JP2002110151A - Lithium secondary battery and manufacturing method of negative electrode material for it - Google Patents

Lithium secondary battery and manufacturing method of negative electrode material for it

Info

Publication number
JP2002110151A
JP2002110151A JP2000293228A JP2000293228A JP2002110151A JP 2002110151 A JP2002110151 A JP 2002110151A JP 2000293228 A JP2000293228 A JP 2000293228A JP 2000293228 A JP2000293228 A JP 2000293228A JP 2002110151 A JP2002110151 A JP 2002110151A
Authority
JP
Japan
Prior art keywords
negative electrode
thin film
electrode material
lithium secondary
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000293228A
Other languages
Japanese (ja)
Other versions
JP3409082B2 (en
Inventor
Hironori Kobayashi
弘典 小林
Tadashi Ishida
正 石田
Shigeji Tamura
繁治 田村
Shoichi Mochizuki
昭一 望月
Toshiyuki Mihara
敏行 三原
Mitsuharu Tabuchi
光春 田渕
Hiroyuki Kageyama
博之 蔭山
Yasushi Uebo
泰史 上坊
Yoshifumi Yamamoto
善史 山本
Masao Matsuoka
政夫 松岡
Jun Tamaoki
純 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000293228A priority Critical patent/JP3409082B2/en
Publication of JP2002110151A publication Critical patent/JP2002110151A/en
Application granted granted Critical
Publication of JP3409082B2 publication Critical patent/JP3409082B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a negative electrode material at a low temperature of high energy density and good cycle characteristics which is suitable for a lithium secondary battery, especially a thin-film lithium secondary battery. SOLUTION: A tin thin film is formed by a vacuum vapor deposition method using a metal tin as a vapor deposition material under a vacuum condition 10-3-10-7 Torr, with a substrate temperature at 273-573 K. Here, a tin oxide thin film is formed by a CVD method using a tetramethyltin as a tin source while an ozone-contained oxygen as an oxygen source.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
用負極材料の製造方法、該製造方法によって得られた負
極材料、及び該負極材料を用いたリチウム二次電池に関
する。
The present invention relates to a method for producing a negative electrode material for a lithium secondary battery, a negative electrode material obtained by the method, and a lithium secondary battery using the negative electrode material.

【0002】[0002]

【従来の技術】リチウム二次電池は携帯用機器電源とし
て各方面で広く実用化されている。特に、近年、マイク
ロマシーン技術や非接触型ICカードなどの関連技術の
発展に伴い、電源のダウンサイジング化を進めた半導体
基板搭載型薄膜電池が脚光を浴びている。
2. Description of the Related Art Lithium secondary batteries are widely used in various fields as power sources for portable equipment. In particular, in recent years, with the development of related technologies such as a micro machine technology and a non-contact type IC card, a thin film battery mounted on a semiconductor substrate, whose power supply has been downsized, has been spotlighted.

【0003】最近の研究では、4V級正極材料を用いる
ことで薄膜電池のエネルギー密度の向上が図られてきて
いる。このような研究の内で、例えばエス.ディー.ジョ
ーンズ他(S.D. Jones et al.), ジャーナル オブ
パワーソース(J Power Sources), 43-44, 505-513(1
993), ジェイ.ビー.ベイツ他(J.B. Bates et al.),ソ
リッド ステート アイオニックス(Solid State Ioni
cs), 70/71, 619-928(1994)等において、優れたサイク
ル特性を示す薄膜電池が報告されている。
[0003] Recent studies have attempted to improve the energy density of thin-film batteries by using a 4 V class cathode material. Among such studies, for example, Dee. Jones et al., Journal of
J Power Sources, 43-44, 505-513 (1
993), Jay. Bee. Bates et al. (JB Bates et al.), Solid State Ionis
cs), 70/71, 619-928 (1994), etc., report thin film batteries exhibiting excellent cycle characteristics.

【0004】一方、負極材料としては、真空蒸着などで
容易に成膜でき、高いエネルギー密度を示すことから、
リチウム金属が一般的に使用されている。しかしなが
ら、リチウム金属は、水との反応性が高いために、これ
を負極材料として用いる場合には、水分量が制御された
環境下(露点50度以下)または高真空下でのリチウム
薄膜の作製が必要となる。この様に、リチウム金属には
空気中では取り扱えないという欠点があり、連続的なプ
ロセスで薄膜電池の作製を行う場合に雰囲気制御が非常
に困難であるという問題点もある。また、リチウムを負
極材料として用いると、破損時における発火の危険性も
ある。
On the other hand, as a negative electrode material, a film can be easily formed by vacuum evaporation or the like and has a high energy density.
Lithium metal is commonly used. However, since lithium metal has high reactivity with water, when this is used as a negative electrode material, the lithium thin film is produced under an environment in which the amount of water is controlled (dew point 50 degrees or less) or under a high vacuum. Is required. As described above, lithium metal has a drawback that it cannot be handled in air, and there is also a problem that it is very difficult to control the atmosphere when a thin film battery is manufactured by a continuous process. Further, when lithium is used as the negative electrode material, there is a risk of ignition at the time of breakage.

