JP2002110729A - Semiconductor device and its bonding method - Google Patents

Semiconductor device and its bonding method

Info

Publication number
JP2002110729A
JP2002110729A JP2000299746A JP2000299746A JP2002110729A JP 2002110729 A JP2002110729 A JP 2002110729A JP 2000299746 A JP2000299746 A JP 2000299746A JP 2000299746 A JP2000299746 A JP 2000299746A JP 2002110729 A JP2002110729 A JP 2002110729A
Authority
JP
Japan
Prior art keywords
diameter
bonding
wire
ball
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000299746A
Other languages
Japanese (ja)
Inventor
Shinichi Terajima
晋一 寺嶋
Tomohiro Uno
智裕 宇野
Kohei Tatsumi
宏平 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Micrometal Corp
Original Assignee
Nippon Steel Corp
Nippon Micrometal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Micrometal Corp filed Critical Nippon Steel Corp
Priority to JP2000299746A priority Critical patent/JP2002110729A/en
Publication of JP2002110729A publication Critical patent/JP2002110729A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4845Details of ball bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • H01L2224/78302Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • H01L2224/78302Shape
    • H01L2224/78305Shape of other portions
    • H01L2224/78306Shape of other portions inside the capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • H01L2224/78302Shape
    • H01L2224/78305Shape of other portions
    • H01L2224/78307Shape of other portions outside the capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8503Reshaping, e.g. forming the ball or the wedge of the wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01021Scandium [Sc]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01041Niobium [Nb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01059Praseodymium [Pr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0106Neodymium [Nd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01061Promethium [Pm]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01063Europium [Eu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01065Terbium [Tb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01066Dysprosium [Dy]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01067Holmium [Ho]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0107Ytterbium [Yb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/011Groups of the periodic table
    • H01L2924/01105Rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device where the bonding diameter, having proper bonding strength and proper circularity and proper loop-forming property can be secured simultaneously, even if small balls are used for bonding when bonding with a narrow pitch of 60 μm or smaller, and to provide the bonding method. SOLUTION: In the semiconductor device where a wire is bonded to the electrode on a semiconductor part using ball-bonding method, a bonding wire for a semiconductor implementation where one or more kinds of elements that comprise Ca, Be, noble metal elements and rare-earth elements are contained by 20 to 10,000 wt.ppm in total and the remainders are Au and the unavoidable impurities is used; and by means of bonding method where an initial ball having a diameter 1 to 1.3 times the CD diameter of the capillary used, when the bond wire is connected to an electrode on a semiconductor part is formed on the tip of the wire and then the bond wire is bonded, the ball part of the wire is connected to the electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体チップ等の
電極とボンディングワイヤが結線された半導体装置およ
びそのボンディング方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device in which electrodes such as semiconductor chips and bonding wires are connected, and a bonding method therefor.

【0002】[0002]

【従来の技術】一般に、AuまたはAuを主体とする合金
は、他の金属と比べると、耐酸化性に優れ、微細加工が
し易く、経時変化も少ないことから、ボンディングワイ
ヤと呼ばれる半導体実装用の細線として使用されてい
る。
2. Description of the Related Art In general, Au or an alloy mainly composed of Au is superior to other metals in oxidation resistance, easy to process finely, and has little change with time. Is used as a thin line.

【0003】ボンディングワイヤの代表的な結線法に、
ボールボンディング法がある。ボールボンディング法
は、キャピラリと呼ばれる円筒状の治具にワイヤを通
し、キャピラリの先端から垂下させたワイヤの先端に高
電圧に伴うエネルギーを与えることにより、ワイヤの先
端部を溶融、凝固させて球状とし、その後、超音波およ
び荷重を印加しながら初期ボールと呼ばれるこの球状部
を半導体チップ上の電極と接合させる(1st接合)ボンデ
ィング法である。ボールボンディング法の応用例には、
ボールウェッジボンディング法やスタッドバンプ法等が
含まれる。
[0003] In a typical connection method of a bonding wire,
There is a ball bonding method. In the ball bonding method, a wire is passed through a cylindrical jig called a capillary, and the energy of a high voltage is applied to the tip of the wire drooping from the tip of the capillary, thereby melting and solidifying the tip of the wire to form a spherical shape. Then, this spherical part called an initial ball is bonded to an electrode on a semiconductor chip while applying an ultrasonic wave and a load (1st bonding). Examples of applications of the ball bonding method include:
The ball wedge bonding method and the stud bump method are included.

【0004】ボールウェッジボンディング法は、上記の
ボールボンディング後に、外部接続用のリードまでルー
プ状にワイヤの母線部を導いてから、ワイヤの母線部と
外部リードとを接合し(2nd接合)、かかる後に結線に不
要な部分を切断することで半導体チップ上の電極と外部
接続用のリードとを結線する方式である。
In the ball wedge bonding method, after the above-described ball bonding, the bus portion of the wire is guided in a loop to a lead for external connection, and then the bus portion of the wire and the external lead are joined (2nd joining). This is a method in which an electrode on a semiconductor chip is connected to a lead for external connection by cutting an unnecessary portion for connection later.

【0005】ループの形成性の確保はボールウェッジボ
ンディングにおける必須事項であるが、良好なループは
適切なボンディングを行うことで初めて得ることができ
る。ループの形成性の評価手法としては、例えば1st接
合部直上のループ高さを測定し、そのばらつきで評価す
る手法がある。
[0005] Ensuring the formability of the loop is an essential matter in ball wedge bonding, but a good loop can only be obtained by performing appropriate bonding. As a method of evaluating the formability of the loop, for example, there is a method of measuring the height of the loop immediately above the 1st junction and evaluating the variation based on the measured height.

【0006】またスタッドバンプ法は、前記のようなボ
ールボンディング法にて1st接合させた後にループを形
成させること無く1st接合部の上部でワイヤを切断する
ことで突起物を得る手法である。
Further, the stud bump method is a method of obtaining a projection by cutting a wire at an upper portion of a 1st junction without forming a loop after the 1st junction by the above-described ball bonding method.

【0007】初期ボールを1st接合部に接合した後のボ
ールにおける最も大きな直径は、通常圧着径と呼ばれ
る。尚、1st接合においては、印加する超音波および荷
重が大きいと圧着径も大きくなり、超音波および荷重が
小さいと圧着径も小さくなる傾向にあることが知られて
いる。
[0007] The largest diameter of the ball after the initial ball has been joined to the 1st joint is usually called the crimp diameter. In the 1st joining, it is known that the crimping diameter increases when the applied ultrasonic wave and the load are large, and the crimping diameter tends to decrease when the ultrasonic wave and the load are small.

【0008】1st接合部は半導体チップを使用する際に
電気信号の授受を担う上で重要であることから、1st接
合部の接合強度の確保並びに1st接合部における長期信
頼性の確保は極めて重要とされている。1st接合部で高
い接合強度を確保するには、接合に用いる超音波および
荷重を均等に接合界面に伝達させ、接合界面における金
属間化合物の均一な成長を促すことが必要とされてい
る。金属間化合物は、例えばAlなど電極を構成する元素
と、例えばAuなどワイヤを構成する元素とが、相互拡散
することから成る。尚、1st接合部の接合強度は、せん
だん方向の破壊試験時に得られるシェア強度などで評価
し、その絶対値で10gf以上もしくは圧着径から算出した
圧着面積で割った単位面積当たりのシェア強度で7kgf・
mm-2以上であると良いとされることが多い。1st接合部
における長期信頼性は、加熱した後の接合部をせんだん
方向に破壊試験し、その時に得られるシェア強度などで
評価することが多い。
Since the 1st junction is important in transmitting and receiving electric signals when using a semiconductor chip, it is extremely important to ensure the bonding strength of the 1st junction and the long-term reliability of the 1st junction. Have been. In order to ensure high bonding strength at the 1st bonding portion, it is necessary to uniformly transmit ultrasonic waves and load used for bonding to the bonding interface and promote uniform growth of the intermetallic compound at the bonding interface. The intermetallic compound is formed by interdiffusion of an element constituting an electrode such as Al and an element constituting a wire such as Au for example. In addition, the joint strength of the 1st joint is evaluated by the shear strength obtained at the time of the fracture test in the direction of the tendon, and the absolute value is 10 gf or more or the shear strength per unit area divided by the crimp area calculated from the crimp diameter. 7kgf ・
mm -2 or more is often considered good. The long-term reliability of the 1st joint is often evaluated by performing a fracture test on the joint after heating in the direction of the direction of the joint and obtaining the shear strength obtained at that time.

【0009】電極の中心線と、隣り合う電極の中心線の
間の距離を通常ピッチと呼ぶが、従来のピッチは60μm
以上が主流であったのに対して、昨今の半導体チップの
高密度化という技術動向に伴い、60μmを下回るような
狭ピッチでのボンディングが実用化されつつある。
The distance between the center line of an electrode and the center line of an adjacent electrode is called a normal pitch, and the conventional pitch is 60 μm.
While the above is the mainstream, with the recent technological trend of high density of semiconductor chips, bonding at a narrow pitch of less than 60 μm is being put to practical use.

