JP2002112390A - Ultrasonic wave element and gas concentration measurement device - Google Patents
Ultrasonic wave element and gas concentration measurement deviceInfo
- Publication number
- JP2002112390A JP2002112390A JP2000303111A JP2000303111A JP2002112390A JP 2002112390 A JP2002112390 A JP 2002112390A JP 2000303111 A JP2000303111 A JP 2000303111A JP 2000303111 A JP2000303111 A JP 2000303111A JP 2002112390 A JP2002112390 A JP 2002112390A
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric body
- ultrasonic
- face
- ultrasonic wave
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000005259 measurement Methods 0.000 title description 12
- 230000005540 biological transmission Effects 0.000 claims description 14
- 238000012360 testing method Methods 0.000 claims description 13
- 230000005855 radiation Effects 0.000 abstract description 13
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 52
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 238000012545 processing Methods 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 5
- 239000010409 thin film Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Transducers For Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は超音波素子およびガ
ス濃度計測装置に関する。The present invention relates to an ultrasonic element and a gas concentration measuring device.
【0002】[0002]
【従来の技術】超音波素子は給電により超音波が放射可
能な装置で、車両のバックソナー等の障害物検知の他、
近年、超音波素子から放射された音波を受信器で受信し
て超音波が伝搬する媒質となる物質の物性等の計測、例
えば改質器を備えた燃料電池システムにおいて改質ガス
中の水素濃度を計測するガス濃度計測装置に用いられて
いる。超音波素子には圧電作用を応用したものがよく知
られており、このものでは、機械振動から電気振動への
変換作用により音波受信をもできるようにした送受一体
型のものもある。圧電作用を応用した超音波素子の本体
部分は、交流電圧の印加により機械振動が生じる圧電体
である。前記機械振動の振動方向に圧電体内部で超音波
が進行し、この進行方向が超音波の主放射方向となる。2. Description of the Related Art An ultrasonic element is a device capable of emitting ultrasonic waves by feeding power. In addition to detecting obstacles such as a vehicle back sonar,
In recent years, a sound wave radiated from an ultrasonic element is received by a receiver, and a physical property of a substance serving as a medium through which the ultrasonic wave propagates is measured, for example, a hydrogen concentration in a reformed gas in a fuel cell system including a reformer. Is used in a gas concentration measuring device that measures the temperature. It is well known that an ultrasonic element to which a piezoelectric action is applied is known. Among these, there is an integrated transmission / reception type in which sound waves can be received by converting mechanical vibration into electric vibration. The main part of the ultrasonic element to which the piezoelectric action is applied is a piezoelectric body that generates mechanical vibration when an AC voltage is applied. The ultrasonic wave travels inside the piezoelectric body in the vibration direction of the mechanical vibration, and the traveling direction is the main radiation direction of the ultrasonic wave.
【0003】圧電体の超音波進行方向の端面はいずれも
超音波の放射面となり得るが、通常、超音波素子の背後
への放射は不要であり、前記2つの端面のうち一方に整
合層を接着して圧電体よりも整合層側の音響インピーダ
ンスを高めて超音波の放射方向を実質的に整合層側に限
定したものがある。ここで、圧電体と整合層の界面を超
音波が良好に透過し得るように、整合層の接着面は前記
一方の端面の全面と当接するように形状が与えられる。[0003] Any end face of the piezoelectric body in the direction of ultrasonic wave propagation can be a radiation surface of ultrasonic waves. However, radiation to the back of the ultrasonic element is usually unnecessary, and a matching layer is provided on one of the two end faces. In some cases, the direction of ultrasonic wave radiation is substantially limited to the matching layer side by bonding to increase the acoustic impedance on the matching layer side relative to the piezoelectric body. Here, the bonding surface of the matching layer is given a shape so as to contact the entire surface of the one end face so that the ultrasonic wave can be transmitted well through the interface between the piezoelectric body and the matching layer.
【0004】[0004]
【発明が解決しようとする課題】ところで、超音波が伝
搬する媒質となる物質の物性等の計測においては、超音
波素子からの超音波の放射対象は固定された受信器の狭
い音波受信面に限られており、受信器以外に向けて放射
される超音波は計測に寄与しない。また、燃料電池シス
テムに付設されるガス濃度計測装置のように、超音波の
媒質が比重の軽い水素を多量に含む前記改質ガス等の場
合、音響インピーダンスが低くなって整合層と改質ガス
の界面における反射が強まり放射強度が低下するととも
に、超音波の波長が短くなって回折が強くなり受信部に
おける強度が低下する。In the measurement of physical properties of a substance serving as a medium through which an ultrasonic wave propagates, the ultrasonic wave is radiated from the ultrasonic element to a narrow sound receiving surface of a fixed receiver. Ultrasonic waves radiated to other than the receiver do not contribute to the measurement. Further, when the ultrasonic medium is a reformed gas containing a large amount of hydrogen having a low specific gravity, such as a gas concentration measuring device attached to a fuel cell system, the acoustic impedance is lowered and the matching layer As the reflection at the interface increases and the radiation intensity decreases, the wavelength of the ultrasonic wave becomes shorter, the diffraction increases, and the intensity at the receiver decreases.