【0005】最近、スズを含有する酸化物や合金等のス
ズ系材料が高容量を示すことが注目され、カーボンに続
く次世代負極材料として多くの研究がなされている。ス
ズ系材料は、体積当たりの理論エネルギー密度が比較的
高く、空気中で容易に取り扱えることが特徴として挙げ
られるが、Liのインターカレーションに伴う体積膨張
が大きいために、充放電サイクルを繰り返すと劣化が生
じることや、基板との界面で剥離を生じ易いことなどの
改善すべき課題が存在する。特に、金属スズを負極材料
として用いるとサイクル特性が著しく劣化することが報
告されている。また、スズ酸化物ではサイクル特性が改
善された薄膜電極も報告されているが、充分なサイクル
特性を有するものとはいえず、更に、本質的な初期の大
きな不可逆容量の問題点も併せ持っている。しかも、上
記した酸化スズ薄膜電極は、573K以上に基板を加熱
して作製されていることから、利用可能な基板の種類が
限定されるという問題点もある。
[0005] Recently, it has been noted that tin-based materials such as oxides and alloys containing tin exhibit a high capacity, and much research has been conducted as a next-generation negative electrode material following carbon. Tin-based materials have a relatively high theoretical energy density per volume and can be easily handled in air.However, the volume expansion accompanying Li intercalation is large. There are problems to be improved, such as deterioration and easy separation at the interface with the substrate. In particular, it has been reported that when metal tin is used as a negative electrode material, cycle characteristics are significantly deteriorated. In addition, although thin-film electrodes with improved cycle characteristics have been reported for tin oxide, they cannot be said to have sufficient cycle characteristics. . In addition, since the above-described tin oxide thin film electrode is manufactured by heating the substrate to 573K or more, there is also a problem that the types of usable substrates are limited.

【0006】[0006]

【発明が解決しようとする課題】本発明の主な目的は、
リチウム二次電池、特に薄膜リチウム二次電池用に適し
た高エネルギー密度でサイクル特性の良好な負極材料を
低温で製造できる方法を提供することである。
SUMMARY OF THE INVENTION The main object of the present invention is to:
An object of the present invention is to provide a method for producing a negative electrode material having a high energy density and good cycle characteristics suitable for a lithium secondary battery, particularly a thin film lithium secondary battery at a low temperature.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記した従
来技術の問題に鑑みて鋭意研究を重ねた結果、特定の条
件下で真空蒸着法によってスズ薄膜を形成する場合、又
は特定の条件下にCVD法によって酸化スズ薄膜を形成
する場合には、比較的低い基板温度で、高エネルギー密
度でサイクル特性に優れた負極材料を製造できることを
見出し、ここに本発明を完成するに至った。
Means for Solving the Problems The present inventor has made extensive studies in view of the above-mentioned problems of the prior art, and as a result, when forming a tin thin film by a vacuum deposition method under specific conditions, or under specific conditions. When a tin oxide thin film is formed below by a CVD method, it has been found that a negative electrode material having high energy density and excellent cycle characteristics can be manufactured at a relatively low substrate temperature, and the present invention has been completed.

【0008】即ち、本発明は、以下のリチウム二次電池
用負極材料の製造方法、該製造方法によって得られた負
極材料、及び該負極材料を用いたリチウム二次電池を提
供するものである。 1. 蒸着原料として金属スズを用い、10-3〜10
-7Torrの真空条件下で、基板温度を273K〜57
3Kとして、真空蒸着法によってスズ薄膜を形成するこ
とを特徴とするリチウム二次電池用負極材料の製造方
法。 2. 基板として銅を用い、基板温度を423K〜52
3Kとすることを特徴とする請求項1に記載のリチウム
二次電池用負極材料の製造方法。 3. スズ源としてテトラメチルスズを用い、酸素源と
してオゾン含有酸素を用いて、CVD法によって基板上
に酸化スズ薄膜を形成することを特徴とするリチウム二
次電池用負極材料の製造方法。 4. 紫外線照射下にCVD法によって酸化スズ薄膜を
形成する上記項3に記載の方法。 5. 上記項1〜4のいずれかの方法によって基板上に
形成された薄膜からなるリチウム二次電池用負極材料。 6. 上記項5に記載の負極材料を構成要素とするリチ
ウム二次電池。
That is, the present invention provides the following method for producing a negative electrode material for a lithium secondary battery, a negative electrode material obtained by the method, and a lithium secondary battery using the negative electrode material. 1. Using metal tin as a deposition material, 10 −3 to 10
Under a vacuum condition of -7 Torr, the substrate temperature is increased from 273 K to 57
A method for producing a negative electrode material for a lithium secondary battery, wherein a tin thin film is formed by vacuum evaporation as 3K. 2. Copper is used as the substrate, and the substrate temperature is 423 K to 52
The method for producing a negative electrode material for a lithium secondary battery according to claim 1, wherein the temperature is 3K. 3. A method for producing a negative electrode material for a lithium secondary battery, comprising forming a tin oxide thin film on a substrate by a CVD method using tetramethyltin as a tin source and oxygen containing ozone as an oxygen source. 4. Item 4. The method according to Item 3, wherein the tin oxide thin film is formed by a CVD method under ultraviolet irradiation. 5. Item 7. A negative electrode material for a lithium secondary battery comprising a thin film formed on a substrate by any one of the above items 1 to 4. 6. Item 6. A lithium secondary battery comprising the negative electrode material according to Item 5 as a constituent element.