【0010】[0010]

【発明が解決しようとする課題】従来の圧着径は例えば
100μmピッチで80μm程度、80μmピッチで70μm程度と
いうように比較的大きく、接合強度等に特に問題は生じ
ていなかった。また、経験的に圧着径とワイヤの線径の
比が2.4程度となるような線径のワイヤを用いてボンデ
ィングしており、ループの形成性は良好であった。
The conventional crimping diameter is, for example,
It was relatively large, such as about 80 μm at a pitch of 100 μm, and about 70 μm at a pitch of 80 μm, and there was no particular problem in bonding strength and the like. Also, empirically, bonding was performed using a wire having a wire diameter such that the ratio of the crimp diameter to the wire diameter was about 2.4, and the loop formability was good.

【0011】一方、60μmを下回るような狭ピッチでの
ボンディングを行う場合には、隣り合う1st接合部間の
接触を回避するため、50μm程度の小さな圧着径を得る
必要が生じる。この場合、従来のように圧着径とワイヤ
の線径の比が2.4程度となるような線径のワイヤを用い
ると、小さな圧着径に伴いワイヤの線径も細くなるた
め、ネック部と呼ばれるワイヤと初期ボールの界面に応
力が集中してしまう。その結果、ネック部の過剰な変形
が生じ、ループの形成が困難となってしまう。この課題
を解決するには、ネック部への応力の集中を回避するた
め、極力太い線径のワイヤを用いて圧着径とワイヤの線
径の比を小さくすれば良いのであるが、この場合、小さ
な圧着径を得るにあたって以下で示すような別な課題が
生じてしまう。
On the other hand, when performing bonding at a narrow pitch of less than 60 μm, it is necessary to obtain a small compression diameter of about 50 μm in order to avoid contact between adjacent 1st joints. In this case, if a wire having a wire diameter such that the ratio of the crimp diameter to the wire diameter of the wire is about 2.4 as in the past is used, the wire diameter of the wire becomes thinner with the smaller crimp diameter, so the wire called the neck portion Stress concentrates on the interface between the ball and the initial ball. As a result, excessive deformation of the neck portion occurs, and it becomes difficult to form a loop. In order to solve this problem, in order to avoid concentration of stress on the neck portion, it is only necessary to use a wire having as large a wire diameter as possible and to reduce the ratio of the crimp diameter to the wire diameter of the wire. In order to obtain a small crimp diameter, another problem as described below occurs.

【0012】従来程度の直径を有する初期ボールを用い
て50μm程度の小さな圧着径を得るためには接合にあた
って超音波および荷重を従来よりも弱める必要が生じる
が、この場合、標準的な市販のボンディングワイヤを用
いても良好な接合強度が得られにくい。この理由は、超
音波および荷重を従来よりも弱めることで電極の表面に
形成されている酸化被膜の破壊が充分に行えず、その結
果1st接合部の接合界面における金属間化合物の均一な
成長が起きないためと考えられる。そこで通常は、45μ
m以下というように従来より小さな直径を有する初期ボ
ールを用いるいわゆる小ボール接合という手法を利用す
ることになる。しかしながら、小ボール接合ではある程
度の接合強度が得られても、1st接合後の圧着径が真円
とならずにある特定の方向に過剰に変形することがあ
る。このような過剰な変形は、従来のように60μm以上
のピッチでボンディングする際は問題とはならなかった
が、昨今のような狭ピッチでは、隣り合う電極間に接合
されたボール同士が接触しショートすることが起こり得
る。
[0012] In order to obtain a small crimping diameter of about 50 µm using an initial ball having a diameter of the related art, it is necessary to reduce the ultrasonic wave and the load when joining, but in this case, a standard commercially available bonding method is used. Even if a wire is used, it is difficult to obtain good bonding strength. The reason for this is that the oxide film formed on the surface of the electrode cannot be sufficiently destroyed by weakening the ultrasonic wave and the load compared to the conventional method, and as a result, uniform growth of the intermetallic compound at the joint interface of the 1st joint is achieved. Probably because it does not happen. So usually 45μ
A technique called so-called small ball bonding using an initial ball having a smaller diameter than conventional, such as m or less, will be used. However, even if a small ball bonding can provide a certain degree of bonding strength, the pressure bonding diameter after the first bonding may not be a perfect circle but may be excessively deformed in a specific direction. Such excessive deformation did not pose a problem when bonding at a pitch of 60 μm or more as in the past, but with a narrow pitch as in the past, the balls bonded between adjacent electrodes come into contact with each other. Shorting can occur.

【0013】以上に鑑み、本発明の目的は、60μmを下
回るような狭ピッチでのボンディングを行う場合に、小
ボール接合をしても良好な接合強度と良好な真円性を有
する圧着径および良好なループの形成性を同時に確保で
きる半導体装置およびそのボンディング法を提供するこ
とにある。
In view of the above, it is an object of the present invention to provide a bonding diameter having a good bonding strength and a good roundness even when a small ball is bonded, when performing bonding at a narrow pitch of less than 60 μm. It is an object of the present invention to provide a semiconductor device and a bonding method for the same, which can simultaneously secure good loop formability.

【0014】[0014]

【課題を解決するための手段】上記の課題は、以下の手
段によって解決できる。 (1)半導体部品上の電極にワイヤを接合するボールボ
ンディング法において、Ca、Be、貴金属元素および希土
類元素の内の1種もしくは2種以上の元素を総計で20から
10000wt.ppm含有し残部がAuおよびその不可避不純物で
ある半導体実装用のボンディングワイヤを用い、かつ、
前記ボンディングワイヤを半導体部品上の電極に接合す
る際に使用するキャピラリ1のCD径5の1〜1.3倍の直径
を有する初期ボールをワイヤの先端に形成してから接合
することを特徴とするボンディング法。 (2)ボールボンディング法によって半導体部品上の電
極にワイヤが接合された半導体装置において、前記ボン
ディングワイヤがCa、Be、貴金属元素および希土類元素
の内の1種もしくは2種以上の元素を総計で20から10000w
t.ppm含有し残部がAuおよびその不可避不純物であり、
かつ、接合部のボール変形部25の体積から換算した換
算球の直径を換算直径とし、ボール変形部25における
電極に接する円盤部上に位置する突起部9の最大直径を
突起部最大直径Lとしたとき、前記換算直径が突起部最
大直径Lの1〜1.3倍の範囲であることを特徴とする
半導体装置。 (3)ボールボンディング法によって半導体部品上の電
極にボンディングワイヤが接合された半導体装置におい
て、前記ボンディングワイヤがCa、Be、貴金属元素およ
び希土類元素の内の1種もしくは2種以上の元素を総計で
20から10000wt.ppm含有し残部がAuおよびその不可避不
純物であり、接合部のボール変形部25における圧着径
X(μm)とワイヤの線径φ(μm)の間に、 X ≦ 2φ なる関係式が成立し、かつ、ボール変形部25における
電極に接する円盤部上に位置する突起部9の最大直径で
ある突起部最大直径L(μm)および圧着径X(μm)の間
に、 L(L/100 + 1)1/2 ≦ X ≦ L(L/10 + 1)1/2 なる関係式が成立することを特徴とする半導体装置。
Means for Solving the Problems The above-mentioned problem is solved by the following means.
Can be solved by steps. (1) Ballboad for bonding wires to electrodes on semiconductor components
Ca, Be, precious metal elements and rare earth
Total of 20 or more of one or more of the similar elements
10000wt.ppm, balance is Au and its unavoidable impurities
Using a bonding wire for semiconductor mounting, and
Bonding the bonding wire to an electrode on a semiconductor component;
1 to 1.3 times the CD diameter 5 of the capillary 1
After forming an initial ball with a wire at the tip of the wire
Bonding method. (2) The voltage on the semiconductor component is
In a semiconductor device having a wire bonded to a pole,
Ding wire is Ca, Be, precious metal element and rare earth element
20 to 10,000w in total for one or more of the elements
t and the remaining balance is Au and its unavoidable impurities,
In addition, conversion from the volume of the ball deformation portion 25 of the joint portion
The diameter of the ball is defined as the converted diameter,
The maximum diameter of the protrusion 9 located on the disk in contact with the electrode
When the maximum diameter of the projection is L, the converted diameter is the maximum diameter of the projection.
The diameter is in the range of 1 to 1.3 times the large diameter L.
Semiconductor device. (3) Electricity on the semiconductor component by the ball bonding method
In semiconductor devices with bonding wires bonded to the poles
The bonding wire is Ca, Be, a precious metal element and
And one or more of the rare earth elements in total
20 to 10000 wt.ppm, the balance being Au and its unavoidable
It is a pure product and the crimping diameter at the ball deformed portion 25 of the joint
Between X (μm) and the wire diameter φ (μm) of the wire, a relational expression of X ≦ 2φ is satisfied, and the ball deformation portion 25
The maximum diameter of the protrusion 9 located on the disk part in contact with the electrode
Between a certain protrusion maximum diameter L (μm) and crimp diameter X (μm)
, L (L / 100 + 1)1/2 ≤ X ≤ L (L / 10 + 1)1/2  A semiconductor device characterized by the following relationship:

