JP2002115006A - Method for predicting abnormality in operation caused by fluctuation of blasting pressure in blast furnace - Google Patents

Method for predicting abnormality in operation caused by fluctuation of blasting pressure in blast furnace

Info

Publication number
JP2002115006A
JP2002115006A JP2000309953A JP2000309953A JP2002115006A JP 2002115006 A JP2002115006 A JP 2002115006A JP 2000309953 A JP2000309953 A JP 2000309953A JP 2000309953 A JP2000309953 A JP 2000309953A JP 2002115006 A JP2002115006 A JP 2002115006A
Authority
JP
Japan
Prior art keywords
blast furnace
pressure
measuring device
change
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000309953A
Other languages
Japanese (ja)
Other versions
JP3938658B2 (en
Inventor
Shinroku Matsuzaki
眞六 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000309953A priority Critical patent/JP3938658B2/en
Publication of JP2002115006A publication Critical patent/JP2002115006A/en
Application granted granted Critical
Publication of JP3938658B2 publication Critical patent/JP3938658B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform a stable operation of a blast furnace by easily and surely predicting the abnormality in the operation caused by the fluctuation of blasting pressure in the blast furnace. SOLUTION: Pressure measuring instruments 2 for measuring the pressure in the blast furnace 1 are arranged in plural steps in the height direction of side walls in the blast furnace 1 as a measuring instrument group 4, and these groups 4 are set in plural positions in the peripheral direction. The pressure difference in each step in each measuring instrument group 4 is inspected, and the fluctuation of the pressure difference with the lapse of time is indicated in three-dimensions, and the abnormality in the operation is predicted by observing the fluctuation of the pressure difference indicated in the three-dimensions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高炉の風圧変動に
伴う操業異常予知方法に関し、特に吹き抜け現象を予知
して操業異常を予防しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting an abnormal operation caused by a change in wind pressure of a blast furnace, and more particularly to a method for preventing an abnormal operation by predicting a blow-by phenomenon.

【0002】[0002]

【従来の技術】近年の高炉操業においては、使用するコ
ークス量を減少させて低コスト化を図るために、粉炭比
を135〜140kg/t程度まで増加させる操業が行
われている。しかしながら、高生産を行うと、融着帯下
部が限界付近にまで低下し、粉炭の熱レベルの調整のた
めに炉壁が煽られて風圧変動が発生してしまう。このよ
うな風圧変動が発生すると、いわゆる吹き抜け現象が生
じて操業異常となり、安定した高炉操業を行うことがで
きない。
2. Description of the Related Art In recent blast furnace operations, in order to reduce the amount of coke to be used and to reduce the cost, an operation of increasing the pulverized coal ratio to about 135 to 140 kg / t is performed. However, when high production is performed, the lower part of the cohesive zone is reduced to near the limit, and the furnace wall is swung to adjust the heat level of the pulverized coal, thereby causing wind pressure fluctuations. When such a wind pressure fluctuation occurs, a so-called blow-by phenomenon occurs, and an operation becomes abnormal, and stable blast furnace operation cannot be performed.

【0003】このような吹き抜け現象が発生する原因に
は、以下のものが考えられる。第1に、原材料の装入ト
ラブルや出銑のトラブル、あるいは原材料の装入におい
て円周方向のバランスが乱れていることが、吹き抜け現
象の原因となる。第2に、コークス比(コークス/出銑
量)を低くし、オアバイコークス(鉱石量とコークス量
の比)を高くすることにより、コークスベッドの形成不
良が発生し、これが吹き抜け現象の原因となる。第3
に、コークス粉化や焼結鉱還元粉化による粉の蓄積が、
吹き抜け現象の原因となる。第4に、高生産すなわち高
ボッシュガス量により炉下部の通気不良が発生し、これ
が吹き抜け現象の原因となる。
The following are conceivable causes of such a blow-by phenomenon. First, the problem of charging of raw materials, the problem of tapping, or the imbalance in the circumferential direction in the charging of raw materials causes a blow-through phenomenon. Second, by lowering the coke ratio (coke / tapped amount) and increasing the ore coke (ratio between the amount of ore and the amount of coke), poor coke bed formation occurs, which causes the blow-through phenomenon. Become. Third
In addition, the accumulation of powder due to coke powdering and sinter reduction powdering,
It causes the blow-by phenomenon. Fourth, high production, that is, a high amount of Bosch gas, causes poor ventilation in the lower part of the furnace, which causes a blow-through phenomenon.