【0009】[0009]

【発明の実施の形態】本発明によれば、以下の二種類の
気相方法によって、比較的低い基板温度で、高エネルギ
ー密度でサイクル特性に優れたスズ系薄膜からなる負極
材料を製造できる。 (1)真空蒸着法 蒸着原料として金属スズを用い、10-3〜10-7Tor
r程度の真空条件下で、基板温度を273K〜573K
程度、好ましくは373K〜523K程度として真空蒸
着を行うことによって、リチウム二次電池の負極材料と
して優れた特性を有するスズ薄膜を形成できる。
According to the present invention, a negative electrode material comprising a tin-based thin film having a high energy density and excellent cycle characteristics can be produced at a relatively low substrate temperature by the following two kinds of vapor phase methods. (1) Vacuum evaporation method Using metal tin as an evaporation material, 10 -3 to 10 -7 Torr
The substrate temperature is 273K to 573K under a vacuum condition of about r.
By performing vacuum deposition at a temperature of, preferably, about 373 K to 523 K, a tin thin film having excellent characteristics as a negative electrode material of a lithium secondary battery can be formed.

【0010】基板としては、上記した基板温度において
安定に使用できるものであれば特に限定はなく、例え
ば、シリコン、SUS304、銅板、プラスチックス等
を用いることができる。
The substrate is not particularly limited as long as it can be used stably at the above-mentioned substrate temperature. For example, silicon, SUS304, copper plate, plastics, etc. can be used.

【0011】特に、基板として銅板を用い、基板温度を
423K〜523K程度に加熱する場合には、形成され
る薄膜はスズ−銅合金となる。このスズ−銅合金薄膜
は、リチウム二次電池の負極材料として用いた場合に、
特に良好なサイクル特性を示すものとなる。 (2)CVD法 スズ源としてテトラメチルスズ(Sn(CH34)を用
い、酸素源としてオゾン含有酸素を用いて、CVD法に
よって酸化スズ薄膜を形成することにより、リチウム二
次電池用負極材料として優れた特性を有する酸化スズ薄
膜を形成できる。
In particular, when a copper plate is used as a substrate and the substrate temperature is heated to about 423K to 523K, the thin film formed is a tin-copper alloy. This tin-copper alloy thin film, when used as a negative electrode material of a lithium secondary battery,
Particularly good cycle characteristics are shown. (2) CVD method Using tetramethyltin (Sn (CH 3 ) 4 ) as a tin source and ozone-containing oxygen as an oxygen source, a tin oxide thin film is formed by a CVD method to form a negative electrode for a lithium secondary battery. A tin oxide thin film having excellent properties as a material can be formed.

【0012】オゾン含有酸素としては、例えば、オゾン
含有量2〜10体積%程度の酸素を用いることができ
る。
As the ozone-containing oxygen, for example, oxygen having an ozone content of about 2 to 10% by volume can be used.

【0013】成膜方法としては、気体状のテトラメチル
スズとオゾン含有酸素を反応室内に導入し、基板を加熱
すればよく、これによってガスの分解が進行して酸化ス
ズが基板上に析出する。反応室内の圧力は、通常、1×
102〜1×104Pa程度とすればよく、圧力を低くす
る程、成膜速度は遅くなるが、良好な薄膜が形成される
傾向がある。
As a film forming method, gaseous tetramethyltin and ozone-containing oxygen may be introduced into the reaction chamber and the substrate may be heated, whereby the decomposition of the gas proceeds and tin oxide deposits on the substrate. . The pressure in the reaction chamber is usually 1 ×
The pressure may be set to about 10 2 to 1 × 10 4 Pa, and the lower the pressure, the lower the film-forming speed, but a good thin film tends to be formed.