【0015】[0015]

【発明の実施の形態】本発明の上記(1)〜(3)に共
通の事項について説明する。本発明者らは鋭意検討した
結果、ワイヤの先端に形成させる初期ボールにおける結
晶粒の微細さがボール接合部の圧着径の形状および接合
性と密接に関係し、小ボール接合ではその関係が顕著と
なることを見出した。即ち、本発明は、微細な結晶粒を
有する初期ボールを形成することができるボンディング
ワイヤを用い、結晶粒を微細にすることができる初期ボ
ールの形成方法を用いて前記ワイヤの先端に初期ボール
を形成させてから、半導体部品上の電極にワイヤのボー
ル部を接合するというものである。以下、本発明の構成
についてさらに説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Items common to the above (1) to (3) of the present invention will be described. The present inventors have conducted intensive studies, and as a result, the fineness of crystal grains in the initial ball formed at the tip of the wire is closely related to the shape and bondability of the crimping diameter of the ball joint, and the relationship is remarkable in small ball bonding. I found that. That is, the present invention uses a bonding wire capable of forming an initial ball having fine crystal grains, and uses an initial ball forming method capable of making crystal grains fine to form an initial ball at the tip of the wire. After the formation, the ball portion of the wire is joined to the electrode on the semiconductor component. Hereinafter, the configuration of the present invention will be further described.

【0016】まず、本発明の半導体装置に、Ca、Be、貴
金属元素および希土類元素の内の1種もしくは2種以上の
元素を総計で20から10000wt.ppm含有し残部がAuおよび
その不可避不純物である半導体実装用のボンディングワ
イヤを用いる理由は、以下の通りである。
First, the semiconductor device of the present invention contains one or more of Ca, Be, a noble metal element and a rare earth element in a total of 20 to 10,000 wt.ppm, and the balance is Au and its unavoidable impurities. The reason for using a certain semiconductor mounting bonding wire is as follows.

【0017】Ca、Be、貴金属元素および希土類元素の内
の1種もしくは2種以上の元素を総計で20wt.ppm以上含有
し残部がAuおよびその不可避不純物である成分系のワイ
ヤを用いれば、Au中に添加した元素が初期ボールの形成
時に核となり結晶粒の多量な発生を促し、初期ボールを
構成する結晶粒が微細化するという現象が生じる。その
結果、初期ボールと電極を接合させると等方的な圧着径
が得られるという効果が得られる。
If a total of 20 wt. Ppm or more of one or more of Ca, Be, a noble metal element and a rare earth element is contained and the balance is Au and its component is an unavoidable impurity, Au is used. The element added therein becomes a nucleus during the formation of the initial ball and promotes the generation of a large amount of crystal grains, which causes a phenomenon that the crystal grains constituting the initial ball are refined. As a result, when the initial ball and the electrode are joined, an effect of obtaining an isotropic crimp diameter can be obtained.

【0018】尚、ここでの貴金属元素とは、Cu、Al、P
t、あるいはPdを指し、ここでの希土類元素とはMg、S
c、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、
Er、Tm、Yb、あるいはLuを指す。また、Auには不可避不
純物として、Fe、Co、Ni、Ti、Cr、Mn、Zn、Ga、Ge、Z
r、Nb、In、Sn、およびSbの内の1種もしくは2種以上の
元素が含まれていても良い。
The noble metal elements here are Cu, Al, P
t or Pd, where the rare earth elements are Mg, S
c, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho,
Er, Tm, Yb, or Lu. Au has inevitable impurities such as Fe, Co, Ni, Ti, Cr, Mn, Zn, Ga, Ge, and Z.
One or more of r, Nb, In, Sn and Sb may be contained.

【0019】しかしながら、Ca、Be、貴金属元素および
希土類元素の内の1種もしくは2種以上の元素を総計で10
000wt.ppmを超えて含有し残部がAuおよびその不可避不
純物である成分系のワイヤでは、接合部における良好な
長期信頼性は確保しにくいので好ましくない。その理由
は、このワイヤを用いた場合は、添加した元素が初期ボ
ールの表面に偏析して酸化物を形成するため、接合時に
ワイヤと電極の界面に前記の酸化物が残留してしまうこ
とで、充分な接合強度を得ることが困難となるためと考
えられる。
However, one or more of Ca, Be, a noble metal element and a rare earth element are contained in a total of 10
A component-based wire containing more than 000 wt.ppm and the balance being Au and its unavoidable impurities is not preferable because it is difficult to secure good long-term reliability at the joint. The reason is that when this wire is used, the added element segregates on the surface of the initial ball to form an oxide, so that the oxide remains at the interface between the wire and the electrode during bonding. It is considered that it is difficult to obtain sufficient bonding strength.

【0020】一方、Ca、Be、貴金属元素および希土類元
素の内の1種もしくは2種以上の元素を総計で20wt.ppm未
満含有し残部がAuおよびその不可避不純物である成分系
のワイヤでは、接合部における長期信頼性が劣悪である
ため好ましくない。その理由は、このワイヤの初期ボー
ルを構成する結晶粒が微細化しないため、初期ボールの
硬度が不充分となる現象が生じ、その結果、接合時に電
極上の酸化被膜の破壊が不充分となるためと考えられ
る。
On the other hand, in the case of a component-based wire in which one or more of Ca, Be, a noble metal element and a rare earth element are contained in a total of less than 20 wt.ppm, and the balance is Au and its unavoidable impurities, This is not preferred because the long-term reliability of the part is poor. The reason is that the crystal grains constituting the initial ball of this wire do not become finer, so that a phenomenon occurs in which the hardness of the initial ball becomes insufficient, and as a result, the oxide film on the electrode is insufficiently broken during bonding. It is thought to be.

【0021】従って、Ca、Be、貴金属元素および希土類
元素の内の1種もしくは2種以上の元素を総計で20から10
000wt.ppm含有し残部がAuおよびその不可避不純物であ
ることを特徴とする半導体実装用のボンディングワイヤ
を用いれば、微細な結晶粒を有する初期ボールが得られ
るという効果が得られる上、接合部における長期信頼性
も保持される。
Accordingly, one or more of Ca, Be, a noble metal element and a rare earth element are contained in a total of 20 to 10
The use of a bonding wire for semiconductor mounting characterized by containing 000 wt.ppm and the balance being Au and its unavoidable impurities has the effect that an initial ball having fine crystal grains can be obtained. Long-term reliability is also maintained.

【0022】次に本発明の上記(1)に特有の事項つい
て説明する。これまで種々のキャピラリが提案されてき
たが、現在主流のキャピラリは図1に示す全体形状およ
び図2に示す先端形状を有するものが多い。キャピラリ
1の先端形状は図2記載のようであり、貫通部2と先端
平面部20との境界にはすり鉢状の領域21が形成され
ている。その主要な寸法には、中央の貫通部2の直径で
あるH径4、すり鉢状の領域21の最も広がった部分の直
径であるCD径5、キャピラリの外径に相当するT寸法6、
あるいはキャピラリの外径の傾斜角度であるFA角7など
がある。
Next, matters specific to the above (1) of the present invention will be described. Until now, various capillaries have been proposed, but many of the currently mainstream capillaries have the overall shape shown in FIG. 1 and the tip shape shown in FIG. The tip shape of the capillary 1 is as shown in FIG. 2, and a mortar-shaped region 21 is formed at the boundary between the penetrating portion 2 and the tip flat portion 20. Its main dimensions are H diameter 4, which is the diameter of the central through-hole 2, CD diameter 5, which is the diameter of the widest part of the mortar-shaped region 21, T dimension 6, which corresponds to the outer diameter of the capillary,
Alternatively, there is an FA angle 7, which is the inclination angle of the outer diameter of the capillary.