【0004】高炉の安定操業を行うためには、これらの
吹き抜け現象の原因を特定して、予め除去する必要があ
る。また、吹き抜け現象の原因を特定するためには、吹
き抜け部位を特定しなければならない。従来より、この
種の操業異常を予知するための方法として、例えば特公
昭60−41123号公報、特公平3−126806号
公報等に、その技術が開示されている。このような従来
の操業異常の予知方法では、炉内に、温度、圧力、ガス
組成等を検出するためのセンサを設置し、これらのセン
サの測定値に基づいて設定基準値や理論値との比較を行
い、操業異常を予知していた。
In order to stably operate the blast furnace, it is necessary to identify the cause of the blow-by phenomenon and remove it in advance. Also, in order to identify the cause of the blow-by phenomenon, the blow-by site must be specified. Conventionally, as a method for predicting this kind of operation abnormality, the technology is disclosed in, for example, Japanese Patent Publication No. 60-41123 and Japanese Patent Publication No. 3-126806. In such a conventional method for predicting operation abnormality, sensors for detecting temperature, pressure, gas composition, and the like are installed in a furnace, and a set reference value or a theoretical value based on measured values of these sensors is used. A comparison was made to predict operational abnormalities.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た従来の操業異常の予知方法では、操業異常が発生しよ
うとしているにもかかわらず、センサの測定値が異常を
示さないこともあり、操業異常の発生を的確に予知する
ことができなかった。また、センサの測定値が異常を示
した場合であっても、その解析には専門的知識を必要と
し、誰もが操業異常の発生を読みとることができるもの
ではなかった。このため、センサを設置した場合であっ
ても、操業異常の発生を予知するためには、結局、熟練
した作業者の勘に頼らざるを得ず、安定した高炉操業の
維持を難しいものとしていた。本発明に係る高炉の風圧
変動に伴う異常操業予知方法は、上述した事情に鑑み提
案されたもので、高炉の風圧変動に伴う操業異常を容易
かつ的確に予知することにより、安定した高炉操業を行
うことを目的とする。
However, according to the above-mentioned conventional method for predicting an operation abnormality, the measured value of the sensor may not indicate an abnormality even though an operation abnormality is about to occur. The outbreak could not be accurately predicted. Further, even when the measurement value of the sensor indicates an abnormality, the analysis requires specialized knowledge, and no one can read the occurrence of the operation abnormality. For this reason, even if a sensor is installed, in order to predict the occurrence of an operation abnormality, it must ultimately rely on the intuition of a skilled worker, making it difficult to maintain stable blast furnace operation. . The abnormal operation prediction method according to the wind pressure fluctuation of the blast furnace according to the present invention is proposed in view of the above-described circumstances, and easily and accurately predicts the operation abnormality due to the wind pressure fluctuation of the blast furnace, thereby stably operating the blast furnace. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】本発明に係る高炉の風圧
変動に伴う異常操業予知方法は、上述した目的を達成す
るためのもので、高炉側壁の高さ方向に、高炉内の圧力
を測定するための圧力測定装置を複数段設けて測定装置
群とするとともに、該測定装置群を高炉の周方向に複数
箇所設置し、前記測定装置群毎に各段の差圧を測定し、
前記差圧の時間経過に伴う変化を3次元表示し、前記3
次元表示した差圧の変化を監視することにより、操業異
常を予知することを特徴とするものである。このよう異
常操業予知方法を採用することにより、3次元表示され
た差圧の時間経過に伴う変化を監視するだけで、専門的
知識を必要とせず、また熟練した技術者の勘に頼ること
なく、安定した高炉操業を行うことができる。
SUMMARY OF THE INVENTION The method of predicting abnormal operation of a blast furnace according to the present invention in order to achieve the above-mentioned object is to measure the pressure in the blast furnace in the height direction of the blast furnace side wall. A plurality of pressure measuring devices are provided for the measurement device group by providing a plurality of stages, and the measurement device group is installed at a plurality of locations in the circumferential direction of the blast furnace, and the differential pressure of each stage is measured for each of the measurement device groups,
The three-dimensional display of the change with time of the differential pressure is displayed.
The present invention is characterized in that an abnormal operation is predicted by monitoring a change in the differential pressure indicated in a three-dimensional manner. By adopting the abnormal operation prediction method as described above, it is only necessary to monitor the change with time of the three-dimensionally displayed differential pressure, without requiring specialized knowledge and without relying on the intuition of a skilled engineer. , And stable blast furnace operation can be performed.

