JP2002112776A - Alkaline pullulanase - Google Patents

Alkaline pullulanase

Info

Publication number
JP2002112776A
JP2002112776A JP2000303805A JP2000303805A JP2002112776A JP 2002112776 A JP2002112776 A JP 2002112776A JP 2000303805 A JP2000303805 A JP 2000303805A JP 2000303805 A JP2000303805 A JP 2000303805A JP 2002112776 A JP2002112776 A JP 2002112776A
Authority
JP
Japan
Prior art keywords
glu
asp
gly
ile
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000303805A
Other languages
Japanese (ja)
Other versions
JP4372986B2 (en
Inventor
Yuji Hatada
勇二 秦田
Kazuhiro Saito
和広 斉藤
Katsuhisa Saeki
勝久 佐伯
Shuji Kawai
修次 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2000303805A priority Critical patent/JP4372986B2/en
Publication of JP2002112776A publication Critical patent/JP2002112776A/en
Application granted granted Critical
Publication of JP4372986B2 publication Critical patent/JP4372986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an alkaline pullulanase that acts at an alkaline region and shows and adequate enzymatic activity even in the presence of a surfactant and a gene encoding the enzyme as well as a method for efficiently mass-producing the alkaline pullulanase by the genetic engineering technique. SOLUTION: The objective alkaline pullulanase is found in enzymes produced by microorganisms in the soil, and a gene encoding the enzyme is cloned. The enzyme has a specific amino acid sequence derived from a bacterium belonging to the genus Bacillus, or has an amino acid sequence modified by deleting, substituting or adding one amino acid or more from, in or to the amino acid sequence. A gene encoding the enzyme, a recombinant vector containing the gene, a transformant containing the recombinant vector, and a method for producing the enzyme using these are also provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は洗剤用酵素として有
用なアルカリプルラナーゼ及びこれをコードする遺伝子
に関する。
TECHNICAL FIELD The present invention relates to an alkaline pullulanase useful as an enzyme for detergents and a gene encoding the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】プルラ
ナーゼは、澱粉、グリコーゲン、アミロペクチンあるい
はプルラン分子中に存在するα−1,6グルコシド結合
のみを切断し、最終的にマルトトリオースを生成する澱
粉分解酵素の一種であり、エンド型アミラーゼ及びエキ
ソ型アミラーゼと併用することにより、澱粉からグルコ
ースやマルトース、マルトトリオース、マルトテトラオ
ース、マルトペンタオース、マルトヘキサオース等のマ
ルトオリゴ糖を生産することができるので、澱粉製造工
業において注目されている酵素である。
2. Description of the Related Art Pullulanase cleaves only the α-1,6 glucosidic bond present in starch, glycogen, amylopectin or pullulan molecules, and finally produces maltotriose. It is a kind of degrading enzyme and can produce maltooligosaccharides such as glucose, maltose, maltotriose, maltotetraose, maltopentaose, and maltohexaose from starch by using in combination with endo-amylase and exo-amylase. It is an enzyme that has attracted attention in the starch manufacturing industry.

【0003】一方、プルラナーゼは、食器や繊維に付着
した澱粉を分解除去できることから洗剤酵素として利用
する試みもあり、本発明者らは、プルナラーゼをアミラ
ーゼと共に食器用又は衣料用洗浄剤に配合することによ
り、澱粉汚れに対する洗浄力が飛躍的に向上することを
見出している(特開平2−132193号公報)。
[0003] On the other hand, pullulanase has been attempted to be used as a detergent enzyme because it can decompose and remove starch attached to tableware and fibers. The present inventors have proposed that pulnarase be combined with amylase in dishwashing or clothing detergents. As a result, it has been found that the detergency of starch stains is dramatically improved (JP-A-2-132193).

【0004】しかしながら、自然界において見出されて
いるプルラナーゼは、殆どが中性ないし酸性領域におい
て最大の酵素活性を示すものであり、洗浄剤組成物の必
要条件であるアルカリ性領域で最大の酵素活性を有す
る、所謂アルカリプルラナーゼは、これまでに、中村と
堀越により報告された酵素(Biochim.Biophys.Acta,39
7,188(1975),特公昭53−27786号公報)と、荒
らによって報告されているバチルス エスピー(Bacillu
s sp.)KSM-AP1876株由来の酵素(特開平3−8717
6号公報)が知られているに過ぎない。従って、界面活
性剤の存在下でも十分な酵素活性を示し、洗剤用酵素と
して有用性の高いアルカリプルラナーゼが求められてい
る。
[0004] However, most of the pullulanases found in nature exhibit the maximum enzymatic activity in a neutral or acidic region, and exhibit the maximum enzymatic activity in an alkaline region which is a necessary condition for a detergent composition. So-called alkaline pullulanase is an enzyme previously reported by Nakamura and Horikoshi (Biochim. Biophys. Acta, 39
7,188 (1975), JP-B-53-27786) and Bacillus sp .
s sp.) Enzyme derived from KSM-AP1876 strain (JP-A-3-8717)
No. 6) is only known. Therefore, there is a demand for an alkaline pullulanase which exhibits sufficient enzyme activity even in the presence of a surfactant and is highly useful as a detergent enzyme.

【0005】本発明の目的は、アルカリ領域で作用し、
界面活性剤の存在下においても十分な酵素活性を示すア
ルカリプルラナーゼ、及びそれをコードする遺伝子、並
びに遺伝子工学的手法により該アルカリプルラナーゼを
効率よく大量生産するための方法を提供することにあ
る。
It is an object of the present invention to operate in the alkaline region,
An object of the present invention is to provide an alkaline pullulanase exhibiting a sufficient enzyme activity even in the presence of a surfactant, a gene encoding the same, and a method for efficiently mass-producing the alkaline pullulanase by a genetic engineering technique.

【0006】[0006]

【課題を解決するための手段】本発明者らは、土壌中の
微生物が産生する酵素の中から、アルカリ領域で作用す
るアルカリプルラナーゼを見出すと共に、該アルカリプ
ルラナーゼをコードする遺伝子のクローニング、遺伝子
組換えによる生産技術の確立に成功した。
Means for Solving the Problems The present inventors have found an alkaline pullulanase that acts in an alkaline region from among enzymes produced by microorganisms in soil, cloned a gene encoding the alkaline pullulanase, Successful establishment of production technology by replacement.

【0007】すなわち、本発明は、配列番号1若しくは
配列番号2に示すアミノ酸配列又は該アミノ酸配列の1
若しくは数個のアミノ酸が欠失、置換若しくは付加され
たアミノ酸配列を有するアルカリプルラナーゼ、該アル
カリプルラナーゼをコードする遺伝子を提供するもので
ある。
That is, the present invention relates to an amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2,
Another object of the present invention is to provide an alkaline pullulanase having an amino acid sequence in which several amino acids have been deleted, substituted or added, and a gene encoding the alkaline pullulanase.

【0008】更に本発明は、上記のアルカリプルラナー
ゼ遺伝子を含有する組換えベクター及び該組換えベクタ
ーを含む形質転換体及びこれらを用いたアルカリプルラ
ナーゼの製造法を提供するものである。
Further, the present invention provides a recombinant vector containing the above-mentioned alkaline pullulanase gene, a transformant containing the recombinant vector, and a method for producing an alkaline pullulanase using the same.

【0009】[0009]

【発明の実施の形態】本発明のアルカリプルラナーゼ
は、配列番号1又は配列番号2に示すアミノ酸配列又は
該アミノ酸配列の1若しくは数個のアミノ酸が欠失、置
換若しくは付加されたアミノ酸配列を有するものであ
り、アルカリプルラナーゼ活性を失わない限り、該アミ
ノ酸配列中のアミノ酸の欠失、置換又は付加(以下、変
異ということがある)は特に制限されないが、配列番号
1又は配列番号2に示すアミノ酸配列と80%以上の相
同性を有していることが好ましい。また、配列番号1の
アミノ酸配列におけるN末端には、1〜数個のアミノ酸
が付加又は欠失していてもよい。ここで、配列番号2で
示されるアミノ酸配列は、配列番号1で示されるアミノ
酸配列の209番から1028番目に相当するものであ
るが、斯かるアミノ酸をコードするDNA断片(配列番
号4)を発現プラスミドベクターpHSP64(Sumito
mo,N. et al., Biosci, Biotech, Biochem. 59, 2172-
1995, 1995)に連結し枯草菌(Bacillus subtilis)によ
って発現させると、配列番号1に示されるアミノ酸を有
するアルカリプルラナーゼと同様の酵素活性を有するア
ルカリプルラナーゼが得られる。
BEST MODE FOR CARRYING OUT THE INVENTION The alkaline pullulanase of the present invention has an amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2 or an amino acid sequence in which one or several amino acids of the amino acid sequence are deleted, substituted or added. The deletion, substitution or addition (hereinafter, sometimes referred to as mutation) of an amino acid in the amino acid sequence is not particularly limited as long as the alkaline pullulanase activity is not lost, but the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2 And preferably 80% or more homology. Further, at the N-terminal in the amino acid sequence of SEQ ID NO: 1, one to several amino acids may be added or deleted. Here, the amino acid sequence represented by SEQ ID NO: 2 corresponds to positions 209 to 1028 of the amino acid sequence represented by SEQ ID NO: 1, and a DNA fragment (SEQ ID NO: 4) encoding such an amino acid is expressed. Plasmid vector pHSP64 (Sumito
mo, N. et al., Biosci, Biotech, Biochem. 59, 2172-
1995, 1995) and expressed by Bacillus subtilis , an alkaline pullulanase having the same enzymatic activity as the alkaline pullulanase having the amino acid shown in SEQ ID NO: 1 is obtained.

【0010】また、本発明アルカリプルラナーゼ遺伝子
は、アルカリプルラナーゼ活性を損なわない限り配列番
号1又は配列番号2のアミノ酸配列又はその前記変異体
をコードするものであればよいが、それぞれ、配列番号
3又は配列番号4で示される塩基発列又は該塩基配列の
1若しくは数個の塩基が欠失、置換若しくは付加された
塩基配列を有するものが好ましい。
The alkaline pullulanase gene of the present invention may be any one which encodes the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 2 or a mutant thereof as long as the alkaline pullulanase activity is not impaired. It is preferable to have a base sequence represented by SEQ ID NO: 4 or a base sequence in which one or several bases of the base sequence are deleted, substituted or added.

【0011】本発明アルカリプルラナーゼのアミノ酸配
列及び遺伝子の塩基配列は、これまでに知られているプ
ルラナーゼとは異なる独自のアミノ酸配列及び塩基配列
を有しており、また後述するようにその酵素学的性質
も、荒らが報告した酵素(特開平3−87176号公
報)を始め、従来のプルラナーゼとは異なる新規な酵素
である。
The amino acid sequence and the nucleotide sequence of the gene of the alkaline pullulanase of the present invention have a unique amino acid sequence and nucleotide sequence different from those of the pullulanase known so far. In terms of properties, the enzyme is a novel enzyme different from conventional pullulanase, including the enzyme reported by Ara (Japanese Unexamined Patent Publication No. 3-87176).

【0012】本発明のアルカリプルラナーゼは、自然界
から分離した微生物、例えば神奈川県横浜市の土壌より
分離され、微工研条寄第3049号(FERM BP-3049)と
して寄託されたBacillus sp. KSM-AP1876株やそれらの
変異体を培養し、得られた培養物から採取することによ
り得ることができるが、該アルカリプルラナーゼをコー
ドする遺伝子を取得し、これを用いて組み換えベクター
を作製し、該組み換えベクターを用いて宿主細胞を形質
転換し、得られた形質転換体を培養し、培養物からアル
カリプルラナーゼを採取する方法によれば、大量生産す
ることができる。
The alkaline pullulanase of the present invention is isolated from microorganisms isolated from the natural world, for example, soil from Yokohama city, Kanagawa prefecture, and deposited as Bacillus sp. KSM- No. 3049 (FERM BP-3049). The strain can be obtained by culturing the AP1876 strain or a mutant thereof and collecting it from the obtained culture.However, a gene encoding the alkaline pullulanase is obtained, and a recombinant vector is prepared using the gene, and the recombinant is prepared. According to a method in which a host cell is transformed with a vector, the obtained transformant is cultured, and alkaline pullulanase is collected from the culture, mass production can be achieved.

