rate of 0 to 200 ml, a regenerating cleaning solution whose pH value is adjusted to an acidity range of 1.2 to 5.0 is obtained. At this time, the use of a nitric acid waste liquid as nitric acid is the same as in the first embodiment.

【0058】したがって、この実施の形態3も、実施の
形態1と同様に作用効果を奏することができる。
Therefore, the third embodiment can provide the same operation and effect as the first embodiment.

【0059】(実施の形態4)図4はこの発明の実施の
形態4に係る再生洗浄液の製造方法の製造工程を示すフ
ローチャートである。ここでは、半導体製造工程におけ
るシリコンウエハの酸化膜エッチング工程後の洗浄工程
を例に挙げて説明する。
(Embodiment 4) FIG. 4 is a flowchart showing a manufacturing process of a method for manufacturing a regenerated cleaning solution according to Embodiment 4 of the present invention. Here, a cleaning process after an oxide film etching process of a silicon wafer in a semiconductor manufacturing process will be described as an example.

【0060】上記洗浄工程から排出されるフッ酸廃液
は、不純物を含有している低濃度のフッ酸廃液である。
The hydrofluoric acid waste liquid discharged from the washing step is a low-concentration hydrofluoric acid waste liquid containing impurities.

【0061】まず、この低濃度フッ酸廃液を不純物除去
工程(ステップS4−1)でろ過材に通過させてこの低
濃度フッ酸廃液から不純物を除去する。なお、ろ過材以
外に特定のイオンを選択的に吸着するキレート剤を用い
て不溶解性の有機物及び無機物等の不純物を除去するこ
とも採用することができることは、実施の形態2と同じ
である。
First, the low-concentration hydrofluoric acid waste liquid is passed through a filter in an impurity removing step (step S4-1) to remove impurities from the low-concentration hydrofluoric acid waste liquid. It is to be noted that the removal of insoluble impurities such as organic substances and inorganic substances by using a chelating agent that selectively adsorbs specific ions other than the filter material can be adopted as in the second embodiment. .

【0062】次いで、濃縮工程(ステップS4−2)に
搬入し、イオン交換樹脂又は逆浸透膜に通過させて高濃
度フッ酸溶液とする。いずれを使うかは作業効率等を考
慮して適宜選択すればよい。
Next, it is carried into a concentration step (step S4-2) and passed through an ion exchange resin or a reverse osmosis membrane to obtain a high-concentration hydrofluoric acid solution. Which one to use may be appropriately selected in consideration of work efficiency and the like.

【0063】その後、濃縮した高濃度フッ酸廃液を水質
簡易検査工程(ステップS4−3)に搬入し、ここで、
検知剤が混入されたスポイト式の水質簡易検査器を用い
て、上記濃縮した高濃度フッ酸廃液に対してロット毎に
有害物質の含有検査を行う。ただし、不純物は前記不純
物除去工程(ステップS4−1)で除去されて含有して
いないので、通常は有害物質は検出されず、次工程であ
る硝酸廃液添加工程(ステップS4−4)に搬入され
る。
Thereafter, the concentrated high-concentration hydrofluoric acid waste liquid is carried into a simple water quality inspection step (step S4-3), where
The concentrated high-concentration hydrofluoric acid waste liquid is inspected for the content of harmful substances for each lot using a dropper-type simple water-quality tester in which a detecting agent is mixed. However, since no impurities are removed and contained in the impurity removing step (step S4-1), harmful substances are not usually detected, and are carried into the next step of adding nitric acid waste liquid (step S4-4). You.

【0064】しかる後、硝酸廃液添加工程(ステップS
4−4)で、上記高濃度フッ酸廃液1lに対し硝酸を1
0〜200mlの割合で添加することにより、pH値が
1.2〜5.0の酸性度範囲に調整された再生洗浄液を
得る。この際、硝酸として硝酸廃液を用いることは実施
の形態1と同じである。
Thereafter, a nitric acid waste liquid adding step (step S)
In 4-4), 1 l of nitric acid is added to 1 l of the high-concentration hydrofluoric acid waste liquid.
By adding at a rate of 0 to 200 ml, a regenerating cleaning solution whose pH value is adjusted to an acidity range of 1.2 to 5.0 is obtained. At this time, the use of a nitric acid waste liquid as nitric acid is the same as in the first embodiment.