【0007】また、前記各測定装置群には、前記圧力測
定装置とともにステーブ温度を測定するための温度測定
装置を設け、前記測定装置群毎に各段のステーブ温度を
測定し、前記ステーブ温度の時間経過に伴う変化を3次
元表示し、前記3次元表示した差圧の変化を監視すると
ともに、前記3次元表示したステーブ温度の変化を監視
することにより、操業異常を予知することが好ましい。
このような異常操業予知方法を採用することにより、差
圧の変化とともにステーブ温度の変化も監視することが
でき、さらに確実に操業異常を予知することができる。
In each of the measuring device groups, a temperature measuring device for measuring a stave temperature is provided together with the pressure measuring device, and a stave temperature of each stage is measured for each of the measuring device groups. It is preferable that the change with time is displayed three-dimensionally, the change in the differential pressure displayed three-dimensionally is monitored, and the change in the stave temperature displayed three-dimensionally is monitored, thereby predicting an abnormal operation.
By employing such an abnormal operation prediction method, it is possible to monitor a change in stave temperature as well as a change in differential pressure, and it is possible to more reliably predict an operation abnormality.

【0008】また、前記圧力測定装置による各段の差圧
の測定では、各段の絶対圧の差を各段間の距離で除すこ
とにより基準化して差圧を求めることが好ましい。この
ような異常操業予知方法を採用することにより、差圧の
変化が基準化され、操業異常の発生をさらに容易に予知
することができる。
In the measurement of the differential pressure at each stage by the pressure measuring device, it is preferable to obtain the differential pressure by dividing the absolute pressure difference at each stage by the distance between the stages to standardize. By employing such an abnormal operation prediction method, the change in the differential pressure is standardized, and the occurrence of the operation abnormality can be more easily predicted.

【0009】[0009]

【発明の実施の形態】以下、図面に基づいて、本発明に
係る高炉の風圧変動に伴う異常操業予知方法の一実施形
態を説明する。図1は、本発明に係る異常操業予知方法
に使用する測定装置等の配置を示す説明図であり、図1
(a)は、高炉の縦断面を示す説明図、図1(b)は、
高炉の横断面を示す説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a method for predicting an abnormal operation due to a wind pressure fluctuation of a blast furnace according to the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view showing the arrangement of measuring devices and the like used in the abnormal operation prediction method according to the present invention.
(A) is an explanatory view showing a longitudinal section of a blast furnace, and FIG.
It is explanatory drawing which shows the cross section of a blast furnace.

【0010】高炉1の側壁には、図1(a)に示すよう
に、高炉1内の圧力を測定するための圧力測定装置2と
ステーブ温度を測定するための温度測定装置3とを、高
さ方向に複数段設けて測定装置群4を構成している。ま
た、この測定装置群4は、図1(b)に示すように、高
炉1の周方向に複数箇所設置されている。図1に示す例
では、高炉1の高さ方向に10個の測定装置群4を設
け、この測定装置群4を高炉1の周方向に等間隔で4カ
所設置している。また、各測定装置群4は、測定した圧
力情報および温度情報を収集して処理するための処理装
置5に接続されている。
As shown in FIG. 1A, a pressure measuring device 2 for measuring the pressure in the blast furnace 1 and a temperature measuring device 3 for measuring the stave temperature are provided on the side wall of the blast furnace 1. The measuring device group 4 is configured by providing a plurality of stages in the vertical direction. Further, as shown in FIG. 1B, a plurality of the measuring device groups 4 are provided at a plurality of positions in the circumferential direction of the blast furnace 1. In the example shown in FIG. 1, ten measuring device groups 4 are provided in the height direction of the blast furnace 1, and the four measuring device groups 4 are installed at equal intervals in the circumferential direction of the blast furnace 1. Further, each measuring device group 4 is connected to a processing device 5 for collecting and processing measured pressure information and temperature information.