【0014】反応室中へのテトラメチルスズの流量は1
〜10sccm程度とすることが好ましく、オゾン含有
酸素の流量は100〜400sccm程度とすることが
好ましい。
The flow rate of tetramethyltin into the reaction chamber is 1
Preferably, the flow rate of the ozone-containing oxygen is about 100 to 400 sccm.

【0015】基板温度は、373K〜523K程度、好
ましくは473〜523K程度とすればよい。
[0015] The substrate temperature may be about 373K to 523K, preferably about 473K to 523K.

【0016】基板としては、上記した基板温度において
安定に使用できるものであれば特に限定はなく、例え
ば、シリコン、SUS304、銅板、プラスチックス等
を用いることができる。
The substrate is not particularly limited as long as it can be used stably at the above-mentioned substrate temperature. For example, silicon, SUS304, copper plate, plastics, etc. can be used.

【0017】上記した条件でCVD法によって酸化スズ
薄膜を形成する際に、反応系に紫外線を照射する場合に
は、テトラメチルスズ及びオゾン含有酸素がラジカル化
することで反応性が増大され、成膜速度がより早くな
り、形成される酸化スズ薄膜はより高い導電性を示すも
のとなる。
When a tin oxide thin film is formed by the CVD method under the above conditions, when the reaction system is irradiated with ultraviolet rays, the reactivity is increased by the radicalization of tetramethyltin and ozone-containing oxygen, thereby increasing the reactivity. The film speed becomes faster, and the formed tin oxide thin film shows higher conductivity.

【0018】紫外線としては、原料ガスに含まれるテト
ラメチルスズ及びオゾン含有酸素の分解を進行させるこ
とが可能な波長範囲のものを用いればよく、例えば、5
0nm〜400nm程度、好ましくは100〜280n
m程度の波長の紫外線を有効に用いることができる。
As the ultraviolet rays, those having a wavelength range in which the decomposition of tetramethyltin and ozone-containing oxygen contained in the raw material gas can proceed can be used.
About 0 to 400 nm, preferably 100 to 280 n
Ultraviolet light having a wavelength of about m can be used effectively.

【0019】上記した真空蒸着法によって得られたスズ
薄膜及びスズ銅合金薄膜と、CVD法によって得られた
酸化スズ薄膜は、何れも、リチウム二次電池用の負極材
料として用いた場合に、高エネルギー密度を有し、良好
なサイクル特性を示すものとなる。上記した各薄膜をリ
チウム二次電池用負極材料として用いる場合には、膜厚
は、通常、0.1μm〜数10μm程度とすることが好
ましい。
The tin thin film and the tin-copper alloy thin film obtained by the above-described vacuum deposition method and the tin oxide thin film obtained by the CVD method are all high when used as negative electrode materials for lithium secondary batteries. It has energy density and shows good cycle characteristics. When each of the above-mentioned thin films is used as a negative electrode material for a lithium secondary battery, the thickness is usually preferably about 0.1 μm to several tens μm.

【0020】本発明方法で得られたスズ系薄膜をリチウ
ム二次電池用負極材料として用いる場合には、リチウム
二次電池を構成する負極材料以外の構成要素は、公知の
リチウム二次電池(例えば、基板搭載薄膜型、コイン
型、円筒型等)の電池要素をそのまま採用することがで
きる。
When the tin-based thin film obtained by the method of the present invention is used as a negative electrode material for a lithium secondary battery, constituent elements other than the negative electrode material constituting the lithium secondary battery are known lithium secondary batteries (for example, , A substrate-mounted thin film type, a coin type, a cylindrical type, etc.) can be employed as they are.

【0021】例えば、上記負極に対する対極としては、
リチウムコバルト酸化物、リチウムニッケル酸化物、リ
チウムマンガン酸化物等の公知のものを採用することが
できる。また、セパレーター、電池容器等としても公知
の電池要素を採用すれば良い。
For example, as a counter electrode to the above-mentioned negative electrode,
Known materials such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide can be used. In addition, a known battery element may be used as the separator, the battery container, and the like.

【0022】また、電解質としては、有機電解液、ゲル
電解質、ポリマー電解質、無機固体電解質などの公知の
ものが適用できる。
As the electrolyte, known electrolytes such as an organic electrolyte, a gel electrolyte, a polymer electrolyte, and an inorganic solid electrolyte can be used.

