JP2002106552A - Thrust bearing device and its manufacturing method - Google Patents

Thrust bearing device and its manufacturing method

Info

Publication number
JP2002106552A
JP2002106552A JP2000297255A JP2000297255A JP2002106552A JP 2002106552 A JP2002106552 A JP 2002106552A JP 2000297255 A JP2000297255 A JP 2000297255A JP 2000297255 A JP2000297255 A JP 2000297255A JP 2002106552 A JP2002106552 A JP 2002106552A
Authority
JP
Japan
Prior art keywords
oil retaining
oil
bearing pad
thrust bearing
retaining groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000297255A
Other languages
Japanese (ja)
Inventor
Norio Nakada
紀男 仲田
Koichi Hakozaki
浩一 箱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP2000297255A priority Critical patent/JP2002106552A/en
Publication of JP2002106552A publication Critical patent/JP2002106552A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/30Application independent of particular apparatuses related to direction with respect to gravity
    • F16C2300/34Vertical, e.g. bearings for supporting a vertical shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Abstract

PROBLEM TO BE SOLVED: To provide a thrust bearing device having low starting coefficient of friction, and excellent abrasion resistance and durability. SOLUTION: A rotating runner is fitted to a rotation shaft via a shaft collar. A bearing pad is provided in contact with a slide surface layer of the rotating runner. In the thrust bearing device supported by a support device and disposed inside an oil reservoir, the bearing pad has oil retainer grooves of 15-30 pieces/25.4 mm2 on the slide surface. The dam function of 70% or more in the depth of the oil retainer groove is provided between the oil retainer grooves. The variance in size of the groove is accurate to within ±10%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、立軸水車発電機な
どの回転軸負荷を支えるスラスト軸受装置に係り、特に
起動運転時の回転トルク損失の低減、摩耗特性の改善並
びに運転耐久性に優れたスラスト軸受装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thrust bearing device for supporting a rotating shaft load, such as a vertical shaft turbine generator, and more particularly to a rotating torque loss reduction at start-up operation, an improvement in wear characteristics, and excellent running durability. It relates to a thrust bearing device.

【0002】[0002]

【従来の技術】図2に、立形水車発電機などの大形高負
荷の高速回転体を高精度に支えるスラスト軸受装置の構
成断面を示す。水車発電機は軸受荷重が3000〜40
00トン、周速40〜50m/sに達し、その軸受損失
は3000〜4000kWに達し単位面積あたりの発生
損失が非常に大きくなる。
2. Description of the Related Art FIG. 2 is a sectional view showing the construction of a thrust bearing device for supporting a large, high-load, high-speed rotating body such as a vertical turbine generator with high accuracy. Turbine generator has a bearing load of 3000 to 40
00 tons, the peripheral speed reaches 40 to 50 m / s, the bearing loss reaches 3000 to 4000 kW, and the generated loss per unit area becomes very large.

【0003】このため、回転機能に関する作動効率及び
耐久保証寿命延長の観点より摩擦損失の低減、耐摩耗性
の向上、パッド面損傷防止が求められている。
[0003] Therefore, reduction of friction loss, improvement of abrasion resistance, and prevention of pad surface damage are demanded from the viewpoints of the operation efficiency of the rotation function and the extension of the service life guaranteed for durability.

【0004】これらに対する対策としては、図1に示す
軸受パッドの表面層に錫、鉛等の軟質合金を溶着した構
造により、該表面層の摺動面積を縮小し、単位面積当た
りの荷重を増加した小形高面圧軸受装置が使用されてい
る。
As a countermeasure against these problems, a structure in which a soft alloy such as tin or lead is welded to the surface layer of the bearing pad shown in FIG. 1 reduces the sliding area of the surface layer and increases the load per unit area. A small high surface pressure bearing device is used.

【0005】該小形高面圧軸受装置は、運転の起動停止
時あるいは低速度回転で、軸受パッド面に形成される初
期油膜の形成不完全状態、欠損等の機構上避けられない
問題がある。
[0005] The small high-surface-pressure bearing device has an unavoidable mechanical problem such as an incompletely formed initial oil film formed on the bearing pad surface or a lack thereof when the operation is started or stopped or at low speed rotation.