【0011】この処理装置5は、例えばキーボードやマ
ウス等の入力手段と、CRTディスプレイやプリンタ等
の出力手段と、ハードディスク記憶装置等の記憶手段と
を備えたコンピュータから構成される。各測定装置群4
で測定された圧力情報および温度情報は、処理装置5に
送信されて演算処理され、3次元表示されたグラフとし
て出力される。処理装置5における演算処理では、各段
の絶対圧の差を各段間の距離で除すことにより基準化し
て差圧を求めている。
The processing device 5 is composed of a computer provided with input means such as a keyboard and a mouse, output means such as a CRT display and a printer, and storage means such as a hard disk storage device. Each measuring device group 4
The pressure information and the temperature information measured in are transmitted to the processing device 5 and subjected to arithmetic processing, and are output as a three-dimensionally displayed graph. In the arithmetic processing in the processing device 5, the differential pressure is obtained by standardizing by dividing the absolute pressure difference of each stage by the distance between the stages.

【0012】なお、各測定装置群4における圧力測定装
置2と温度測定装置3の配置個数および配置位置は、適
宜変更して実施することができる。また、各測定装置群
4において、圧力測定装置2のみ、あるいは温度測定装
置3のみを設置した箇所が存在していてもかまわない。
さらに、高炉1の周方向に設置する測定装置群4の配置
個数および配置位置も、適宜変更して実施することがで
きる。また、処理装置5は、必ずしも1つの機器により
構成する必要はなく、情報を収集する機器と、収集した
情報を処理して3次元グラフを出力する機器等のよう
に、複数の機器により構成することもできる。
The number and positions of the pressure measuring devices 2 and the temperature measuring devices 3 in each of the measuring device groups 4 can be changed as appropriate. Further, in each of the measurement device groups 4, a portion where only the pressure measurement device 2 or only the temperature measurement device 3 is installed may exist.
Further, the number and positions of the measuring device groups 4 installed in the circumferential direction of the blast furnace 1 can be changed as appropriate and implemented. The processing device 5 does not necessarily need to be configured by one device, but is configured by a plurality of devices such as a device that collects information and a device that processes the collected information and outputs a three-dimensional graph. You can also.

【0013】処理装置5により出力された3次元グラフ
を、図2に基づいて説明する。図2は、測定した情報の
時間経過に伴う変化を3次元表示したグラフで、図2
(a)は、差圧の3次元グラフ、図2(b)はステーブ
温度の3次元グラフである。図2(a)に示す例は、2
70度方向に設置された測定装置群4における差圧の測
定結果を表したもので、横軸に時間、縦軸に差圧をと
り、時間経過に伴う差圧の変化を示している。
The three-dimensional graph output by the processing device 5 will be described with reference to FIG. FIG. 2 is a graph showing a three-dimensional display of a change over time of the measured information.
(A) is a three-dimensional graph of differential pressure, and FIG. 2 (b) is a three-dimensional graph of stave temperature. The example shown in FIG.
It shows the measurement result of the differential pressure in the measuring device group 4 installed in the 70-degree direction, in which the horizontal axis represents time and the vertical axis represents the differential pressure, and the change of the differential pressure over time is shown.

【0014】横軸に示す(i)〜(iii)は日にちを表
し、1200,1400等の数字は時刻を表している。
縦軸に示すBP〜B3,S1〜S5,TPは、測定装置
群4における圧力測定装置2の設置位置を表し、下方か
ら上方に向かって、BP,B2,B3,S1,S3,S
5,TPの順に設置されている。したがって、例えばS
5−TPとは、TPとS5との差圧であり、S3−S5
とは、S5とS3との差圧のことである。また、差圧
は、図2(a)中に示すように、0.00〜0.25k
g/cmの範囲で0.05kg/cm毎に区別して
表示されている。
(I) to (iii) shown on the horizontal axis represent dates, and numerals such as 1200 and 1400 represent time.
BP to B3, S1 to S5, and TP shown on the vertical axis indicate the installation positions of the pressure measurement devices 2 in the measurement device group 4, and BP, B2, B3, S1, S3, S
5 and TP. Thus, for example, S
5-TP is the differential pressure between TP and S5, and S3-S5
Is the pressure difference between S5 and S3. Also, as shown in FIG. 2A, the differential pressure is 0.00 to 0.25 k.
In the range of g / cm 3 , the values are separately displayed every 0.05 kg / cm 3 .