【0023】上記キャピラリ1を用いてボールボンディ
ング法でワイヤボンディングを行った際の接合部の断面
形状を図3に示す。初期ボールは、キャピラリ先端によ
って電極に圧着され、キャピラリ1の先端平面部20で
圧着された部分が円盤部10となり、すり鉢状の領域2
1および貫通部2の内部で変形した部分が突起部9とな
る。突起部9は、通常テーパー部23及び円筒部24か
らなる。円盤部10の直径が圧着径13である。キャピ
ラリの形状が異なると圧着径13の大きさも変化するこ
とは知られていたが、従来のボンディングでは要求され
たピッチが狭くはなかったためにキャピラリの先端形状
を詳細に検討する必要はなかった。ところが、60μmを
下回るような狭ピッチでは、圧着径が真円とならずにあ
る特定の方向に過剰に変形するという課題が生じてしま
う。
FIG. 3 shows a cross-sectional shape of a bonding portion when wire bonding is performed by the ball bonding method using the above-mentioned capillary 1. The initial ball is crimped to the electrode by the tip of the capillary, and the portion crimped at the tip flat portion 20 of the capillary 1 becomes the disc portion 10 and the mortar-shaped region 2
The portion deformed inside 1 and through portion 2 becomes projection 9. The protruding portion 9 usually includes a tapered portion 23 and a cylindrical portion 24. The diameter of the disk portion 10 is the compression diameter 13. It is known that if the shape of the capillary is different, the size of the crimping diameter 13 also changes. However, in the conventional bonding, since the required pitch was not narrow, it was not necessary to examine the tip shape of the capillary in detail. However, when the pitch is smaller than 60 μm, there arises a problem that the crimping diameter does not become a perfect circle but is excessively deformed in a specific direction.

【0024】そこで、本発明者らは鋭意検討した結果、
初期ボールにおける結晶粒の微細さが、初期ボール径と
キャピラリのCD径のバランスと密接に関与することを初
めて見出した。そして、ワイヤを電極に接合する際に使
用するキャピラリ1のCD径5の1〜1.3倍の直径を有する
初期ボールを用いてボンディングすれば、ボンディング
で得られる圧着径13が等方的となることを明らかにし
た。
Therefore, the present inventors have conducted intensive studies and as a result,
It was found for the first time that the crystal grain size in the initial ball was closely related to the balance between the initial ball diameter and the CD diameter of the capillary. When bonding is performed using an initial ball having a diameter of 1 to 1.3 times the CD diameter 5 of the capillary 1 used for bonding the wire to the electrode, the compression diameter 13 obtained by bonding becomes isotropic. Revealed.

【0025】キャピラリ1のCD径5の1〜1.3倍の直径を
有する初期ボールを用いてボンディングすると、初期ボ
ールにおける結晶粒が微細化するため、圧着径が等方的
になるという効果が得られる。結晶粒が微細化する理由
は、このボンディング法では小さな初期ボールを得るた
めに従来より少ないエネルギーで初期ボールを形成する
ので、初期ボールの凝固に必要な抜熱が速やかに行われ
るためと推測される。さらに、本ボンディング法では高
い接合強度が得られる。これは、初期ボールが小さいの
で充分な接合強度が得られる超音波および荷重を接合の
際に印加しても、狭ピッチ接合の際に要求される小さな
圧着径が確保できるためである。
When bonding is performed using an initial ball having a diameter of 1 to 1.3 times the CD diameter 5 of the capillary 1, the crystal grains in the initial ball become finer, so that the effect of making the compression diameter isotropic is obtained. . The reason why the crystal grains are refined is presumed to be that the heat required for solidification of the initial ball is promptly removed because the initial ball is formed with less energy in the bonding method than in the past in order to obtain a small initial ball. You. Furthermore, high bonding strength can be obtained by the present bonding method. This is because a small crimp diameter required for narrow-pitch bonding can be ensured even when an ultrasonic wave and a load that provide sufficient bonding strength are applied during bonding because the initial ball is small.

【0026】60μmを下回るような狭ピッチでボンディ
ングする際に、初期ボールの直径がCD径の1.3倍を上回
ると、充分な接合強度が得られる超音波および荷重を接
合の際に印加すると圧着径が大きくなりすぎてしまう。
また、小さな圧着径を確保するために1st接合時の超音
波および荷重を従来より弱めると良好な接合強度が得ら
れにくいため、好ましくない。さらにこの場合、比較的
大きな初期ボールを得るために、ある程度のエネルギー
を与えて初期ボールを形成することになる。そのため、
初期ボールの凝固に必要な抜熱に時間を要するという現
象が生じ、その結果、初期ボールの結晶粒が粗大化して
しまう。
When bonding at a narrow pitch of less than 60 μm, if the initial ball diameter exceeds 1.3 times the CD diameter, an ultrasonic wave and a load capable of obtaining sufficient bonding strength are applied at the time of bonding to obtain a bonding diameter. Becomes too large.
Further, it is not preferable to reduce the ultrasonic wave and the load at the time of the 1st joining in order to secure a small crimping diameter, since it is difficult to obtain a good joining strength. Furthermore, in this case, in order to obtain a relatively large initial ball, an initial ball is formed by giving a certain amount of energy. for that reason,
A phenomenon occurs that it takes time for heat removal necessary for solidification of the initial ball, and as a result, crystal grains of the initial ball become coarse.

【0027】一方、CD径の0.9倍以下の直径を有する初
期ボールを用いると、接合時に超音波および荷重が接合
界面に充分に伝達されないという現象が生じてしまい、
その結果、接合強度が著しく悪化するので好ましくな
い。
On the other hand, when an initial ball having a diameter of 0.9 times or less of the CD diameter is used, a phenomenon occurs in which ultrasonic waves and a load are not sufficiently transmitted to a bonding interface at the time of bonding.
As a result, the joining strength is remarkably deteriorated, which is not preferable.

【0028】また、CD径の0.9倍より大きくCD径未満の
直径を有する初期ボールを用いると、接合中に初期ボー
ルの一部がCD径の領域からわずかにはみ出し、その部分
が優先的に変形する現象が生じることを、本発明者らは
見出した。その結果、圧着径の形状が異方的となり、隣
り合う電極間に接合されたボール同士が接触しショート
することが起こり得るため、狭ピッチボンディングとし
ては好ましくない。
When an initial ball having a diameter larger than 0.9 times the CD diameter and smaller than the CD diameter is used, a part of the initial ball slightly protrudes from the area of the CD diameter during bonding, and that part is preferentially deformed. The present inventors have found that the following phenomenon occurs. As a result, the shape of the crimping diameter becomes anisotropic, and the balls bonded between the adjacent electrodes may come into contact with each other to cause a short circuit, which is not preferable for narrow pitch bonding.

【0029】従って、狭ピッチボンディングを行う際に
キャピラリのCD径の1〜1.3倍の直径を有する初期ボール
を用いると、等方的な圧着径が得られ、良好な接合強度
を確保できる上、接合部における長期信頼性も保持でき
る。
Therefore, if an initial ball having a diameter of 1 to 1.3 times the CD diameter of the capillary is used when performing narrow pitch bonding, an isotropic pressure bonding diameter can be obtained, and good bonding strength can be ensured. Long-term reliability at the joint can be maintained.

【0030】本発明において、初期ボールの直径はキャ
ピラリのCD径の1〜1.2倍であればより好ましく、
1〜1.1倍であればさらに好ましい。
In the present invention, the diameter of the initial ball is more preferably 1 to 1.2 times the CD diameter of the capillary.
More preferably, it is 1 to 1.1 times.

【0031】本発明は、電極ピッチが60μm未満の半
導体装置のボンディングにおいて良好な結果を得ること
ができる。さらに本発明者らは、例えば55μmを下回る
ピッチのように、より一層小さくより一層等方的な圧着
径が要求される場合でも、微細な結晶粒を有する初期ボ
ールを形成することができるボンディングワイヤ、およ
び、初期ボールの結晶粒を微細にする初期ボールの形成
方法を用いれば、極めて等方的な圧着径が得られること
を見出した。即ち、ボールボンディング法によって半導
体部品上の電極にワイヤが接合された半導体装置におい
て、Ca、Be、貴金属元素および希土類元素の内の1種も
しくは2種以上の元素を総計で20から10000wt.ppm含有し
残部がAuおよびその不可避不純物である半導体実装用の
ボンディングワイヤを用い、かつ、前記ボンディングワ
イヤを半導体部品上の電極に接合する際に使用するキャ
ピラリのCD径の1〜1.3倍の直径を有する初期ボールをワ
イヤの先端に形成してから電極にワイヤのボール部を接
合するボンディング法によって作製された半導体装置で
は、良好な接合強度が得られ、接合部における長期信頼
性も保持される上、47μm程度と小さく極めて等方的な
圧着径を得ることができるのである。その結果、55μm
以下という狭ピッチでボンディングをしても、隣り合う
電極間に接合されたボール同士が接触しショートするこ
とが起こらない。
According to the present invention, good results can be obtained in bonding semiconductor devices having an electrode pitch of less than 60 μm. Furthermore, the present inventors have proposed a bonding wire capable of forming an initial ball having fine crystal grains even when a smaller and more isotropic crimping diameter is required, for example, at a pitch of less than 55 μm. It has been found that an extremely isotropic pressure-bonded diameter can be obtained by using an initial ball forming method for making crystal grains of the initial ball fine. That is, in a semiconductor device in which a wire is bonded to an electrode on a semiconductor component by a ball bonding method, one or more of Ca, Be, a noble metal element and a rare earth element are contained in a total of 20 to 10,000 wt.ppm. The remaining part uses Au and its bonding wire for semiconductor mounting, which is an unavoidable impurity, and has a diameter of 1 to 1.3 times the CD diameter of a capillary used when bonding the bonding wire to an electrode on a semiconductor component. In a semiconductor device manufactured by a bonding method in which an initial ball is formed at the tip of a wire and then the ball portion of the wire is bonded to the electrode, good bonding strength is obtained and long-term reliability at the bonded portion is maintained. An extremely isotropic pressure bonding diameter as small as about 47 μm can be obtained. As a result, 55 μm
Even when bonding is performed at a narrow pitch as described below, the balls bonded between adjacent electrodes do not contact with each other and short-circuit does not occur.

