JP2013115028A - Molecular cluster ion positive electrode material - Google Patents

Molecular cluster ion positive electrode material Download PDF

Info

Publication number
JP2013115028A
JP2013115028A JP2011263333A JP2011263333A JP2013115028A JP 2013115028 A JP2013115028 A JP 2013115028A JP 2011263333 A JP2011263333 A JP 2011263333A JP 2011263333 A JP2011263333 A JP 2011263333A JP 2013115028 A JP2013115028 A JP 2013115028A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode material
periodic table
secondary battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011263333A
Other languages
Japanese (ja)
Inventor
Noriyuki Sonoyama
範之 園山
Shinya Uematsu
信也 上松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2011263333A priority Critical patent/JP2013115028A/en
Publication of JP2013115028A publication Critical patent/JP2013115028A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode material such as a lithium ion secondary battery which is low-cost and has high energy density and furthermore which has superior cycle characteristics.SOLUTION: A positive electrode material contains polyoxometalate represented by chemical formula: A(XMOH)(A: elements in second to fourth periods of group 1 in the periodic table, X: elements in second to fifth periods of group 13 in the periodic table, and M: elements in fourth to sixth periods of groups 5 to 6 in the periodic table).

Description

本発明は、リチウムイオン二次電池等に利用され得る正極材料に関する。   The present invention relates to a positive electrode material that can be used in lithium ion secondary batteries and the like.

近年、携帯電話、ノートパソコン、デジタルカメラ等のポータブル機器用電源として二次電池が広く使用されている。なかでも、コバルト酸リチウム、ニッケル酸リチウム、あるいはマンガン酸リチウム等のリチウム遷移金属酸化物を正極材、黒鉛等の炭素材料を負極材、そしてリチウム化合物を液体有機化合物に溶解した電解質を用いたリチウム二次電池が急速に普及している。 In recent years, secondary batteries have been widely used as power sources for portable devices such as mobile phones, notebook computers, and digital cameras. In particular, lithium using lithium transition metal oxides such as lithium cobaltate, lithium nickelate, or lithium manganate as a positive electrode material, a carbon material such as graphite as a negative electrode material, and an electrolyte in which a lithium compound is dissolved in a liquid organic compound. Secondary batteries are rapidly spreading.

前記リチウムイオン二次電池は、充電時には正極活物質であるリチウム遷移金属酸化物中のリチウムがリチウムイオンとなり負極の炭素層間に入り込み、放電時にはリチウムイオンが炭素層間から離脱して正極に移動して元のリチウム遷移金属酸化物になることにより充放電反応が進行する。このリチウムイオン二次電池は高出力電圧、高エネルギー密度、さらにはメモリー効果がない等、従来のニッケルカドミウム等の二次電池にはない優れた特徴を有している。 In the lithium ion secondary battery, lithium in the lithium transition metal oxide, which is a positive electrode active material, becomes lithium ions during charging and enters the carbon layer of the negative electrode. The charge / discharge reaction proceeds by becoming the original lithium transition metal oxide. This lithium ion secondary battery has excellent features not found in conventional secondary batteries such as nickel cadmium, such as high output voltage, high energy density, and no memory effect.

しかし、リチウムイオン二次電池は、充放電を繰り返すことが可能な回数、すなわち、サイクル寿命については十分なものではなかった。特にエネルギー貯蔵用や電気自動車用の電源としてはサイクル寿命をさらに長くすることが必要であり、高温特性の改善、低コスト化も望まれていた。 However, the lithium ion secondary battery has not been sufficient in terms of the number of times that charge and discharge can be repeated, that is, the cycle life. In particular, as a power source for energy storage and electric vehicles, it is necessary to further increase the cycle life, and improvement in high temperature characteristics and cost reduction have been desired.