【0015】同様に、図2(b)に示す例は、270度
方向に設置された測定装置群4におけるステーブ温度の
測定結果を表したもので、横軸に時間、縦軸にステーブ
温度をとり、時間経過に伴う差圧の変化を示している。
横軸に示す(i)〜(iii)は日にちを表し、1200,
1400等の数字は時刻を表している。縦軸に示すB1
L〜B3U,S1〜S5は、測定装置群4における温度
測定装置3の設置位置を表し、下方から上方に向かっ
て、B1L,B1U,B2L,B2U,B3L,B3
U,S1,S2,S3,S4,S5の順に設置されてい
る。また、ステーブ温度は、図2(b)中に示すよう
に、0〜500℃の範囲で100℃毎に区別して表示さ
れている。なお、図2(a)(b)において、縦の破線
の位置において、吹き抜け現象が発生している。
Similarly, the example shown in FIG. 2B shows the measurement result of the stave temperature in the measuring device group 4 installed in the 270 degree direction. The horizontal axis represents time, and the vertical axis represents stave temperature. 9 shows the change in the differential pressure over time.
(I) to (iii) shown on the horizontal axis represent dates, 1200,
A number such as 1400 represents time. B1 shown on the vertical axis
L to B3U and S1 to S5 represent the installation positions of the temperature measurement devices 3 in the measurement device group 4, and B1L, B1U, B2L, B2U, B3L, B3 from the bottom to the top.
U, S1, S2, S3, S4, and S5 are installed in this order. Further, as shown in FIG. 2 (b), the stave temperature is displayed in a range of 0 to 500 ° C. and is distinguished every 100 ° C. In FIGS. 2A and 2B, a blow-by phenomenon occurs at a position indicated by a vertical broken line.

【0016】図2(a)(b)の3次元グラフによれ
ば、(ii)日目の17時30分頃に吹き抜け現象が発生
しており、B2−B3間の差圧が極端に上昇している。
また、この吹き抜け現象が発生する以前に、(ii)日目
の10時30分頃からB2−B3間の差圧が上昇してお
り、特に(ii)日目の13時30分頃と14時30分頃
にB2−B3間の差圧が極端に上昇している。これに対
応して、(ii)日目の11時頃からB2Uのステーブ温
度が上昇しており、特に(ii)日目の13時頃にB2U
のステーブ温度が極端に上昇している。また、同様の現
象が(i)日目の6時頃にも発生している。
According to the three-dimensional graphs of FIGS. 2A and 2B, a blow-through phenomenon occurs at about 17:30 on the second day, and the pressure difference between B2 and B3 rises extremely. are doing.
Further, before the occurrence of the blow-by phenomenon, the differential pressure between B2 and B3 increases at about 10:30 on the (ii) day, and particularly at about 13:30 on the (ii) day. At around 30:30, the pressure difference between B2 and B3 has risen extremely. Correspondingly, the stave temperature of B2U has increased since about 11:00 on (ii) day, and especially at about 13:00 on (ii) day.
Stave temperature has risen extremely. A similar phenomenon also occurs at about 6:00 on day (i).

【0017】上述したように、図2(a)(b)の3次
元グラフに基づく分析結果を総合的に判断すると、B2
レベルにおいて、例えば羽口直上で温度は高いが、鉱石
の軟化により通気性の悪い層、すなわち融着帯が何らか
の要因で降下停滞を起こして停滞層となり、この停滞層
が時間の経過とともに部分的に崩壊したり、部分的に空
洞を生じたりして、この部分を高速のガスが通過するこ
とにより吹き抜け現象を誘発したことが推測される。た
だし、図示しないが、270度方向以外では変化が見ら
れないので、局所的な降下停滞と考えることができる。
As described above, when the analysis results based on the three-dimensional graphs of FIGS. 2A and 2B are comprehensively determined, B2
At the level, for example, the temperature is high just above the tuyere, but the layer with poor air permeability due to the softening of the ore, that is, the cohesive zone falls and stagnates for some reason and becomes a stagnation layer, and this stagnation layer partially becomes over time. It is presumed that the gas collapsed or partially formed a cavity, and a high-speed gas passed through this portion to induce a blow-by phenomenon. However, although not shown, there is no change except in the 270 degree direction, so it can be considered as a local descent stagnation.