【0032】また、圧着径とワイヤの線径の比が2以下
となるような線径のワイヤを用いて、上記のボンディン
グ方法でボンディングすれば、良好な接合強度が得ら
れ、接合部における長期信頼性も保持され、極めて等方
的な圧着径を得ることができる上、ネック部の過剰な変
形を回避できるので、従来と同等の良好なループの形成
性が得られるので良い。それに対して、圧着径とワイヤ
の線径の比が2超であると、前述のようにネック部に応
力が過剰に集中することでループの形成性が低下してし
まうので好ましくない。
If a wire having a wire diameter such that the ratio of the crimp diameter to the wire diameter is 2 or less is used for bonding by the above-described bonding method, good bonding strength can be obtained, and The reliability is also maintained, and a very isotropic crimp diameter can be obtained, and excessive deformation of the neck can be avoided, so that the same good loop formability as that of the related art can be obtained. On the other hand, if the ratio of the crimping diameter to the wire diameter of the wire is more than 2, the stress is excessively concentrated on the neck portion as described above, so that the loop formability is undesirably reduced.

【0033】より好ましくは、下記の数式を満足する直
径を有する初期ボールを用いれば、良好な接合強度が得
られ、接合部における長期信頼性も保持され、極めて等
方的な圧着径を得ることができ、従来と同等の良好なル
ープの形成性が得られる上、接合強度のばらつきが少な
くなるという効果を得ることができるので良い。尚、下
記の内のFABは初期ボール径(μm)を、CDはCD径(μm)を
それぞれ指す。 0≦(FAB-CD-1)/(CD-1) ≦0.2 (式1)
More preferably, if an initial ball having a diameter satisfying the following equation is used, good bonding strength can be obtained, long-term reliability at the bonded portion can be maintained, and an extremely isotropic crimp diameter can be obtained. It is possible to obtain the same good loop formability as in the related art and to obtain the effect of reducing the variation in the bonding strength. In the following, FAB indicates the initial ball diameter (μm), and CD indicates the CD diameter (μm). 0 ≦ (FAB-CD-1) / (CD-1) ≦ 0.2 (Equation 1)

【0034】本発明の上記(2)に特有の事項ついて説
明する。ボールボンディング法で接合された接合部の断
面形状は図3に示すとおりである。初期ボールは、キャ
ピラリ先端によって電極に圧着され、キャピラリ1の先
端平面部20で圧着された初期ボールの部分が円盤部1
0となり、すり鉢状の領域21および貫通部2の内部で
変形した初期ボールの部分が突起部9となる。従って、
接合部における円盤部10と突起部9とを合計した部分
がボール変形部25であり、初期ボールの体積とボール
変形部25の体積とは等しくなる。ボール変形部25の
体積と等しい球を換算球とすると、その換算球の直径は
初期ボールの直径と等しくなる。また、突起部9が円盤
部10と接する部分において突起部9は最大直径とな
り、その直径を突起部最大直径L(12)とおくと、突
起部最大直径Lはキャピラリ1のCD径5と等しくな
る。
The items specific to the above (2) of the present invention will be described. The cross-sectional shape of the joint portion joined by the ball bonding method is as shown in FIG. The initial ball is pressed against the electrode by the tip of the capillary, and the portion of the initial ball pressed on the flat end portion 20 of the capillary 1 is the disk portion 1.
It becomes 0, and the portion of the initial ball deformed inside the mortar-shaped region 21 and the penetration portion 2 becomes the projection 9. Therefore,
The sum of the disk portion 10 and the protrusion 9 at the joint is the ball deformation portion 25, and the volume of the initial ball is equal to the volume of the ball deformation portion 25. Assuming that a sphere having a volume equal to the volume of the ball deformation portion 25 is a conversion sphere, the diameter of the conversion sphere is equal to the diameter of the initial ball. In addition, the projection 9 has a maximum diameter at a portion where the projection 9 is in contact with the disk portion 10. If the diameter is defined as a projection maximum diameter L (12), the projection maximum diameter L is equal to the CD diameter 5 of the capillary 1. Become.

【0035】以上のとおりであるから、本発明の上記
(2)のように、ボールボンディング法によって半導体
部品上の電極にワイヤが接合された半導体装置におい
て、接合部のボール変形部25の体積から換算した換算
球の直径を換算直径とし、ボール変形部25における電
極に接する円盤部10上の突起部9の最大直径を突起部
最大直径L12としたとき、前記換算直径が突起部最大
直径Lの1〜1.3倍の範囲となるような接合部形状と
すれば、上記(1)の発明と同様の理由により、ボンデ
ィングで得られる圧着径13が等方的となる。本発明
は、電極ピッチが60μm未満、より好ましくは電極ピ
ッチが55μmを下回る半導体装置において良好な結果
を得ることができる。
As described above, in the semiconductor device in which the wire is bonded to the electrode on the semiconductor component by the ball bonding method as described in (2) of the present invention, the volume of the ball deformed portion 25 of the bonded portion is determined. When the converted diameter of the converted sphere is defined as the converted diameter, and the maximum diameter of the projection 9 on the disk 10 in contact with the electrode in the ball deforming portion 25 is defined as the maximum diameter L12 of the projection, the converted diameter is equal to the maximum diameter L of the projection. If the shape of the joint portion is set to be in the range of 1 to 1.3 times, the compression diameter 13 obtained by bonding becomes isotropic for the same reason as in the invention (1). The present invention can obtain good results in a semiconductor device having an electrode pitch of less than 60 μm, more preferably, an electrode pitch of less than 55 μm.

【0036】本発明において、換算球の換算直径は突起
部最大直径の1〜1.2倍であればより好ましく、1〜
1.1倍であればさらに好ましい。
In the present invention, the reduced diameter of the reduced sphere is more preferably 1 to 1.2 times the maximum diameter of the projection, and is preferably 1 to 1.2 times.
More preferably, it is 1.1 times.

【0037】また、上記(2)の発明において圧着径1
3とワイヤの線径11の比が2以下となるような線径の
ワイヤを用いれば、上記(1)の発明と同様の理由によ
り、良好な接合強度が得られ、接合部における長期信頼
性も保持され、極めて等方的な圧着径を得ることができ
る上、ネック部の過剰な変形を回避できるので、従来と
同等の良好なループの形成性が得られるので良い。
Further, in the invention of the above (2), the crimping diameter 1
If a wire having a wire diameter such that the ratio of the wire diameter 3 to the wire diameter 11 becomes 2 or less is used, good bonding strength can be obtained for the same reason as in the above invention (1), and long-term reliability at the bonding portion It is also possible to obtain an extremely isotropic crimp diameter and to avoid excessive deformation of the neck portion, so that a good loop forming property equivalent to that of the related art can be obtained.