【0065】したがって、この実施の形態4も、実施の
形態1と同様に作用効果を奏することができる。
Therefore, the fourth embodiment can provide the same function and effect as the first embodiment.

【0066】[0066]

【発明の効果】以上説明したように、請求項1に係る発
明によれば、フッ素イオン濃度が3%以上のフッ酸廃液
1lに対し硝酸を10〜200mlの割合で添加するこ
とにより、pH値が1.2〜5.0に調整された再生洗
浄液を得る。この際、不純物が含まれている場合には、
不純物除去工程(請求項2)を経、さらに、希釈工程
(請求項3)を経ることが望ましい。一方、フッ素イオ
ン濃度が3%未満のフッ酸廃液の場合は、請求項4のよ
うにフッ素イオン濃度が3%以上に濃縮した後、この濃
縮したフッ酸廃液1lに対し硝酸を10〜200mlの
割合で添加することにより、pH値が1.2〜5.0に
調整された再生洗浄液を得る。この際、不純物が含まれ
ている場合には、不純物除去工程(請求項5)を経る。
したがって、洗浄液を蛍石、硫酸及び反応炉を用いるこ
となく安価にかつ環境悪化を招くことなく製造すること
ができるとともに、金属製品の材質に応じた容易なpH
調整により洗浄時間及び洗浄能力を自在にコントロール
することができる。
As described above, according to the first aspect of the present invention, the pH value is increased by adding 10 to 200 ml of nitric acid to 1 liter of hydrofluoric acid waste liquid having a fluorine ion concentration of 3% or more. To obtain a regenerating cleaning solution adjusted to 1.2 to 5.0. At this time, if impurities are contained,
It is desirable to go through an impurity removing step (Claim 2) and further a dilution step (Claim 3). On the other hand, in the case of a hydrofluoric acid waste liquid having a fluorine ion concentration of less than 3%, after concentrating the fluorine ion concentration to 3% or more as in claim 4, 10 to 200 ml of nitric acid is added to 1 l of the concentrated hydrofluoric acid waste liquid. By adding at a ratio, a regenerating cleaning solution whose pH value is adjusted to 1.2 to 5.0 is obtained. At this time, if an impurity is contained, an impurity removing step (claim 5) is performed.
Therefore, the cleaning liquid can be manufactured at low cost without using fluorite, sulfuric acid, and a reaction furnace without causing environmental degradation, and the pH can be easily adjusted according to the material of the metal product.
The washing time and the washing ability can be freely controlled by the adjustment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態1に係る再生洗浄液の製
造方法の製造工程を示すフローチャートである。
FIG. 1 is a flowchart showing a manufacturing process of a method for manufacturing a regenerated cleaning liquid according to Embodiment 1 of the present invention.

【図2】この発明の実施の形態2に係る再生洗浄液の製
造方法の製造工程を示すフローチャートである。
FIG. 2 is a flowchart showing a manufacturing process of a method for manufacturing a regenerating cleaning solution according to Embodiment 2 of the present invention.

【図3】この発明の実施の形態3に係る再生洗浄液の製
造方法の製造工程を示すフローチャートである。
FIG. 3 is a flowchart showing a manufacturing process of a method for manufacturing a reclaimed cleaning liquid according to Embodiment 3 of the present invention.

【図4】この発明の実施の形態4に係る再生洗浄液の製
造方法の製造工程を示すフローチャートである。
FIG. 4 is a flowchart showing a manufacturing process of a method for manufacturing a regenerating cleaning liquid according to Embodiment 4 of the present invention.

【図5】フッ酸廃液に硝酸、塩酸及び硫酸を添加した場
合のpHとフッ素イオン濃度との関係を示すデータであ
る。
FIG. 5 is data showing the relationship between pH and fluorine ion concentration when nitric acid, hydrochloric acid, and sulfuric acid are added to hydrofluoric acid waste liquid.

【図6】フッ酸廃液に対する硝酸、塩酸及び硫酸の添加
量とpHとの関係を示すデータである。
FIG. 6 is a graph showing the relationship between the amount of nitric acid, hydrochloric acid, and sulfuric acid added to hydrofluoric acid waste liquid and pH.

【図7】従来例の洗浄液の製造方法の製造工程を示すフ
ローチャートである。
FIG. 7 is a flowchart illustrating a manufacturing process of a conventional method of manufacturing a cleaning liquid.