【0018】このような停滞層が生じる原因が、高炉1
操業の限界を示唆していると考えられる。上述した例で
は、羽口近傍の熱レベルとガス分布、鉱石の還元、融け
落ち能の整合性が取れないことが原因であると推測する
ことができ、高炉全体の熱還元バランスは取れていて
も、部分的な非整合が生じると破綻を来す例と考えるこ
とができる。また、図2(a)に示す例では、270度
方向の各段毎に差圧が周期的に変動している。このよう
な10時間以上の周期的な差圧変動は、原料の装入や操
業変更の影響と推定することができる。
The cause of such a stagnant layer is that the blast furnace 1
It is considered to indicate the limitation of operation. In the above example, it can be assumed that the cause is that the heat level near the tuyere and the gas distribution, the reduction of ore, and the ability to burn down are not consistent, and the heat reduction balance of the entire blast furnace is balanced. However, it can be considered as an example that a failure occurs when a partial mismatch occurs. In the example shown in FIG. 2A, the differential pressure periodically fluctuates at each stage in the 270 degree direction. Such a periodic pressure fluctuation of 10 hours or more can be presumed to be the influence of the charging of the raw material or the change in the operation.

【0019】上述したような3次元グラフの変化は、専
門的な知識や、長年の経験を持たない者であっても容易
に読みとることができる。したがって、このような3次
元グラフの変化に基づいて異常操業を予知して、吹き抜
け現象が発生する原因を除去することにより、安定した
高炉操業を行うことができる。なお、上述した図2に示
す例において吹き抜け現象が発生しているが、これは、
本発明に係る異常操業予知方法を説明するためであり、
本発明に係る異常操業予知方法では、実際に吹き抜け現
象が発生する以前に、その原因を除去することにより吹
き抜け現象の発生を未然に防ぐことができる。
The change of the three-dimensional graph as described above can be easily read even by a person who does not have specialized knowledge or years of experience. Therefore, a stable blast furnace operation can be performed by predicting an abnormal operation based on such a change in the three-dimensional graph and removing the cause of the blow-by phenomenon. The blow-by phenomenon occurs in the example shown in FIG. 2 described above.
In order to explain the abnormal operation prediction method according to the present invention,
In the abnormal operation prediction method according to the present invention, it is possible to prevent the occurrence of the blow-by phenomenon by removing the cause before the blow-by phenomenon actually occurs.

【0020】[0020]

【発明の効果】本発明に係る高炉の風圧変動に伴う操業
異常予知方法は、上記した構成を有するので、以下に示
すような効果を奏することができる。すなわち、本発明
に係る高炉の風圧変動に伴う操業異常予知方法では、高
炉の高さ方向に複数段にわたって設けた圧力測定装置に
より高炉内の圧力を測定し、各段の差圧の時間経過に伴
う変化を3次元表示して、差圧の変化を監視している。
したがって、差圧の変化を3次元表示することにより、
差圧の変化を一目で認識することができるので、専門的
知識を必要とせず、また熟練した技術者の勘に頼ること
なく、安定した高炉操業を行うことができる。
The method for predicting an abnormality in operation of a blast furnace according to the present invention having the above-mentioned structure has the following effects. That is, in the method for predicting an abnormal operation due to the wind pressure fluctuation of the blast furnace according to the present invention, the pressure in the blast furnace is measured by a pressure measuring device provided over a plurality of stages in the height direction of the blast furnace, and the time of the differential pressure of each stage is measured. The accompanying change is three-dimensionally displayed to monitor the change in the differential pressure.
Therefore, by displaying the change of the differential pressure in three dimensions,
Since the change in differential pressure can be recognized at a glance, stable blast furnace operation can be performed without requiring specialized knowledge and without relying on the intuition of a skilled engineer.

【0021】また、ステーブ温度を測定するための温度
測定装置を設け、各段のステーブ温度の時間経過に伴う
変化を3次元表示して、ステーブ温度の変化を監視して
いる。したがって、差圧の変化を監視するだけではなく
ステーブ温度の変化も監視しているので、さらに確実に
操業異常を予知することができる。
Further, a temperature measuring device for measuring the stave temperature is provided, and the change with time of the stave temperature of each stage is three-dimensionally displayed to monitor the stave temperature change. Therefore, since not only the change in the differential pressure but also the change in the stave temperature is monitored, it is possible to more reliably predict the operation abnormality.