【0038】より好ましくは、ボール変形部25の体積
から換算した換算球の換算直径Zと突起部最大直径L
(12)との関係を下記の数式を満足するようにすれ
ば、良好な接合強度が得られ、接合部における長期信頼
性も保持され、極めて等方的な圧着径を得ることがで
き、従来と同等の良好なループの形成性が得られる上、
接合強度のばらつきが少なくなるという効果を得ること
ができるので良い。尚、下記の内のZは換算直径(μm)
を、Lは突起部最大直径(μm)をそれぞれ指す。 0≦(Z-L-1)/(L-1) ≦0.2 (式1a)
More preferably, the converted diameter Z of the converted sphere converted from the volume of the ball deforming portion 25 and the maximum diameter L of the projection portion.
If the relationship with (12) satisfies the following equation, good joint strength can be obtained, long-term reliability at the joint can be maintained, and an extremely isotropic crimp diameter can be obtained. In addition to obtaining good loop formation properties equivalent to
This is advantageous because the effect of reducing the variation in bonding strength can be obtained. In addition, Z in the following is converted diameter (μm)
And L indicates the maximum diameter (μm) of the protrusion. 0 ≦ (Z−L−1) / (L−1) ≦ 0.2 (Formula 1a)

【0039】本発明の上記(3)に特有の事項ついて説
明する。ボールボンディング法で接合された1st接合部
の断面形状は、図3のようであり、ワイヤ部8、キャピラ
リ1のすり鉢状の領域21及び貫通部2で変形された突
起部9、およびキャピラリ1の先端平面部20で変形さ
れた円盤部10から成る。本発明者らは、1st接合部の断
面形状を詳細に検討した結果、円盤部10の直径である
圧着径X(μm)13が突起部9の最も大きな直径である突起
部最大直径L(μm)12を用いて X = L(L/a + 1)1/2 (式2) と近似できることを見出し、更に、a(μm)の値に適切な
範囲があることを見出した。尚、上式中のa(μm)は、前
記突起部9および前記円盤部10のそれぞれの厚みと関係
する値である。その結果本発明者らは、ワイヤ線径φ
(μm)11および圧着径X(μm)13の間に X ≦ 2φ (式3) なる関係式が成立し、かつ、前記L12および前記X13の間
に、 L(L/100 + 1)1/2 ≦ X ≦L(L/10 + 1)1/2 (式4) なる関係式が成立すれば、良好な接合強度が得られ、接
合部における長期信頼性も保持され、ループの形成性も
良好な上、圧着径の形状が極めて等方的となるという効
果を得ることができることを明らかにした。特に接合強
度としては、シェア強度の絶対値で10gf以上、かつ、単
位面積当たりで7kgf・mm-2以上の良好な値が確保でき
る。この場合に従来と同等の良好なループの形成性が得
られる理由は、この半導体装置ではネック部の過剰な変
形を回避できるためと考えられる。また、良好な接合強
度が得られ、接合部における長期信頼性も保持される
上、圧着径の形状が極めて等方的となるという効果を得
ることができる理由は、ボンディングの際にワイヤの先
端に形成する初期ボールの結晶粒が微細化するためと推
測される。しかしながらX > 2φであると、ネック部に
応力が過剰に集中することでループの形成性が低下して
しまう。一方、 X > L(L/10 + 1)1/2であると初期ボー
ルの結晶粒が粗大化するため、接合強度が劣ったり、接
合部における長期信頼性が悪化したりし、L(L/100 + 1)
1/2 > X であると圧着径の形状が異方的となってしま
う。
The items specific to the above (3) of the present invention will be described. The cross-sectional shape of the 1st bonded portion bonded by the ball bonding method is as shown in FIG. 3, and the wire portion 8, the mortar-shaped region 21 of the capillary 1, the protrusion 9 deformed by the through portion 2, and the capillary 1 It is composed of the disk portion 10 deformed at the tip flat portion 20. The present inventors examined the cross-sectional shape of the 1st joint in detail, and as a result, determined that the compression diameter X (μm) 13 which is the diameter of the disc 10 was the maximum diameter L (μm ) 12, it was found that it was possible to approximate X = L (L / a + 1) 1/2 (Equation 2), and further, it was found that the value of a (μm) had an appropriate range. Note that a (μm) in the above equation is a value related to the respective thicknesses of the protrusion 9 and the disk 10. As a result, the present inventors found that the wire diameter φ
(μm) 11 and the crimping diameter X (μm) 13, a relational expression of X ≦ 2φ (Equation 3) holds, and between the L12 and the X13, L (L / 100 + 1) 1 / If the relational expression of 2 ≤ X ≤ L (L / 10 + 1) 1/2 (Equation 4) holds, good joint strength can be obtained, long-term reliability at the joint is maintained, and loop formability is also improved. It has been clarified that it is possible to obtain an effect that the shape of the crimping diameter is very isotropic and extremely isotropic. Particularly, as the bonding strength, a good value of 10 gf or more in absolute value of shear strength and 7 kgf · mm -2 or more per unit area can be secured. In this case, the reason why the same good loop formability as that of the related art can be obtained is considered that in this semiconductor device, excessive deformation of the neck portion can be avoided. In addition, good bonding strength can be obtained, long-term reliability at the bonding portion can be maintained, and the effect that the shape of the crimping diameter is extremely isotropic can be obtained. It is presumed that the crystal grains of the initial ball formed in the first step become finer. However, when X> 2φ, the stress is excessively concentrated on the neck portion, so that the loop formability is reduced. On the other hand, if X> L (L / 10 + 1) 1/2 , the crystal grains of the initial ball become coarse, so that the bonding strength is poor or the long-term reliability at the bonded part is deteriorated, and L (L / 100 + 1)
When 1/2 > X, the shape of the crimping diameter becomes anisotropic.

【0040】[0040]

【実施例】以下に、実施例を説明する。本実施例に示す
各試料を作製するにあたっては、まず99.999wt.%とい
う高純度のAuに添加元素を加えてからその合金を真空溶
解することで、表1に示す成分の合金をそれぞれ得た。
その合金をダイスを用いて伸線し、長さ1000m、線径22
μmに加工した。さらに、この伸線直後の合金に、350〜
550℃の範囲に保持された均熱帯が20cm存在するAr雰囲
気下の電気炉を用いて20m・min-1の速度の熱処理を施す
ことでボンディングワイヤを得た。
Embodiments will be described below. In preparing each sample shown in this example, first, an additive element was added to high-purity Au of 99.999 wt.%, And then the alloy was melted in a vacuum to obtain alloys having the components shown in Table 1. .
The alloy is drawn using a die, and the length is 1000m and the wire diameter is 22
It was processed to μm. In addition, 350-
A bonding wire was obtained by performing a heat treatment at a rate of 20 m · min −1 using an electric furnace in an Ar atmosphere in which an isotropy maintained at a temperature of 550 ° C. exists at 20 cm.

【0041】上記のようにして得られた各ワイヤを、Si
チップ上のAl電極(Al厚:約1μm)とAgめっきされた42
アロイから成るリードとの間で、超音波併用熱圧着ボー
ルウェッジ方式のワイヤーボンディング法にて結線し
た。その際、スパンは5mmとし、結線本数は200本とし
た。本ボンディングで使用したキャピラリのCD径および
初期ボール径(FAB)を走査型電子顕微鏡(SEM)内で測定し
たところ、表2記載の通りであった。以下に示すそれぞ
れの評価は、結線したワイヤの内、任意の40本のワイヤ
を用いて行った。
Each wire obtained as described above was replaced with Si
Al electrode (Al thickness: about 1μm) on the chip and Ag-plated 42
The wire was connected to a lead made of an alloy by a wire bonding method of a thermocompression-bonding ball wedge method combined with ultrasonic waves. At that time, the span was 5 mm, and the number of wires was 200. The CD diameter and the initial ball diameter (FAB) of the capillary used in this bonding were measured with a scanning electron microscope (SEM). Each evaluation shown below was performed using arbitrary 40 wires among the connected wires.

【0042】[0042]

【表1】 [Table 1]

【0043】圧着径13の測定は、投影機にて測定試料
を上部から観察し、評価した。
The crimp diameter 13 was measured by observing the measurement sample from above with a projector.

【0044】圧着径13の真円性の評価は圧着径の長辺
および短辺の測定で行い、長辺と短辺の比の平均が1.1
を上回ったら真円性は不良であるとして×印で、長辺と
短辺の比の平均が1.05以上1.1以下であれば真円性は良
好であるとして○印で、長辺と短辺の比の平均が1.05未
満であれば真円性は極めて良好であるとして◎印で、そ
れぞれ示した。
The circularity of the crimp diameter 13 was evaluated by measuring the long side and the short side of the crimp diameter, and the average of the ratio of the long side to the short side was 1.1.
If the average value of the ratio between the long side and the short side is 1.05 or more and 1.1 or less, the circle is regarded as good if the circularity is poor. If the average of the ratios is less than 1.05, the circularity is extremely good and is indicated by a double circle.

【0045】接合部の接合強度はシェア強度測定によっ
て行い、シェア強度が10gf未満であれば接合強度は不良
であるとして×印で、シェア強度が10gf以上であれば接
合強度は良好であるとして○印で、それぞれ示した。
The joint strength of the joint is measured by shear strength measurement. If the shear strength is less than 10 gf, the joint strength is judged to be bad, and if the shear strength is 10 gf or more, the joint strength is judged to be good. Each is indicated by a mark.

【0046】突起部の最大直径Lは、投影機にて測定試
料を上部から観察することで評価し、Lおよび圧着径Xの
間に、 L(L/100 + 1)1/2 ≦ X ≦ L(L/10 + 1)1/2 なる関係式が成立すれば○印で、成立しなければ×印で
それぞれ示した。
The maximum diameter L of the projection is evaluated by observing the measurement sample from above with a projector, and L (L / 100 + 1) 1/2 ≦ X ≦ When the relational expression of L (L / 10 + 1) 1/2 is established, it is indicated by a circle, and when it is not established, it is indicated by a cross.