【符号の説明】 S1−1 水質簡易検査工程 S1−2 硝酸廃液添加工程 S2−1 希釈工程 S2−2 不純物除去工程 S2−3 濃縮工程 S2−4 水質簡易検査工程 S2−5 硝酸廃液添加工程 S3−1 濃縮工程 S3−2 水質簡易検査工程 S3−3 硝酸廃液添加工程 S4−1 不純物除去工程 S4−2 濃縮工程 S4−3 水質簡易検査工程 S4−4 硝酸廃液添加工程[Description of Signs] S1-1 Simple water quality inspection step S1-2 Nitrate waste liquid addition step S2-1 Dilution step S2-2 Impurity removal step S2-3 Concentration step S2-4 Simple water quality inspection step S2-5 Nitrate waste liquid addition step S3 -1 Concentration step S3-2 Simple water quality inspection step S3-3 Nitrate waste liquid addition step S4-1 Impurity removal step S4-2 Concentration step S4-3 Simple water quality inspection step S4-4 Nitrate waste liquid addition step

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23G 1/08 B08B 9/02 Z (72)発明者 香川 佳史 大阪府高槻市真上町1丁目22番3号 株式 会社柴田内 Fターム(参考) 3B116 AA46 BB02 CD21 3B201 AA12 BB96 CA05 4H003 BA12 CA13 DA09 DA14 EA03 EA05 ED02 FA21 FA28 4K053 PA03 PA18 QA01 RA05 RA16 RA17 SA04 SA06 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C23G 1/08 B08B 9/02 Z (72) Inventor Yoshifumi Kagawa 1-23-3 Makamicho, Takatsuki-shi, Osaka No.Shibatanai F-term (reference) 3B116 AA46 BB02 CD21 3B201 AA12 BB96 CA05 4H003 BA12 CA13 DA09 DA14 EA03 EA05 ED02 FA21 FA28 4K053 PA03 PA18 QA01 RA05 RA16 RA17 SA04 SA06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 フッ素イオン濃度が3%以上のフッ酸廃
液1lに対し、硝酸を10〜200mlの割合で添加す
ることにより、pH値が1.2〜5.0に調整された再
生洗浄液を得ることを特徴とする金属製品の再生洗浄液
の製造方法。
1. A regenerated cleaning solution whose pH value is adjusted to 1.2 to 5.0 by adding 10 to 200 ml of nitric acid to 1 liter of hydrofluoric acid waste solution having a fluorine ion concentration of 3% or more. A method for producing a cleaning solution for regenerating and cleaning metal products, comprising:
【請求項2】 請求項1記載の金属製品の再生洗浄液の
製造方法において、 硝酸を添加する前に、フッ素イオン濃度が3%以上のフ
ッ酸廃液から不純物を除去することを特徴とする金属製
品の再生洗浄液の製造方法。
2. The method according to claim 1, wherein impurities are removed from a hydrofluoric acid waste liquid having a fluorine ion concentration of 3% or more before adding nitric acid. For producing a regenerated cleaning solution.
【請求項3】 請求項2記載の金属製品の再生洗浄液の
製造方法において、 フッ素イオン濃度が3%以上のフッ酸廃液から不純物を
除去する前に、このフッ酸廃液をフッ素イオン濃度が3
%未満になるように希釈し、この希釈フッ酸廃液から不
純物を除去した後の希釈フッ酸廃液を濃縮してフッ素イ
オン濃度が3%以上のフッ酸廃液とすることを特徴とす
る金属製品の再生洗浄液の製造方法。
3. The method for producing a reclaimed cleaning solution for metal products according to claim 2, wherein the hydrofluoric acid waste liquid having a fluorine ion concentration of 3% or more is removed before removing impurities from the hydrofluoric acid waste liquid having a fluorine ion concentration of 3% or more.
% Of the diluted hydrofluoric acid waste liquid after removing impurities from the diluted hydrofluoric acid waste liquid, and concentrating the diluted hydrofluoric acid waste liquid into a hydrofluoric acid waste liquid having a fluorine ion concentration of 3% or more. A method for producing a reclaimed cleaning solution.
【請求項4】 フッ素イオン濃度が3%未満のフッ酸廃
液を濃縮してフッ素イオン濃度が3%以上のフッ酸廃液
とし、このフッ素イオン濃度が3%以上のフッ酸廃液1
lに対し硝酸を10〜200mlの割合で添加すること
により、pH値が1.2〜5.0に調整された再生洗浄
液を得ることを特徴とする金属製品の再生洗浄液の製造
方法。
4. A hydrofluoric acid waste liquid having a fluorine ion concentration of 3% or more is concentrated to a hydrofluoric acid waste liquid having a fluorine ion concentration of 3% or more.
A method for producing a reclaimed cleaning solution for metal products, wherein a reclaimed cleaning solution having a pH value adjusted to 1.2 to 5.0 is obtained by adding nitric acid at a ratio of 10 to 200 ml per 1 l.
【請求項5】 請求項4記載の金属製品の再生洗浄液の
製造方法において、 フッ素イオン濃度が3%未満のフッ酸廃液を濃縮する前
に、このフッ酸廃液から不純物を除去することを特徴と
する金属製品の再生洗浄液の製造方法。
5. The method for producing a reclaimed cleaning solution for metal products according to claim 4, wherein prior to concentrating the hydrofluoric acid waste liquid having a fluorine ion concentration of less than 3%, impurities are removed from the hydrofluoric acid waste liquid. For producing a reclaimed cleaning solution for metal products.
JP2001195886A 2000-08-02 2001-06-28 Method for producing reclaimed cleaning solution for metal products Expired - Lifetime JP3413411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001195886A JP3413411B2 (en) 2000-08-02 2001-06-28 Method for producing reclaimed cleaning solution for metal products