【0013】本発明のアルカリプルラナーゼ遺伝子は、
アルカリプルラナーゼ産生菌、例えば上記のBacillus s
p. KSM-AP1876株等から、例えば適当な制限酵素による
染色体DNAの全分解又は部分分解で得られたDNA断
片を適当なベクターに組み込み、大腸菌や枯草菌等に導
入し発現させるショットガン法や、適当なプライマーを
合成してPCR法を用いることによりクローニングする
ことができる。ここで、染色体DNAは、供与菌株か
ら、例えばMarmurの方法(J.,J.Mol.Biol.,3,208
(1961))や斉藤と三浦の方法(Biochem.Biophys.Acta,7
2,619(1963))或いは他の類似な方法を用いて取得すれ
ばよく、また制限酵素は、当該遺伝子を分断しないもの
であれば、いかなるものでも使用できる。また、PCR
法を用いる場合は、例えば、配列番号1に記載のアミノ
酸配列を基にして活性発現必須領域の5′末端の上流及
び3′末端の下流位置に相当する配列のプライマーを合
成し、アルカリプルラナーゼ生産菌の染色体DNAを鋳
型としてPCR反応を行えばアルカリプルラナーゼ遺伝
子を取得できる。
[0013] The alkaline pullulanase gene of the present invention comprises:
Alkaline pullulanase-producing bacteria, such as Bacillus s
p. From the KSM-AP1876 strain or the like, for example, a DNA fragment obtained by total digestion or partial digestion of chromosomal DNA by an appropriate restriction enzyme is incorporated into an appropriate vector, and introduced into Escherichia coli, Bacillus subtilis, or the like, and expressed by the shotgun method. The appropriate primers can be synthesized and cloned by using the PCR method. Here, chromosomal DNA was obtained from the donor strain by, for example, the method of Marmur (J., J. Mol. Biol., 3,208).
(1961)) and the method of Saito and Miura (Biochem. Biophys.
2,619 (1963)) or other similar methods, and any restriction enzyme can be used as long as it does not disrupt the gene. In addition, PCR
When the method is used, for example, a primer having a sequence corresponding to the upstream position of the 5 'end and the downstream position of the 3' end of the active expression essential region is synthesized based on the amino acid sequence of SEQ ID NO: 1 to produce alkaline pullulanase. If a PCR reaction is performed using the chromosomal DNA of the bacterium as a template, an alkaline pullulanase gene can be obtained.

【0014】遺伝子の断片を含む組み換えベクターの作
製に用いられる宿主・ベクター系としては、宿主菌株が
本発明のアルカリプルラナーゼ遺伝子を発現させること
ができ、組換えDNAが宿主菌中で複製可能であり、且
つ組み込んだ当該遺伝子を安定に保持できるものであれ
ば、いかなるものも使用することができる。例えば、大
腸菌(Esherichia coli)K−12系統株を宿主とするE
K系や枯草菌(Bacillus subtilis)のMarburg系統株を
宿主とするBM系等が挙げられる。ここで、宿主菌株
は、EK系では、例えばHB101株、C600株、J
M109株、BM系では、例えばBD170株、MI1
12株、ISW1214株等が挙げられ、ベクターとし
ては、EK系では、例えばpBR322、pHY300
PLKやpUC18等、またBM系では、例えばpUB
110、pHY300PLK等が挙げられ、更にこれら
を使用して構築したベクターも使用できる。本発明の遺
伝子を含む組換えDNAの好適な例として、プラスミド
pAP100(図1)等が挙げられる。本プラスミドは
本発明の遺伝子5.0kbpを含む断片とpHY300
PLKの一部からなる10.1kbpの組換えプラスミ
ドである。また、組換えDNAを含有する組換え微生物
の好適な例としては、E.coliHB101(pAP10
0)株が挙げられる。
[0014] As a host-vector system used for preparing a recombinant vector containing a gene fragment, a host strain can express the alkaline pullulanase gene of the present invention, and the recombinant DNA can be replicated in the host bacterium. Any gene can be used as long as it can stably retain the incorporated gene. For example, E. coli using Escherichia coli K-12 strain as a host
Examples include the K system and the BM system using the Marburg strain of Bacillus subtilis as a host. Here, the host strain is, for example, HB101 strain, C600 strain, J
For the M109 strain and the BM strain, for example, BD170 strain, MI1
12 strains, ISW1214 strain, and the like. As the vector, in the case of the EK system, for example, pBR322, pHY300
PLK, pUC18, etc., and in the BM system, for example, pUB
110, pHY300PLK, etc., and vectors constructed using these can also be used. Suitable examples of the recombinant DNA containing the gene of the present invention include plasmid pAP100 (FIG. 1). This plasmid is constructed by combining a fragment containing 5.0 kbp of the gene of the present invention with pHY300.
It is a 10.1 kbp recombinant plasmid consisting of a part of PLK. Preferred examples of recombinant microorganisms containing recombinant DNA include E. coli HB101 (pAP10
0) strains.

【0015】組換えDNAによる宿主菌株の形質転換の
方法は、例えば、EK系宿主菌株の場合、塩化カルシウ
ム法(Mandel,M.and Higa,A.,J.Mol.Biol.,53,159(197
0))等、またBM系宿主菌株の場合には、プロトプラス
ト法(Chang,C.and Cohen.S.N.,Mol.Gen.Genet.,168,11
1(1978))等を用いることができる。
A method for transforming a host strain with a recombinant DNA is, for example, a calcium chloride method (Mandel, M. and Higa, A., J. Mol. Biol., 53, 159 (197)
0)) and the like, and in the case of the BM host strain, the protoplast method (Chang, C. and Cohen. SN, Mol. Gen. Genet., 168, 11).
1 (1978)) and the like.

【0016】組換え微生物の選択は、形質転換操作が施
された菌体をプルラン又はレッドプルランを含む寒天プ
レートにレプリカ法等によって移植して培養した後、集
落を出現させ、プルラン寒天プレート上でハローを形成
することのできるコロニーを検出することにより行うこ
とができる。得られた組換え微生物が保持する組換えD
NAは、通常のプラスミド調製法あるいはファージDN
A調製法(Maniatis,T.et al.,Molecular Cloning,Cold
Spring HarborLaboratory,New York,(1982))を用いて
抽出でき、更に各種制限酵素による切断パターンを電気
泳動法等によって解析することによって、組換えDNA
がベクターDNAとアルカリプルラナーゼ遺伝子を含む
DNA断片が結合したものであることを確認できる。
[0016] Selection of the recombinant microorganism is performed by transplanting the transformed cells onto an agar plate containing pullulan or red pullulan by a replica method or the like, culturing the colonies, allowing the colonies to appear, and pulling the colonies on a pullulan agar plate. The detection can be performed by detecting a colony capable of forming a halo. Recombinant D retained by the obtained recombinant microorganism
NA is determined by a conventional plasmid preparation method or phage DN.
A Preparation Method (Maniatis, T. et al., Molecular Cloning, Cold
Spring Harbor Laboratory, New York, (1982)), and by analyzing the cleavage patterns by various restriction enzymes by electrophoresis or the like, the recombinant DNA can be extracted.
Can be confirmed to be a combination of a vector DNA and a DNA fragment containing an alkaline pullulanase gene.

【0017】形質転換体の培養は、微生物の資化可能な
炭素源、窒素源その他の必須栄養素を含む培地に接種
し、常法に従って行えば良く、得られた培養液から、一
般に知られている酵素の採取及び精製方法に準じた方法
により、アルカリプルラナーゼを得ることができる。
The culture of the transformant may be performed by inoculating a medium containing a carbon source, a nitrogen source and other essential nutrients which can be used by microorganisms, and conducting the culture according to a conventional method. Alkaline pullulanase can be obtained by a method according to a method for collecting and purifying an enzyme.

【0018】かくして得られた本発明のアルカリプルラ
ナーゼは、配列番号1又は2で示されるアミノ酸配列を
有し、その酵素学的性質は以下に示す通り、最適反応p
Hが8.5〜9.5であるという特徴を有する。
The thus-obtained alkaline pullulanase of the present invention has the amino acid sequence represented by SEQ ID NO: 1 or 2, and its enzymatic properties are as follows,
It has a feature that H is 8.5 to 9.5.

【0019】<酵素学的性質> (1)作用 プルランのα−1,6グルコシド結合を加水分解して、
マルトトリオースを生成する。また、デンプン、アミロ
ペクチン、グリコーゲンのα−1,6グルコシド結合を
加水分解する。 (2)最適反応pH pH8.5〜9.5である。 (3)安定pH pH7〜10の範囲で極めて安定である。 (4)最適反応温度 50〜55℃で作用する。 (5)耐熱性 50℃までは安定である(トリス・塩酸10mM(pH8.
5)緩衝液中、50℃、30分間処理で85%以上の活
性を保持する)。 (6)分子量 SDS−ポリアクリルアミドゲル電気泳動法による野生
型の推定分子量は、120,000〜130,000で
ある。
<Enzymatic Properties> (1) Action The α-1,6 glucosidic bond of pullulan is hydrolyzed,
Generate maltotriose. It also hydrolyzes α-1,6 glucosidic bonds between starch, amylopectin and glycogen. (2) Optimal reaction pH The pH is 8.5 to 9.5. (3) Stable pH Extremely stable in the range of pH 7 to 10. (4) Works at an optimum reaction temperature of 50 to 55 ° C. (5) Heat resistance Stable up to 50 ° C (Tris / hydrochloric acid 10 mM (pH 8.
5) Retains 85% or more activity in a buffer at 50 ° C. for 30 minutes). (6) Molecular weight The estimated molecular weight of wild type by SDS-polyacrylamide gel electrophoresis is 120,000 to 130,000.

【0020】従って、本発明のアルカリプルラナーゼ
は、界面活性剤の存在下においても優れた酵素活性を示
し、洗剤用酵素、例えば衣料用洗剤、食器用洗剤等の酵
素として液体、粉末、顆粒等の形態で使用することがで
きる。
Therefore, the alkaline pullulanase of the present invention exhibits excellent enzymatic activity even in the presence of a surfactant, and is used as an enzyme for detergents, for example, liquid detergent, powder detergent, granule detergent, etc. Can be used in form.

【0021】[0021]

【実施例】以下に、実施例を挙げて本発明を具体的に説
明する。尚、本実施例中の濃度は何れも重量%を示す。
The present invention will be specifically described below with reference to examples. In addition, all the concentrations in the present examples indicate% by weight.

【0022】実施例1 アルカリプルラナーゼを生産するBacillus sp. KSM−AP
1876株を5mLのA培地(バクトペプトン 2.8%、酵
母エキス 0.05%、魚肉エキス0.5%、KH2
4 0.1%、MgSO47H2O 0.02%、炭酸
ナトリウム 1.0%)に接種し、30℃で24時間振
盪培養を行った後、この1mLを100mLの同培地に接種
して30℃で更に12時間振盪培養した。この後、遠心
分離によて菌体を集め、斉藤と三浦の方法に従って約1
mgの染色体DNAを得た。
Example 1 Bacillus sp. KSM-AP producing alkaline pullulanase
The 1876 strain was transformed into 5 mL of A medium (2.8% bactopeptone, 0.05% yeast extract, 0.5% fish meat extract, KH 2 P
O 4 0.1%, MgSO 4 7H 2 O 0.02%, sodium carbonate 1.0%), and after shaking culture at 30 ° C. for 24 hours, 1 mL of this was inoculated into 100 mL of the same medium. And cultured with shaking at 30 ° C. for another 12 hours. Thereafter, the cells were collected by centrifugation, and the cells were collected for about 1 hour according to the method of Saito and Miura.
mg of chromosomal DNA was obtained.