【0005】このため、比重の軽い軽気体を多量に含む
ガスを被験ガスとする前記ガス濃度計測装置において計
測精度が十分とはいえない。[0005] For this reason, the measurement accuracy of the gas concentration measuring apparatus using a gas containing a large amount of light gas having a low specific gravity as a test gas cannot be said to have sufficient measurement accuracy.
【0006】本発明は前記実情に鑑みなされたもので、
放射された超音波の収束性がよく放射効率が高い超音波
素子を提供することを目的とする。また、計測精度のよ
いガス濃度計測装置を提供することを目的とする。The present invention has been made in view of the above circumstances,
It is an object of the present invention to provide an ultrasonic element having good convergence of emitted ultrasonic waves and high radiation efficiency. It is another object of the present invention to provide a gas concentration measurement device with high measurement accuracy.
【0007】[0007]
【課題を解決するための手段】請求項1記載の発明で
は、圧電作用により音波を発生する圧電体の該圧電体内
部における音波進行方向の一方の端面に整合層を前記一
方の端面の全面と当接するように接着して前記圧電体か
ら前記整合層を経て外部へ超音波を放射する超音波素子
において、前記圧電体の前記一方の端面を平面とし、か
つ、前記圧電体の他方の端面を緩やかな曲面状の突出面
とする。According to the first aspect of the present invention, a matching layer is provided on one end face of a piezoelectric body which generates a sound wave by a piezoelectric action in the direction of sound wave propagation inside the piezoelectric body and the entire surface of the one end face. In an ultrasonic element that adheres so as to abut and emits ultrasonic waves from the piezoelectric body to the outside through the matching layer, the one end face of the piezoelectric body is a plane, and the other end face of the piezoelectric body is It shall be a gentle curved protruding surface.
【0008】圧電体の振動面である圧電体の他方の端面
を緩やかな曲面状の突出面としたから前記他方の端面か
らの放射超音波が中央部に寄せられて収束性が向上し、
超音波の放射効率がよい。一方、圧電体の一方の端面を
平面としたから、整合層の接着面も加工が容易な平面と
することができる。Since the other end face of the piezoelectric body, which is the vibration surface of the piezoelectric body, is formed as a gentle curved protruding face, the ultrasonic waves radiated from the other end face are brought to the center to improve convergence,
Ultrasonic radiation efficiency is good. On the other hand, since one end surface of the piezoelectric body is a flat surface, the bonding surface of the matching layer can be a flat surface that can be easily processed.
【0009】請求項2記載の発明では、請求項1の発明
の構成において、前記圧電体の前記他方の端面を球面と
する。According to a second aspect of the present invention, in the configuration of the first aspect, the other end face of the piezoelectric body is spherical.
【0010】前記他方の端面からその曲率半径離れた位
置が焦点となるので、より収束性の向上を図ることがで
きる。Since the focal point is located at a position away from the other end face by the radius of curvature, convergence can be further improved.
【0011】請求項3記載の発明では、ガス濃度計測装
置を、被験ガスを媒質として超音波を送受信する送受信
手段と、該送受信手段の送信信号と受信信号とを入力と
し、前記被験ガス中の特定の成分ガスの濃度に応じて変
化する前記超音波の音速に基づいて成分ガスの濃度を測
定する測定手段とを具備する構成とするとともに、前記
送受信手段を、請求項1または2いずれか記載の超音波
素子を具備する構成とする。According to the third aspect of the present invention, the gas concentration measuring device is provided with transmitting / receiving means for transmitting / receiving ultrasonic waves using a test gas as a medium, and a transmission signal and a reception signal of the transmission / reception means as inputs. 3. A configuration comprising: a measuring unit configured to measure a concentration of a component gas based on a sound speed of the ultrasonic wave that changes according to a concentration of a specific component gas, and the transmission / reception unit includes: And a configuration including the ultrasonic element.
【0012】収束性が高く加工が平易な前記超音波素子
を用いることで、ガス濃度の計測精度がよく製造が容易
なガス濃度計測装置を構築することができる。前記改質
ガス中の水素等、軽気体の濃度の計測に好適である。By using the ultrasonic element having high convergence and easy processing, it is possible to construct a gas concentration measuring device which has good gas concentration measuring accuracy and is easy to manufacture. It is suitable for measuring the concentration of light gas such as hydrogen in the reformed gas.
【0013】[0013]
【発明の実施の形態】(第1実施形態)図1に、本発明
の超音波素子の断面を示す。超音波素子は、有底で円筒
状のアルミニウム製のケーシング3内に、ケーシング3
と同軸にケーシング3の内径よりもやや小さな円盤状の
圧電体1が配設されてなり、ケーシング3の後端開口は
蓋部材4により閉じられている。超音波素子はケーシン
グ3の底部31を超音波素子から放射される超音波を受
ける図示しない受信用の超音波素子に向けて配置され
る。受信用の超音波素子には本超音波素子と同じものが
用いられ得、そのケーシング底部同志が対向するように
配置する。(First Embodiment) FIG. 1 shows a cross section of an ultrasonic element according to the present invention. The ultrasonic element is placed inside a cylindrical aluminum casing 3 with a bottom.