【0022】また、圧力測定装置による各段の差圧の測
定では、各段の絶対圧の差を各段間の距離で除すことに
より基準化して差圧を求めている。したがって、操業異
常の発生をさらに容易に予知することができる。
In the measurement of the differential pressure at each stage by the pressure measuring device, the differential pressure is obtained by dividing the absolute pressure difference at each stage by the distance between the stages. Therefore, the occurrence of the operation abnormality can be more easily predicted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る異常操業予知方法に使用する測定
装置等の配置を示す説明図であり、(a)は、高炉の縦
断面を示す説明図、(b)は、高炉の横断面を示す説明
図である。
FIG. 1 is an explanatory view showing an arrangement of a measuring device and the like used in the abnormal operation prediction method according to the present invention, wherein (a) is an explanatory view showing a longitudinal section of a blast furnace, and (b) is a transverse section of the blast furnace. FIG.

【図2】測定した情報の時間経過に伴う変化を3次元表
示したグラフで、(a)は、差圧の3次元グラフ、
(b)はステーブ温度の3次元グラフである。
FIG. 2 is a graph showing a three-dimensional display of a change over time of measured information, wherein (a) is a three-dimensional graph of differential pressure;
(B) is a three-dimensional graph of the stave temperature.

【符号の説明】[Explanation of symbols]

1 高炉 2 圧力測定装置 3 温度測定装置 4 測定装置群 5 処理装置 Reference Signs List 1 blast furnace 2 pressure measuring device 3 temperature measuring device 4 measuring device group 5 processing device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】高炉側壁の高さ方向に、高炉内の圧力を測
定するための圧力測定装置を複数段設けて測定装置群と
するとともに、該測定装置群を高炉の周方向に複数箇所
設置し、 前記測定装置群毎に各段の差圧を測定し、 前記差圧の時間経過に伴う変化を3次元表示し、 前記3次元表示した差圧の変化を監視することにより、
操業異常を予知することを特徴とする高炉の風圧変動に
伴う操業異常予知方法。
1. A plurality of pressure measuring devices for measuring the pressure inside a blast furnace are provided in a height direction of a side wall of a blast furnace to form a group of measuring devices, and the measuring device groups are installed at a plurality of locations in a circumferential direction of the blast furnace. By measuring the differential pressure of each stage for each of the measuring device groups, three-dimensionally displaying a change with time of the differential pressure, and monitoring a change in the three-dimensionally displayed differential pressure,
A method for predicting an operation abnormality due to a wind pressure fluctuation of a blast furnace, which is characterized by predicting an operation abnormality.
【請求項2】前記各測定装置群には、前記圧力測定装置
とともにステーブ温度を測定するための温度測定装置を
設け、 前記測定装置群毎に各段のステーブ温度を測定し、 前記ステーブ温度の時間経過に伴う変化を3次元表示
し、 前記3次元表示した差圧の変化を監視するとともに、前
記3次元表示したステーブ温度の変化を監視することに
より、操業異常を予知することを特徴とする請求項1記
載の高炉の風圧変動に伴う操業異常予知方法。
2. A temperature measuring device for measuring a stave temperature together with the pressure measuring device is provided in each of the measuring device groups; a stave temperature of each stage is measured for each of the measuring device groups; A change with time is displayed three-dimensionally, and a change in the differential pressure displayed in the three-dimensional manner is monitored, and a change in the stave temperature displayed in the three-dimensional manner is monitored to predict an abnormal operation. The method for predicting an operation abnormality associated with wind pressure fluctuations of a blast furnace according to claim 1.
【請求項3】前記圧力測定装置による各段の差圧の測定
では、各段の絶対圧の差を各段間の距離で除すことによ
り基準化して差圧を求めることを特徴とする請求項1ま
たは2記載の高炉の風圧変動に伴う操業異常予知方法。
3. The differential pressure measurement of each stage by the pressure measuring device, wherein the differential pressure is determined by dividing the absolute pressure difference of each stage by the distance between the stages. Item 3. The method for predicting an operation abnormality associated with a blast furnace wind pressure fluctuation according to item 1 or 2.
JP2000309953A 2000-10-10 2000-10-10 A method for predicting blow-through phenomena associated with blast furnace wind pressure fluctuations. Expired - Lifetime JP3938658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000309953A JP3938658B2 (en) 2000-10-10 2000-10-10 A method for predicting blow-through phenomena associated with blast furnace wind pressure fluctuations.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000309953A JP3938658B2 (en) 2000-10-10 2000-10-10 A method for predicting blow-through phenomena associated with blast furnace wind pressure fluctuations.