【0023】実施例2 実施例1で得られた染色体DNAを鋳型としてPCR法
によってアルカリプルラナーゼ遺伝子の一部の取得を試
みた。増幅に使用したプライマーDNAは既知の酸性あ
るいは中性プルラナーゼのアミノ酸共通配列からデザイ
ンした。プライマー1の配列は5'-TATAATTGGGGT(A)TATG
ATCCT(A)C-3'(配列番号5)であり、Y-N-W-G-Y-D-P-H
からなるアミノ酸配列を元にデザインしたものである。
プライマー2の配列は5'-ACCCATCATATCAAAT(A)CT(G)AAA
A(T)CC -3'(配列番号6)であり、G-F-R-F-D-M-M-Gか
らなるアミノ酸配列を元にデザインしたものである。P
woポリメラーゼを用いてPCR(94℃ 1分、45
℃ 1分、60℃ 1分を30サイクル)を行った結
果、約370bpからなるPCR増幅断片が取得され
た。約370bp−PCR増幅断片の塩基配列を決定
し、さらにその決定した配列をもとにしてプライマーを
デザインし、約370bp−PCR増幅断片の5′側お
よび3′側への遺伝子の延長部分の増幅を試みた。デザ
インしたプライマー配列はプライマー3が5'-TGCCCGTTA
GAGCGAAATAACTTTG -3'(配列番号7)で、プライマー4
が5'-CTGATGGTACGCCAAGAACAAGCTT -3'(配列番号8)で
ある。鋳型としてPstIあるいはSacIで切断した
KSM−AP1876株の染色体DNAを分子内結合した環状
DNA群を用い、PCRキット(アプライド バイオシ
ステム社製)によって逆PCR法(Triglia,T.et al.,N
ucleic Acids Res.,16,81(1988))で(94℃ 1分,5
5℃ 1分,72℃ 5分を1サイクルとし、これを30
サイクル繰り返す)DNA増幅を行った。PstIを用
いて調製した鋳型を用いた場合約6kbpのDNA断片
が、また、SacIを用いて調製した鋳型を用いた場合
約3.5kbpのDNA断片が増幅された。これら増幅
されたDNA断片の塩基配列をダイレクトシークエンス
法で決めたところ、アルカリプルラナーゼ遺伝子とその
上流および下流領域をコードする約5kbの配列が検出
された。続いて、プライマー5(5'-CATTTTTAGCAGGTTAG
TAAGTC -3'(配列番号9))、プライマー6(5' -CGGT
ACCCTTGTTGAACGGACAGC -3'(配列番号10))を用い
て、さらに実施例1で得られた染色体DNAを鋳型とし
て、アルカリプルラナーゼ遺伝子を含む約5kbpDN
A断片を再びPCRで増幅した後、その5kbpDNA
断片の全長の塩基配列をダイレクトシークエンス法で再
確認し、配列の決定に至った。
Example 2 Using the chromosomal DNA obtained in Example 1 as a template, an attempt was made to obtain a part of the alkaline pullulanase gene by PCR. The primer DNA used for the amplification was designed from the amino acid common sequence of known acidic or neutral pullulanase. The sequence of primer 1 is 5'-TATAATTGGGGT (A) TATG
ATCCT (A) C-3 '(SEQ ID NO: 5) and YNWGYDPH
This was designed based on the amino acid sequence consisting of
The sequence of primer 2 is 5'-ACCCATCATATCAAAT (A) CT (G) AAA
A (T) CC-3 '(SEQ ID NO: 6), which was designed based on the amino acid sequence consisting of GFRFDMMG. P
PCR using wo polymerase (94 ° C for 1 minute, 45 minutes)
As a result, a PCR amplified fragment consisting of about 370 bp was obtained. The base sequence of the amplified fragment of about 370 bp-PCR is determined, and primers are designed based on the determined sequence to amplify the extended portion of the gene to the 5 'side and 3' side of the amplified fragment of about 370 bp-PCR. Tried. The designed primer sequence is that primer 3 is 5'-TGCCCGTTA
GAGCGAAATAACTTTG -3 '(SEQ ID NO: 7) and primer 4
Is 5'-CTGATGGTACGCCAAGAACAAGCTT-3 '(SEQ ID NO: 8). Using a cyclic DNA group in which chromosomal DNA of the KSM-AP1876 strain cut with PstI or SacI was intramolecularly bound as a template, an inverse PCR method (Triglia, T. et al., N.
ucleic Acids Res., 16, 81 (1988)) at 94 ° C for 1 minute, 5
One cycle of 5 ° C. for 1 minute and 72 ° C. for 5 minutes constitute 30 cycles.
(Repeat cycle) DNA amplification was performed. When a template prepared using PstI was used, a DNA fragment of about 6 kbp was amplified, and when a template prepared using SacI was used, a DNA fragment of about 3.5 kbp was amplified. When the base sequences of these amplified DNA fragments were determined by the direct sequencing method, a sequence of about 5 kb encoding the alkaline pullulanase gene and its upstream and downstream regions was detected. Subsequently, primer 5 (5'-CATTTTTAGCAGGTTAG
TAAGTC -3 '(SEQ ID NO: 9)), primer 6 (5'-CGGT)
Using ACCCTTGTTGAACGGACAGC-3 '(SEQ ID NO: 10)) and the chromosomal DNA obtained in Example 1 as a template, about 5 kbp DN containing an alkaline pullulanase gene.
A fragment was again amplified by PCR, and its 5 kbp DNA
The full-length nucleotide sequence of the fragment was reconfirmed by the direct sequencing method, and the sequence was determined.

【0024】実施例3 実施例2で得られた配列を元にBacillus sp.KSM-AP1876
株の染色体DNAを鋳型として、プライマー5(5'-CAT
TTTTAGCAGGTTAGTAAGTC -3'(配列番号11))、プライ
マー6(5'-CGGTACCCTTGTTGAACGGACAGC -3'(配列番号
12))を用いて、アルカリプルラナーゼをコードする
遺伝子約5kbをPCR法で増幅した。制限酵素Sma
Iで切断したベクタープラスミドpHY300PLKと
PCR増幅断片を混合し、T4DNAリガーゼによる結
合反応を行って組換えプラスミドを作製した。この組換
えプラスミド混合物による形質転換処理を行ったE.c
oli懸濁液を7.5μg /mLテトラサイクリンを
含むLB寒天プレート培地(1.0%トリプトン(ディ
フコ社製)、0.5%酵母エキス(ディフコ社製)、
1.0%NaCl、1.5%寒天(和光純薬社製)〕に
塗抹し37℃で24時間培養した。更に、出現した形質
転換コロニー上に、0.2%プルラン、0.8%レッド
プルラン(Kanno,M.and Tomiura,E.,Agric.Biol.Chem.,
49,1529(1985))、1mg/mLリゾチーム、グリシン−N
aCl−水酸化ナトリウム緩衝液(pH9.0)を含む
0.8%寒天を重層し、37℃にて5時間反応させた。
この結果、レッドプルランの分解によってコロニー周辺
に透明なハローを形成した株1株が得られ、これをアル
カリプルラナーゼ生産組換え微生物として分離した。
Example 3 Based on the sequence obtained in Example 2, Bacillus sp. KSM-AP1876
Using the chromosomal DNA of the strain as a template, primer 5 (5'-CAT
Using TTTTAGCAGGTTAGTAAGTC-3 '(SEQ ID NO: 11) and primer 6 (5'-CGGTACCCTTGTTGAACGGACAGC-3' (SEQ ID NO: 12)), about 5 kb of the gene encoding alkaline pullulanase was amplified by PCR. Restriction enzyme Sma
The vector plasmid pHY300PLK digested with I and the PCR amplified fragment were mixed, and a ligation reaction was performed with T4 DNA ligase to prepare a recombinant plasmid. E. coli transformed with this recombinant plasmid mixture was used. c
The oli suspension was mixed with LB agar plate medium containing 7.5 μg / mL tetracycline (1.0% tryptone (Difco), 0.5% yeast extract (Difco),
1.0% NaCl, 1.5% agar (manufactured by Wako Pure Chemical Industries, Ltd.)] and cultured at 37 ° C. for 24 hours. Furthermore, 0.2% pullulan and 0.8% red pullulan (Kanno, M. and Tomiura, E., Agric. Biol. Chem.,
49,1529 (1985)), 1 mg / mL lysozyme, glycine-N
0.8% agar containing an aCl-sodium hydroxide buffer (pH 9.0) was overlaid and reacted at 37 ° C for 5 hours.
As a result, one strain in which a transparent halo was formed around the colony by decomposition of red pullulan was obtained, and this strain was isolated as an alkaline pullulanase-producing recombinant microorganism.

【0025】実施例4 実施例3で得られた組換え微生物を、15μg /mLテト
ラサイクリンを含む5mLのLB培地(1.0%トリプト
ン(ディフコ社製)、0.5%酵母エキス(ディフコ社
製)、1.0%NaCl)に接種し、37℃で一夜培養
した後、これを500mLのLB培地に移植し、更に24
時間振盪培養した。この培養液より遠心分離によって菌
体を集め、常法(Maniatis, T.et al.,Molecular Cloni
ng,ColdSpring Harbor Laboratory(1982))に従って、
組換えプラスミド約500μg を調製した。得られた組
換えプラスミドの制限酵素切断地図を作製したところ、
図1に示した約5kb断片が含まれていることが明らか
になり、これをプラスミドpAP100と命名した。ま
た、pAP100によって形質転換されたE.coliHB1
01株をHB101(pAP100)株と命名した。
Example 4 The recombinant microorganism obtained in Example 3 was combined with 5 mL of LB medium containing 15 μg / mL tetracycline (1.0% tryptone (Difco), 0.5% yeast extract (Difco) ), 1.0% NaCl) and cultured overnight at 37 ° C., then transferred to 500 mL of LB medium, and
The cells were cultured with shaking for hours. The cells were collected from this culture by centrifugation, and the cells were collected by a conventional method (Maniatis, T. et al., Molecular Cloni
ng, Cold Spring Harbor Laboratory (1982))
About 500 μg of the recombinant plasmid was prepared. When a restriction map of the obtained recombinant plasmid was prepared,
It was found that the fragment contained the about 5 kb fragment shown in FIG. 1, and this was named plasmid pAP100. In addition, E. coli HB1 transformed with pAP100
The 01 strain was named HB101 (pAP100) strain.

【0026】実施例5 45mLのLB培地(テトラサイクリンを含む)で一晩培
養したHB101(pAP100)株の培養液1mLを1
00mLのLB培地(テトラサイクリンを含む)に接種
し、37℃で24時間振盪培養した。培養後、遠心分離
によって集めた菌体をトリス−塩酸緩衝液(pH8.0)
に懸濁し、超音波による破砕を行った。破砕後、遠心分
離によって不溶物を取り除き、得られた上清液を無細胞
抽出液とした。対照として、HB101(pBR32
2)株についても同様に無細胞抽出液を調製し、これら
の抽出液中のプルラナーゼ活性を測定した。尚、プルラ
ナーゼ活性は、40mMグリシン−NaCl−NaOH緩
衝液(pH10)とプルラン(終濃度0.25%)を含む
反応液中で、40℃、30分間の反応を行った後、生成
した還元糖を3,5−ジニトロサリチル酸(3,5-dinitr
osalicylic acid(DNS))法にて定量することによ
って測定し、1分間に1μmolのグルコースに相当する
還元糖を生成する酵素量を1単位とした。
Example 5 One mL of a culture of the HB101 (pAP100) strain cultured overnight in 45 mL of LB medium (including tetracycline)
00 mL of LB medium (containing tetracycline) was inoculated and cultured with shaking at 37 ° C. for 24 hours. After the culture, the cells collected by centrifugation are separated into Tris-HCl buffer (pH 8.0).
And crushed by ultrasonic waves. After crushing, insoluble materials were removed by centrifugation, and the obtained supernatant was used as a cell-free extract. As a control, HB101 (pBR32
2) Cell-free extracts were similarly prepared for the strains, and the pullulanase activity in these extracts was measured. The pullulanase activity was determined by performing a reaction at 40 ° C. for 30 minutes in a reaction solution containing a 40 mM glycine-NaCl-NaOH buffer (pH 10) and pullulan (final concentration: 0.25%). To 3,5-dinitrosalicylic acid (3,5-dinitr
It was measured by quantification by the osalicylic acid (DNS) method, and the amount of the enzyme that produces reducing sugar corresponding to 1 μmol of glucose per minute was defined as 1 unit.

【0027】この結果、HB101(pAP100)株
の無細胞抽出液にはプルラナーゼ活性が認められた。更
に、生産されたプルラナーゼの作用至適pHを測定した
結果、図2に示したように、本酵素におけるプルラナー
ゼ活性は約pH8.5〜9.5に最適作用pHを有する
アルカリプルラナーゼであることが明らかとなった。
尚、酵素活性の測定には、ブリットン−ロビンソン緩衝
液(H.T.S.Britton, G.Welford, J.Chem.Soc.,1848(193
7))を用いた。
As a result, pullulanase activity was observed in the cell-free extract of the HB101 (pAP100) strain. Further, as a result of measuring the optimal pH of the produced pullulanase, as shown in FIG. 2, the pullulanase activity of this enzyme was found to be an alkaline pullulanase having an optimal action pH of about pH 8.5 to 9.5. It became clear.
The enzyme activity was measured using Britton-Robinson buffer (HTSBritton, G. Welford, J. Chem. Soc., 1848 (193)
7)) was used.

【0028】実施例6 また、pAP100によって形質転換されたB. subtil
is ISW1214株を100mLのB培地(バクトペプトン
2.8%、酵母エキス 0.05%、魚肉エキス0.5
%、KH2PO4 0.1%、MgSO47H2O 0.0
2%、炭酸ナトリウム 1.0%、テトラサイクリン
7.5μg/mL)に接種して30℃で更に3日間振盪培
養した後、遠心分離してアルカリプルラナーゼの粗酵素
液を得た。粗酵素液に対しDEAE−セルロースによる
吸着、セファロース−α−サイクロデキストリン アフ
ィニティーカラム処理、セファクリルS−200カラム
処理の順での精製過程を経て、電気泳動的に均一な酵素
標品を得た。本酵素のプルラナーゼ活性の作用至適pH
を実施例5と同様に測定した結果、最適pHは8.5〜
9.5であった。
Example 6 In addition, B. subtil transformed with pAP100
is ISW1214 strain in 100 mL of B medium (Bacto-peptone)
2.8%, yeast extract 0.05%, fish meat extract 0.5
%, KH 2 PO 4 0.1%, MgSO 4 7H 2 O 0.0
2%, sodium carbonate 1.0%, tetracycline
7.5 .mu.g / mL) and cultured with shaking at 30.degree. C. for further 3 days, followed by centrifugation to obtain a crude enzyme solution of alkaline pullulanase. The crude enzyme solution was subjected to DEAE-cellulose adsorption, separation on a Sepharose-α-cyclodextrin affinity column, and separation on a Sephacryl S-200 column, in order to obtain an electrophoretically uniform enzyme preparation. Optimal pH for pullulanase activity of this enzyme
Was measured in the same manner as in Example 5, and as a result, the optimum pH was 8.5 to 8.5.
9.5.