A disc-shaped piezoelectric body 1 slightly smaller than the inner diameter of the casing 3 is disposed coaxially with the casing 3, and a rear end opening of the casing 3 is closed by a lid member 4. The ultrasonic element is arranged such that the bottom 31 of the casing 3 is directed toward a receiving ultrasonic element (not shown) for receiving ultrasonic waves radiated from the ultrasonic element. The same ultrasonic element as that of the present ultrasonic element can be used as the ultrasonic element for reception, and the casing bottoms are arranged so as to face each other.
【0014】圧電体1は、PZT等の圧電セラミックを
前記形状に成形して、その円形の両端面101、102
の全面に銀等の薄膜電極を形成したものである。圧電体
1の厚さ等の形状は圧電体1の共振周波数が超音波域と
なるように設定される。また、圧電体1の前端面101
は平坦に形成され、後端面102は緩やかな球面状の突
出面となって盛り上がっている。圧電体1の後端面10
2の曲率半径は、略前記受信用の超音波素子と圧電体1
の後端面102間の距離に設定する。圧電体1は、従来
の超音波素子の圧電体との相違点がこの後端面102の
形状であり、したがって、圧電体の製造には一般的な製
造方法が適用できる。すなわち、圧電セラミック材料を
型に入れて固め乾燥した後、両端面に銀等を塗布して前
記薄膜電極を形成し、さらに焼成する。その後、分極を
施して完成する。The piezoelectric body 1 is formed by molding a piezoelectric ceramic such as PZT into the above-mentioned shape, and forming both end faces 101 and 102 of the circular shape.
Is formed with a thin film electrode of silver or the like on the entire surface of the substrate. The shape such as the thickness of the piezoelectric body 1 is set so that the resonance frequency of the piezoelectric body 1 is in the ultrasonic range. Also, the front end face 101 of the piezoelectric body 1
Are formed flat, and the rear end surface 102 is a gently spherical protruding surface and is raised. Rear end face 10 of piezoelectric body 1
2 is approximately equal to the receiving ultrasonic element and the piezoelectric body 1.
The distance between the rear end faces 102 is set. The piezoelectric body 1 is different from the piezoelectric body of the conventional ultrasonic element in the shape of the rear end face 102. Therefore, a general manufacturing method can be applied to the manufacture of the piezoelectric body. That is, after the piezoelectric ceramic material is put into a mold, solidified and dried, silver or the like is applied to both end surfaces to form the thin-film electrode, and then fired. Thereafter, polarization is performed to complete the process.
【0015】圧電体1には前記薄膜電極への電圧印加用
のリード線2a,2bがはんだ付けされ、リード線2
a,2bの先端部が蓋部材4を貫通してケーシング3の
外へ引き出されている。リード線2a,2bの先端部か
ら前記両薄膜電極間に超音波域の交流電圧を印加する
と、圧電体1に圧電効果による電歪作用が誘起されて機
械振動が発生し、超音波が略圧電体1の厚さ方向に進行
する。Lead wires 2a and 2b for applying a voltage to the thin film electrode are soldered to the piezoelectric body 1,
The tips of a and 2b pass through the lid member 4 and are drawn out of the casing 3. When an AC voltage in an ultrasonic range is applied between the thin film electrodes from the ends of the lead wires 2a and 2b, electrostriction is induced in the piezoelectric body 1 by a piezoelectric effect, and mechanical vibration is generated. It proceeds in the thickness direction of the body 1.
【0016】圧電体1は平坦な前端面101でケーシン
グ3の底面301に接着してある。ケーシング底面30
1には圧電体1の位置決め用に、圧電体1と略同径の凹
部302が形成される。圧電体1の前端面101と接着
する接着面303は、超音波の放射方向を規定する整合
層として作用するケーシング底部31と圧電体1との界
面となるため、圧電体1の前端面101と全面で当接す
る必要がある。本超音波素子では圧電体1の前端面10
1を平面としたから、ケーシング接着面303は圧電体
1の前端面101と同様に平面である。したががって、
旋盤加工等による凹部302の形成が容易である。The piezoelectric body 1 is bonded to the bottom surface 301 of the casing 3 with a flat front end surface 101. Casing bottom surface 30
1, a concave portion 302 having substantially the same diameter as the piezoelectric body 1 is formed for positioning the piezoelectric body 1. The bonding surface 303 that is bonded to the front end surface 101 of the piezoelectric body 1 is an interface between the casing bottom 31 acting as a matching layer that defines the ultrasonic radiation direction and the piezoelectric body 1. It is necessary to abut on the whole surface. In the present ultrasonic element, the front end face 10 of the piezoelectric body 1
1 is a plane, the casing bonding surface 303 is a plane like the front end surface 101 of the piezoelectric body 1. Therefore,
The formation of the concave portion 302 by lathing or the like is easy.