【0023】[0023]

【発明の効果】本発明方法によれば、比較的低い基板温
度で、リチウム二次電池用負極材料として優れた特性を
有するスズ薄膜、スズ銅合金薄膜又は酸化スズ薄膜を形
成することができる。これらのスズ系薄膜は、空気中で
容易に取り替えることができる安全性に優れたリチウム
二次電池用負極材料であり、これを用いたリチウム二次
電池は、高いエネルギー密度を有し、サイクル特性も良
好という優れた特性を有するものとなる。
According to the method of the present invention, a tin thin film, a tin copper alloy thin film or a tin oxide thin film having excellent characteristics as a negative electrode material for a lithium secondary battery can be formed at a relatively low substrate temperature. These tin-based thin films are highly safe anode materials for lithium secondary batteries that can be easily replaced in the air.Lithium secondary batteries using these materials have high energy density and cycle characteristics. Is also excellent.

【0024】[0024]

【実施例】以下、実施例を示して本発明の特徴とすると
ころをより明確にするが、本発明はこれらに限定される
ものではない。
EXAMPLES Hereinafter, the features of the present invention will be clarified by showing examples, but the present invention is not limited to these.

【0025】実施例1 抵抗加熱式真空蒸着装置を用い、10-5torrの真空
中で蒸発原料としての金属スズを抵抗加熱して、SUS
304基板上にスズ薄膜を析出させた。基板温度は、3
93Kとし、成膜時間は30分とした。
Example 1 Using a resistance heating type vacuum evaporation apparatus, metal tin as an evaporation material was resistance heated in a vacuum of 10 -5 torr to obtain SUS.
A tin thin film was deposited on a 304 substrate. Substrate temperature is 3
The temperature was 93 K, and the film formation time was 30 minutes.

【0026】得られた薄膜をX線回折したところ、金属
スズのみが観察され、格子定数は、文献値とほぼ同じ値
を示した。
When the obtained thin film was subjected to X-ray diffraction, only metal tin was observed, and the lattice constant showed almost the same value as the literature value.

【0027】得られたスズ薄膜を負極材料として用いて
三極式ガラス型電池を作製し、充放電サイクル特性を調
べた。対極及び参照極としは金属リチウムを用い、有機
電解液としては、エチレンカーボネート(EC)とジメ
トキシカーボネート(DMC)の混合溶媒 (1:1)
に過塩素酸リチウムを1Mとなるように溶解した電解液
を用いた。
Using the obtained tin thin film as a negative electrode material, a three-electrode glass battery was prepared, and its charge / discharge cycle characteristics were examined. Metal lithium is used for the counter electrode and the reference electrode, and a mixed solvent of ethylene carbonate (EC) and dimethoxy carbonate (DMC) (1: 1) is used as the organic electrolyte.
An electrolytic solution in which lithium perchlorate was dissolved to 1 M was used.

【0028】その結果、0.8−0.2VのCut-off電
位で初期放電容量500mAh/gを示し、10サイク
ル終了後も400mAh/g程度の放電容量を維持して
いた。
As a result, an initial discharge capacity of 500 mAh / g was exhibited at a cut-off potential of 0.8-0.2 V, and a discharge capacity of about 400 mAh / g was maintained after 10 cycles.

【0029】実施例2 基板材料として銅基板(純度99.9%)を用い、基板
温度を473Kとしたこと以外は、実施例1と同様にし
て蒸着皮膜を形成した。得られた薄膜のX線回折図を図
1に示す。これから明らかなように、主としてスズと銅
の合金相(Cu 6Sn5)が観察され、格子定数は、文献
値とほぼ同じ値を示した。
Example 2 A copper substrate (purity 99.9%) was used as a substrate material.
Same as Example 1 except that the temperature was 473K
To form a deposited film. X-ray diffraction diagram of the obtained thin film
It is shown in FIG. As can be seen, mainly tin and copper
Alloy phase (Cu 6SnFive) Is observed and the lattice constant is
The value was almost the same as the value.

【0030】得られたスズ銅合金薄膜を負極材料として
用いること以外は、実施例1と同様にして三極式ガラス
型電池を作製し、充放電サイクル特性を調べた。
A three-electrode glass battery was manufactured in the same manner as in Example 1 except that the obtained tin-copper alloy thin film was used as a negative electrode material, and charge-discharge cycle characteristics were examined.

【0031】結果を図2に示す。図2から明らかなよう
に、0−1.2VのCut-off電位で初期放電容量420
mAh/gを示し、50サイクル終了後も230mAh
/g程度の放電容量を維持していた。
FIG. 2 shows the results. As is clear from FIG. 2, the initial discharge capacity 420 at a cut-off potential of 0-1.2V.
mAh / g, 230 mAh even after 50 cycles
/ G of discharge capacity was maintained.