【0029】[0029]

【発明の効果】本発明のアルカリプルラナーゼは、最適
反応pHを8.5〜9.5に有し、アルカリ性領域にお
いて最大活性を有することから衣料用又は食器用洗剤酵
素等として有用である。また、本発明のアルカリプルラ
ナーゼ遺伝子を用いることにより、当該アルカリプルラ
ナーゼを単一且つ大量に生産することが可能となる。
Industrial Applicability The alkaline pullulanase of the present invention has an optimum reaction pH of 8.5 to 9.5 and has the maximum activity in an alkaline region, and thus is useful as an enzyme for clothing or dish detergent. In addition, by using the alkaline pullulanase gene of the present invention, it becomes possible to produce the alkaline pullulanase singly and in large quantities.

【0030】[0030]

【配列表】 SEQUENCE LISTING <110> KAO CORPORATION <120> Alkali pullularase <130> P04771210 <160> 12 <170> PatentIn Ver. 2.1 <210> 1 <211> 1142 <212> PRT <213> Bacillus sp. KSM-AP1876 <400> 1 Leu Lys Gly Lys Leu Lys Lys Phe Leu Val Leu Ser Met Val Phe Ile 1 5 10 15 Leu Thr Phe Ser Ser Phe Gly Met Met Gly Thr Thr Gln Leu Val Glu 20 25 30 Ala Glu Thr Lys Ser Ser Ile Glu Glu Ser Glu Ile Pro Glu Asn Thr 35 40 45 Leu Arg Ile His Tyr Gln Asn Ser Ser Gly Asp Tyr Ser Asn Leu Gly 50 55 60 Val Trp Thr Trp Asp Asp Val Glu Ser Pro Thr Asp Asn Trp Pro Ser 65 70 75 80 Gly Gly Ile Pro Phe Thr Glu Glu Gln Val Thr Asp Tyr Gly Ala Tyr 85 90 95 Val Asp Val Pro Leu Glu Ser Gly Ala Arg Asn Val Gly Phe Leu Ile 100 105 110 Leu Asp Ile Val Thr Gly Gly Lys Asp Asp Ala Gly His Asn Gly Gly 115 120 125 Asp Lys Arg Leu Glu Leu Phe Ser Pro Asn Ile Asn Glu Val Trp Ile 130 135 140 Ser Glu Gly Ser Asp Glu Ile Ser Phe Ile Glu Pro Val Asp Leu Pro 145 150 155 160 Glu Asp Thr Val Arg Val His Tyr Lys Lys Ala Asp Gly Asn Tyr Glu 165 170 175 Asn Trp Ser Leu Trp Phe Trp Gly Asp Val Gln Ser Pro Ser Glu Thr 180 185 190 Gln Gly Asp Phe Pro Ser Gly Ala Thr Gly Phe Ser Glu Glu Gln Ile 195 200 205 Gly Lys Tyr Gly Ala Tyr Ile Asp Ile Pro Leu Asn Glu Gly Ala Glu 210 215 220 Glu Ile Gly Leu Val Val Val Asn Lys Glu Thr Asn Glu Gln Glu Ala 225 230 235 240 Asp Arg Ser Phe Thr Gln Leu Asn Gln Phe Asn Gln Ile Phe Ile Val 245 250 255 Glu Gly Asp Gly Ala Val Tyr Ser Asn Pro Tyr Gly Ala Ile Ala Thr 260 265 270 Glu Leu Leu Ser Ala Glu Gln Leu Ser Asp Glu Lys Ile Val Leu Tyr 275 280 285 Phe Ser Arg Thr Asp Glu Leu Thr Glu Glu Ala Leu Leu Glu Gln Val 290 295 300 Gly Ile Arg Asp Ile Glu Glu His Thr Val Asp Val Asn Glu Val Glu 305 310 315 320 Ile Lys Thr Asp Asn Arg Thr Val Glu Val Lys Gly Asp Phe Asn Leu 325 330 335 Asp Gln Ser Pro Tyr Thr Val Ser Leu Gly Glu Val Ser Val Pro Ala 340 345 350 Lys Ile Gly Trp Arg Leu Ile Asp Glu Met Tyr Ala Tyr Asp Gly Glu 355 360 365 Leu Gly Ala Gln Leu His Gln Asp Gly Thr Ala Thr Ile Lys Leu Trp 370 375 380 Ser Pro Lys Ala Glu His Val Gln Val Ile Leu Tyr Asp Lys Asp Asn 385 390 395 400 Pro Asp Asp Ile Val Thr Glu Val Glu Met Lys Leu Gly Asp Arg Gly 405 410 415 Val Trp Glu Val Gln Leu Thr Lys Glu Asn Thr Gly Leu Asp Ser Leu 420 425 430 Arg Gly Tyr Tyr Tyr His Tyr Glu Ile Asp His Asp Gly Asp Lys Lys 435 440 445 Ile Ala Leu Asp Pro Tyr Ala Lys Ser Leu Ser Ala Trp Asn Ser Asp 450 455 460 Glu Gln Gly Pro Tyr Ala Lys Ala Ala Ile Val Asp Pro Ser Ser Ile 465 470 475 480 Gly Pro Glu Leu Glu Phe Ala His Ile Glu Gly Phe Glu Lys Lys Glu 485 490 495 Asp Thr Ile Ile Tyr Glu Val His Val Arg Asp Phe Thr Ser Asp Pro 500 505 510 His Ile Ala Asp Glu Leu Thr Ala Gln Phe Gly Thr Phe Ala Ser Phe 515 520 525 Val Asp Lys Leu Asp Tyr Ile Glu Asp Leu Gly Val Thr His Ile Gln 530 535 540 Leu Leu Pro Val Met Ser Tyr Phe Phe Ala Asn Glu Phe Lys Asn Asp 545 550 555 560 Glu Arg Met Leu Asp Phe Ser Ser Thr Asn Thr Asn Tyr Asn Trp Gly 565 570 575 Tyr Asp Pro Gln Ser Tyr Phe Ala Leu Thr Gly Met Tyr Ser Glu Asp 580 585 590 Pro Thr Asp Pro Glu Leu Arg Ile Lys Glu Phe Lys Lys Leu Ile Asp 595 600 605 Glu Ile His Ser Arg Gly Met Gly Val Val Leu Asp Val Val Tyr Asn 610 615 620 His Thr Ala Arg Val Gly Ile Phe Glu Asp Leu Val Pro Asn Tyr Tyr 625 630 635 640 His Phe Met Asp Ala Asp Gly Thr Pro Arg Thr Ser Phe Gly Gly Gly 645 650 655 Arg Leu Gly Thr Thr His Glu Met Ser Arg Arg Ile Leu Val Asp Ser 660 665 670 Ile Thr Tyr Trp Val Glu Glu Phe Lys Ile Asp Gly Phe Arg Phe Asp 675 680 685 Met Met Gly Asp His Asp Ala Glu Ser Ile Gln Ile Ala Tyr Asp Lys 690 695 700 Ala Lys Glu Ile Asn Pro Asn Ile Val Met Ile Gly Glu Gly Trp Ile 705 710 715 720 Thr Tyr Ala Gly Asp Glu Asp Asp Pro Asn Val Gln Ala Ala Asp Gln 725 730 735 His Trp Met Gln Tyr Thr Glu Ser Val Gly Val Phe Ser Asp Glu Phe 740 745 750 Arg Asn Glu Leu Lys Ser Gly Phe Gly His Glu Gly Glu Pro Arg Phe 755 760 765 Leu Thr Gly Gly Ala Arg Asn Ile Asp Leu Ile Phe Asp Asn Ile Lys 770 775 780 Ala Gln Pro His Asn Phe Ile Ala Asp Asp Pro Gly Asp Val Val Pro 785 790 795 800 Tyr Ile Glu Ala His Asp Asn Leu Thr Leu His Asp Val Ile Ala Met 805 810 815 Ala Ile Gln Lys Asp Pro Asp Asp His Gln Glu Glu Ile His Gln Arg 820 825 830 Ile Arg Leu Gly Asn Leu Met Thr Leu Thr Ser Gln Gly Ile Ala Phe 835 840 845 Leu His Ala Gly Gln Glu Tyr Gly Arg Thr Lys Gln Phe Arg Ala Glu 850 855 860 Thr Ser Glu Pro Pro Tyr Lys Ser Thr Tyr Met Thr Asp Glu Asn Gly 865 870 875 880 Glu Pro Phe Arg Tyr Pro Tyr Phe Ile His Asp Ser Tyr Asp Ser Thr 885 890 895 Asp Ile Ile Asn Arg Phe Asp Trp Glu Arg Ala Thr Asn Ala Asp Ala 900 905 910 Tyr Pro Ile Gln Asn Leu Thr Arg Glu Tyr Thr Thr Gly Leu Ile Glu 915 920 925 Leu Arg Arg Ser Ser Asp Ala Phe Arg Leu Gly Thr Lys Asp Leu Val 930 935 940 Asp Glu Lys Val Thr Gln Leu Asn Ile Pro Glu Ile Glu Glu Thr Asp 945 950 955 960 Leu Val Val Ala Tyr Arg Ile Glu Ala Thr Thr Gly Glu Ala Phe Tyr 965 970 975 Val Phe Val Asn Ala Asp Asp Glu Glu Arg Thr Leu Thr Leu Glu Glu 980 985 990 Asp Leu Thr Val Gly Glu Phe Val Val Asp Gly Lys Thr Ala Gly Val 995 1000 1005 Thr Ala Ile Ala Glu Pro Gln Gly Val Glu Leu Ser Ala Glu Gln Ile 1010 1015 1020 Lys Leu Asp Pro Leu Thr Ala Ala Ile Val Gln Val Gly Gly Ile Glu 1025 1030 1035 1040 Ala Pro Glu Lys Pro Thr Pro Pro Lys Glu Glu Pro Lys Glu Pro Lys 1045 1050 1055 Glu Pro Lys Glu Pro Lys Glu Pro Lys Glu Pro Lys Asp Pro Lys Asp 1060 1065 1070 Pro Lys Asp Pro Lys Asp Pro Leu Asp Pro Pro Gly Thr Asp Asp Gln 1075 1080 1085 Asn Gly Glu Thr Pro Lys Gly Asn Glu Glu Lys Lys Glu Glu Gln Lys 1090 1095 1100 Gly Asp Asn Leu Pro Asn Thr Ala Thr Ser Asn Tyr Gln Phe Ile Ala 1105 1110 1115 1120 Leu Gly Ile Ala Leu Val Leu Met Ala Thr Ala Ile Tyr Trp Trp Lys 1125 1130 1135 Arg Lys Arg Gln Val Ala 1140 [Sequence List] SEQUENCE LISTING <110> KAO CORPORATION <120> Alkali pullularase <130> P04771210 <160> 12 <170> PatentIn Ver. 2.1 <210> 1 <211> 1142 <212> PRT <213> Bacillus sp. KSM -AP1876 <400> 1 Leu Lys Gly Lys Leu Lys Lys Phe Leu Val Leu Ser Met Val Phe Ile 1 5 10 15 Leu Thr Phe Ser Ser Phe Gly Met Met Gly Thr Thr Thr Gln Leu Val Glu 20 25 30 Ala Glu Thr Lys Ser Ser Ile Glu Glu Ser Glu Ile Pro Glu Asn Thr 35 40 45 Leu Arg Ile His Tyr Gln Asn Ser Ser Gly Asp Tyr Ser Asn Leu Gly 50 55 60 Val Trp Thr Trp Asp Asp Val Glu Ser Pro Thr Asp Asn Trp Pro Ser 65 70 75 80 Gly Gly Ile Pro Phe Thr Glu Glu Gln Val Thr Asp Tyr Gly Ala Tyr 85 90 95 Val Asp Val Pro Leu Glu Ser Gly Ala Arg Asn Val Gly Phe Leu Ile 100 105 110 Leu Asp Ile Val Thr Gly Gly Lys Asp Asp Ala Gly His Asn Gly Gly 115 120 125 Asp Lys Arg Leu Glu Leu Phe Ser Pro Asn Ile Asn Glu Val Trp Ile 130 135 140 Ser Glu Gly Ser Asp Glu Ile Ser Phe Ile Glu Pro Val Asp Leu Pro 145 150 155 160 Glu Asp Thr Val Arg Val His Tyr Lys Lys Ala Asp Gly A sn Tyr Glu 165 170 175 Asn Trp Ser Leu Trp Phe Trp Gly Asp Val Gln Ser Pro Ser Glu Thr 180 185 190 Gln Gly Asp Phe Pro Ser Gly Ala Thr Gly Phe Ser Glu Glu Gln Ile 195 200 205 Gly Lys Tyr Gly Ala Tyr Ile Asp Ile Pro Leu Asn Glu Gly Ala Glu 210 215 220 Glu Ile Gly Leu Val Val Val Asn Lys Glu Thr Asn Glu Gln Glu Ala 225 230 235 240 Asp Arg Ser Phe Thr Gln Leu Asn Gln Phe Asn Gln Ile Phe Ile Val 245 250 255 Glu Gly Asp Gly Ala Val Tyr Ser Asn Pro Tyr Gly Ala Ile Ala Thr 260 265 270 Glu Leu Leu Ser Ala Glu Gln Leu Ser Asp Glu Lys Ile Val Leu Tyr 275 280 285 Phe Ser Arg Thr Asp Glu Leu Thr Glu Glu Ala Leu Leu Glu Gln Val 290 295 300 Gly Ile Arg Asp Ile Glu Glu His Thr Val Asp Val Asn Glu Val Glu 305 310 315 320 Ile Lys Thr Asp Asn Arg Thr Val Glu Val Lys Gly Asp Phe Asn Leu 325 330 335 Asp Gln Ser Pro Tyr Thr Val Ser Leu Gly Glu Val Ser Val Pro Ala 340 345 350 Lys Ile Gly Trp Arg Leu Ile Asp Glu Met Tyr Ala Tyr Asp Gly Glu 355 360 365 Leu Gly Ala Gln Leu His Gln Asp Gly Thr Ala Thr Ile Lys L eu Trp 370 375 380 Ser Pro Lys Ala Glu His Val Gln Val Ile Leu Tyr Asp Lys Asp Asn 385 390 395 400 Pro Asp Asp Ile Val Thr Glu Val Glu Met Lys Leu Gly Asp Arg Gly 405 410 415 Val Trp Glu Val Gln Leu Thr Lys Glu Asn Thr Gly Leu Asp Ser Leu 420 425 430 Arg Gly Tyr Tyr Tyr His Tyr Glu Ile Asp His Asp Gly Asp Lys Lys 435 440 445 Ile Ala Leu Asp Pro Tyr Ala Lys Ser Leu Ser Ala Trp Asn Ser Asp 450 455 460 Glu Gln Gly Pro Tyr Ala Lys Ala Ala Ile Val Asp Pro Ser Ser Ile 465 470 475 480 Gly Pro Glu Leu Glu Phe Ala His Ile Glu Gly Phe Glu Lys Lys Glu 485 490 495 Asp Thr Ile Ile Tyr Glu Val His Val Arg Asp Phe Thr Ser Asp Pro 500 505 510 His Ile Ala Asp Glu Leu Thr Ala Gln Phe Gly Thr Phe Ala Ser Phe 515 520 525 Val Asp Lys Leu Asp Tyr Ile Glu Asp Leu Gly Val Thr His Ile Gln 530 535 540 Leu Leu Pro Val Met Ser Tyr Phe Phe Ala Asn Glu Phe Lys Asn Asp 545 550 555 560 Glu Arg Met Leu Asp Phe Ser Ser Thr Asn Thr Asn Tyr Asn Trp Gly 565 570 575 Tyr Asp Pro Gln Ser Tyr Phe Ala Leu Thr Gly Met Tyr SerGlu Asp 580 585 590 590 Pro Thr Asp Pro Glu Leu Arg Ile Lys Glu Phe Lys Lys Leu Ile Asp 595 600 605 Glu Ile His Ser Arg Gly Met Gly Val Val Leu Asp Val Val Tyr Asn 610 615 620 His Thr Ala Arg Val Gly Ile Phe Glu Asp Leu Val Pro Asn Tyr Tyr 625 630 635 640 His Phe Met Asp Ala Asp Gly Thr Pro Arg Thr Ser Phe Gly Gly Gly 645 650 655 Arg Leu Gly Thr Thr His Glu Met Ser Arg Arg Ile Leu Val Asp Ser 660 665 670 Ile Thr Tyr Trp Val Glu Glu Phe Lys Ile Asp Gly Phe Arg Phe Asp 675 680 685 Met Met Gly Asp His Asp Ala Glu Ser Ile Gln Ile Ala Tyr Asp Lys 690 695 700 Ala Lys Glu Ile Asn Pro Asn Ile Val Met Ile Gly Glu Gly Trp Ile 705 710 715 720 Thr Tyr Ala Gly Asp Glu Asp Asp Pro Asn Val Gln Ala Ala Asp Gln 725 730 735 His Trp Met Gln Tyr Thr Glu Ser Val Gly Val Phe Ser Asp Glu Phe 740 745 750 Arg Asn Glu Leu Lys Ser Gly Phe Gly His Glu Gly Glu Pro Arg Phe 755 760 765 Leu Thr Gly Gly Ala Arg Asn Ile Asp Leu Ile Phe Asp Asn Ile Lys 770 775 780 Ala Gln Pro His Asn Phe Ile Ala Asp Asp Pro Gly Asp Val ValPro 785 790 795 800 Tyr Ile Glu Ala His Asp Asn Leu Thr Leu His Asp Val Ile Ala Met 805 810 815 Ala Ile Gln Lys Asp Pro Asp Asp His Gln Glu Glu Ile His Gln Arg 820 825 830 830 Ile Arg Leu Gly Asn Leu Met Thr Leu Thr Ser Gln Gly Ile Ala Phe 835 840 845 845 Leu His Ala Gly Gln Glu Tyr Gly Arg Thr Lys Gln Phe Arg Ala Glu 850 855 860 860 Thr Ser Glu Pro Pro Tyr Lys Ser Thr Tyr Met Thr Asp Glu Asn Gly 865 870 875 880 Glu Pro Phe Arg Tyr Pro Tyr Phe Ile His Asp Ser Tyr Asp Ser Thr 885 890 895 Asp Ile Ile Asn Arg Phe Asp Trp Glu Arg Ala Thr Asn Ala Asp Ala 900 905 910 Tyr Pro Ile Gln Asn Leu Thr Arg Glu Tyr Thr Thr Gly Leu Ile Glu 915 920 925 Leu Arg Arg Ser Ser Asp Ala Phe Arg Leu Gly Thr Lys Asp Leu Val 930 935 940 Asp Glu Lys Val Thr Gln Leu Asn Ile Pro Glu Ile Glu Glu Thr Asp 945 950 955 960 Leu Val Val Ala Tyr Arg Ile Glu Ala Thr Thr Gly Glu Ala Phe Tyr 965 970 975 Val Phe Val Asn Ala Asp Asp Glu Glu Arg Thr Leu Thr Leu Glu Glu 980 985 990 Asp Leu Thr Val Gly Glu Phe Val Val Asp Gly Lys Thr Ala Gly Val 995 1000 1005 Thr Ala Ile Ala Glu Pro Gln Gly Val Glu Leu Ser Ala Glu Gln Ile 1010 1015 1020 Lys Leu Asp Pro Leu Thr Ala Ala Ile Val Gln Val Gly Gly Ile Glu 1025 1030 1035 1040 Ala Pro Glu Lys Pro Thr Pro Pro Lys Glu Glu Pro Lys Glu Pro Lys 1045 1050 1055 Glu Pro Lys Glu Pro Lys Glu Pro Lys Glu Pro Lys Asp Pro Lys Asp 1060 1065 1070 Pro Lys Asp Pro Lys Asp Pro Leu Asp Pro Pro Gly Thr Asp Asp Gln 1075 1080 1085 Asn Gly Glu Thr Pro Lys Gly Asn Glu Glu Lys Lys Glu Glu Gln Lys 1090 1095 1100 Gly Asp Asn Leu Pro Asn Thr Ala Thr Ser Asn Tyr Gln Phe Ile Ala 1105 1110 1115 1120 Leu Gly Ile Ala Leu Val Leu Met Ala Thr Ala Ile Tyr Trp Trp Lys 1125 1130 1135 Arg Lys Arg Gln Val Ala 1140