特開2006−172753号公報JP 2006-172753 A 特開2007−335331号公報JP 2007-335331 A 特開2011−028999号公報JP2011-028999A

本発明の課題は、低コストで、高エネルギー密度、さらには優れたサイクル特性を有するリチウムイオン二次電池等の二次電池用正極材を提供することである。 An object of the present invention is to provide a positive electrode material for a secondary battery such as a lithium ion secondary battery that has low cost, high energy density, and excellent cycle characteristics.

本発明者らは鋭意検討を重ねた結果、上記課題を解決する、分子性クラスタ−イオンを有する正極材を見出した。すなわち、本発明によれば以下の正極材が提供される。 As a result of intensive studies, the present inventors have found a positive electrode material having molecular cluster ions that solves the above problems. That is, according to the present invention, the following positive electrode material is provided.

[1]二次電池用正極材であって、化学式がA(XMO24)(A:周期律表第1族の第2〜4周期の元素、X:周期律表第13族第2〜5周期の元素、M:周期律表第5〜6族の第4〜6周期の元素)からなるポリオキソメタレートを含む正極材。 [1] A positive electrode material for a secondary battery, the chemical formula of which is A 3 (XMO 24 H 6 ) (A: elements in groups 2 to 4 of group 1 of the periodic table, X: group 13 of periodic table) A positive electrode material comprising a polyoxometalate composed of an element having 2 to 5 periods, M: an element having 4 to 6 periods in Groups 5 to 6 of the periodic table.

[2]前記化学式において、AがLi、Na、Kのいずれか一であり、XがAlあるいはGaであり、MがV、Mo,Nbのいずれか一である、請求項1に記載の正極材。 [2] The positive electrode according to claim 1, wherein, in the chemical formula, A is any one of Li, Na, and K, X is Al or Ga, and M is any one of V, Mo, and Nb. Wood.

[3]前記二次電池がLiイオン二次電池である請求項1または2に記載の正極材。 [3] The positive electrode material according to claim 1 or 2, wherein the secondary battery is a Li ion secondary battery.

本発明のポリオキソメタレートのクラスタ−イオン構造を模式的に示す図である。It is a figure which shows typically the cluster-ion structure of the polyoxometalate of this invention. 本発明の一実施例であるNaAlMo24のリートベルト解析結果である。A Rietveld analysis result of the Na 3 AlMo 6 O 24 H 6 is one embodiment of the present invention. 本発明の一実施例である、正極にNaAlMo24を用いた電池の充放電曲線を示す。Which is an embodiment of the present invention, showing a charge-discharge curve of a battery using Na 3 AlMo 6 O 24 H 6 in the positive electrode. 本発明の一実施例である、正極にNaGaMo24を用いた電池の充放電曲線を示す。Which is an embodiment of the present invention, showing a charge-discharge curve of a battery using Na 3 GaMo 6 O 24 H 6 in the positive electrode. 本発明の、正極にNaAlMo24あるいはNaGaMo24を用いた電池の充放電サイクル特性を示す。The charge / discharge cycle characteristics of a battery using Na 3 AlMo 6 O 24 H 6 or Na 3 GaMo 6 O 24 H 6 for the positive electrode of the present invention are shown.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

本発明のポリオキソメタレート(POM)は周期律表第5族あるいは第6族の遷移金属M(M=V、Mo、Nb等)が形成する分子性クラスターイオンである。ポリオキソメタレートは、第5族あるいは第6族の遷移金属の酸化力を利用した酸化触媒として従来から知られているが、一方では、溶液中で分子単体として安定に存在するため、分子単位でリチウムが脱挿入する機能を有すると考えられ、リチウムイオン二次電池電極材料として期待される。 The polyoxometalate (POM) of the present invention is a molecular cluster ion formed by a transition metal M (M = V, Mo, Nb, etc.) of Group 5 or Group 6 of the periodic table. Polyoxometalates are conventionally known as oxidation catalysts that utilize the oxidizing power of Group 5 or Group 6 transition metals. On the other hand, polyoxometalates are stably present as single molecules in solution. Therefore, it is considered to have a function of removing and inserting lithium, and is expected as a lithium ion secondary battery electrode material.