【0032】実施例3 光CVD装置を使用し、蒸着原料としてのテトラメチル
スズ(Sn(CH34)と酸素の原料ガスとしての4%
オゾン含有酸素を、それぞれ、4sccm(テトラメチ
ルスズ)と300sccm(4%オゾン含有酸素)の流
速で反応槽内に導入した。反応槽内の全圧は、1.3×
103Paで一定となるように制御し、基板材料として
SUS304基板を用いて、低圧水銀ランプ(200W)
により波長254及び185nmの紫外線を照射しつ
つ、基板加熱温度473Kで90分間成膜することによ
って、酸化スズ薄膜を作製した。得られた薄膜のX線回
折図を図3に示す。これから明らかなように、形成され
た薄膜は、酸化スズに対応する回折線が観察されず、ア
モルファス相であることが確認できた。
Example 3 Using a photo-CVD apparatus, tetramethyltin (Sn (CH 3 ) 4 ) as a raw material for vapor deposition and 4% as a raw material gas for oxygen were used.
Ozone-containing oxygen was introduced into the reactor at flow rates of 4 sccm (tetramethyltin) and 300 sccm (4% ozone-containing oxygen), respectively. The total pressure in the reactor is 1.3 ×
Controlled to be constant at 10 3 Pa, using a SUS304 substrate as the substrate material, and using a low-pressure mercury lamp (200 W)
The film was formed at a substrate heating temperature of 473 K for 90 minutes while irradiating ultraviolet rays having wavelengths of 254 and 185 nm, thereby producing a tin oxide thin film. FIG. 3 shows an X-ray diffraction pattern of the obtained thin film. As is clear from this, no diffraction line corresponding to tin oxide was observed in the formed thin film, and it was confirmed that the thin film was in an amorphous phase.

【0033】得られた酸化スズ薄膜を負極材料として用
いること以外は、実施例1と同様にして三極式ガラス型
電池を作製した。
A three-electrode glass battery was manufactured in the same manner as in Example 1 except that the obtained tin oxide thin film was used as a negative electrode material.

【0034】この三極式ガラス型電池について、電流密
度0.2mA/cm2で充放電サイクル特性を調べた。
結果を図4に示す。図中、cは充電、dは放電を示し、
各数値はサイクル数を示す。図4から判るように、0−
0.8VのCut-off電位で初期放電容量1450mAh
/g、初期充電容量530mAh/gを示した。一方、
2サイクル目の充放電容量はともに560mAh/gで
ほぼ100%の充放電効率を示した。この電池は200
サイクル終了後も590mAh/g程度の放電容量を維
持していた。
The charge / discharge cycle characteristics of this triode glass battery were examined at a current density of 0.2 mA / cm 2 .
FIG. 4 shows the results. In the figure, c indicates charging, d indicates discharging,
Each numerical value indicates the number of cycles. As can be seen from FIG.
Initial discharge capacity of 1450 mAh at a cut-off potential of 0.8 V
/ G, and an initial charge capacity of 530 mAh / g. on the other hand,
The charge and discharge capacities in the second cycle were both 560 mAh / g, indicating a charge and discharge efficiency of almost 100%. This battery is 200
The discharge capacity of about 590 mAh / g was maintained after the end of the cycle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例2で得た薄膜のX線回折図。FIG. 1 is an X-ray diffraction diagram of a thin film obtained in Example 2.

【図2】実施例2で得た薄膜を負極材料として用いたリ
チウムイオン二次電池の放電容量とサイクル数との関係
を示す図面。
FIG. 2 is a drawing showing the relationship between the discharge capacity and the number of cycles of a lithium ion secondary battery using the thin film obtained in Example 2 as a negative electrode material.

【図3】実施例3で得た薄膜のX線回折図。FIG. 3 is an X-ray diffraction diagram of the thin film obtained in Example 3.