【0017】圧電体1の前端面101はケーシング3の
接着面303と密着しており、一方、圧電体1の後端面
102は空気と接触しているが、物質の音響インピーダ
ンスは(密度×音速)に比例するから、音響インピーダ
ンスは空気<圧電体1<ケーシング底部31となる。す
なわち、ケーシング底部31が整合層として作用して、
圧電体1で発生した超音波がケーシング底部31を経て
空気中に放射される。この放射超音波には、ケーシング
3内の空気との界面である圧電体1の他方の端面102
を振動面とする超音波も含まれる。The front end face 101 of the piezoelectric body 1 is in close contact with the adhesive surface 303 of the casing 3, while the rear end face 102 of the piezoelectric body 1 is in contact with air, but the acoustic impedance of the substance is (density × sonic velocity) ), The acoustic impedance is air <piezoelectric 1 <casing bottom 31. That is, the casing bottom 31 acts as a matching layer,
Ultrasonic waves generated by the piezoelectric body 1 are radiated through the casing bottom 31 into the air. The other end surface 102 of the piezoelectric body 1, which is an interface with the air in the casing 3, is
An ultrasonic wave having a vibration plane is also included.
【0018】超音波は振動面の法線方向に放射するが、
本超音波素子では圧電体1の後端面102を球面とした
から、超音波が圧電体1の径方向中央に寄せられて所定
位置で焦点を結ぶ。しかして、略この焦点位置Fに前記
受信用の超音波素子を設置すれば効率よく放射超音波を
受けることができる。図2は焦点位置Fで超音波素子の
軸線方向すなわち超音波の主放射方向に対し直交する面
内における規格化された超音波強度を示すもので、図中
に圧電体の後端面が平坦な従来の超音波素子のものを併
せて示している。本超音波素子は従来の超音波素子に比
して放射範囲が集中して収束性が良好で、放射超音波が
効率よく受信用の超音波素子に達することが知られる。Ultrasonic waves radiate in the normal direction of the vibrating surface,
In this ultrasonic element, since the rear end face 102 of the piezoelectric body 1 has a spherical surface, the ultrasonic wave is focused on the center of the piezoelectric body 1 in the radial direction and focuses on a predetermined position. Thus, if the receiving ultrasonic element is installed at approximately this focal position F, it is possible to efficiently receive radiated ultrasonic waves. FIG. 2 shows the normalized ultrasonic intensity in a plane perpendicular to the axial direction of the ultrasonic element, that is, the main radiation direction of the ultrasonic wave at the focal position F. In the figure, the rear end face of the piezoelectric body is flat. A conventional ultrasonic element is also shown. It is known that the present ultrasonic element has a more concentrated radiation range and better convergence than conventional ultrasonic elements, and that the emitted ultrasonic waves reach the ultrasonic element for reception efficiently.
【0019】焦点位置には、圧電体1とケーシング底部
31の界面、ケーシング底部31と空気の界面における
屈折を殆ど無視できるので、圧電体1の後端面102か
ら略その曲率半径離れた位置になる。したがって、送信
用の超音波素子と受信用の超音波素子の配置に基づいて
圧電体1の後端面102の曲率半径を決めることで優れ
た収束性を発揮する。Since the refraction at the interface between the piezoelectric body 1 and the casing bottom 31 and the interface between the casing bottom 31 and air can be almost ignored at the focal position, the focal point is located at a position substantially apart from the rear end face 102 of the piezoelectric body 1 by the radius of curvature. . Therefore, excellent convergence is exhibited by determining the radius of curvature of the rear end face 102 of the piezoelectric body 1 based on the arrangement of the transmitting ultrasonic element and the receiving ultrasonic element.
【0020】しかも、圧電体1の後端面102を球面に
することで収束性の向上を図る一方、超音波が放射する
側の圧電体1の前端面101を平面とすることで、ケー
シング3の圧電体1との接着面303を加工が容易な平
面にすることを可能としたので、低廉に製造し得る。Moreover, the convergence is improved by making the rear end face 102 of the piezoelectric body 1 spherical, while the front end face 101 of the piezoelectric body 1 on the side from which the ultrasonic wave is radiated is made flat, so that the casing 3 Since the bonding surface 303 with the piezoelectric body 1 can be made a flat surface that can be easily processed, it can be manufactured at low cost.
【0021】なお、圧電体1の後端面102は本実施形
態のごとく球面が望ましいが、曲面であれば、超音波素
子に要求される仕様によっては十分な収束性を得ること
ができる。The rear end face 102 of the piezoelectric body 1 is desirably a spherical surface as in this embodiment, but if it is a curved surface, sufficient convergence can be obtained depending on the specifications required for the ultrasonic element.
【0022】(第2実施形態)図3、図4に本発明の第
2の実施形態であるガス濃度計測装置の構成を示す。ガ
ス濃度計測装置は、改質器の改質ガスを被験ガスとする
もので、本体部分が、セル5と、送受信手段6を構成す
る超音波素子61,62とで構成されている。セル5は
ステンレススティールを円筒状に成形したもので、その
周壁には両端から略1/3の位置にそれぞれ周壁を貫通
して孔501,502が形成されており、一方が改質ガ
スをセル5内に導入する導入口501としてあり、他方
が改質ガスをセル5内から排出する排出口502として
ある。(Second Embodiment) FIGS. 3 and 4 show the configuration of a gas concentration measuring apparatus according to a second embodiment of the present invention. The gas concentration measuring device uses a reformed gas of a reformer as a test gas, and has a main body portion composed of a cell 5 and ultrasonic elements 61 and 62 constituting a transmitting / receiving means 6. The cell 5 is formed by molding stainless steel into a cylindrical shape. Holes 501 and 502 are formed in the peripheral wall at positions substantially 1/3 from both ends so as to penetrate the peripheral wall. 5 and an outlet 502 for discharging the reformed gas from the cell 5.