代表的なポリオキソメタレートとしては、Keggin型ポリオキソメタレートが知られているが、クラスタ−イオンユニットの構造安定性が低く、例えばKeggin型ポリオキソモリブデイトであるKPMo1240を正極材とするリチウム二次電池正極特性では急速に容量劣化を生じる。 As a typical polyoxometalate, a Keggin type polyoxometalate is known, but the structural stability of the cluster-ion unit is low. For example, K 3 PMo 12 O 40 which is a Keggin type polyoxomolybdate is used. The positive electrode characteristics of the lithium secondary battery used as the positive electrode material cause rapid capacity deterioration.

本発明では、クラスタ−イオンユニットが密な構造を有し、共有結合性が高く、分子ユニット中の非反応元素割合が高いAnderson型ポリオキソメタレートが好ましい。ポリオキソメタレートの化学式は、[XM24]y−(Xは周期律第15族〜第16族の第4〜第6周期の元素であり、より具体的には、Te5+、Sb5+等である)あるいは[X’M24]Z−(X’は周期律表第13族第2〜5周期の元素であり、より具体的にはAl、Gaである)。より好ましくは、[X’M24]Z−(X’は周期律表第13族第2〜5周期の元素であり、より具体的にはAl、Gaである)。なお、Mは周期律表第5〜6族の第4〜6周期の元素、より具体的にはV、Mo,Nbである。 In the present invention, an Anderson type polyoxometalate having a dense structure of cluster-ion units, high covalent bonding, and a high proportion of non-reactive elements in the molecular unit is preferable. The chemical formula of polyoxometalate is [XM 6 O 24 ] y− (X is an element of groups 4 to 6 of groups 15 to 16 of the periodic rule, and more specifically, Te 5+ , Sb 5 ), or [X′M 6 O 24 H 6 ] Z− (X ′ is an element of Group 13 to Group 5 of the periodic table, and more specifically, Al and Ga). More preferably, [X′M 6 O 24 H 6 ] Z— (X ′ is an element of Group 13 to Group 2 to Period 5 of the periodic table, and more specifically, Al and Ga). Note that M is an element in the 4th to 6th periods of the 5th to 6th groups of the periodic table, more specifically, V, Mo, Nb.

<粉末合成>
Anderson型ポリオキソメタレートの粉末合成、および比較としてKeggin型ポリオキソメタレートの粉末合成は以下の様に行った。
(実施例1:Na3[AlMo6O24H6]・7H2Oの合成)
モリブデン酸ナトリウム3.5 gと塩化アルミニウム0.8290 gを25 mlの水に溶解させ、pH=1.8になるまでHClを加えた。その後、しばらく加熱撹拌を行い、脱水させることで結晶を得た。その結晶をろ過、洗浄し、80℃で乾燥させた。
(実施例2:Li3[AlMo6O24H6]・7H2Oの合成)
モリブデン酸リチウム5 gと塩化アルミニウム0.4592 gを30 mlの水に溶解させ、pH=3.5になるまでHClを滴下した。しばらく加熱撹拌を行い、水を蒸発させることで結晶を得た。
(比較例:K3PMo12O40の合成)
ケギン型ポリオキソメタレートK3PMo12O40の合成には、市販のH3PMo12O40を蒸留水に溶解させ、塩化カリウムを過剰に加え、析出した沈殿をろ過した。得られた沈殿は、未反応の塩化カリウムを除去するために蒸留水で洗浄し、その後120℃で乾燥させた。
<Powder synthesis>
The powder synthesis of Anderson type polyoxometalate and, as a comparison, the powder synthesis of Keggin type polyoxometalate were carried out as follows.
(Example 1: Synthesis of Na 3 [AlMo 6 O 24 H 6 ] · 7H 2 O)
3.5 g of sodium molybdate and 0.8290 g of aluminum chloride were dissolved in 25 ml of water, and HCl was added until pH = 1.8. Thereafter, the mixture was heated and stirred for a while and dehydrated to obtain crystals. The crystals were filtered, washed and dried at 80 ° C.
(Example 2: Synthesis of Li 3 [AlMo 6 O 24 H 6 ] · 7H 2 O)
5 g of lithium molybdate and 0.4592 g of aluminum chloride were dissolved in 30 ml of water, and HCl was added dropwise until pH = 3.5. Crystals were obtained by heating and stirring for a while and evaporating water.
(Comparative example: Synthesis of K 3 PMo 12 O 40 )
For the synthesis of Keggin type polyoxometalate K 3 PMo 12 O 40 , commercially available H 3 PMo 12 O 40 was dissolved in distilled water, potassium chloride was added in excess, and the deposited precipitate was filtered. The resulting precipitate was washed with distilled water to remove unreacted potassium chloride and then dried at 120 ° C.