【図4】実施例3で得た薄膜を負極材料として用いたリ
チウムイオン二次電池の充放電サイクル特性を示す図
面。
FIG. 4 is a drawing showing charge / discharge cycle characteristics of a lithium ion secondary battery using the thin film obtained in Example 3 as a negative electrode material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 望月 昭一 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 三原 敏行 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 田渕 光春 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 蔭山 博之 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 上坊 泰史 滋賀県草津市野路東1丁目1番1号 立命 館大学理工学部内 (72)発明者 山本 善史 滋賀県草津市野路東1丁目1番1号 立命 館大学理工学部内 (72)発明者 松岡 政夫 滋賀県草津市野路東1丁目1番1号 立命 館大学理工学部内 (72)発明者 玉置 純 滋賀県草津市野路東1丁目1番1号 立命 館大学理工学部内 Fターム(参考) 5H017 AA03 AS10 CC01 EE01 HH07 HH08 5H029 AJ03 AJ05 AK03 AL02 AM03 AM05 AM07 BJ04 CJ24 CJ28 DJ07 HJ14 HJ15 5H050 AA07 AA08 BA17 CA08 CB02 FA18 GA24 GA27 HA00 HA14 HA15  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shoichi Mochizuki 1-8-31 Midorioka, Ikeda-shi, Osaka Industrial Technology Institute Osaka Institute of Industrial Technology (72) Inventor Toshiyuki Mihara 1-8-8 Midorioka, Ikeda-shi, Osaka No. 31 Inside the Osaka Institute of Technology (72) Inventor Mitsuharu Tabuchi 1-38-31 Midorioka Ikeda-shi, Osaka Prefecture Inside the Institute of Industrial Technology Osaka (72) Inventor Hiroyuki Kageyama Midorioka Ikeda-shi, Osaka 1-8-31 Industrial Technology Institute Osaka Industrial Research Institute (72) Inventor Yasufumi Kamobo 1-1-1 Nojihigashi, Kusatsu City, Shiga Prefecture Ritsumeikan University Faculty of Science and Technology (72) Inventor Yoshifumi Yamamoto Shiga Prefecture 1-1-1, Nojihigashi, Kusatsu-shi Ritsumeikan University Faculty of Science and Technology (72) Inventor Masao Matsuoka 1-1-1, Nojihigashi, Kusatsu-shi Shiga Prefecture Ritsumeikan University Faculty of Science and Engineering ( 72) Inventor Jun Tamaki 1-1-1, Nojihigashi, Kusatsu-shi, Shiga F-term in Ritsumeikan University Faculty of Science and Technology (Reference) 5H017 AA03 AS10 CC01 EE01 HH07 HH08 5H029 AJ03 AJ05 AK03 AL02 AM03 AM05 AM07 BJ04 CJ24 CJ28 DJ07 HJ 5H050 AA07 AA08 BA17 CA08 CB02 FA18 GA24 GA27 HA00 HA14 HA15

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 蒸着原料として金属スズを用い、10-3
〜10-7Torrの真空条件下で、基板温度を273K
〜573Kとして、真空蒸着法によってスズ薄膜を形成
することを特徴とするリチウム二次電池用負極材料の製
造方法。
1. A metallic tin used as deposition material, 10-3
The substrate temperature is set to 273K under a vacuum condition of -10 -7 Torr.
A method for producing a negative electrode material for a lithium secondary battery, wherein a tin thin film is formed by a vacuum deposition method at a temperature of up to 573K.
【請求項2】基板として銅を用い、基板温度を423K
〜523Kとすることを特徴とする請求項1に記載のリ
チウム二次電池用負極材料の製造方法。
2. Copper is used as the substrate, and the substrate temperature is 423K.
The method for producing a negative electrode material for a lithium secondary battery according to claim 1, wherein the temperature is set to 5523 K.
【請求項3】スズ源としてテトラメチルスズを用い、酸
素源としてオゾン含有酸素を用いて、CVD法によって
基板上に酸化スズ薄膜を形成することを特徴とするリチ
ウム二次電池用負極材料の製造方法。
3. A negative electrode material for a lithium secondary battery, wherein a tin oxide thin film is formed on a substrate by a CVD method using tetramethyltin as a tin source and oxygen containing ozone as an oxygen source. Method.
【請求項4】紫外線照射下にCVD法によって酸化スズ
薄膜を形成する請求項3に記載の方法。
4. The method according to claim 3, wherein the tin oxide thin film is formed by a CVD method under ultraviolet irradiation.
【請求項5】請求項1〜4のいずれかの方法によって基
板上に形成された薄膜からなるリチウム二次電池用負極
材料。
5. A negative electrode material for a lithium secondary battery, comprising a thin film formed on a substrate by the method according to claim 1.
【請求項6】請求項5に記載の負極材料を構成要素とす
るリチウム二次電池。
6. A lithium secondary battery comprising the negative electrode material according to claim 5 as a constituent element.
JP2000293228A 2000-09-27 2000-09-27 Method for producing negative electrode material for lithium secondary battery and lithium secondary battery Expired - Lifetime JP3409082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000293228A JP3409082B2 (en) 2000-09-27 2000-09-27 Method for producing negative electrode material for lithium secondary battery and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000293228A JP3409082B2 (en) 2000-09-27 2000-09-27 Method for producing negative electrode material for lithium secondary battery and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2002110151A true JP2002110151A (en) 2002-04-12
JP3409082B2 JP3409082B2 (en) 2003-05-19