【0006】また、中小容量発電機では軸受潤滑油を冷
却水を用いずにファンを用いて冷却する風冷軸受が使用
されている。この風冷軸受を用いた場合、軸受タンク内
の潤滑油の温度が上昇して潤滑油は低粘度化し、冷却水
を用いた場合と比較して低速度回転時の潤滑油膜の形成
が困難になる。したがって、発生損失の低減又は起動ト
ルクの減少のために、高面圧設計とすると、潤滑油膜が
十分形成されず摺動面同士が接触し、摺動面の粗さの異
常拡大、過熱現象の発生、焼付き現象あるいは回転急停
止に至る場合がある。
[0006] Further, in a small- and medium-capacity generator, an air-cooled bearing for cooling a bearing lubricating oil using a fan without using cooling water is used. When this air-cooled bearing is used, the temperature of the lubricating oil in the bearing tank rises and the viscosity of the lubricating oil decreases, making it more difficult to form a lubricating oil film during low-speed rotation than when using cooling water. Become. Therefore, if a high surface pressure design is used to reduce the generation loss or the starting torque, the lubricating oil film will not be formed sufficiently and the sliding surfaces will come into contact with each other, causing abnormal expansion of the roughness of the sliding surfaces and overheating. This may lead to generation, seizure, or sudden stop of rotation.

【0007】したがって、小型化、高面圧化による損失
低減への対応は、保油溝加工(キサゲ加工)、軸受パッ
ド面の平坦度、粗さ精度の改良及び設計技術としては荷
重支持機構または冷却方式の改変による摺動面たわみの
防止等がある。この中で、保油溝加工が最も効果が大き
い。
[0007] Therefore, measures to reduce the loss by downsizing and increasing the surface pressure are as follows: oil retaining groove processing (cutting processing), improvement of the flatness and roughness accuracy of the bearing pad surface, and design techniques such as load supporting mechanism or There is prevention of deflection of the sliding surface by modification of the cooling method. Of these, oil retaining groove processing is the most effective.

【0008】起動時における保油効果を高める為、軸受
パッドの摺動面に自動加工機(キサゲロボット)を用い
て保油溝を加工する方法が提案されている。
[0008] In order to enhance the oil retaining effect at the time of starting, there has been proposed a method of machining an oil retaining groove on a sliding surface of a bearing pad using an automatic processing machine (a scraping robot).

【0009】一方、小形高面圧軸受装置では、運転起動
時のトルク損失低減のため、専用のオイルリフタ装置を
併設する場合が多い。しかし、この方法は、起動トルク
減少には有効であるが、高圧に耐える油圧装置(ポン
プ)、複雑な配管、運転制御系が必須で高価格となる問
題がある。
[0009] On the other hand, small high surface pressure bearing devices are often provided with a dedicated oil lifter device in order to reduce torque loss at the time of starting operation. However, although this method is effective in reducing the starting torque, it has a problem that a high-pressure-resistant hydraulic device (pump), complicated piping, and an operation control system are essential and expensive.

【0010】[0010]

【発明が解決しようとする課題】前記のように、スラス
ト軸受装置の小形高面圧化による軸受損失の低減化と起
動トルクの軽減及び起動停止時の耐久性の向上を図るた
めに、自動加工機による保油溝加工が開示されている。
しかし、この技術は保油溝加工の際、単位面積当たりの
保油溝の数を適正にし、その最適な加工方法を特定する
必要がある。
As described above, in order to reduce the bearing loss, reduce the starting torque, and improve the durability at the time of starting and stopping by reducing the size of the thrust bearing device and increasing the surface pressure, automatic machining is performed. An oil retaining groove machining by a machine is disclosed.
However, in this technique, when machining oil retaining grooves, it is necessary to make the number of oil retaining grooves per unit area appropriate and specify an optimal machining method.