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000234286 2000-08-02
JP2000-234286 2000-08-02
JP2001195886A JP3413411B2 (en) 2000-08-02 2001-06-28 Method for producing reclaimed cleaning solution for metal products

Publications (2)

Publication Number Publication Date
JP2002115087A true JP2002115087A (en) 2002-04-19
JP3413411B2 JP3413411B2 (en) 2003-06-03

Family

ID=26597221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001195886A Expired - Lifetime JP3413411B2 (en) 2000-08-02 2001-06-28 Method for producing reclaimed cleaning solution for metal products

Country Status (1)

Country Link
JP (1) JP3413411B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083376A (en) * 2004-08-18 2006-03-30 Mitsubishi Gas Chem Co Inc Cleaning liquid and cleaning method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083376A (en) * 2004-08-18 2006-03-30 Mitsubishi Gas Chem Co Inc Cleaning liquid and cleaning method

Also Published As

Publication number Publication date
JP3413411B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
TWI534092B (en) A waste water treatment method containing fluorine and silicon, a method for producing calcium fluoride, and a waste water treatment apparatus
CN110681624A (en) Final cleaning method for silicon carbide single crystal polished wafer substrate
KR101514863B1 (en) Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gases
JPH09255998A (en) Cleaning method and apparatus
US6346505B1 (en) Cleaning solution for electromaterials and method for using same
JP2007243113A (en) Production method, production device, and washing device for gas dissolution washing water
CN102040192A (en) Method for preparing sequentially arranged bent silicon nano-wire array
JP2010017633A (en) Apparatus for producing hydrogen-dissolved water and method for producing hydrogen-dissolved water using the apparatus, and washing device for electronic component or for instrument for manufacturing electronic component
CN1804153A (en) Process for treating a semiconductor wafer with a gaseous medium, and semiconductor wafer treated by this process
JP3296405B2 (en) Cleaning method and cleaning device for electronic component members
CN107706089A (en) Wet scrubbing method after aluminum steel dry etching
JPH10270405A (en) In-situ cleaning device for semiconductor element and semiconductor element cleaning method using the same
JP4363494B2 (en) Aqueous solution for pickling, method for producing the same and resource recovery method
JP3413411B2 (en) Method for producing reclaimed cleaning solution for metal products
JP2001157879A5 (en)
KR100502589B1 (en) Method of regenerating effluent as washing liquid for metal products
JP2005144209A (en) Fluorine-containing waste water treatment method
JPH11186207A (en) Cleaning water for electronic material
KR100415261B1 (en) Electronic display device and cleaning and etching composition for substrate
JP2000262992A (en) Substrate washing method
US20160102250A1 (en) Reverse osmosis for purifying mixtures of hydrofluoric acid and nitric acid
RU2065488C1 (en) Detergent for polymeric surface washing off and a method of washing off
KR101856854B1 (en) Apparatus for hydrogen-dissolving water
TWI434725B (en) Method for purifying fluoride etching solution by using hydroxide compound and ion exchange resin absorption
JP4203776B2 (en) Cleaning liquid for electronic materials

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3413411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term