これら実施例1、実施例2、および比較例の粉末結晶の同定は、X線回折(XRD)、フーリエ変換赤外線分光硬度計(FT−IR)、およびRaman分光法により行った。 The identification of the powder crystals of Example 1, Example 2, and Comparative Example was performed by X-ray diffraction (XRD), Fourier transform infrared spectroscopic hardness meter (FT-IR), and Raman spectroscopy.

<電池作成・評価>
次にポリオキソメタレートの粉末試料を導電材であるアセチレングラックと重量比1:2の割合で混合して外径10 mm、厚み1 mmの正極合材を用い、負極に外径8 mm、厚み0.5 mmの金属リチウムから成る負極材、電解液として1M LiPFを含むエチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合溶媒(EC:DEC=3:7体積比)を用いてコイン型電池を作成し、電気化学測定を行った。50μAの定電流にて充電あるいは放電した場合の、正極試料の単位重量あたりの電気容量と電池電圧を測定した。
<Battery creation and evaluation>
Next, a powder sample of polyoxometalate was mixed with acetylene rack as a conductive material at a weight ratio of 1: 2, and a positive electrode mixture having an outer diameter of 10 mm and a thickness of 1 mm was used. Coin type using a negative electrode material made of metallic lithium having a thickness of 0.5 mm, and a mixed solvent (EC: DEC = 3: 7 volume ratio) of ethylene carbonate (EC) and diethyl carbonate (DEC) containing 1M LiPF 6 as an electrolyte. A battery was prepared and subjected to electrochemical measurements. The electric capacity and battery voltage per unit weight of the positive electrode sample when charged or discharged at a constant current of 50 μA were measured.

(実施例1)
Anderson型ポリオキソメタレートとしてNaAlMo24粉末を用い、アセチレンブラックとの混合を500rpmで1時間、外径55mmのボールミルで直径10mmと5mmの2種類のボールを使った混合と、比較として手混ぜ混合を行った。充放電結果を図3に示す。この結果から手混ぜ混合の場合はボールミル混合に比して、充電容量が小さく、また放電時の電圧降下が早いことがわかる。ボールミル混合では充電容量は280mAh/g以上の大きな値を示した。
Example 1
Using Na 3 AlMo 6 O 24 H 6 powder as Anderson type polyoxometalate, mixing with acetylene black for 1 hour at 500 rpm, mixing using two types of balls of 10 mm and 5 mm in diameter with a 55 mm outer diameter ball mill As a comparison, hand mixing was performed. The charge / discharge results are shown in FIG. From this result, it can be seen that the manual mixing is smaller in charge capacity and the voltage drop during discharging is faster than in the ball mill mixing. In the ball mill mixing, the charging capacity showed a large value of 280 mAh / g or more.