【0011】本発明は、大形重量の回転体負荷に基づく
起動運転時の回転トルク損失の低減、摩耗特性の改善並
びに運転耐久性向上を図ったスラスト軸受装置を提供す
ることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a thrust bearing device in which a rotation torque loss at the time of a start-up operation based on a heavy-weight rotating body load is reduced, wear characteristics are improved, and driving durability is improved.

【0012】[0012]

【課題を解決するための手段】上記の課題は本発明によ
り解決される。その要旨は、 (1) 回転軸にシャフトカラーを介して回転ランナー
が固着され、該回転ランナーの摺動面層に接して軸受パ
ッドが設けられ、該軸受パッドは支持装置によって支持
されてなるスラスト軸受装置において、前記軸受パッド
は摺動面に保油溝を15〜30個/(inch)2有し、前
記保油溝間に前記保油溝の深さの70%以上のダム機能
をもたせ、前記保油溝の大きさのばらつきを±10%以
内としたスラスト軸受装置である。そして、前記の軸受
パッドの表面が錫又は鉛を主成分とする摺動面層を有
し、該摺動面に保油溝が自動加工機(キサゲロボット)
で加工されてなることが好ましい。 (2) 回転軸にシャフトカラーを介して回転ランナー
が固着され、該回転ランナーの摺動面層に接して軸受パ
ッドが設けられ、該軸受パッドは支持装置によって支持
されてなるスラスト軸受装置の製造方法において、前記
軸受パッドの摺動面に自動加工機(キサゲロボット)を
用いて保油溝が形成され、該摺動面は保油溝を15〜3
0個/(inch)2有し、前記保油溝間に前記保油溝の深
さの70%以上のダム機能をもたせ、前記保油溝の大き
さのばらつきを±10%以内とするスラスト軸受装置の
製造方法である。
SUMMARY OF THE INVENTION The above-mentioned problems are solved by the present invention. The gist is as follows: (1) A rotating runner is fixed to a rotating shaft via a shaft collar, a bearing pad is provided in contact with a sliding surface layer of the rotating runner, and the bearing pad is supported by a support device. In the bearing device, the bearing pad has 15 to 30 oil retaining grooves / (inch) 2 on a sliding surface, and has a dam function of 70% or more of the depth of the oil retaining groove between the oil retaining grooves. And a thrust bearing device in which the variation in the size of the oil retaining groove is within ± 10%. The surface of the bearing pad has a sliding surface layer mainly composed of tin or lead, and an oil retaining groove is formed on the sliding surface by an automatic processing machine (a scraping robot).
It is preferred to be processed by. (2) Manufacture of a thrust bearing device in which a rotating runner is fixed to a rotating shaft via a shaft collar, a bearing pad is provided in contact with a sliding surface layer of the rotating runner, and the bearing pad is supported by a supporting device. In the method, an oil retaining groove is formed on a sliding surface of the bearing pad by using an automatic processing machine (a scraping robot).
Thrust having 0 / (inch) 2 and having a dam function of 70% or more of the depth of the oil retaining groove between the oil retaining grooves and making the size variation of the oil retaining grooves within ± 10% It is a manufacturing method of a bearing device.

【0013】[0013]

【発明の実施の形態】以下本発明を実施例を用いて説明
する。図1は一般的なスラスト軸受用パッドの斜視図で
ある。該スラスト軸受用パッドは軸受パッドの裏金3の
片側主面の表面に金属系材料からなる表面層1が形成さ
れ、該表面層1にキサゲ加工により保油溝2が形成され
た構成である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments. FIG. 1 is a perspective view of a general thrust bearing pad. The thrust bearing pad has a structure in which a surface layer 1 made of a metallic material is formed on the surface of one main surface of a back metal 3 of the bearing pad, and an oil retaining groove 2 is formed on the surface layer 1 by scraping.

【0014】前記の表面層は回転ランナ4との摺動面で
あり、該表面層1には、主にホワイトメタルを用いる。
The surface layer is a sliding surface with the rotating runner 4, and the surface layer 1 is mainly made of white metal.