【0023】超音波素子61,62は第1実施形態に示
したものと実質的に同じ構造を備えている。超音波素子
61,62のケーシング3の外周面とセル5の内周面に
はネジ部が形成され、超音波素子61,62はセル5の
両端部から、整合層であるケーシング底部31側が互い
に対向するように螺入してある。螺入位置は、両超音波
素子61,62の対向面61a,62aが近接する導入
口501、排出口502からややセル5の端部側にやや
後退した位置となるように設定され、両超音波素子6
1,62の対向面61a,62aで区画されたセル内空
間(以下、音波伝搬室という)503に、導入口501
に近い超音波素子61側から排出口502に近い超音波
素子62側に向かう改質ガスの流れが形成される。The ultrasonic elements 61 and 62 have substantially the same structure as that shown in the first embodiment. Threads are formed on the outer peripheral surface of the casing 3 of the ultrasonic elements 61 and 62 and the inner peripheral surface of the cell 5, and the ultrasonic elements 61 and 62 are arranged such that the casing bottom 31 side, which is a matching layer, extends from both ends of the cell 5. It is screwed so as to face. The screw-in position is set so that the opposing surfaces 61a and 62a of the ultrasonic elements 61 and 62 are slightly retreated from the inlet 501 and the outlet 502, which are close to each other, toward the end of the cell 5. Sound element 6
An inlet 501 is formed in a cell space (hereinafter referred to as a sound wave propagation chamber) 503 defined by the opposing surfaces 61a and 62a of the first and second surfaces.
A flow of the reformed gas is formed from the ultrasonic element 61 side near to the ultrasonic element 62 side near the discharge port 502.
【0024】また、超音波素子61,62のケーシング
3とセル5の間には、前記ネジ部の非形成位置にOリン
グ等のシール部材51が設けられ、気密性を高めてい
る。A seal member 51 such as an O-ring is provided between the casing 3 of the ultrasonic elements 61 and 62 and the cell 5 at a position where the screw portion is not formed, to enhance airtightness.
【0025】一方の超音波素子(図例では導入口に近い
超音波素子)61のリード線2a,2bは信号生成回路
7と接続され、他方の超音波素子(図例では排出口に近
い超音波素子)62のリード線2a,2bは信号処理回
路81と接続されている。The lead wires 2a and 2b of one ultrasonic element (ultrasonic element near the inlet in the illustrated example) 61 are connected to the signal generating circuit 7, and the other ultrasonic element (ultrasonic near the discharge port in the illustrated example). The lead wires 2 a and 2 b of the sonic element 62 are connected to the signal processing circuit 81.
【0026】信号生成回路7は、図5に示すように、数
百kHzの矩形波を2〜数十回連続して発生して停止す
るバースト波信号を生成する()とともにこれを一方
の超音波素子61のリード線2a,2bに出力し、これ
により該超音波素子61が、矩形波が鈍った波形の超音
波を前記音波伝搬室503に放射する()。As shown in FIG. 5, the signal generating circuit 7 generates a burst wave signal that generates a rectangular wave of several hundred kHz continuously for two to several tens of times and stops, and generates the burst wave signal on one side. The ultrasonic wave is output to the lead wires 2a and 2b of the acoustic wave element 61, whereby the ultrasonic wave element 61 emits an ultrasonic wave having a dull rectangular wave to the sound wave propagation chamber 503 ().
【0027】他方の超音波素子62は、改質ガス中の音
速に応じた遅延時間の後、放射された超音波を受けて圧
電作用によりリード線2a,2bから受信信号を出力す
る(以下、超音波を放射する一方の超音波素子を送信用
センサと、超音波を受ける他方の超音波素子を受信用セ
ンサという)()。この受信信号は受信用センサ62
が受ける超音波と略相似の波形である。The other ultrasonic element 62 receives a radiated ultrasonic wave after a delay time corresponding to the speed of sound in the reformed gas, and outputs a reception signal from the lead wires 2a and 2b by a piezoelectric action (hereinafter, referred to as "hereinafter"). One ultrasonic element that emits ultrasonic waves is called a transmitting sensor, and the other ultrasonic element that receives ultrasonic waves is called a receiving sensor) (). This reception signal is received by the reception sensor 62.
Is a waveform that is substantially similar to the ultrasonic wave received.