(実施例2)
Anderson型ポリオキソメタレートとしてNaGaMo24粉末を用い、アセチレンブラックとの混合を500rpmで1時間、外径55mmのボールミルで直径10mmと5mmの2種類のボールを使った混合と、比較として手混ぜ混合を行った。充放電結果を図4に示す。実施例2は実施例1とほぼ同様の結果となった。
(Example 2)
Using Na 3 GaMo 6 O 24 H 6 powder as Anderson type polyoxometalate, mixing with acetylene black for 1 hour at 500 rpm, mixing using two types of balls of 10 mm and 5 mm in diameter with a 55 mm outer diameter ball mill As a comparison, hand mixing was performed. The charge / discharge results are shown in FIG. The result of Example 2 was almost the same as that of Example 1.

次に、上記実施例1と2について、18回の充放電サイクルを行い、容量低下を調べた。比較のため、Keggin型ポリオキソメタレートであるKPMo1240を正極材に用いた電池も評価した。KPMo1240を正極材に用いると、数サイクルで30%という大きな容量低下が見られたが、実施例1および実施例2のAnderson型ポリオキソメタレートを正極に用いた電池では大きな容量低下は見られなかった。 Next, about the said Example 1 and 2, the charging / discharging cycle of 18 times was performed and the capacity | capacitance fall was investigated. For comparison, a battery using K 3 PMo 12 O 40 , which is a Keggin type polyoxometalate, as a positive electrode material was also evaluated. When K 3 PMo 12 O 40 was used as the positive electrode material, a large capacity reduction of 30% was observed in several cycles, but the battery using the Anderson type polyoxometalate of Example 1 and Example 2 as the positive electrode was large. There was no decrease in capacity.

本発明のAnderson型ポリオキソメタレートは二次電池正極材に利用することができる。
The Anderson type polyoxometalate of the present invention can be used for a positive electrode material for a secondary battery.

Claims (3)

二次電池用正極材であって、化学式がA(XMO24)(A:周期律表第1族の第2〜4周期の元素、X:周期律表第13族第2〜5周期の元素、M:周期律表第5〜6族の第4〜6周期の元素、)からなるポリオキソメタレートを含む正極材。 A positive electrode material for a secondary battery, the chemical formula of which is A 3 (XMO 24 H 6 ) (A: Elements in Groups 2 to 4 of Group 1 of the Periodic Table, X: Groups of Groups 13 to 5 in Periodic Table) A positive electrode material comprising a polyoxometalate comprising a periodic element, M: an element of the 4th to 6th period of the 5th to 6th groups of the periodic table. 前記化学式において、AがLi,Na、Kのいずれか一であり、XがAlあるいはGaであり、MがV、Mo,Nbのいずれか一である、請求項1に記載の正極材。 The positive electrode material according to claim 1, wherein in the chemical formula, A is any one of Li, Na, and K, X is Al or Ga, and M is any one of V, Mo, and Nb. 前記二次電池がLiイオン二次電池である請求項1または2に記載の正極材。 The positive electrode material according to claim 1, wherein the secondary battery is a Li ion secondary battery.
JP2011263333A 2011-12-01 2011-12-01 Molecular cluster ion positive electrode material Pending JP2013115028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011263333A JP2013115028A (en) 2011-12-01 2011-12-01 Molecular cluster ion positive electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011263333A JP2013115028A (en) 2011-12-01 2011-12-01 Molecular cluster ion positive electrode material

Publications (1)

Publication Number Publication Date
JP2013115028A true JP2013115028A (en) 2013-06-10

Family

ID=48710359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011263333A Pending JP2013115028A (en) 2011-12-01 2011-12-01 Molecular cluster ion positive electrode material

Country Status (1)