【0015】図2は水車発電機のスラスト軸受装置の要
部縦断面図を示す。垂直方向に延びた回転軸6にシャフ
トカラー9を介して回転ランナー4が固着される。回転
ランナー4に対向して軸受パッド5が設けられ、パッド
5は支持装置7及び8によって支持される。これら軸受
は油溜め11内に配置される。
FIG. 2 is a longitudinal sectional view of a main part of the thrust bearing device of the turbine generator. The rotating runner 4 is fixed to the rotating shaft 6 extending in the vertical direction via a shaft collar 9. A bearing pad 5 is provided facing the rotating runner 4, and the pad 5 is supported by supporting devices 7 and 8. These bearings are arranged in a sump 11.

【0016】図3は図1に示す軸受パッドの摺動面を機
械加工(キサゲ加工)と手作業で加工した場合の加工部
の断面の状況(形状)を示す。手作業では加工部は鋭角
な仕上がりとなり、発電機の起動・停止時のスラスト軸
受パッドの保油効果を低下させ、運転中に形成される潤
滑油膜の厚さを減少させる。このために、摺動面に保油
溝がない軸受パッドより性能が低下する場合もある。こ
れに対して、機械加工(キサゲ加工)した加工部は円弧
状の断面となり、発電機の起動・停止時のスラスト軸受
パッドの保油効果が高まり、運転中の潤滑油膜の形成に
も影響を及ぼさず、理想的な形状を形成できる。この加
工部の形状を保ち、かつ保油溝の大きさのばらつきを小
さくする為には加工治具の形状を適切にする必要があ
る。
FIG. 3 shows the state (shape) of the cross section of the processed part when the sliding surface of the bearing pad shown in FIG. In the manual operation, the processed portion has a sharp finish, which reduces the oil retaining effect of the thrust bearing pad when the generator is started / stopped, and reduces the thickness of the lubricating oil film formed during operation. For this reason, the performance may be lower than that of the bearing pad having no oil retaining groove on the sliding surface. On the other hand, the machined part has an arc-shaped cross section, which enhances the oil retaining effect of the thrust bearing pad when the generator is started and stopped, and has an effect on the formation of a lubricating oil film during operation. Without affecting, an ideal shape can be formed. In order to maintain the shape of the processed portion and to reduce the variation in the size of the oil retaining groove, it is necessary to appropriately shape the processing jig.

【0017】自動加工機を用いて保油溝を加工する場
合、先端が円弧状の加工治具を用いる。この円弧半径が
大きいと1個あたりの保油溝が大きくなり、加工後の保
油溝の形状が鋭角になり保油効果が減少する。更に保油
溝の大きさのばらつきが±20%となる。円弧半径が小
さいと加工後の仕上がりは向上するが、保油溝の数が増
加して加工時間が長くなる。
When processing the oil retaining groove using an automatic processing machine, a processing jig having an arc-shaped tip is used. If this arc radius is large, the oil retaining groove per one becomes large, the shape of the oil retaining groove after processing becomes acute, and the oil retaining effect is reduced. Further, the variation in the size of the oil retaining groove is ± 20%. If the arc radius is small, the finish after machining is improved, but the number of oil retaining grooves increases and the machining time becomes longer.

【0018】発明者らは、円弧半径の最適値を検討した
結果、半径80〜120mmが最適値であることを見出
した。これにより、理想的な形状の保油溝を形成し、そ
の大きさのばらつきを±10%以内に抑えることが可能
となり保油効果を大きくできる。
As a result of studying the optimum value of the arc radius, the inventors have found that a radius of 80 to 120 mm is the optimum value. Thereby, an oil retaining groove having an ideal shape can be formed, and a variation in the size can be suppressed to within ± 10%, and the oil retaining effect can be increased.

【0019】更に、保油溝の密度について検討した結
果、保油溝が少ないとパッド全体におけるトータルの保
油量が少なくなり、保油溝を設ける効果が著しく減少す
る。また、保油溝が多すぎる場合、隣接する溝と溝とが
接触し、保油溝の実質的な深さが減少し、保油効果が減
少する。このため、起動時の摩擦係数の減少、耐久性の
向上を達成できなくなる。
Further, as a result of studying the density of the oil retaining grooves, if the number of the oil retaining grooves is small, the total amount of oil retained in the entire pad is reduced, and the effect of providing the oil retaining grooves is significantly reduced. If the number of oil retaining grooves is too large, adjacent grooves come into contact with each other, so that the substantial depth of the oil retaining grooves is reduced and the oil retaining effect is reduced. For this reason, it becomes impossible to reduce the friction coefficient at the time of starting and to improve the durability.