Family

ID=18776052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000293228A Expired - Lifetime JP3409082B2 (en) 2000-09-27 2000-09-27 Method for producing negative electrode material for lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3409082B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10251239A1 (en) * 2002-11-04 2004-05-19 Gaia Akkumulatorenwerke Gmbh Modified anode for lithium-polymer cells useful in production of Li-based batteries, diodes, electronic switching systems, measurement probes, photoelectric beams, information storage units, electrophoresis units, or detectors
JP2006040636A (en) * 2004-07-23 2006-02-09 Geomatec Co Ltd Thin film solid lithium ion secondary battery
JP2010084218A (en) * 2008-10-02 2010-04-15 Asahi Glass Co Ltd Method for forming photoexcitable material
KR101097202B1 (en) 2009-04-01 2011-12-21 전남과학대학 산학협력단 anode for rechargeable secondary battery and method of manufacturing the same
US8221918B2 (en) 2008-05-27 2012-07-17 Kobe Steel, Ltd. Anode for lithium ion secondary battery, production method thereof, and lithium ion secondary battery using the same
US8293409B2 (en) 2008-11-17 2012-10-23 Tdk Corporation Method for making active material and electrode, active material, electrode, and lithium ion secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10251239A1 (en) * 2002-11-04 2004-05-19 Gaia Akkumulatorenwerke Gmbh Modified anode for lithium-polymer cells useful in production of Li-based batteries, diodes, electronic switching systems, measurement probes, photoelectric beams, information storage units, electrophoresis units, or detectors
DE10251239B4 (en) * 2002-11-04 2009-01-29 Dilo Trading Ag Anode for lithium polymer cells and method of manufacture
JP2006040636A (en) * 2004-07-23 2006-02-09 Geomatec Co Ltd Thin film solid lithium ion secondary battery
US8221918B2 (en) 2008-05-27 2012-07-17 Kobe Steel, Ltd. Anode for lithium ion secondary battery, production method thereof, and lithium ion secondary battery using the same
JP2010084218A (en) * 2008-10-02 2010-04-15 Asahi Glass Co Ltd Method for forming photoexcitable material
US8293409B2 (en) 2008-11-17 2012-10-23 Tdk Corporation Method for making active material and electrode, active material, electrode, and lithium ion secondary battery
KR101097202B1 (en) 2009-04-01 2011-12-21 전남과학대학 산학협력단 anode for rechargeable secondary battery and method of manufacturing the same

Also Published As

Publication number Publication date
JP3409082B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
CN101322279B (en) Negative active substance, and negative electrode and lithium ion secondary battery using the substance
TWI265652B (en) Lithium ion secondary battery and a method for manufacturing the same
CN105283986B (en) Material, anode for nonaqueous electrolyte secondary battery and its manufacturing method and non-aqueous electrolyte secondary battery and its manufacturing method
US10707477B2 (en) High energy density multilayer battery cell with thermally processed components and method for making same
Zhang et al. Hierarchical hollow microflowers constructed from mesoporous single crystalline CoMn2O4 nanosheets for high performance anode of lithium ion battery
US11600819B2 (en) Positive electrode of lithium-ion battery, all-solid-state lithium-ion battery and preparation method thereof, and electrical device
CN108649190A (en) Vertical graphene with three-dimensional porous array structure/titanium niobium oxygen/sulphur carbon composite and its preparation method and application
CN106784692A (en) Graphene array load lithium titanate/carbon/carbon nano tube composite array electrode material and its preparation method and application
WO2010119754A1 (en) Method for manufacturing solid electrolytic cell, and solid electrolytic cell
JP2003514353A (en) Electrodes containing particles of specific size
CN102656728A (en) Lithium ion battery and method for manufacturing of such battery
JP2001288625A5 (en)
CN102868006A (en) Method for preparing graphene through waste lithium batteries
JP2016505093A (en) Method for forming at least one layer of film for solid phase thin film battery, plasma powder injection apparatus used for the film forming method, and solid phase thin film battery
Liu et al. Low cost and superior safety industrial grade lithium dual‐ion batteries with a second life
CN107074579A (en) Sn-containing compound
Wu et al. A sulfurization-based oligomeric sodium salt as a high-performance organic anode for sodium ion batteries
TWI333705B (en)
Levasseur et al. Solid state microbatteries
Wang et al. Towards fast and low cost Sb2S3 anode preparation: A simple vapor transport deposition process by directly using antimony sulfide ore as raw material
JP3409082B2 (en) Method for producing negative electrode material for lithium secondary battery and lithium secondary battery
Wu et al. Improved solid interfacial kinetics and electrochemical performance for LiCoO2 (1 1 0) textured thin-film lithium batteries
CN106207147A (en) A kind of two-dimensional nano-film lithium ion battery negative material and preparation method thereof
CN101066843B (en) Negative pole material CrN of solid film cell and its preparation
JP2013115028A (en) Molecular cluster ion positive electrode material

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350