【0028】送信用センサ61、受信用センサ62は第
1実施形態の超音波素子のごとく収束性、放射効率がよ
く、受信用センサ62において送信用センサ61からの
超音波を高S/Nで良好に受けることができるが、送信
用センサ61、受信用センサ62の配置を、送信用セン
サ61から放射された超音波が受信用センサ62の圧電
体1の前端面101、後端面102に集約するような配
置、または圧電体1の後端面102に広がるような配置
とするのがよい。ここで、圧電体1とケーシング底部3
1の間の界面、ケーシング底部31と被験ガスの間の界
面における超音波の屈折を考慮することで超音波の経路
を求め、これにより、送信用センサ61と受信用センサ
62の対向間隔等を設定すればよい。図6はこの一例を
示すもので、送信用センサ61の圧電体1の後端面10
2の周縁から放射された超音波が受信用センサ62の圧
電体1の後端面102の中央に集約している。なお、前
記ケーシング底部31と被験ガスの間の界面における超
音波の屈折角度は被験ガスの音響インピーダンスに依存
するので、被験ガスの概略音速を考慮するのが望まし
い。図例の数値は音速500m/sの場合のデータであ
る。The transmitting sensor 61 and the receiving sensor 62 have good convergence and radiation efficiency like the ultrasonic element of the first embodiment, and the receiving sensor 62 transmits ultrasonic waves from the transmitting sensor 61 at a high S / N. Although it is possible to receive the signal satisfactorily, the arrangement of the transmission sensor 61 and the reception sensor 62 is arranged such that the ultrasonic waves radiated from the transmission sensor 61 are collected on the front end face 101 and the rear end face 102 of the piezoelectric body 1 of the reception sensor 62. It is preferable that the piezoelectric element 1 be disposed such that it spreads over the rear end face 102 of the piezoelectric body 1. Here, the piezoelectric body 1 and the casing bottom 3
The path of the ultrasonic wave is determined by taking into account the refraction of the ultrasonic wave at the interface between the first and second casings and at the interface between the casing bottom 31 and the test gas. Just set it. FIG. 6 shows an example of this, and the rear end face 10 of the piezoelectric body 1 of the transmission sensor 61 is shown.
Ultrasonic waves radiated from the peripheral edge of the second sensor 2 are collected at the center of the rear end face 102 of the piezoelectric body 1 of the receiving sensor 62. Since the angle of refraction of the ultrasonic wave at the interface between the casing bottom 31 and the test gas depends on the acoustic impedance of the test gas, it is desirable to consider the approximate sound speed of the test gas. The numerical values in the figure are data in the case of a sound speed of 500 m / s.
【0029】受信用センサ62から受信信号が入力する
信号処理回路81は、ゼロクロス回路等により構成され
ており、受信信号を矩形波に整形し出力する()。A signal processing circuit 81 to which a reception signal is input from the reception sensor 62 is constituted by a zero cross circuit or the like, and shapes the reception signal into a rectangular wave and outputs it ().
【0030】信号処理回路81で生成されるバースト波
信号と、信号処理回路81の出力信号とを入力として解
析回路82が設けてあり、解析回路82にはタイマー回
路83が付設されている。これら信号処理回路81、解
析回路82およびタイマー回路83により測定手段8を
構成する。信号生成回路7、信号処理回路81、解析回
路82およびタイマー回路83は例えば1つのケーシン
グに格納される。An analysis circuit 82 is provided with a burst wave signal generated by the signal processing circuit 81 and an output signal of the signal processing circuit 81 as inputs. The analysis circuit 82 is provided with a timer circuit 83. The signal processing circuit 81, the analyzing circuit 82, and the timer circuit 83 constitute the measuring means 8. The signal generation circuit 7, the signal processing circuit 81, the analysis circuit 82, and the timer circuit 83 are stored in, for example, one casing.
【0031】解析回路82はマイクロコンピュータ等に
より構成され、両入力信号から、送信用センサ61から
受信用センサ62への超音波の伝搬時間Tをタイマー回
路83でカウントし、伝搬時間Tに基づいてガス濃度を
演算する。The analysis circuit 82 is constituted by a microcomputer or the like. The propagation time T of the ultrasonic wave from the transmission sensor 61 to the reception sensor 62 is counted by a timer circuit 83 from both input signals, and based on the propagation time T Calculate gas concentration.
【0032】解析回路82は、送信用センサ61と受信
用センサ62の対向間隔Lを前記伝搬時間Tで除して音
速Vを演算するとともに、音速の理論式である式(1)
を逆演算して改質ガス中の水素濃度を演算する。式中、
Rは気体定数(8.3145J/molK)である。式
中、Mi は改質ガス中の成分ガスの分子量、Cpiは前記
成分ガスの定圧モル比熱、Cviは前記成分ガスの定容モ
ル比熱、xi は前記成分ガスのモル比である。したがっ
て、水素のモル比xi 以外の各パラメータを予め与えて
おくことで水素の濃度が求められる。なお、Tはセル5
内を流通する被験ガスの温度であり、温度変動が大きい
場合は、被験ガスの温度を検出する温度センサを設け
て、その検出温度を被験ガス温度Tとするのもよい。The analysis circuit 82 calculates the sound velocity V by dividing the facing distance L between the transmission sensor 61 and the reception sensor 62 by the propagation time T, and calculates the equation (1) which is a theoretical equation of the sound velocity.