【0020】図4は保油溝の密度(保油溝の数)と摩擦
係数(起動時と定常運転時)の関係を示す。保油溝の密
度は1平方インチあたりの保油溝の数で表した。起動時
の摩擦係数は保油溝の数が15個から28個まで減少傾
向を示し、30個をこえると大きくなる。これは隣接す
る保油溝同士が接触し、実際の保油溝の深さが減少する
ためである。このために保油溝に保たれる油の量が減少
し、摩擦係数が上昇する傾向となる。
FIG. 4 shows the relationship between the density of the oil retaining grooves (the number of oil retaining grooves) and the coefficient of friction (at the time of startup and at the time of steady operation). The density of the oil retaining grooves was represented by the number of oil retaining grooves per square inch. The coefficient of friction at start-up shows a tendency to decrease from 15 to 28 oil retaining grooves, and increases when the number exceeds 30. This is because adjacent oil retaining grooves come into contact with each other and the actual depth of the oil retaining grooves decreases. For this reason, the amount of oil retained in the oil retaining groove decreases, and the coefficient of friction tends to increase.

【0021】また、運転中の摩擦係数は保油溝の数が3
0個を超えると摺動面で乱流が発生し増大する。これは
潤滑油膜の厚さの減少、油膜温度の上昇の原因となる。
保油溝の実質的な深さについて着目した。図4中の実線
は隣接する保油溝が重なった場合、実質保油溝高さにつ
いて規定していなかった。
In addition, the coefficient of friction during operation is determined by the number of oil retaining grooves being three.
If the number exceeds zero, turbulence is generated on the sliding surface and increases. This causes a decrease in the thickness of the lubricating oil film and an increase in the oil film temperature.
Attention was paid to the substantial depth of the oil retaining groove. The solid line in FIG. 4 does not specify the actual oil retaining groove height when adjacent oil retaining grooves overlap.

【0022】図5は実質保油溝高さと保油溝深さの関係
を示す。この実質保油溝高さを保油溝深さの70%以上
とした場合の起動摩擦係数、運転摩擦係数を図4の破線
で示す。これより、起動摩擦係数、運転摩擦係数ともに
改善され、起動時の保油効果が高まり、運転中の油膜の
流れに影響を与えないことが判る。
FIG. 5 shows the relationship between the substantial oil retaining groove height and the oil retaining groove depth. The starting friction coefficient and the operating friction coefficient when the actual oil retaining groove height is 70% or more of the oil retaining groove depth are shown by broken lines in FIG. From this, it is understood that both the starting friction coefficient and the operating friction coefficient are improved, the oil retaining effect at the time of starting is enhanced, and the flow of the oil film during the operation is not affected.

【0023】従って、自動加工機を用い、保油溝を加工
する場合には、単位面積(1インチ平方当たり)の保油
溝の数を15個〜30個とし、更に実質保油溝高さを保
油溝深さの70%以上とすることにより、本発明の目的
を達成することができる。
Therefore, when the oil retaining grooves are machined by using an automatic processing machine, the number of oil retaining grooves per unit area (per 1 inch square) is set to 15 to 30, and the substantial oil retaining groove height is further increased. To 70% or more of the oil retaining groove depth, the object of the present invention can be achieved.

【0024】また起動、停止繰り返し運転において、パ
ッド表面に理想的な形状で形成された保油溝がある場
合、保油溝に満たされた潤滑油で異常摩耗を防止し、耐
久性の向上にも寄与する。
Further, in the case where the pad surface has an oil retaining groove formed in an ideal shape in the repeated start and stop operation, abnormal wear is prevented by lubricating oil filled in the oil retaining groove, and the durability is improved. Also contributes.