【0031】 <210> 2 <211> 821 <212> PRT <213> Bacillus sp. KSM-AP1876 <400> 2 Ile Gly Lys Tyr Gly Ala Tyr Ile Asp Ile Pro Leu Asn Glu Gly Ala 1 5 10 15 Glu Glu Ile Gly Leu Val Val Val Asn Lys Glu Thr Asn Glu Gln Glu 20 25 30 Ala Asp Arg Ser Phe Thr Gln Leu Asn Gln Phe Asn Gln Ile Phe Ile 35 40 45 Val Glu Gly Asp Gly Ala Val Tyr Ser Asn Pro Tyr Gly Ala Ile Ala 50 55 60 Thr Glu Leu Leu Ser Ala Glu Gln Leu Ser Asp Glu Lys Ile Val Leu 65 70 75 80 Tyr Phe Ser Arg Thr Asp Glu Leu Thr Glu Glu Ala Leu Leu Glu Gln 85 90 95 Val Gly Ile Arg Asp Ile Glu Glu His Thr Val Asp Val Asn Glu Val 100 105 110 Glu Ile Lys Thr Asp Asn Arg Thr Val Glu Val Lys Gly Asp Phe Asn 115 120 125 Leu Asp Gln Ser Pro Tyr Thr Val Ser Leu Gly Glu Val Ser Val Pro 130 135 140 Ala Lys Ile Gly Trp Arg Leu Ile Asp Glu Met Tyr Ala Tyr Asp Gly 145 150 155 160 Glu Leu Gly Ala Gln Leu His Gln Asp Gly Thr Ala Thr Ile Lys Leu 165 170 175 Trp Ser Pro Lys Ala Glu His Val Gln Val Ile Leu Tyr Asp Lys Asp 180 185 190 Asn Pro Asp Asp Ile Val Thr Glu Val Glu Met Lys Leu Gly Asp Arg 195 200 205 Gly Val Trp Glu Val Gln Leu Thr Lys Glu Asn Thr Gly Leu Asp Ser 210 215 220 Leu Arg Gly Tyr Tyr Tyr His Tyr Glu Ile Asp His Asp Gly Asp Lys 225 230 235 240 Lys Ile Ala Leu Asp Pro Tyr Ala Lys Ser Leu Ser Ala Trp Asn Ser 245 250 255 Asp Glu Gln Gly Pro Tyr Ala Lys Ala Ala Ile Val Asp Pro Ser Ser 260 265 270 Ile Gly Pro Glu Leu Glu Phe Ala His Ile Glu Gly Phe Glu Lys Lys 275 280 285 Glu Asp Thr Ile Ile Tyr Glu Val His Val Arg Asp Phe Thr Ser Asp 290 295 300 Pro His Ile Ala Asp Glu Leu Thr Ala Gln Phe Gly Thr Phe Ala Ser 305 310 315 320 Phe Val Asp Lys Leu Asp Tyr Ile Glu Asp Leu Gly Val Thr His Ile 325 330 335 Gln Leu Leu Pro Val Met Ser Tyr Phe Phe Ala Asn Glu Phe Lys Asn 340 345 350 Asp Glu Arg Met Leu Asp Phe Ser Ser Thr Asn Thr Asn Tyr Asn Trp 355 360 365 Gly Tyr Asp Pro Gln Ser Tyr Phe Ala Leu Thr Gly Met Tyr Ser Glu 370 375 380 Asp Pro Thr Asp Pro Glu Leu Arg Ile Lys Glu Phe Lys Lys Leu Ile 385 390 395 400 Asp Glu Ile His Ser Arg Gly Met Gly Val Val Leu Asp Val Val Tyr 405 410 415 Asn His Thr Ala Arg Val Gly Ile Phe Glu Asp Leu Val Pro Asn Tyr 420 425 430 Tyr His Phe Met Asp Ala Asp Gly Thr Pro Arg Thr Ser Phe Gly Gly 435 440 445 Gly Arg Leu Gly Thr Thr His Glu Met Ser Arg Arg Ile Leu Val Asp 450 455 460 Ser Ile Thr Tyr Trp Val Glu Glu Phe Lys Ile Asp Gly Phe Arg Phe 465 470 475 480 Asp Met Met Gly Asp His Asp Ala Glu Ser Ile Gln Ile Ala Tyr Asp 485 490 495 Lys Ala Lys Glu Ile Asn Pro Asn Ile Val Met Ile Gly Glu Gly Trp 500 505 510 Ile Thr Tyr Ala Gly Asp Glu Asp Asp Pro Asn Val Gln Ala Ala Asp 515 520 525 Gln His Trp Met Gln Tyr Thr Glu Ser Val Gly Val Phe Ser Asp Glu 530 535 540 Phe Arg Asn Glu Leu Lys Ser Gly Phe Gly His Glu Gly Glu Pro Arg 545 550 555 560 Phe Leu Thr Gly Gly Ala Arg Asn Ile Asp Leu Ile Phe Asp Asn Ile 565 570 575 Lys Ala Gln Pro His Asn Phe Ile Ala Asp Asp Pro Gly Asp Val Val 580 585 590 Pro Tyr Ile Glu Ala His Asp Asn Leu Thr Leu His Asp Val Ile Ala 595 600 605 Met Ala Ile Gln Lys Asp Pro Asp Asp His Gln Glu Glu Ile His Gln 610 615 620 Arg Ile Arg Leu Gly Asn Leu Met Thr Leu Thr Ser Gln Gly Ile Ala 625 630 635 640 Phe Leu His Ala Gly Gln Glu Tyr Gly Arg Thr Lys Gln Phe Arg Ala 645 650 655 Glu Thr Ser Glu Pro Pro Tyr Lys Ser Thr Tyr Met Thr Asp Glu Asn 660 665 670 Gly Glu Pro Phe Arg Tyr Pro Tyr Phe Ile His Asp Ser Tyr Asp Ser 675 680 685 Thr Asp Ile Ile Asn Arg Phe Asp Trp Glu Arg Ala Thr Asn Ala Asp 690 695 700 Ala Tyr Pro Ile Gln Asn Leu Thr Arg Glu Tyr Thr Thr Gly Leu Ile 705 710 715 720 Glu Leu Arg Arg Ser Ser Asp Ala Phe Arg Leu Gly Thr Lys Asp Leu 725 730 735 Val Asp Glu Lys Val Thr Gln Leu Asn Ile Pro Glu Ile Glu Glu Thr 740 745 750 Asp Leu Val Val Ala Tyr Arg Ile Glu Ala Thr Thr Gly Glu Ala Phe 755 760 765 Tyr Val Phe Val Asn Ala Asp Asp Glu Glu Arg Thr Leu Thr Leu Glu 770 775 780 Glu Asp Leu Thr Val Gly Glu Phe Val Val Asp Gly Lys Thr Ala Gly 785 790 795 800 Val Thr Ala Ile Ala Glu Pro Gln Gly Val Glu Leu Ser Ala Glu Gln 805 810 815 Ile Lys Leu Asp Pro 820 <210> 2 <211> 821 <212> PRT <213> Bacillus sp.KSM-AP1876 <400> 2 Ile Gly Lys Tyr Gly Ala Tyr Ile Asp Ile Pro Leu Asn Glu Gly Ala 1 5 10 15 Glu Glu Ile Gly Leu Val Val Val Asn Lys Glu Thr Asn Glu Gln Glu 20 25 30 Ala Asp Arg Ser Phe Thr Gln Leu Asn Gln Phe Asn Gln Ile Phe Ile 35 40 45 Val Glu Gly Asp Gly Ala Val Tyr Ser Asn Pro Tyr Gly Ala Ile Ala 50 55 60 Thr Glu Leu Leu Ser Ala Glu Gln Leu Ser Asp Glu Lys Ile Val Leu 65 70 75 80 Tyr Phe Ser Arg Thr Asp Glu Leu Thr Glu Glu Ala Leu Leu Glu Gln 85 90 95 Val Gly Ile Arg Asp Ile Glu Glu His Thr Val Asp Val Asn Glu Val 100 105 110 Glu Ile Lys Thr Asp Asn Arg Thr Val Glu Val Lys Gly Asp Phe Asn 115 120 125 Leu Asp Gln Ser Pro Tyr Thr Val Ser Leu Gly Glu Val Ser Val Pro 130 135 140 Ala Lys Ile Gly Trp Arg Leu Ile Asp Glu Met Tyr Ala Tyr Asp Gly 145 150 155 160 Glu Leu Gly Ala Gln Leu His Gln Asp Gly Thr Ala Thr Ile Lys Leu 165 170 175 Trp Ser Pro Lys Ala Glu His Val Gln Val Ile Leu Tyr Asp Lys Asp 180 185 190 Asn Pro Asp Asp Ile Val Thr Glu Val Glu Met Lys Leu Gly Asp Arg 195 200 205 Gly Val Trp Glu Val Gln Leu Thr Lys Glu Asn Thr Gly Leu Asp Ser 210 215 220 Leu Arg Gly Tyr Tyr Tyr His Tyr Glu Ile Asp His Asp Gly Asp Lys 225 230 235 240 Lys Ile Ala Leu Asp Pro Tyr Ala Lys Ser Leu Ser Ala Trp Asn Ser 245 250 255 Asp Glu Gln Gly Pro Tyr Ala Lys Ala Ala Ile Val Asp Pro Ser Ser 260 265 270 Ile Gly Pro Glu Leu Glu Phe Ala His Ile Glu Gly Phe Glu Lys Lys 275 280 285 Glu Asp Thr Ile Ile Tyr Glu Val His Val Arg Asp Phe Thr Ser Asp 290 295 300 Pro His Ile Ala Asp Glu Leu Thr Ala Gln Phe Gly Thr Phe Ala Ser 305 310 315 320 Phe Val Asp Lys Leu Asp Tyr Ile Glu Asp Leu Gly Val Thr His Ile 325 330 335 Gln Leu Leu Pro Val Met Ser Tyr Phe Phe Ala Asn Glu Phe Lys Asn 340 345 350 Asp Glu Arg Met Leu Asp Phe Ser Ser Thr Asn Thr Asn Tyr Asn Trp 355 360 365 Gly Tyr Asp Pro Gln Ser Tyr Phe Ala Leu Thr Gly Met Tyr Ser Glu 370 375 380 Asp Pro Thr Asp Pro Glu Leu Arg Ile Lys Glu Phe Lys Lys Leu Ile 385 390 395 400 Asp Glu IleHis Ser Arg Gly Met Gly Val Val Leu Asp Val Val Tyr 405 410 415 Asn His Thr Ala Arg Val Gly Ile Phe Glu Asp Leu Val Pro Asn Tyr 420 425 430 Tyr His Phe Met Asp Ala Asp Gly Thr Pro Arg Thr Ser Phe Gly Gly 435 440 445 Gly Arg Leu Gly Thr Thr His Glu Met Ser Arg Arg Ile Leu Val Asp 450 455 460 Ser Ile Thr Tyr Trp Val Glu Glu Phe Lys Ile Asp Gly Phe Arg Phe 465 470 475 480 480 Asp Met Met Gly Asp His Asp Ala Glu Ser Ile Gln Ile Ala Tyr Asp 485 490 495 Lys Ala Lys Glu Ile Asn Pro Asn Ile Val Met Ile Gly Glu Gly Trp 500 505 510 Ile Thr Tyr Ala Gly Asp Glu Asp Asp Pro Asn Val Gln Ala Ala Asp 515 520 525 Gln His Trp Met Gln Tyr Thr Glu Ser Val Gly Val Phe Ser Asp Glu 530 535 540 Phe Arg Asn Glu Leu Lys Ser Gly Phe Gly His Glu Gly Glu Pro Arg 545 550 555 560 Phe Leu Thr Gly Gly Ala Arg Asn Ile Asp Leu Ile Phe Asp Asn Ile 565 570 575 Lys Ala Gln Pro His Asn Phe Ile Ala Asp Asp Pro Gly Asp Val Val 580 585 590 590 Pro Tyr Ile Glu Ala His Asp Asn Leu Thr Leu His Asp Val Ile Ala 595 600 605 Met Ala Ile Gln Lys Asp Pro Asp Asp His Gln Glu Glu Ile His Gln 610 615 620 Arg Ile Arg Leu Gly Asn Leu Met Thr Leu Thr Ser Gln Gly Ile Ala 625 630 635 635 640 Phe Leu His Ala Gly Gln Glu Tyr Gly Arg Thr Lys Gln Phe Arg Ala 645 650 655 Glu Thr Ser Glu Pro Pro Tyr Lys Ser Thr Tyr Met Thr Asp Glu Asn 660 665 670 Gly Glu Pro Phe Arg Tyr Pro Tyr Phe Ile His Asp Ser Tyr Asp Ser 675 680 685 Thr Asp Ile Ile Asn Arg Phe Asp Trp Glu Arg Ala Thr Asn Ala Asp 690 695 700 Ala Tyr Pro Ile Gln Asn Leu Thr Arg Glu Tyr Thr Thr Gly Leu Ile 705 710 715 715 720 Glu Leu Arg Arg Ser Ser Asp Ala Phe Arg Leu Gly Thr Lys Asp Leu 725 730 735 Val Asp Glu Lys Val Thr Gln Leu Asn Ile Pro Glu Ile Glu Glu Thr 740 745 750 Asp Leu Val Val Ala Tyr Arg Ile Glu Ala Thr Thr Gly Glu Ala Phe 755 760 765 Tyr Val Phe Val Asn Ala Asp Asp Glu Glu Arg Thr Leu Thr Leu Glu 770 775 780 Glu Asp Leu Thr Val Val Gly Glu Phe Val Val Asp Gly Lys Thr Ala Gly 785 790 795 800 Val Thr Ala Ile Ala Glu Pro Gln Gly Val Glu Leu Ser Ala Glu Gln 805 810 815 Ile Lys Leu Asp Pro 820