Publications (2)

Publication Number Publication Date
JP2002115006A true JP2002115006A (en) 2002-04-19
JP3938658B2 JP3938658B2 (en) 2007-06-27

Family

ID=18789997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000309953A Expired - Lifetime JP3938658B2 (en) 2000-10-10 2000-10-10 A method for predicting blow-through phenomena associated with blast furnace wind pressure fluctuations.

Country Status (1)

Country Link
JP (1) JP3938658B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101267692B1 (en) 2011-06-29 2013-05-27 현대제철 주식회사 Method for controlling and prejudgement of blowing pressure in blast furnace
KR101321926B1 (en) 2011-12-07 2013-10-28 주식회사 포스코 Method for calculating fluctuation of gas flow in furnace
JP2018009224A (en) * 2016-07-14 2018-01-18 株式会社神戸製鋼所 Operation condition evaluation system
JP2020169385A (en) * 2019-04-04 2020-10-15 日本製鉄株式会社 Method for detecting fluctuation of gas pressure in furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101267692B1 (en) 2011-06-29 2013-05-27 현대제철 주식회사 Method for controlling and prejudgement of blowing pressure in blast furnace
KR101321926B1 (en) 2011-12-07 2013-10-28 주식회사 포스코 Method for calculating fluctuation of gas flow in furnace
JP2018009224A (en) * 2016-07-14 2018-01-18 株式会社神戸製鋼所 Operation condition evaluation system
JP2020169385A (en) * 2019-04-04 2020-10-15 日本製鉄株式会社 Method for detecting fluctuation of gas pressure in furnace
JP7307341B2 (en) 2019-04-04 2023-07-12 日本製鉄株式会社 Furnace gas pressure fluctuation detection method

Also Published As

Publication number Publication date
JP3938658B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
US8566070B2 (en) Apparatus abnormality monitoring method and system
JP6690081B2 (en) Operation status evaluation system
US8593296B2 (en) System and method for turbine bucket tip shroud deflection measurement
Wu et al. An np control chart for monitoring the mean of a variable based on an attribute inspection
JP7078176B2 (en) Production equipment monitoring method, production equipment monitoring equipment, and production equipment operation method
JP2017128805A (en) Operation method of blast furnace
JP5780792B2 (en) System and method for online monitoring of corrosion
JP2011075373A (en) Method and device for diagnosis of equipment
JP2017190482A (en) System for detecting failure of blast furnace sensor and system for predicting abnormal condition of blast furnace
JP2002115006A (en) Method for predicting abnormality in operation caused by fluctuation of blasting pressure in blast furnace
JP4738309B2 (en) Plant operation data monitoring device
Gamero et al. Predicting aerodynamic instabilities in a blast furnace
JP6927461B1 (en) Operation method and operation system of production equipment
JP7485918B2 (en) Reactor state evaluation device, reactor state evaluation method, reactor state evaluation program, and trained model generation method
RU2801735C1 (en) Control method and control system for production plants
JP3487203B2 (en) Blast furnace condition prediction method
JP4336262B2 (en) In-furnace pressure fluctuation prediction method and apparatus
RU2800300C1 (en) Method of control of production facilities, device of control of production facilities and method of operation of production facilities
EP4282988A1 (en) Blast furnace abnormality determination device, blast furnace abnormality determination method, blast furnace operation method, blast furnace abnormality determination system, abnormality determination server device, display terminal device, program for abnormality determination server device, and program for display terminal device
JP2019204342A (en) Sign diagnosis system
JP2017165999A (en) Operation method of blast furnace
KR101185330B1 (en) Method of detecting distribution of gas stream in blast furnace
KR930000841B1 (en) Method for testing the gas in the blast furnace
KR101175407B1 (en) Method of detecting gas stream of upper part of blast furnace using heat emission index
AU2018280425A1 (en) Optimiser for transfer funnels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070323

R151 Written notification of patent or utility model registration

Ref document number: 3938658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350