【0025】実際の加工例を以下に示す。保油溝の形状
は長辺6mm、短辺5.5mmの楕円形とし、深さを
0.1mmとなる様加工治具の入射角度を調整する。加
工治具の送りピッチを円周方向6mm、半径方向6.2
5mmとした場合、1インチ(25.4mm)四方に保
油溝は25個加工され、また隣接する保油溝と接触しな
いので実質保油溝高さは保油溝深さと同一となり十分な
保油効果が得られる。
An example of actual processing is shown below. The shape of the oil retaining groove is an ellipse having a long side of 6 mm and a short side of 5.5 mm, and the incident angle of the processing jig is adjusted so that the depth becomes 0.1 mm. The feed pitch of the processing jig is 6 mm in the circumferential direction and 6.2 in the radial direction.
In the case of 5 mm, 25 oil retaining grooves are machined in a square of 1 inch (25.4 mm), and since they do not contact adjacent oil retaining grooves, the actual oil retaining groove height is the same as the oil retaining groove depth and sufficient oil retaining grooves are provided. An oil effect is obtained.

【0026】[0026]

【発明の効果】以上に述べたように、スラスト軸受にお
いて軸受パッドの表面に機械加工により保油溝の割合大
きさ及び形状を特定して形成することにより、停止中の
保油効果を高め、運転中の油膜厚さの減少を防止し、起
動から定常運転、停止に至るまで、安定して潤滑油を摺
動面に保持し、摺動面の異常摩耗、摺動面の加熱、焼付
き現象を解決する。また、運転起動時のトルク損失の減
少、耐摩耗性の向上、耐久性の向上を達成できる。運転
起動時の摩擦係数の低減により、軸受パッドを小型化で
き、面圧を1.3倍に高め、低損失化が可能となる。
As described above, in the thrust bearing, the size and shape of the oil retaining groove are specified and formed by machining on the surface of the bearing pad to enhance the oil retaining effect during stoppage. Prevents decrease in oil film thickness during operation, keeps lubricating oil on the sliding surface stably from start-up to steady operation and stop, abnormal wear of the sliding surface, heating and seizure of the sliding surface Solve the phenomenon. Further, it is possible to achieve a reduction in torque loss at the start of operation, an improvement in wear resistance, and an improvement in durability. By reducing the friction coefficient at the time of starting operation, the bearing pad can be downsized, the surface pressure can be increased to 1.3 times, and the loss can be reduced.

【0027】また、本発明によれば、複雑、高価なオイ
ルリフタ装置などの補機の併設を必要とする油圧源装置
が不要になる。したがって補機廃止による運転制御系の
簡略化、プラント運転経費の節減効果が得られる。
Further, according to the present invention, there is no need for a hydraulic power source device which requires a complicated and expensive auxiliary equipment such as an oil lifter device. Therefore, the operation control system can be simplified by eliminating the auxiliary equipment, and the effect of reducing plant operation costs can be obtained.

【0028】更に自動加工機による保油溝の加工により
加工形状が一元化され、保油効果を高める理想的な保油
溝加工が可能となり、低起動摩擦係数、耐摩耗性、耐久
性に優れた摺動部材の製造方法を提供する。
Furthermore, the processing of the oil retaining grooves by the automatic processing machine unifies the processing shape, and enables ideal oil retaining grooves to enhance the oil retaining effect, and has a low starting friction coefficient, excellent wear resistance and excellent durability. Provided is a method for manufacturing a sliding member.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1はスラスト軸受用パッド形状の斜視図であ
る。
FIG. 1 is a perspective view of a pad shape for a thrust bearing.

【図2】図2は水車発電機スラスト軸受装置の要部構造
図である。
FIG. 2 is a main part structural view of a turbine generator thrust bearing device.

【図3】図3は手作業と機械加工時の保油溝形状の比較
図である。
FIG. 3 is a comparison diagram of oil retaining groove shapes at the time of manual work and machining.

【図4】図4は摩擦係数と保油溝密度の傾向図である。FIG. 4 is a graph showing the tendency of the coefficient of friction and the density of oil retaining grooves.