Is inversely calculated to calculate the hydrogen concentration in the reformed gas. Where:
R is a gas constant (8.3145 J / molK). In the formula, Mi is the molecular weight of the component gas in the reformed gas, Cpi is the constant pressure molar specific heat of the component gas, Cvi is the constant volume molar specific heat of the component gas, and xi is the molar ratio of the component gas. Therefore, the hydrogen concentration can be obtained by giving parameters other than the hydrogen molar ratio xi in advance. Note that T is cell 5
If the temperature is a temperature of the test gas flowing therethrough and the temperature fluctuates greatly, a temperature sensor for detecting the temperature of the test gas may be provided, and the detected temperature may be used as the test gas temperature T.
【0033】[0033]
【数1】 (Equation 1)
【0034】本ガス濃度計測装置によれば、送信用セン
サ61、受信用センサ62が水素のように比重の軽い成
分ガスを多量に含む媒質に対しても良好な収束性と放射
効率を発揮するから、改質ガス中の水素濃度を高精度で
計測することができる。According to the present gas concentration measuring apparatus, the transmission sensor 61 and the reception sensor 62 exhibit good convergence and radiation efficiency even for a medium containing a large amount of a component gas having a low specific gravity, such as hydrogen. Therefore, the hydrogen concentration in the reformed gas can be measured with high accuracy.
【0035】なお、本ガス濃度計測装置は改質ガス中の
水素だけではなく、他の被験ガス中の水素やヘリウム
等、軽気体の濃度の計測に好適に適用することができ
る。The present gas concentration measuring apparatus can be suitably applied to measurement of not only the concentration of hydrogen in the reformed gas but also the concentration of light gases such as hydrogen and helium in other test gases.
【図1】本発明の超音波素子の構成図である。FIG. 1 is a configuration diagram of an ultrasonic element of the present invention.
【図2】前記超音波素子の特性を示すグラフである。FIG. 2 is a graph showing characteristics of the ultrasonic element.
【図3】本発明のガス濃度計測装置の要部構成図であ
る。FIG. 3 is a configuration diagram of a main part of the gas concentration measurement device of the present invention.
【図4】前記ガス濃度計測装置の回路構成を含む全体構
成図である。FIG. 4 is an overall configuration diagram including a circuit configuration of the gas concentration measurement device.
【図5】前記ガス濃度計測装置の各部の作動状態を示す
タイミングチャートである。FIG. 5 is a timing chart showing an operation state of each part of the gas concentration measuring device.
【図6】前記ガス濃度計測装置の超音波伝搬経路を示
す、前記ガス濃度計測装置の要部の概略図である。FIG. 6 is a schematic view of a main part of the gas concentration measurement device, showing an ultrasonic wave propagation path of the gas concentration measurement device.
1 圧電体 101 前端面(一方の端面) 102 後端面(他方の端面) 3 ケーシング 31 底部(整合層) 301 底面 302 凹部 303 接着面 5 セル 6 送受信手段 61 送信用センサ(超音波素子) 62 受信用センサ(超音波素子) 7 信号生成回路 8 測定手段 81 信号処理回路 82 解析回路 83 タイマー回路 DESCRIPTION OF SYMBOLS 1 Piezoelectric body 101 Front end surface (one end surface) 102 Rear end surface (the other end surface) 3 Casing 31 Bottom part (matching layer) 301 Bottom part 302 Depression 303 Adhesion surface 5 Cell 6 Transmitting / receiving means 61 Transmitting sensor (ultrasonic element) 62 Reception Sensor (ultrasonic element) 7 signal generation circuit 8 measuring means 81 signal processing circuit 82 analysis circuit 83 timer circuit
───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉野 正芳 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 齋藤 豪宏 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 渡辺 修夫 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 2G047 AA01 BA01 BC02 BC15 CA01 GA01 GF08 5D019 AA21 BB02 BB08 BB12 EE01 GG01 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masayoshi Sugino 14 Iwatani, Shimowasukamachi, Nishio City, Aichi Prefecture Inside the Japan Automobile Parts Research Institute (72) Inventor Takahiro Saito 14 Iwatani, Shimotsukamachi, Nishio City, Aichi Prefecture Stock (72) Inventor: Nao Watanabe 1st Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation F-term (Reference) 2G047 AA01 BA01 BC02 BC15 CA01 GA01 GF08 5D019 AA21 BB02 BB08 BB12 EE01 GG01
Claims (3)
の該圧電体内部における超音波進行方向の一方の端面
に、整合層を前記一方の端面の全面と当接するように接
着して前記圧電体から前記整合層を経て外部へ超音波を
放射する超音波素子において、 前記圧電体の前記一方の端面を平面とし、 かつ、前記圧電体の他方の端面を緩やかな曲面状の突出
面としたことを特徴とする超音波素子。1. A piezoelectric body for generating ultrasonic waves by a piezoelectric action, wherein a matching layer is adhered to one end face of the inside of the piezoelectric body in the ultrasonic wave traveling direction so as to be in contact with the entire surface of said one end face. An ultrasonic element that emits ultrasonic waves from the body through the matching layer to the outside, wherein the one end face of the piezoelectric body is a flat surface, and the other end face of the piezoelectric body is a gentle curved protruding surface. An ultrasonic element characterized by the above-mentioned.