【0032】 <210> 3 <211> 3429 <212> DNA <213> Bacillus sp. KSM-AP1876 <400> 3 ttgaagggaa agctgaagaa atttttagtt cttagcatgg tttttatcct tactttttca 60 agctttggaa tgatgggaac gactcagttg gttgaagcag aaacaaaaag ttcaatcgaa 120 gaatcagaaa ttccagagaa tacgttaaga attcactatc aaaacagtag tggagattat 180 tcaaatttag gtgtatggac atgggatgat gtggaatctc ctacagacaa ttggccaagt 240 gggggaattc cttttactga agaacaagta acagattatg gtgcatatgt agatgttccg 300 ttagaatcag gtgctagaaa cgtaggattc ctaattcttg atattgtgac aggtgggaaa 360 gatgatgcag gtcataacgg tggagataaa cgattagagc ttttttcccc caatattaat 420 gaagtgtgga tttcagaagg gtctgatgag atctcattca ttgagcctgt tgatttaccg 480 gaagatacag taagggttca ttataaaaaa gctgatggta attatgagaa ttggagcttg 540 tggttttggg gagatgttca aagcccatct gagactcaag gtgactttcc atcaggggct 600 acaggtttct ctgaagagca aatagggaag tatggagcat atatcgatat tcctttaaat 660 gaaggagcag aagaaattgg gctggttgtt gtgaataaag agactaacga gcaagaagct 720 gatcgctcat ttacgcaatt aaatcaattt aatcaaatat ttatagttga aggtgatggg 780 gccgtgtatt caaacccgta tggtgcgatt gcaacagaat tactttctgc tgagcagtta 840 tccgatgaga aaatcgtctt atatttttct agaacggatg agttaacaga ggaagctctg 900 cttgaacaag tgggcattcg agatatcgaa gagcacacgg tagatgttaa tgaagtagaa 960 attaaaacag ataatcgtac ggtagaagtg aagggagatt ttaacctcga tcaatctcca 1020 tatacggtaa gtcttggcga agtgagtgtt cctgctaaga ttggctggag gctgattgat 1080 gagatgtatg cctatgatgg agagttaggg gcacagttac accaagatgg aacagctacg 1140 attaagctgt ggtcaccaaa agcagagcat gttcaggtga ttttgtacga taaagataac 1200 ccagatgata tcgtaacaga ggttgaaatg aagttaggtg atcgtggagt ttgggaagtg 1260 caattgacta aagaaaacac gggtctagat agtctgagag gctactacta tcattatgaa 1320 attgatcatg atggagataa aaaaattgct ttagatccat atgctaaatc tttatcggct 1380 tggaatagtg atgaacaagg tccatatgcg aaagcagcga ttgtcgatcc gagctcaatt 1440 ggacctgagt tagaatttgc tcatattgaa ggctttgaga aaaaagaaga tacaattatt 1500 tatgaagttc atgtgagaga tttcacttca gaccctcata ttgccgatga gttaaccgct 1560 caatttggta catttgcaag ctttgtagat aagcttgatt atattgaaga cttgggtgtg 1620 acacatattc agcttttacc agttatgagt tatttctttg cgaacgagtt taagaatgat 1680 gaaagaatgc tcgacttttc ttcgacgaat acaaattata attggggata tgacccgcaa 1740 agttatttcg ctctaacggg catgtattca gaagatccaa cagaccctga attacgcatt 1800 aaagagttca agaaattaat tgatgaaatt cacagtcgtg gaatgggtgt tgttttggat 1860 gttgtgtata atcacacagc aagagttggt atctttgaag atttagttcc aaattattat 1920 cattttatgg atgctgatgg tacgccaaga acaagctttg gtggtggacg cctcggtaca 1980 acacacgaga tgtcacgtcg aattctcgtt gattccatta cctattgggt agaagagttt 2040 aagattgatg gattccgttt tgatatgatg ggcgatcatg atgcagagtc aattcaaatt 2100 gcctatgata aagctaaaga aatcaatccg aatattgtga tgattggtga ggggtggatt 2160 acgtacgctg gtgatgaaga tgacccgaat gtacaagctg ctgatcagca ttggatgcag 2220 tatacagaaa gtgtcggtgt attttctgat gagttccgta atgagttaaa gtctggtttt 2280 ggccatgaag gtgagccgcg tttcttaacg ggtggtgcaa gaaatattga cctgattttt 2340 gacaatatta aagctcaacc acataacttt atcgctgatg atccaggtga tgttgtgccg 2400 tatattgaag cacatgataa tttaacttta catgatgtca ttgcgatggc gattcaaaaa 2460 gatccagatg accatcaaga agaaatccac caacgcattc gtctaggaaa cttgatgacg 2520 ttgacttctc aaggtattgc tttcttacat gcaggtcaag agtatggacg cacgaagcaa 2580 tttagagcgg aaacatcaga gccaccgtat aaatctacct atatgactga tgaaaatggt 2640 gagcctttcc gttacccata ctttattcat gactcgtatg attctacaga tatcatcaat 2700 cgttttgatt gggaaagagc aacgaatgct gatgcttatc cgattcaaaa tttaacgaga 2760 gagtatacaa caggtttaat tgagttaaga cgttctagcg atgctttccg attaggaaca 2820 aaagatcttg tagacgaaaa agtaacgcaa ttaaacattc cagaaattga agaaacagat 2880 ttagttgtgg cttatcgcat tgaggcgaca acaggtgaag cattttatgt atttgtgaat 2940 gcggatgatg aagaaagaac attaacatta gaagaggatt taaccgtggg tgaatttgtc 3000 gttgatggaa aaacagctgg tgtgacagcg attgccgagc cacaaggggt ggagttgagt 3060 gctgagcaaa taaagctgga tccattaact gcagcgattg tacaagtagg tggtattgaa 3120 gcaccagaaa aaccaacacc tcctaaagaa gaaccgaaag aaccaaaaga gccaaaagag 3180 ccaaaagagc caaaagagcc aaaagatcca aaagatccaa aagatccaaa agatccacta 3240 gacccgcctg gaaccgatga tcaaaatgga gaaacaccaa aaggaaacga agagaaaaaa 3300 gaggagcaaa aaggtgataa cttgccaaat acggcgacat ctaactatca attcattgcc 3360 ttaggtatcg cacttgtatt aatggcaacc gcgatttatt ggtggaaaag aaaacggcaa 3420 gtagcgtaa 3429 [210] 3 <211> 3429 <212> DNA <213> Bacillus sp. gtgtatggac atgggatgat gtggaatctc ctacagacaa ttggccaagt 240 gggggaattc cttttactga agaacaagta acagattatg gtgcatatgt agatgttccg 300 ttagaatcag gtgctagaaa cgtaggattc ctaattcttg atattgtgac aggtgggaaa 360 gatgatgcag gtcataacgg tggagataaa cgattagagc ttttttcccc caatattaat 420 gaagtgtgga tttcagaagg gtctgatgag atctcattca ttgagcctgt tgatttaccg 480 gaagatacag taagggttca ttataaaaaa gctgatggta attatgagaa ttggagcttg 540 tggttttggg gagatgttca aagcccatct gagactcaag gtgactttcc atcaggggct 600 acaggtttct ctgaagagca aatagggaag tatggagcat atatcgatat tcctttaaat 660 gaaggagcag aagaaattgg gctggttgtt gtgaataaag agactaacga gcaagaagct 720 gatcgctcat ttacgcaatt aaatcaattt aatcaaatat ttatagttga aggtgatggg 780 gcc gtatt caaacccgta tggtgcgatt gcaacagaat tactttctgc tgagcagtta 840 tccgatgaga aaatcgtctt atatttttct agaacggatg agttaacaga ggaagctctg 900 cttgaacaag tgggcattcg agatatcgaa gagcacacgg tagatgttaa tgaagtagaa 960 attaaaacag ataatcgtac ggtagaagtg aagggagatt ttaacctcga tcaatctcca 1020 tatacggtaa gtcttggcga agtgagtgtt cctgctaaga ttggctggag gctgattgat 1080 gagatgtatg cctatgatgg agagttaggg gcacagttac accaagatgg aacagctacg 1140 attaagctgt ggtcaccaaa agcagagcat gttcaggtga ttttgtacga taaagataac 1200 ccagatgata tcgtaacaga ggttgaaatg aagttaggtg atcgtggagt ttgggaagtg 1260 caattgacta aagaaaacac gggtctagat agtctgagag gctactacta tcattatgaa 1320 attgatcatg atggagataa aaaaattgct ttagatccat atgctaaatc tttatcggct 1380 tggaatagtg atgaacaagg tccatatgcg aaagcagcga ttgtcgatcc gagctcaatt 1440 ggacctgagt tagaatttgc tcatattgaa ggctttgaga aaaaagaaga tacaattatt 1500 tatgaagttc atgtgagaga tttcacttca gaccctcata ttgccgatga gttaaccgct 1560 caatttggta catttgcaag ctttgtagat aagcttgatt atattgaaga cttgggtgtg 1620 acacatattc agc ttttacc agttatgagt tatttctttg cgaacgagtt taagaatgat 1680 gaaagaatgc tcgacttttc ttcgacgaat acaaattata attggggata tgacccgcaa 1740 agttatttcg ctctaacggg catgtattca gaagatccaa cagaccctga attacgcatt 1800 aaagagttca agaaattaat tgatgaaatt cacagtcgtg gaatgggtgt tgttttggat 1860 gttgtgtata atcacacagc aagagttggt atctttgaag atttagttcc aaattattat 1920 cattttatgg atgctgatgg tacgccaaga acaagctttg gtggtggacg cctcggtaca 1980 acacacgaga tgtcacgtcg aattctcgtt gattccatta cctattgggt agaagagttt 2040 aagattgatg gattccgttt tgatatgatg ggcgatcatg atgcagagtc aattcaaatt 2100 gcctatgata aagctaaaga aatcaatccg aatattgtga tgattggtga ggggtggatt 2160 acgtacgctg gtgatgaaga tgacccgaat gtacaagctg ctgatcagca ttggatgcag 2220 tatacagaaa gtgtcggtgt attttctgat gagttccgta atgagttaaa gtctggtttt 2280 ggccatgaag gtgagccgcg tttcttaacg ggtggtgcaa gaaatattga cctgattttt 2340 gacaatatta aagctcaacc acataacttt atcgctgatg atccaggtga tgttgtgccg 2400 tatattgaag cacatgataa tttaacttta catgatgtca ttgcgatggc gattcaaaaa 2460 gatccagatg accatcaag a agaaatccac caacgcattc gtctaggaaa cttgatgacg 2520 ttgacttctc aaggtattgc tttcttacat gcaggtcaag agtatggacg cacgaagcaa 2580 tttagagcgg aaacatcaga gccaccgtat aaatctacct atatgactga tgaaaatggt 2640 gagcctttcc gttacccata ctttattcat gactcgtatg attctacaga tatcatcaat 2700 cgttttgatt gggaaagagc aacgaatgct gatgcttatc cgattcaaaa tttaacgaga 2760 gagtatacaa caggtttaat tgagttaaga cgttctagcg atgctttccg attaggaaca 2820 aaagatcttg tagacgaaaa agtaacgcaa ttaaacattc cagaaattga agaaacagat 2880 ttagttgtgg cttatcgcat tgaggcgaca acaggtgaag cattttatgt atttgtgaat 2940 gcggatgatg aagaaagaac attaacatta gaagaggatt taaccgtggg tgaatttgtc 3000 gttgatggaa aaacagctgg tgtgacagcg attgccgagc cacaaggggt ggagttgagt 3060 gctgagcaaa taaagctgga tccattaact gcagcgattg tacaagtagg tggtattgaa 3120 gcaccagaaa aaccaacacc tcctaaagaa gaaccgaaag aaccaaaaga gccaaaagag 3180 ccaaaagagc caaaagagcc aaaagatcca aaagatccaa aagatccaaa agatccacta 3240 gacccgcctg gaaccgatga tcaaaatgga gaaacaccaa aaggaaacga agagaaaaaa 3300 gaggagcaaa aaggtgataa ctt gccaaat acggcgacat ctaactatca attcattgcc 3360 ttaggtatcg cacttgtatt aatggcaacc gcgatttatt ggtggaaaag aaaacggcaa 3420 gtagcgtaa 3429