【図5】図5は実質保油溝高さと保油溝深さの関係図で
ある。
FIG. 5 is a relationship diagram between the substantial oil retaining groove height and the oil retaining groove depth.

【符号の説明】[Explanation of symbols]

1…軸受パッドの表面層(摺動面層)、2…保油溝、3
…軸受パッドの裏金、4…回転ランナ、5…軸受パッ
ド、6…回転軸、7…支持装置、8…支持装置、9…シ
ャフトカラー、10…ガイド軸受、11…油溜め。
1. Surface layer of bearing pad (sliding surface layer) 2. Oil retaining groove 3.
... bearing pad back metal, 4 ... rotating runner, 5 ... bearing pad, 6 ... rotating shaft, 7 ... supporting device, 8 ... supporting device, 9 ... shaft collar, 10 ... guide bearing, 11 ... oil reservoir.

フロントページの続き Fターム(参考) 3J011 AA06 AA10 AA20 BA15 CA01 DA02 JA02 KA03 MA04 NA02 PA02 5H605 BB01 CC04 EB02 EB21 Continuation of the front page F term (reference) 3J011 AA06 AA10 AA20 BA15 CA01 DA02 JA02 KA03 MA04 NA02 PA02 5H605 BB01 CC04 EB02 EB21

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】回転軸にシャフトカラーを介して回転ラン
ナーが固着され、該回転ランナーの摺動面層に接して軸
受パッドが設けられ、該軸受パッドは支持装置によって
支持されてなるスラスト軸受装置において、前記軸受パ
ッドは摺動面に保油溝を15〜30個/(inch)2
し、前記保油溝間に前記保油溝の深さの70%以上のダ
ム機能をもたせ、前記保油溝の大きさのばらつきを±1
0%以内としたことを特徴とするスラスト軸受装置。
A thrust bearing device comprising: a rotary runner fixed to a rotary shaft via a shaft collar; a bearing pad provided in contact with a sliding surface layer of the rotary runner; and the bearing pad supported by a support device. Wherein the bearing pad has 15 to 30 oil retaining grooves / (inch) 2 on a sliding surface, and has a dam function of 70% or more of the depth of the oil retaining groove between the oil retaining grooves, ± 1 variation in oil retention groove size
A thrust bearing device characterized by being within 0%.
【請求項2】請求項1において、軸受パッドの表面が錫
又は鉛を主成分とする摺動面層を有し、該摺動面に保油
溝が自動加工機(キサゲロボット)で加工されてなるこ
とを特徴とするスラスト軸受装置。
2. The bearing pad according to claim 1, wherein the surface of the bearing pad has a sliding surface layer containing tin or lead as a main component, and an oil retaining groove is formed on the sliding surface by an automatic processing machine (a scraping robot). A thrust bearing device comprising:
【請求項3】回転軸にシャフトカラーを介して回転ラン
ナーが固着され、該回転ランナーの摺動面層に接して軸
受パッドが設けられ、該軸受パッドは支持装置によって
支持されてなるスラスト軸受装置の製造方法において、
前記軸受パッドの摺動面に自動加工機(キサゲロボッ
ト)を用いて保油溝が形成され、該摺動面は保油溝を1
5〜30個/(inch)2有し、前記保油溝間に前記保油
溝の深さの70%以上のダム機能をもたせ、前記保油溝
の大きさのばらつきを±10%以内とすることを特徴と
するスラスト軸受装置の製造方法。
3. A thrust bearing device wherein a rotary runner is fixed to a rotary shaft via a shaft collar, and a bearing pad is provided in contact with a sliding surface layer of the rotary runner, and the bearing pad is supported by a support device. In the manufacturing method of
An oil retaining groove is formed on the sliding surface of the bearing pad by using an automatic processing machine (a scraping robot).
5 to 30 pieces / (inch) 2, having a dam function of 70% or more of the depth of the oil retaining groove between the oil retaining grooves, and keeping the size variation of the oil retaining groove within ± 10%. A method of manufacturing a thrust bearing device.
JP2000297255A 2000-09-28 2000-09-28 Thrust bearing device and its manufacturing method Pending JP2002106552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000297255A JP2002106552A (en) 2000-09-28 2000-09-28 Thrust bearing device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000297255A JP2002106552A (en) 2000-09-28 2000-09-28 Thrust bearing device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002106552A true JP2002106552A (en) 2002-04-10