Country Link
JP (1) JP2013115028A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105957995A (en) * 2016-06-18 2016-09-21 清华大学 Potassium polyoxometalate ceramic membrane for lithium-ion battery
CN106099016A (en) * 2016-06-18 2016-11-09 清华大学 A kind of lithium ion battery multi-metal oxygen acid sodium-salt ceramic diaphragm
CN106159257A (en) * 2015-04-13 2016-11-23 惠州市豪鹏科技有限公司 A kind of positive electrode active materials and preparation method thereof, positive plate and lithium ion battery
CN106159261A (en) * 2015-04-13 2016-11-23 惠州市豪鹏科技有限公司 The preparation method of a kind of positive electrode active materials, positive plate and lithium ion battery
CN112582611A (en) * 2019-09-29 2021-03-30 中国科学院大连化学物理研究所 Application of polyacid oxide NVO in positive electrode of lithium-sulfur battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159257A (en) * 2015-04-13 2016-11-23 惠州市豪鹏科技有限公司 A kind of positive electrode active materials and preparation method thereof, positive plate and lithium ion battery
CN106159261A (en) * 2015-04-13 2016-11-23 惠州市豪鹏科技有限公司 The preparation method of a kind of positive electrode active materials, positive plate and lithium ion battery
CN106159257B (en) * 2015-04-13 2018-08-17 惠州市豪鹏科技有限公司 A kind of positive electrode active materials and preparation method thereof, positive plate and lithium ion battery
CN105957995A (en) * 2016-06-18 2016-09-21 清华大学 Potassium polyoxometalate ceramic membrane for lithium-ion battery
CN106099016A (en) * 2016-06-18 2016-11-09 清华大学 A kind of lithium ion battery multi-metal oxygen acid sodium-salt ceramic diaphragm
CN112582611A (en) * 2019-09-29 2021-03-30 中国科学院大连化学物理研究所 Application of polyacid oxide NVO in positive electrode of lithium-sulfur battery
CN112582611B (en) * 2019-09-29 2021-10-15 中国科学院大连化学物理研究所 Application of polyacid oxide NVO in positive electrode of lithium-sulfur battery

Similar Documents

Publication Publication Date Title
Yabuuchi et al. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure
de la Llave et al. Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior
Wagner et al. Current research trends and prospects among the various materials and designs used in lithium-based batteries
TWI429132B (en) Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
Dedryvère et al. Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium
JP2014060108A (en) Molecular cluster ion positive electrode material
KR101488043B1 (en) Method for activating high capacity lithium secondary battery
JP2013524440A (en) Doped positive electrode active material and lithium ion secondary battery comprising the same
JP2009206100A (en) Cathode active material and cathode and lithium battery using this
Jehnichen et al. Degradation of high-voltage cathodes for advanced lithium-ion batteries–differential capacity study on differently balanced cells
EP2203948A2 (en) Positive electrode active material, lithium secondary battery, and manufacture methods therefore
Wang et al. Low-Cost Orthorhombic Na x [FeTi] O4 (x= 1 and 4/3) Compounds as Anode Materials for Sodium-Ion Batteries
JP2018147875A (en) Sodium secondary battery
Jia et al. Relaxation-induced memory effect of LiFePO4 electrodes in Li-ion batteries
JP2021048137A (en) Cathode active material for lithium secondary battery
JP2013115028A (en) Molecular cluster ion positive electrode material
Wang et al. Tetra-β-nitro-substituted phthalocyanines: a new organic electrode material for lithium batteries
JP5516463B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
CN105226269A (en) A kind of nickel ion doped manufacturing process
CN105810932A (en) Layered cathode material for sodium-ion battery and preparation method of the layered cathode material for the sodium-ion battery
Mullaliu et al. The electrochemical activity of the nitrosyl ligand in copper nitroprusside: a new possible redox mechanism for lithium battery electrode materials?
Palmieri et al. Cobalt doping as a pathway to stabilize the solid-state conversion chemistry of manganese oxide anodes in Li-ion batteries
CN107078274B (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same
KR101520118B1 (en) Method for improving cycle performance of lithium secondary battery
Sun et al. Mn 2 SiO 4/CNT composites as anode materials for high performance lithium-ion batteries