記圧電体の前記他方の端面を球面とした超音波素子。2. The ultrasonic element according to claim 1, wherein the other end surface of the piezoelectric body has a spherical surface.
る送受信手段と、 該送受信手段の送信信号と受信信号とを入力とし、前記
被験ガス中の特定の成分ガスの濃度に応じて変化する前
記超音波の音速に基づいて成分ガスの濃度を測定する測
定手段とを具備するガス濃度計測装置であって、 前記送受信手段を、請求項1または2いずれか記載の超
音波素子を具備する構成としたことを特徴とするガス濃
度計測装置。3. A transmission / reception means for transmitting / receiving ultrasonic waves using a test gas as a medium, and a transmission signal and a reception signal of the transmission / reception means as inputs, the transmission / reception means changing according to the concentration of a specific component gas in the test gas. It is a gas concentration measuring device provided with the measuring means which measures the concentration of the component gas based on the sound speed of the ultrasonic wave, The transmitting and receiving means, the structure provided with the ultrasonic element according to any one of claims 1 and 2. Gas concentration measuring device characterized by having done.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000303111A JP2002112390A (en) | 2000-10-03 | 2000-10-03 | Ultrasonic wave element and gas concentration measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000303111A JP2002112390A (en) | 2000-10-03 | 2000-10-03 | Ultrasonic wave element and gas concentration measurement device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002112390A true JP2002112390A (en) | 2002-04-12 |
Family
ID=18784359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000303111A Withdrawn JP2002112390A (en) | 2000-10-03 | 2000-10-03 | Ultrasonic wave element and gas concentration measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002112390A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT413767B (en) * | 2003-03-20 | 2006-05-15 | Avl List Gmbh | METHOD, DEVICE AND SENSOR FOR DETERMINING THE REDOX CONDITION OF A CATALYST MATERIAL |
JP2010025794A (en) * | 2008-07-22 | 2010-02-04 | Kyushu Univ | Gas sensor and gas detecting method |
WO2014112478A1 (en) * | 2013-01-16 | 2014-07-24 | ヤマハファインテック株式会社 | Ultrasonic inspection device and ultrasonic inspection method |
-
2000
- 2000-10-03 JP JP2000303111A patent/JP2002112390A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT413767B (en) * | 2003-03-20 | 2006-05-15 | Avl List Gmbh | METHOD, DEVICE AND SENSOR FOR DETERMINING THE REDOX CONDITION OF A CATALYST MATERIAL |
JP2010025794A (en) * | 2008-07-22 | 2010-02-04 | Kyushu Univ | Gas sensor and gas detecting method |
WO2014112478A1 (en) * | 2013-01-16 | 2014-07-24 | ヤマハファインテック株式会社 | Ultrasonic inspection device and ultrasonic inspection method |
JP2014137276A (en) * | 2013-01-16 | 2014-07-28 | Yamaha Fine Technologies Co Ltd | Ultrasonic inspection device and ultrasonic inspection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9869659B2 (en) | Acoustic sensor | |
US6420816B2 (en) | Method for exciting lamb waves in a plate, in particular a container wall, and an apparatus for carrying out the method and for receiving the excited lamb waves | |
US11162829B2 (en) | Multilayer body that includes piezoelectric body | |
Toda | Cylindrical PVDF film transmitters and receivers for air ultrasound | |
Toda et al. | PVDF corrugated transducer for ultrasonic ranging sensor | |
CN114111927B (en) | High-frequency ultrasonic sensor suitable for gas flow detection | |
JP4161004B2 (en) | Ultrasonic receiver | |
CN114111928B (en) | High-frequency ultrasonic sensor suitable for gas flow detection | |
JP2002112390A (en) | Ultrasonic wave element and gas concentration measurement device | |
JP2002135894A (en) | Ultrasonic sensor and electronic device using it | |
JP6032512B1 (en) | Laminate, ultrasonic transducer and ultrasonic flowmeter | |
EP1452243A2 (en) | Ultrasonic transmitting/receiving device and method of fabricating the same | |
JP4111236B2 (en) | Driving method of ultrasonic transducer | |
JP2005037219A (en) | Ultrasonic transmitter/receiver and manufacturing method therefor | |
JP3324720B2 (en) | Flow velocity measuring device | |
CN214471088U (en) | Ultrasonic flowmeter oscillator and ultrasonic flowmeter | |
JP3708226B2 (en) | Flow velocity measuring device | |
JP2018061209A (en) | Laminate, ultrasonic transducer and ultrasonic flowmeter | |
JP3488981B2 (en) | Ultrasonic gas sensor | |
JP2000253494A (en) | Piezoelectric element for ultrasonic sensor | |
JP2004129063A (en) | Ultrasonic device | |
JP2003139591A (en) | Ultrasonic flowmeter | |
TWI440831B (en) | Ultrasonic sensor | |
JP2003329659A (en) | Gas sensor and gas concentration detector | |
JP2004343658A (en) | Ultrasonic echo sounder transducer, its manufacturing method and ultrasonic flowmeter using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20071204 |