Family

ID=18779393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000297255A Pending JP2002106552A (en) 2000-09-28 2000-09-28 Thrust bearing device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002106552A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015189882A1 (en) * 2014-06-09 2015-12-17 株式会社日立製作所 Sliding bearing device
JP2021063587A (en) * 2019-04-26 2021-04-22 日本精工株式会社 Method for designing friction of sliding member, method for managing surface roughness, and method for manufacturing sliding mechanism
CN113688477A (en) * 2021-08-24 2021-11-23 珠海格力智能装备有限公司 Copper bush design method and copper bush
CN114382782A (en) * 2021-12-20 2022-04-22 哈尔滨电气动力装备有限公司 Water-lubricated thrust tile surface water tank lubricating structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015189882A1 (en) * 2014-06-09 2015-12-17 株式会社日立製作所 Sliding bearing device
JP2021063587A (en) * 2019-04-26 2021-04-22 日本精工株式会社 Method for designing friction of sliding member, method for managing surface roughness, and method for manufacturing sliding mechanism
WO2021215050A1 (en) * 2019-04-26 2021-10-28 日本精工株式会社 Method for designing friction between sliding members, method for managing surface roughness, and method for manufacturing sliding mechanism
US11586787B2 (en) 2019-04-26 2023-02-21 Nsk Ltd. Friction design method and surface roughness control method for sliding member and production method for sliding mechanism
CN113688477A (en) * 2021-08-24 2021-11-23 珠海格力智能装备有限公司 Copper bush design method and copper bush
CN113688477B (en) * 2021-08-24 2024-04-16 珠海格力智能装备有限公司 Copper bush design method and copper bush
CN114382782A (en) * 2021-12-20 2022-04-22 哈尔滨电气动力装备有限公司 Water-lubricated thrust tile surface water tank lubricating structure
CN114382782B (en) * 2021-12-20 2024-02-20 哈尔滨电气动力装备有限公司 Water lubrication structure for water lubrication thrust tile surface water tank

Similar Documents

Publication Publication Date Title
US6089756A (en) Plain bearing
US6250807B1 (en) Hydrodynamic type bearing and hydrodynamic type bearing unit
US5704718A (en) Sintered oil-impregnated bearing and method for manufacturing same
JP2000274432A (en) Pad type journal bearing
US20040057642A1 (en) Thrust bearing arrangement
WO2015141806A1 (en) Foil bearing
JP2002106552A (en) Thrust bearing device and its manufacturing method
CN112762095B (en) Water-lubricated radial bearing
CN108612759A (en) A kind of thrust pad bearing that inclines with micro- texture area and slip surface
US5483570A (en) Bearings for x-ray tubes
CN109538626A (en) The compound micro- texture plane sector tile fragment thrust bearing of one kind and its processing method
CN109854608B (en) Dendritic distributed composite surface texture antifriction bearing bush
JP2006138353A (en) Slide bearing and rotary electric machine including slide bearing
JPS5838649B2 (en) plain bearing
JPH0560128A (en) Underwater bearing device
JP2015031372A (en) Tilting pad bearing device
JP3394692B2 (en) Rotary shaft bearing lubrication method and rotary shaft temperature control method using this method
CN109296645A (en) A kind of adaptive bearer universe circular form Water Lubricated Stern Tube Bearing System system and design method
CN105465184A (en) Sealing device between sliding shaft and bearing pedestal
JP2006090516A (en) Cylindrical roller bearing
CN206449116U (en) High-speed bearing bush
JPH07139543A (en) Dynamic pressure bearing
JP5469978B2 (en) Centrifugal compressor
JP3256315B2 (en) Pneumatic bearing
CN209340343U (en) A kind of adaptive bearer universe circular form Water Lubricated Stern Tube Bearing System system