【0033】 <210> 4 <211> 2463 <212> DNA <213> Bacillus sp. KSM-AP1876 <400> 4 atagggaagt atggagcata tatcgatatt cctttaaatg aaggagcaga agaaattggg 60 ctggttgttg tgaataaaga gactaacgag caagaagctg atcgctcatt tacgcaatta 120 aatcaattta atcaaatatt tatagttgaa ggtgatgggg ccgtgtattc aaacccgtat 180 ggtgcgattg caacagaatt actttctgct gagcagttat ccgatgagaa aatcgtctta 240 tatttttcta gaacggatga gttaacagag gaagctctgc ttgaacaagt gggcattcga 300 gatatcgaag agcacacggt agatgttaat gaagtagaaa ttaaaacaga taatcgtacg 360 gtagaagtga agggagattt taacctcgat caatctccat atacggtaag tcttggcgaa 420 gtgagtgttc ctgctaagat tggctggagg ctgattgatg agatgtatgc ctatgatgga 480 gagttagggg cacagttaca ccaagatgga acagctacga ttaagctgtg gtcaccaaaa 540 gcagagcatg ttcaggtgat tttgtacgat aaagataacc cagatgatat cgtaacagag 600 gttgaaatga agttaggtga tcgtggagtt tgggaagtgc aattgactaa agaaaacacg 660 ggtctagata gtctgagagg ctactactat cattatgaaa ttgatcatga tggagataaa 720 aaaattgctt tagatccata tgctaaatct ttatcggctt ggaatagtga tgaacaaggt 780 ccatatgcga aagcagcgat tgtcgatccg agctcaattg gacctgagtt agaatttgct 840 catattgaag gctttgagaa aaaagaagat acaattattt atgaagttca tgtgagagat 900 ttcacttcag accctcatat tgccgatgag ttaaccgctc aatttggtac atttgcaagc 960 tttgtagata agcttgatta tattgaagac ttgggtgtga cacatattca gcttttacca 1020 gttatgagtt atttctttgc gaacgagttt aagaatgatg aaagaatgct cgacttttct 1080 tcgacgaata caaattataa ttggggatat gacccgcaaa gttatttcgc tctaacgggc 1140 atgtattcag aagatccaac agaccctgaa ttacgcatta aagagttcaa gaaattaatt 1200 gatgaaattc acagtcgtgg aatgggtgtt gttttggatg ttgtgtataa tcacacagca 1260 agagttggta tctttgaaga tttagttcca aattattatc attttatgga tgctgatggt 1320 acgccaagaa caagctttgg tggtggacgc ctcggtacaa cacacgagat gtcacgtcga 1380 attctcgttg attccattac ctattgggta gaagagttta agattgatgg attccgtttt 1440 gatatgatgg gcgatcatga tgcagagtca attcaaattg cctatgataa agctaaagaa 1500 atcaatccga atattgtgat gattggtgag gggtggatta cgtacgctgg tgatgaagat 1560 gacccgaatg tacaagctgc tgatcagcat tggatgcagt atacagaaag tgtcggtgta 1620 ttttctgatg agttccgtaa tgagttaaag tctggttttg gccatgaagg tgagccgcgt 1680 ttcttaacgg gtggtgcaag aaatattgac ctgatttttg acaatattaa agctcaacca 1740 cataacttta tcgctgatga tccaggtgat gttgtgccgt atattgaagc acatgataat 1800 ttaactttac atgatgtcat tgcgatggcg attcaaaaag atccagatga ccatcaagaa 1860 gaaatccacc aacgcattcg tctaggaaac ttgatgacgt tgacttctca aggtattgct 1920 ttcttacatg caggtcaaga gtatggacgc acgaagcaat ttagagcgga aacatcagag 1980 ccaccgtata aatctaccta tatgactgat gaaaatggtg agcctttccg ttacccatac 2040 tttattcatg actcgtatga ttctacagat atcatcaatc gttttgattg ggaaagagca 2100 acgaatgctg atgcttatcc gattcaaaat ttaacgagag agtatacaac aggtttaatt 2160 gagttaagac gttctagcga tgctttccga ttaggaacaa aagatcttgt agacgaaaaa 2220 gtaacgcaat taaacattcc agaaattgaa gaaacagatt tagttgtggc ttatcgcatt 2280 gaggcgacaa caggtgaagc attttatgta tttgtgaatg cggatgatga agaaagaaca 2340 ttaacattag aagaggattt aaccgtgggt gaatttgtcg ttgatggaaa aacagctggt 2400 gtgacagcga ttgccgagcc acaaggggtg gagttgagtg ctgagcaaat aaagctggat 2460 cca 2463 <210> 4 <211> 2463 <212> DNA <213> Bacillus sp. caacagaatt actttctgct gagcagttat ccgatgagaa aatcgtctta 240 tatttttcta gaacggatga gttaacagag gaagctctgc ttgaacaagt gggcattcga 300 gatatcgaag agcacacggt agatgttaat gaagtagaaa ttaaaacaga taatcgtacg 360 gtagaagtga agggagattt taacctcgat caatctccat atacggtaag tcttggcgaa 420 gtgagtgttc ctgctaagat tggctggagg ctgattgatg agatgtatgc ctatgatgga 480 gagttagggg cacagttaca ccaagatgga acagctacga ttaagctgtg gtcaccaaaa 540 gcagagcatg ttcaggtgat tttgtacgat aaagataacc cagatgatat cgtaacagag 600 gttgaaatga agttaggtga tcgtggagtt tgggaagtgc aattgactaa agaaaacacg 660 ggtctagata gtctgagagg ctactactat cattatgaaa ttgatcatga tggagataaa 720 aaaattgctt tagatccata tgctaaatct ttatcggctt ggaatagtga tgaacaaggt 780 ccata tgcga aagcagcgat tgtcgatccg agctcaattg gacctgagtt agaatttgct 840 catattgaag gctttgagaa aaaagaagat acaattattt atgaagttca tgtgagagat 900 ttcacttcag accctcatat tgccgatgag ttaaccgctc aatttggtac atttgcaagc 960 tttgtagata agcttgatta tattgaagac ttgggtgtga cacatattca gcttttacca 1020 gttatgagtt atttctttgc gaacgagttt aagaatgatg aaagaatgct cgacttttct 1080 tcgacgaata caaattataa ttggggatat gacccgcaaa gttatttcgc tctaacgggc 1140 atgtattcag aagatccaac agaccctgaa ttacgcatta aagagttcaa gaaattaatt 1200 gatgaaattc acagtcgtgg aatgggtgtt gttttggatg ttgtgtataa tcacacagca 1260 agagttggta tctttgaaga tttagttcca aattattatc attttatgga tgctgatggt 1320 acgccaagaa caagctttgg tggtggacgc ctcggtacaa cacacgagat gtcacgtcga 1380 attctcgttg attccattac ctattgggta gaagagttta agattgatgg attccgtttt 1440 gatatgatgg gcgatcatga tgcagagtca attcaaattg cctatgataa agctaaagaa 1500 atcaatccga atattgtgat gattggtgag gggtggatta cgtacgctgg tgatgaagat 1560 gacccgaatg tacaagctgc tgatcagcat tggatgcagt atacagaaag tgtcggtgta 1620 ttttctgatg agt tccgtaa tgagttaaag tctggttttg gccatgaagg tgagccgcgt 1680 ttcttaacgg gtggtgcaag aaatattgac ctgatttttg acaatattaa agctcaacca 1740 cataacttta tcgctgatga tccaggtgat gttgtgccgt atattgaagc acatgataat 1800 ttaactttac atgatgtcat tgcgatggcg attcaaaaag atccagatga ccatcaagaa 1860 gaaatccacc aacgcattcg tctaggaaac ttgatgacgt tgacttctca aggtattgct 1920 ttcttacatg caggtcaaga gtatggacgc acgaagcaat ttagagcgga aacatcagag 1980 ccaccgtata aatctaccta tatgactgat gaaaatggtg agcctttccg ttacccatac 2040 tttattcatg actcgtatga ttctacagat atcatcaatc gttttgattg ggaaagagca 2100 acgaatgctg atgcttatcc gattcaaaat ttaacgagag agtatacaac aggtttaatt 2160 gagttaagac gttctagcga tgctttccga ttaggaacaa aagatcttgt agacgaaaaa 2220 gtaacgcaat taaacattcc agaaattgaa gaaacagatt tagttgtggc ttatcgcatt 2280 gaggcgacaa caggtgaagc attttatgta tttgtgaatg cggatgatga agaaagaaca 2340 ttaacattag aagaggattt aaccgtgggt gaatttgtcg ttgatggaaa aacagctggt 2400 gtgacagcga ttgccgagcc acaaggggtg gagttgagtg ctgagcaaat aaagctggat 2460 cca 2463