【0047】接合部の接合強度のばらつきは、上記の様
にして得られたシェア強度の最大値と最小値の差が、5g
f以上であればばらつきが顕著で不良であるとして×印
で、3gf以上5gf未満であればばらつきが少なく良好であ
るとして○印で、3gf未満であればばらつきが特に少な
く極めて良好であるとして◎印で、それぞれ示した。
The difference in the joint strength between the joints is that the difference between the maximum value and the minimum value of the shear strength obtained as described above is 5 g.
If it is f or more, the variation is remarkable and marked as bad, and if it is 3 gf or more and less than 5 gf, the variation is small and it is good.If it is less than 3 gf, the variation is particularly small and it is extremely good. Each is indicated by a mark.

【0048】接合部の長期信頼性は、試料を1atmに保っ
たN2雰囲気中の200℃の電気炉内で200h加熱し、空冷後
シェア強度測定することで行い、加熱後のシェア強度が
20gf未満であれば長期信頼性は不良であるとして×印
で、加熱後のシェア強度が20gf以上であれば長期信頼性
は良好であるとして○印で、それぞれ示した。
The long-term reliability of the joint was determined by heating the sample in an electric furnace at 200 ° C. in a N 2 atmosphere maintained at 1 atm for 200 hours, and measuring the shear strength after air cooling.
If it is less than 20 gf, the long-term reliability is indicated as poor, and a mark x is given, and if the shear strength after heating is 20 gf or more, the long-term reliability is indicated as good, indicated with a circle.

【0049】ループの形成性は、1st接合部直上のルー
プ高さを測定し、そのばらつきで評価した。ループ高さ
の最大値と最小値の差が10μm以上であればループの形
成性は不良であるとして×印で、7μm以上10μm未満で
あればばらつきは特に問題とならない程度であるとして
○印で、7μm未満であればばらつきが少なく良好である
として◎印で、それぞれ示した。以上の結果を表2に示
す。
The formability of the loop was evaluated by measuring the height of the loop immediately above the 1st junction and evaluating the variation. If the difference between the maximum value and the minimum value of the loop height is 10 μm or more, the formability of the loop is judged to be bad, and if the difference is 7 μm or more and less than 10 μm, the variation is not particularly problematic. , And less than 7 μm, the variation is good and the variation is good. Table 2 shows the above results.

【0050】[0050]

【表2】 [Table 2]

【0051】実施例1〜9が示すように、Ca、Be、貴金属
元素および希土類元素の内1種もしくは2種以上の元素を
総計で20から10000wt.ppm含有し残部をAuおよびその不
可避不純物とすることを特徴とする半導体実装用のボン
ディングワイヤを用い、さらに使用するキャピラリにお
けるCD径の1〜1.3倍の直径を有する初期ボールを用いて
ボンディングすると、良好な接合強度が得られ、接合部
における長期信頼性も保持された上、1st接合時にボー
ルが極めて等方的に変形するために圧着径の形状が極め
て等方的となるという効果を得ることができた。
As shown in Examples 1 to 9, one or more of Ca, Be, a noble metal element and a rare earth element are contained in a total of 20 to 10,000 ppm by weight, and the balance is Au and its unavoidable impurities. When bonding is performed using a bonding wire for semiconductor mounting, and using an initial ball having a diameter of 1 to 1.3 times the CD diameter of the capillary used, a good bonding strength is obtained, and In addition to maintaining long-term reliability, the ball can be extremely isotropically deformed at the time of the 1st joining, so that an effect that the shape of the crimping diameter becomes extremely isotropic can be obtained.

【0052】また、実施例10〜15が示すように、Ca、B
e、貴金属元素および希土類元素の内1種もしくは2種以
上の元素を総計で20から10000wt.ppm含有し残部をAuお
よびその不可避不純物とすることを特徴とする半導体実
装用のボンディングワイヤを用い、さらに使用するキャ
ピラリにおけるCD径の1〜1.3倍の直径を有する初期ボー
ルを用いてボンディングする際に、圧着径とワイヤの線
径の比が2以下であると、良好なループの形成性がさら
に得られた。
Further, as shown in Examples 10 to 15, Ca, B
e, using a bonding wire for semiconductor mounting, characterized in that one or more of the noble metal elements and rare earth elements are contained in a total of 20 to 10,000 wt.ppm and the balance is Au and its unavoidable impurities, Furthermore, when bonding using an initial ball having a diameter of 1 to 1.3 times the CD diameter in the capillary used, if the ratio of the crimping diameter to the wire diameter of the wire is 2 or less, a good loop formability is further improved. Obtained.

【0053】さらに実施例16〜18が示すように、Ca、B
e、貴金属元素および希土類元素の内1種もしくは2種以
上の元素を総計で20から10000wt.ppm含有し残部をAuお
よびその不可避不純物とすることを特徴とする半導体実
装用のボンディングワイヤを用い、さらに使用するキャ
ピラリにおけるCD径の1〜1.3倍の直径を有する初期ボー
ルを用いてボンディングする際に、圧着径とワイヤの線
径の比が2以下であり、かつ、 0≦(FAB-CD-1)/(CD-1) ≦0.2 なる関係式を満足すると、接合強度のばらつきが少なく
なるという効果を得ることができた。
Further, as shown in Examples 16 to 18, Ca, B
e, using a bonding wire for semiconductor mounting, characterized in that one or more of the noble metal elements and rare earth elements are contained in a total of 20 to 10,000 wt.ppm and the balance is Au and its unavoidable impurities, Further, when bonding using an initial ball having a diameter of 1 to 1.3 times the CD diameter in the capillary to be used, the ratio of the crimping diameter to the wire diameter of the wire is 2 or less, and 0 ≦ (FAB-CD- When the relational expression of 1) / (CD-1) ≦ 0.2 was satisfied, it was possible to obtain the effect of reducing the variation in bonding strength.

【0054】そして、実施例1〜18が示すように、圧着
径がワイヤ線径の2倍以下であり、かつ、突起部最大直
径Lおよび圧着径Xの間に、 L(L/100 + 1)1/2 ≦ X ≦ L(L/10 + 1)1/2 なる関係式が成立すると、良好な接合強度が得られ、接
合部における長期信頼性も保持され、良好なループの形
成性が得られた上、圧着径の形状が極めて等方的となる
という効果を得ることができた。
As shown in Examples 1 to 18, the crimping diameter is not more than twice the wire diameter, and L (L / 100 + 1 ) 1/2 ≤ X ≤ L (L / 10 + 1) When the relational expression of 1/2 is satisfied, good joint strength is obtained, long-term reliability at the joint is maintained, and good loop formability is obtained. In addition to this, the effect that the shape of the crimp diameter becomes extremely isotropic was obtained.

【0055】それに対して比較例19が示すように、Ca、
Be、貴金属元素および希土類元素の内1種もしくは2種以
上の元素を総計で10000wt.ppmを上回って含有し残部をA
uおよびその不可避不純物とすることを特徴とする半導
体実装用のボンディングワイヤを用いると、接合部の長
期信頼性が得られなかった。
On the other hand, as shown in Comparative Example 19, Ca,
Be, one or more of noble metal elements and rare earth elements, containing a total of more than 10,000 wt.ppm, and the balance being A
When a bonding wire for semiconductor mounting characterized by being used as u and its unavoidable impurities is used, long-term reliability of the bonding portion cannot be obtained.

【0056】また比較例20が示すように、Ca、Be、貴金
属元素および希土類元素の内1種もしくは2種以上の元素
を総計で20wt.ppm未満含有し残部をAuおよびその不可避
不純物とすることを特徴とする半導体実装用のボンディ
ングワイヤを用いると、接合部の長期信頼性が劣悪とな
った。
As shown in Comparative Example 20, one or more of Ca, Be, a noble metal element and a rare earth element are contained in a total of less than 20 wt.ppm, and the balance is Au and its unavoidable impurities. When a bonding wire for semiconductor mounting characterized by the following is used, the long-term reliability of the bonding portion is deteriorated.

【0057】一方比較例21および22が示すように、CD径
と初期ボール径の比が1.3を上回ると、50μm以下という
小さな圧着径を確保するために1st接合時の超音波およ
び荷重を従来より弱める必要が生じ、良好な接合強度が
得られなかった。また、良好な真円性は得られなかっ
た。
On the other hand, as shown in Comparative Examples 21 and 22, when the ratio of the CD diameter to the initial ball diameter exceeds 1.3, the ultrasonic wave and the load at the time of the 1st joining were reduced in order to secure a small pressure bonding diameter of 50 μm or less. It was necessary to reduce the strength, and good bonding strength could not be obtained. In addition, good roundness was not obtained.

【0058】さらに比較例23および24が示すように、CD
径の0.9倍より大きくCD径未満の直径を有する初期ボー
ルを用いると、圧着径の形状が異方的となった。
Further, as shown in Comparative Examples 23 and 24,
When an initial ball having a diameter greater than 0.9 times the diameter and less than the CD diameter was used, the shape of the compressed diameter became anisotropic.

【0059】また比較例25および26が示すように、CD径
の0.9倍以下の直径を有する初期ボールを用いると、接
合強度が著しく悪化した。
As shown in Comparative Examples 25 and 26, when an initial ball having a diameter of 0.9 times or less of the CD diameter was used, the joining strength was remarkably deteriorated.

【0060】[0060]

【発明の効果】以上のように、本発明によれば、60μm
を下回るような狭ピッチでのボンディングを行う場合
に、小ボール接合をしても良好な接合強度、良好な真円
性、および良好なループの形成性を同時に得ることがで
きる。
As described above, according to the present invention, 60 μm
In the case of performing bonding at a narrow pitch lower than the above, good bonding strength, good roundness, and good loop formability can be simultaneously obtained even with small ball bonding.

【図面の簡単な説明】[Brief description of the drawings]

【図1】キャピラリの概観図の例FIG. 1 is an example of a schematic view of a capillary.

【図2】キャピラリ先端部の断面図の例FIG. 2 is an example of a sectional view of a tip portion of a capillary.

【図3】ボールボンディング法で接合された1st接合部
の断面形状の例
FIG. 3 is an example of a cross-sectional shape of a 1st bonded portion bonded by a ball bonding method.

【符号の説明】[Explanation of symbols]

1 キャピラリ 2 貫通部 3 先端部 4 H径 5 CD径 6 T寸法 7 FA角 8 ワイヤ部 9 突起部 10 円盤部 11 ワイヤ線径 12 突起部最大直径L 13 圧着径X 20 先端平面部 21 すり鉢状の領域 22 平面部 23 テーパー部 24 円筒部 25 ボール変形部 DESCRIPTION OF SYMBOLS 1 Capillary 2 Penetration part 3 Tip part 4 H diameter 5 CD diameter 6 T dimension 7 FA angle 8 Wire part 9 Projection part 10 Disk part 11 Wire wire diameter 12 Projection maximum diameter L 13 Crimp diameter X 20 Tip plane part 21 Mortar shape Area 22 plane part 23 taper part 24 cylindrical part 25 ball deformation part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇野 智裕 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 巽 宏平 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 Fターム(参考) 5F044 BB01 BB09 FF04  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tomohiro Uno 20-1 Shintomi, Futtsu-shi Nippon Steel Corporation Technology Development Division (72) Inventor Kohei Tatsumi 20-1 Shintomi, Futtsu-shi Nippon Steel Corporation Technology Development Division F-term (reference) 5F044 BB01 BB09 FF04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体部品上の電極にワイヤを接合する
ボールボンディング法において、Ca、Be、貴金属元素お
よび希土類元素の内の1種もしくは2種以上の元素を総計
で20から10000wt.ppm含有し残部がAuおよびその不可避
不純物である半導体実装用のボンディングワイヤを用
い、かつ、前記ボンディングワイヤを半導体部品上の電
極に接合する際に使用するキャピラリのCD径の1〜1.3倍
の直径を有する初期ボールをワイヤの先端に形成してか
ら接合することを特徴とするボンディング法。
In a ball bonding method for bonding a wire to an electrode on a semiconductor component, one or more of Ca, Be, a noble metal element and a rare earth element are contained in a total of 20 to 10,000 wt.ppm. The balance uses Au and a bonding wire for semiconductor mounting that is an unavoidable impurity thereof, and has an initial diameter of 1 to 1.3 times the CD diameter of a capillary used when bonding the bonding wire to an electrode on a semiconductor component. A bonding method wherein a ball is formed at the tip of a wire and then joined.
【請求項2】 ボールボンディング法によって半導体部
品上の電極にワイヤが接合された半導体装置において、
前記ボンディングワイヤがCa、Be、貴金属元素および希
土類元素の内の1種もしくは2種以上の元素を総計で20か
ら10000wt.ppm含有し残部がAuおよびその不可避不純物
であり、かつ、接合部のボール変形部の体積から換算し
た換算球の直径を換算直径とし、ボール変形部における
電極に接する円盤部上に位置する突起部の最大直径を突
起部最大直径Lとしたとき、前記換算直径が突起部最大
直径Lの1〜1.3倍の範囲であることを特徴とする半
導体装置。
2. A semiconductor device in which a wire is bonded to an electrode on a semiconductor component by a ball bonding method,
The bonding wire is Ca, Be, one or more of the noble metal element and the rare earth element contains a total of 20 to 10,000 wt.ppm of the total element 20 to 10,000 wt.ppm, the balance is Au and its unavoidable impurities, and the ball of the joint When the diameter of the converted sphere converted from the volume of the deformed portion is the converted diameter, and the maximum diameter of the protrusion located on the disk portion in contact with the electrode in the ball deformed portion is the protrusion maximum diameter L, the converted diameter is the protrusion. A semiconductor device having a range of 1 to 1.3 times the maximum diameter L.
【請求項3】 ボールボンディング法によって半導体部
品上の電極にボンディングワイヤが接合された半導体装
置において、前記ボンディングワイヤがCa、Be、貴金属
元素および希土類元素の内の1種もしくは2種以上の元素
を総計で20から10000wt.ppm含有し残部がAuおよびその
不可避不純物であり、接合部のボール変形部における圧
着径X(μm)とワイヤの線径φ(μm)の間に、 X ≦ 2φ なる関係式が成立し、かつ、ボール変形部における電極
に接する円盤部上に位置する突起部の最大直径である突
起部最大直径L(μm)および圧着径X(μm)の間に、 L(L/100 + 1)1/2 ≦ X ≦ L(L/10 + 1)1/2 なる関係式が成立することを特徴とする半導体装置。
3. A semiconductor device in which a bonding wire is bonded to an electrode on a semiconductor component by a ball bonding method, wherein the bonding wire includes one or more of Ca, Be, a noble metal element and a rare earth element. The total content is 20 to 10,000 wt.ppm, the balance being Au and its unavoidable impurities, and the relation X ≦ 2φ between the crimping diameter X (μm) and the wire diameter φ (μm) at the deformed portion of the ball at the joint. The formula holds, and between the protrusion maximum diameter L (μm) and the compression diameter X (μm), which is the maximum diameter of the protrusion located on the disk part in contact with the electrode in the ball deformation part, L (L / 100 + 1) 1/2 ≤ X ≤ L (L / 10 + 1) 1/2 .
JP2000299746A 2000-09-29 2000-09-29 Semiconductor device and its bonding method Withdrawn JP2002110729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000299746A JP2002110729A (en) 2000-09-29 2000-09-29 Semiconductor device and its bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000299746A JP2002110729A (en) 2000-09-29 2000-09-29 Semiconductor device and its bonding method

Publications (1)

Publication Number Publication Date
JP2002110729A true JP2002110729A (en) 2002-04-12

Family

ID=18781511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000299746A Withdrawn JP2002110729A (en) 2000-09-29 2000-09-29 Semiconductor device and its bonding method

Country Status (1)

Country Link
JP (1) JP2002110729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023151646A1 (en) * 2022-02-11 2023-08-17 深圳中科四合科技有限公司 Semiconductor packaging method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023151646A1 (en) * 2022-02-11 2023-08-17 深圳中科四合科技有限公司 Semiconductor packaging method

Similar Documents

Publication Publication Date Title
JP3969671B2 (en) Au alloy bonding wire
JPS6238414B2 (en)
JP3382918B2 (en) Gold wire for connecting semiconductor elements
JP2009114499A (en) Bonding wire
JP2737953B2 (en) Gold alloy wire for gold bump
JP2922388B2 (en) Gold alloy fine wire for bonding
JP2778093B2 (en) Gold alloy wire for gold bump
JP2002110729A (en) Semiconductor device and its bonding method
JP3329286B2 (en) Gold alloy wires for bonding semiconductor devices
JP4260337B2 (en) Bonding wire for semiconductor mounting
JP2773202B2 (en) Au alloy extra fine wire for semiconductor element bonding
JPH1167811A (en) Gold and silver alloy thin wire for semiconductor device
JP3235198B2 (en) Bonding wire
JPH1098063A (en) Gold alloy wire for wedge bonding
JP3143755B2 (en) Gold alloy fine wire for bonding
JP3356082B2 (en) Gold alloy wires for bonding semiconductor devices
JP2007019349A (en) Bonding wire
JP2621288B2 (en) Au alloy extra fine wire for semiconductor element bonding
JP4134261B1 (en) Gold alloy wire for ball bonding
JP3907534B2 (en) Gold alloy wire for bonding
JP3059314B2 (en) Gold alloy fine wire for bonding
WO2007111248A1 (en) Gold wire for semiconductor element connection
JP3104442B2 (en) Bonding wire
JP2003045909A (en) Bonding wire for connecting electronic circuit
JP2814756B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061019

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070124

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204