【0034】 <210> 5 <211> 22 <212> DNA <213> Artificial Sequence <400> 5 tataattggg gwtatgatcc wc 22<210> 5 <211> 22 <212> DNA <213> Artificial Sequence <400> 5 tataattggg gwtatgatcc wc 22

【0035】 <210> 6 <211> 24 <212> DNA <213> Artificial Sequence <400> 6 acccatcata tcaaawckaa awcc 24<210> 6 <211> 24 <212> DNA <213> Artificial Sequence <400> 6 acccatcata tcaaawckaa awcc 24

【0036】 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <400> 7 tgcccgttag agcgaaataa ctttg 25<210> 7 <211> 25 <212> DNA <213> Artificial Sequence <400> 7 tgcccgttag agcgaaataa ctttg 25

【0037】 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <400> 8 ctgatggtac gccaagaaca agctt 25<210> 8 <211> 25 <212> DNA <213> Artificial Sequence <400> 8 ctgatggtac gccaagaaca agctt 25

【0038】 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <400> 9 catttttagc aggttagtaa gtc 23<210> 9 <211> 23 <212> DNA <213> Artificial Sequence <400> 9 catttttagc aggttagtaa gtc 23

【0039】 <210> 10 <211> 24 <212> DNA <213> Artificial Sequence <400> 10 cggtaccctt gttgaacgga cagc 24<210> 10 <211> 24 <212> DNA <213> Artificial Sequence <400> 10 cggtaccctt gttgaacgga cagc 24

【0040】 <210> 11 <211> 23 <212> DNA <213> Artificial Sequence <400> 11 catttttagc aggttagtaa gtc 23<210> 11 <211> 23 <212> DNA <213> Artificial Sequence <400> 11 catttttagc aggttagtaa gtc 23

【0041】 <210> 12 <211> 24 <212> DNA <213> Artificial Sequence <400> 12 cggtaccctt gttgaacgga cagc 24<210> 12 <211> 24 <212> DNA <213> Artificial Sequence <400> 12 cggtaccctt gttgaacgga cagc 24

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、アルカリプルラナーゼ遺伝子(Bacillu
s sp. KSM-AP1876株由来)のを含有したプラスミド(pA
P100)の制限酵素地図を示す図である。
FIG. 1 shows the alkaline pullulanase gene ( Bacillu
s sp. KSM-AP1876 strain) (pA
It is a figure which shows the restriction enzyme map of (P100).

【図2】図2は、アルカリプルラナーゼのpHプロファ
イルを示す図である。
FIG. 2 is a diagram showing a pH profile of alkaline pullulanase.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12N 9/44 (C12N 9/44 //(C12N 15/09 ZNA C12R 1:07) C12R 1:07) C12N 15/00 ZNAA (C12N 9/44 5/00 A C12R 1:07) C12R 1:07) (72)発明者 佐伯 勝久 栃木県芳賀郡市貝町赤羽2606 花王株式会 社研究所内 (72)発明者 川合 修次 栃木県芳賀郡市貝町赤羽2606 花王株式会 社研究所内 Fターム(参考) 4B024 AA03 BA12 CA02 CA04 DA06 DA07 EA04 GA11 HA01 4B050 CC01 DD02 FF11E FF12E FF14E LL04 4B065 AA15X AA15Y AA26X AB01 BA02 CA31 CA57 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C12N 9/44 (C12N 9/44 // (C12N 15/09 ZNA C12R 1:07) C12R 1:07) C12N 15/00 ZNAA (C12N 9/44 5/00 A C12R 1:07) C12R 1:07) (72) Inventor Katsuhisa Saeki 2606 Kabanecho, Kaigamachi, Haga-gun, Tochigi Pref. Kao Corporation Research Institute (72) Inventor Shuji Kawai 2606 Akabane, Kakaicho, Haga-gun, Tochigi Prefecture F-term in the Kao Corporation Research Laboratories (reference) 4B024 AA03 BA12 CA02 CA04 DA06 DA07 EA04 GA11 HA01 4B050 CC01 DD02 FF11E FF12E FF14E LL04 4B065 AA15X AA15CA0257

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 配列番号1若しくは配列番号2に示すア
ミノ酸配列又は該アミノ酸配列の1若しくは数個のアミ
ノ酸が欠失、置換若しくは付加されたアミノ酸配列を有
するアルカリプルラナーゼ。
1. An alkaline pullulanase having the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2 or an amino acid sequence in which one or several amino acids of the amino acid sequence have been deleted, substituted or added.
【請求項2】 請求項1記載のアルカリプルラナーゼを
コードする遺伝子。
2. A gene encoding the alkaline pullulanase according to claim 1.
【請求項3】 配列番号3若しくは配列番号4に示す塩
基配列又は該塩基配列の1若しくは数個の塩基が欠失、
置換若しくは付加された塩基配列を有する請求項2記載
のアルカリプルラナーゼ遺伝子。
3. The nucleotide sequence shown in SEQ ID NO: 3 or SEQ ID NO: 4 or one or several nucleotides of the nucleotide sequence are deleted,
3. The alkaline pullulanase gene according to claim 2, which has a substituted or added base sequence.
【請求項4】 請求項2又は3記載の遺伝子を含有する
組換えベクター。
4. A recombinant vector containing the gene according to claim 2 or 3.
【請求項5】 請求項4記載の組換えベクターを含む形
質転換体。
A transformant comprising the recombinant vector according to claim 4.
【請求項6】 請求項5記載の形質転換体を培養する請
求項1記載のアルカリプルラナーゼの製造法。
6. The method for producing alkaline pullulanase according to claim 1, wherein the transformant according to claim 5 is cultured.
JP2000303805A 2000-10-03 2000-10-03 Alkaline pullulanase Expired - Fee Related JP4372986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000303805A JP4372986B2 (en) 2000-10-03 2000-10-03 Alkaline pullulanase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000303805A JP4372986B2 (en) 2000-10-03 2000-10-03 Alkaline pullulanase

Publications (2)

Publication Number Publication Date
JP2002112776A true JP2002112776A (en) 2002-04-16
JP4372986B2 JP4372986B2 (en) 2009-11-25

Family

ID=18784957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000303805A Expired - Fee Related JP4372986B2 (en) 2000-10-03 2000-10-03 Alkaline pullulanase

Country Status (1)

Country Link
JP (1) JP4372986B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108913677A (en) * 2018-07-23 2018-11-30 福州大学 A kind of Fixedpoint mutation modified alkaline pullulanase and its application
CN111793663A (en) * 2020-07-22 2020-10-20 江南大学 Starch pullulanase with wide pH value adaptability and application thereof
CN112941056A (en) * 2021-02-24 2021-06-11 长春大学 Starch pullulanase mutant and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108913677A (en) * 2018-07-23 2018-11-30 福州大学 A kind of Fixedpoint mutation modified alkaline pullulanase and its application
CN111793663A (en) * 2020-07-22 2020-10-20 江南大学 Starch pullulanase with wide pH value adaptability and application thereof
CN111793663B (en) * 2020-07-22 2022-09-27 江南大学 Starch pullulanase with wide pH value adaptability and application thereof
CN112941056A (en) * 2021-02-24 2021-06-11 长春大学 Starch pullulanase mutant and application thereof
CN112941056B (en) * 2021-02-24 2022-11-18 长春大学 Starch pullulanase mutant and application thereof

Also Published As

Publication number Publication date
JP4372986B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
JP3025627B2 (en) Liquefied alkaline α-amylase gene
JP3086249B2 (en) Mutant α-amylase derived from bacteria having high heat, acid and / or alkali stability
JPH11514219A (en) Alkalinephilic and thermophilic microorganisms and enzymes derived therefrom.
JPH07327685A (en) Ultra-heat resistant beta-galactosidase gene
CN110423737B (en) Heat-resistant alpha-amylase derived from geobacillus stearothermophilus and application thereof
CN101528923B (en) Method for designing mutated enzyme, method for preparing the same and mutated enzyme
EP0648843A1 (en) DNA encoding a hyperthermostable alpha-amylase
JP4815219B2 (en) DNA containing an alkalophilic cyclodextran synthase gene, recombinant DNA, and method for producing an alkalophilic cyclodextran synthase
JP3025625B2 (en) Alkaline pullulanase gene having alkaline α-amylase activity
Wang et al. Improvement of Aspergillus niger glucoamylase thermostability by directed evolution
JP2002112776A (en) Alkaline pullulanase
JP3463951B2 (en) Thermostable pyroglutamyl peptidase and its gene
JP3464810B2 (en) Hyperthermostable aminopeptidase gene
JPH07143880A (en) Alpha-amylase gene having ultra-high heat-resistance
EP0640138B1 (en) Dna fragment containing gene for alkaline pullulanase
US6921656B1 (en) Polypeptides having glucoamylase activity
JP2814177B2 (en) DNA fragment containing alkaline pullulanase gene, vector incorporating the DNA fragment, and microorganism having the vector
JP2001231569A (en) Alkali cellulase gene
JP4280829B2 (en) Thermostable α-L-arabinofuranosidase and process for producing the same
JPH089979A (en) Heat resistant methionine aminopeptitase and its gene
JP2814178B2 (en) Alkaline pullulanase and method for producing the same
JP4233306B2 (en) Thermostable cordobiose phosphorylase
CN113801830A (en) Bacillus subtilis strain for high pullulanase yield and application thereof
JP2006067884A (en) Recombinant bacterium of genus bacillus
JPH11318457A (en) Pectate lyase gene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060803

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees