JP2002098504A - Capacitance type gap sensor - Google Patents

Capacitance type gap sensor

Info

Publication number
JP2002098504A
JP2002098504A JP2000291408A JP2000291408A JP2002098504A JP 2002098504 A JP2002098504 A JP 2002098504A JP 2000291408 A JP2000291408 A JP 2000291408A JP 2000291408 A JP2000291408 A JP 2000291408A JP 2002098504 A JP2002098504 A JP 2002098504A
Authority
JP
Japan
Prior art keywords
measured
measurement
gap
capacitance
detection electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000291408A
Other languages
Japanese (ja)
Inventor
Shinichiro Yanaka
慎一郎 谷中
Nobuhisa Nishioki
暢久 西沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2000291408A priority Critical patent/JP2002098504A/en
Publication of JP2002098504A publication Critical patent/JP2002098504A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for signal processing of a capacitance type gap sensor capable of accurately carrying out the measurement of gap even in the case that the potential of a body to be measured is in float condition for the ground. SOLUTION: The capacitance type gap sensor includes a first detecting electrode e1 that is disposed at an objective surface 2a approximately parallel to, distant from, and opposing to a conductive surface to be measured 1a, and forms the electrostatic capacity in the space with the surface to be measured 1a, a second detecting electrode e2 that is insulated from and concentric to the first detecting electrode e1, and forms the electrostatic capacity in the space with the surface to be measured 1a, and detects a measured amplitude information corresponding to the combined capacity between the first/second detecting electrodes e1, e2 and the surface to be measured 1a that varies in accordance with a gap d between the surface to be measured 1a and the objective surface 2a. When the measurement of the surface to be measured 1a is carried out using the method for signal processing of the capacitance type gap sensor, the objective surface 2a is moved back and forth for a determined distance in an approximately normal direction to the surface to be measured 1a. Then, two values output from the first/second detecting electrodes e1, e2 detecting before and after moving back and forth are memorized, and the output value corresponding to the gap d is determined from the measured amplitude information using a transferring algorithm based on the two memorized values.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は静電容量式変位セン
サに関し、特に被測定体とセンサ間の距離を測定する静
電容量式ギャップセンサの信号処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitance type displacement sensor and, more particularly, to a signal processing method for a capacitance type gap sensor for measuring a distance between an object to be measured and the sensor.

【0002】[0002]

【従来の技術】周知のように、静電容量式ギャップセン
サにおいては、例えば図1に示すように、被測定体1の
被測定面1aと測定ヘッド2の対物面2aに設ける第
1、第2検出電極e1 ,e2 との間に生じる静電容量を
測定することにより、被測定体1と第1、第2検出電極
1 ,e2 との間の距離(以下、ギャップdと称する)
を測定する。即ち、図1の導電性の被測定体1は電位を
GNDの状態に保たれるグラウンド部材3上に測定物支
持体4を介して位置され、前記被測定面1aの略直角な
方向に離間対向される前記対物面2aにはガード電極e
3 で相互間を絶縁シールドされた同心的な第1検出電極
1 及び第2検出電極e2 が設けられる。
2. Description of the Related Art As is well known, in a capacitance type gap sensor, for example, as shown in FIG. 1, first and second surfaces provided on a measurement surface 1a of a measurement object 1 and an object surface 2a of a measurement head 2 are provided. by measuring the electrostatic capacitance generated between the second detection electrode e 1, e 2, an object to be measured 1 and the first, the distance between the second detection electrode e 1, e 2 (hereinafter, the gap d Name)
Is measured. That is, the conductive object 1 shown in FIG. 1 is positioned on the ground member 3 whose potential is kept at GND via the object support 4 and is separated in a direction substantially perpendicular to the surface 1a to be measured. A guard electrode e is provided on the opposed object surface 2a.
3 first detection electrodes mutual concentric manner insulated shield e 1 and the second detection electrode e 2 is provided with.

【0003】そして、同静電容量式ギャップセンサの第
1検出電極e1 と第2検出電極e2は、全体を符号”
5”で示した処理回路に結線され、同処理回路5の交流
電源6を印加される交流ブリッジ7の対極電圧信号が差
動手段8に入力され、この差動手段8の出力信号が振幅
抽出手段9に入力されて電圧振幅信号が抽出され、同電
圧振幅信号が線形化手段10で線形処理される。図2は
被測定体1と第1、第2検出電極e1 ,e21 ,e2
及びコンデンサCα,Cβ,Cγで構成される交流ブリ
ッジ7の等価回路であり、第1検出電極e1 −被測定体
1間に発生する静電容量を”C1 ”、第2検出電極e2
−被測定体1間に発生する静電容量を”C2 ”とする
と、”C1 ”と”C2 ”の合成容量C0 はギャップdに
応じて変化する。また、検出電極e1 に生じる浮遊容量
は図中に”CS ”として示してある。
[0003] The first detection electrode e 1 and the second detection electrode e 2 of the same capacitive gap sensor are denoted by the same reference numerals.
5 ", a counter voltage signal of an AC bridge 7 to which an AC power supply 6 of the processing circuit 5 is applied is input to a differential means 8, and an output signal of the differential means 8 is amplitude-extracted. voltage amplitude signal is input to the means 9 are extracted, linear processing is the. Figure 2 is an object to be measured 1 and the first with the same voltage amplitude signal linearization means 10, second detection electrode e 1, e 2 e 1 , E 2
And an equivalent circuit of an AC bridge 7 composed of capacitors C α , C β , and C γ. The capacitance generated between the first detection electrode e 1 and the DUT 1 is “C 1 ”, and the second detection is Electrode e 2
- When "C 2" electrostatic capacitance generated between the measured sample 1, "C 1" combined capacitance C 0 of the "C 2" is changed in accordance with the gap d. Further, the stray capacitance generated in the detection electrode e 1 is shown as "C S" in FIG.

【0004】このときの検出電極に生じる合成容量C0
は、被測定体1の電位がGNDであるので、C2 が図2
中に示されるようにバイパスされ、 C0 =CS +C1 ・・・式(1) となる。
At this time, a combined capacitance C 0 generated on the detection electrode is obtained.
Is that the potential of the DUT 1 is GND, so that C 2 is
The bypass is performed as shown in the inside, and C 0 = C S + C 1 ...

【0005】図3には図1中に示した信号S1 ,S2
3 ,S4 ,S5 とギャップdの関係を示し、交流ブリ
ッジ7に周波数f1 の交流信号を印加し、合成容量C0
とコンデンサCαの分圧により出力される信号S1
FIG. 3 shows the signals S 1 , S 2 ,
The relationship between S 3 , S 4 , S 5 and the gap d is shown. An AC signal having a frequency f 1 is applied to the AC bridge 7, and the combined capacitance C 0
And the signal S 1 output by the partial pressure of the capacitor C α

【数1】 (被測定体1の電位がGNDの場合) ・・・式(2) (ただしA1 ,B1 ,D1 は定数、A1 >0)と、コン
デンサCβとコンデンサCγの分圧により出力される信
号S2
(Equation 1) (When the potential of the DUT 1 is GND) Expression (2) (where A 1 , B 1 , and D 1 are constants, A 1 > 0) and the partial pressure of the capacitor C β and the capacitor C γ Output signal S 2

【数2】 ・・・式(3) (ただしEは定数、d0 は測定レンジの中点におけるギ
ャップ)との差をとることにより得られる信号S3 であ
(Equation 2) Equation (3) (where E is a constant, d 0 is the gap at the midpoint of the measurement range) is a signal S 3 which is obtained by taking the difference between

【数3】 (被測定体1の電位がGNDの場合) ・・・式(4) の次の振幅情報S4 が抽出される。(Equation 3) (In the case where the potential of the DUT 1 is GND) The following amplitude information S 4 of Expression (4) is extracted.

【0006】[0006]

【数4】 (被測定体1の電位がGNDの場合) ・・・式(5) そして、振幅情報S4 をギャップdの変化に対してリニ
アとなるよう線形化した信号S5 とすれば、ギャップd
の値を検知できるわけである。
(Equation 4) (When the potential of the DUT 1 is GND) Expression (5) If the amplitude information S 4 is a signal S 5 linearized so as to be linear with respect to the change of the gap d, the gap d
Can be detected.

【数5】 (被測定体1の電位がGNDの場合) ・・・式(6) (ただし、LはS4 を線形化するための関数、A3 は定
数である。)
(Equation 5) (When the potential of the DUT 1 is GND) Equation (6) (where L is a function for linearizing S 4 and A 3 is a constant)

【0007】[0007]

【発明が解決しようとする課題】ところで、従来の静電
容量式ギャップセンサにあっては、前述したような信号
処理方法でギャップdの値を知るが、被測定体1と第
1、第2検出電極e1 ,e2 との間のギャップdを測定
する際、例えば測定物支持体4が非導電体であった場合
には、被測定体1の電位がGNDから浮いてしまい、図
4に示すようにGNDと被測定体1の間に浮遊容量CW
が生じることになる。
By the way, in the conventional capacitance type gap sensor, the value of the gap d is known by the above-described signal processing method. When measuring the gap d between the detection electrodes e 1 and e 2 , for example, when the object support 4 is a non-conductive material, the potential of the object 1 floats from GND, and FIG. As shown in the figure, the stray capacitance C W between GND and the DUT 1
Will occur.

【0008】図5はこの場合の交流ブリッジ7部の等価
回路であるが、浮遊容量CW が検出電極e2 −被測定体
1間に生じる静電容量C2 と並列に生じるため、各コン
デンサCα,Cβ,Cγと共に交流ブリッジ7を構成す
る合成容量C0 は浮遊容量CS ,静電容量C1 ,C2
び浮遊容量CW の合成容量となり、次式で現される。
FIG. 5 shows an equivalent circuit of the AC bridge 7 in this case. Since the stray capacitance C W is generated in parallel with the electrostatic capacitance C 2 generated between the detection electrode e 2 and the DUT 1, each capacitor is connected. The combined capacitance C 0 that forms the AC bridge 7 together with C α , C β , and C γ is a combined capacitance of the stray capacitance C S , the electrostatic capacitances C 1 , C 2, and the stray capacitance C W , and is expressed by the following equation.

【数6】 ・・・式(7) この場合、浮遊容量CW が十分に大きい(CW →∞)場
合は、式(7)は C0 =CS +C1 となるので、被測定体1の電位がGNDの場合と等価と
なる。
(Equation 6) (Equation (7)) In this case, if the stray capacitance C W is sufficiently large (C W → ∞), since the equation (7) becomes C 0 = C S + C 1 , the potential of the DUT 1 becomes This is equivalent to the case of GND.

【0009】しかし、図4のように被測定体1の電位が
浮いている場合の信号S1 は、検出すべき合成容量C0
が異なるため、次式に示すように被測定体1の電位はG
NDの場合とは異なってくる。
However, when the potential of the DUT 1 is floating as shown in FIG. 4, the signal S 1 is a composite capacitance C 0 to be detected.
Are different from each other, the potential of the DUT 1 is G as shown in the following equation.
It differs from the case of ND.

【数7】 (被測定体1の電位が浮いている場合) ・・・式(8) (ただしA2 ≠A1 ,B2 ≠B1 ,D2 ≠D1 、A2
2 ,D2 は定数、A2 >0)
(Equation 7) (When the potential of the DUT 1 is floating) Expression (8) (where A 2 ≠ A 1 , B 2 ≠ B 1 , D 2 ≠ D 1 , A 2 ,
B 2 and D 2 are constants, A 2 > 0)

【0010】この結果、被測定体1の電位がGNDから
浮いている場合の信号S5 は、図6に示すように、被測
定体1の電位はGNDの場合とは異なった状態となる。
ここで、信号S2 は被測定体1の電位がGNDの場合と
同じく、
[0010] As a result, the signal S 5 in the case where the potential of the object to be measured 1 is floating from the GND, as shown in FIG. 6, the potential of the object to be measured 1 is a different state from that of GND.
Here, the signal S 2 is the same as when the potential of the DUT 1 is GND,

【数8】 である。(Equation 8) It is.

【0011】また、信号S3 は、The signal S 3 is

【数9】 (被測定体1の電位が浮いている場合) ・・・式(9) であるから、得られる振幅情報S4 ,S5(Equation 9) (In the case where the potential of the DUT 1 is floating) Since the equation (9) is used, the amplitude information S 4 and S 5 obtained are

【数10】 (被測定体1の電位が浮いている場合) ・・・式(10) S5 =L(S4 ) (被測定体1の電位が浮いている場合) ・・・式(11) (ただしLは式(6)で用いた関数)としてそれぞれ表
現される。
(Equation 10) (When the electric potential of the DUT 1 is floating) ... Expression (10) S 5 = L (S 4 ) (When the electric potential of the DUT 1 is floating) ... Expression (11) (However, L is expressed as a function used in equation (6).

【0012】ここに、式(10)と式(5)を比較する
と、A1 ≠A2 ,B1 ≠B2 ,D1≠D2 なので、この
まま振幅情報S4 をもちいてS5 =L(S4 )なるリニ
アライズ変換を施したとしても、振幅情報S5 はギャッ
プdに対応したリニアライズにはならない。したがっ
て、従来の静電容量式ギャップセンサの信号処理方法で
は、被測定体1の電位がGNDから浮いている場合に
は、被測定体1の電気的な状況により、正確なギャップ
測定ができない問題がある。
Here, when the equations (10) and (5) are compared, A 1 ≠ A 2 , B 1 ≠ B 2 , and D 1 ≠ D 2, so that S 5 = L using the amplitude information S 4 as it is. Even if the linearization conversion of (S 4 ) is performed, the amplitude information S 5 does not become linearized corresponding to the gap d. Therefore, in the signal processing method of the conventional capacitance type gap sensor, when the potential of the DUT 1 is floating from GND, accurate gap measurement cannot be performed due to the electrical state of the DUT 1. There is.

【0013】本発明の目的は、以上に述べたような従来
の静電容量式ギャップセンサの信号処理方法の問題に鑑
み、被測定体の電位がGNDから浮遊状態にある場合で
も正確なギャップ測定を行うことができる静電容量式ギ
ャップセンサの信号処理方法及び静電容量式ギャップセ
ンサを得るにある。
An object of the present invention is to provide an accurate gap measurement even when the potential of an object to be measured is in a floating state from GND in view of the above-described problem of the signal processing method of the conventional capacitive gap sensor. To obtain a signal processing method for a capacitance type gap sensor and a capacitance type gap sensor capable of performing the following.

【0014】[0014]

【課題を解決するための手段】前記目的は、本発明によ
れば、導電性の被測定面に対して離間対向される略平行
な対物面に設けられて前記被測定面との間に静電容量を
形成する第1検出電極と、同第1検出電極に対し絶縁さ
れた状態で同心的に位置されかつ被測定面との間に静電
容量を形成する第2検出電極とを備え、前記被測定面と
前記対物面との間のギャップに応じて変化する前記第
1、第2検出電極と前記被測定面との間の合成容量に対
応した測定振幅情報を検知する静電容量式ギャップセン
サにおいて、被測定面の測定に際して、前記被測定面に
対して略直角な方向に前記対物面を所定距離だけ往復動
させ、この往復変位の前後で得られる第1、第2検出電
極の二つの出力の値を記憶し、この二つの記憶値を用い
た変換アルゴリズムにより前記測定振幅情報から前記ギ
ャップに対応した出力値を求める静電容量式ギャップセ
ンサの信号処理方法により達成される。
SUMMARY OF THE INVENTION According to the present invention, there is provided, in accordance with the present invention, a method comprising: A first detection electrode that forms a capacitance, and a second detection electrode that is concentrically located in an insulated state with respect to the first detection electrode and forms a capacitance between the surface to be measured, A capacitance type for detecting measurement amplitude information corresponding to a combined capacitance between the first and second detection electrodes and the measured surface, which varies according to a gap between the measured surface and the object surface. In the gap sensor, when measuring the surface to be measured, the object surface is reciprocated by a predetermined distance in a direction substantially perpendicular to the surface to be measured, and the first and second detection electrodes obtained before and after this reciprocal displacement are moved. A conversion algorithm that stores two output values and uses these two stored values It is accomplished by the signal processing method of the capacitance type gap sensor for determining the more output value corresponding to the gap from the measured amplitude information.

【0015】また、本発明によれば、前記目的は、導電
性の被測定面に対して離間対向される略平行な対物面に
設けられて前記被測定面との間に静電容量を形成する第
1検出電極と、同第1検出電極に対し絶縁された状態で
同心的に位置されかつ被測定面との間に静電容量を形成
する第2検出電極とを備え、前記被測定面と前記対物面
との間のギャップに応じて変化する前記第1、第2検出
電極と前記被測定面との間の合成容量に対応した測定振
幅情報を検知する静電容量式ギャップセンサにおいて、
被測定面の測定に際して、前記被測定面に対して略直角
な方向に前記対物面を所定距離だけ往復動させる移動手
段と、この往復変位の前後で得られる第1、第2検出電
極の二つの出力の値を記憶する記憶手段と、これらの二
つの記憶値を用いた変換アルゴリズムにより前記測定振
幅情報から前記ギャップに対応した出力値を求める演算
手段を備える静電容量式ギャップセンサによっても達成
される。
Further, according to the present invention, the object is to form an electrostatic capacitance between the conductive film and a surface to be measured which is provided on a substantially parallel object surface opposed to the surface to be measured. A first detection electrode, and a second detection electrode concentrically positioned in an insulated state with respect to the first detection electrode and forming a capacitance between the first detection electrode and the surface to be measured; And a capacitance type gap sensor that detects measurement amplitude information corresponding to a combined capacitance between the first and second detection electrodes and the measurement target surface, which changes according to a gap between the object surface and the first detection electrode,
When measuring the surface to be measured, a moving means for reciprocating the object surface by a predetermined distance in a direction substantially perpendicular to the surface to be measured, and first and second detection electrodes obtained before and after the reciprocal displacement. This is also achieved by a capacitance type gap sensor including storage means for storing two output values, and calculation means for obtaining an output value corresponding to the gap from the measured amplitude information by a conversion algorithm using these two stored values. Is done.

【0016】後述する本発明の好ましい実施例の説明に
おいては、 1)前記移動手段は、変位距離が予め機械的に定められて
いるガイド機構と、前記対物面を同ガイド機構に沿って
移動させるピエゾ圧電素子、電磁ソレノイド等の変位ア
クチュエータあるいは手動手段とを備える構成が説明さ
れる。
In the following description of a preferred embodiment of the present invention, 1) the moving means moves a guide mechanism whose displacement distance is predetermined mechanically, and moves the object plane along the guide mechanism. A configuration including a piezoelectric actuator, a displacement actuator such as an electromagnetic solenoid, or manual means will be described.

【0017】[0017]

【発明の実施の形態】以下、図7から図9について本発
明の実施の形態を説明する。図7は本発明による静電容
量式ギャップセンサを示すが、導電性の被測定体1は電
位をGNDの状態に保たれるグラウンド部材3上に測定
物支持体4を介して位置され、前記被測定面1aの略直
角な方向に離間対向される前記対物面2aにはガード電
極e3 で相互間を絶縁シールドされた同心的な第1検出
電極e1 及び第2検出電極e2 が設けられる点では前述
した従来の静電容量式ギャップセンサの場合と同様であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 7 shows a capacitance type gap sensor according to the present invention, in which a conductive measuring object 1 is positioned via a measuring object support 4 on a ground member 3 whose electric potential is kept at a GND state. guard electrode e 3 first detection electrodes mutual concentric manner insulated shielded with e 1 and the second detection electrode e 2 is provided on the objective surface 2a which is spaced apart opposed to a substantially perpendicular direction of the measurement surface 1a This is the same as in the case of the conventional capacitance gap sensor described above.

【0018】本発明の静電容量式ギャップセンサはその
センサ支持体8に設けたガイド機構に特徴があり、導電
性の被測定面1aに対向される対物面2aと被測定面1
aとの間の距離であるギャップdを測定するに際して、
被測定面1aの対向方向に対物面2aを既知の所定距離
Δdだけ往復動できる。
The capacitance type gap sensor according to the present invention is characterized by a guide mechanism provided on the sensor support 8, and the objective surface 2a and the measured surface 1 facing the conductive measured surface 1a.
When measuring the gap d, which is the distance between
The objective surface 2a can reciprocate a known predetermined distance Δd in the direction opposite to the surface to be measured 1a.

【0019】即ち、図7における導電性の被測定体1は
電位GNDのグラウンド部材3上の測定物支持体4に保
持され、同被測定体1の被測定面1aに対して対物面2
aを離間対向された測定ヘッド2はセンサ支持体11に
支持されるけれども、本発明の場合、同センサ支持体1
1には測定ヘッド2のフランジ2bを前記被測定面1a
に対して略直角な方向に案内するガイド溝12が形成さ
れる。
That is, the conductive object 1 shown in FIG. 7 is held by the object support 4 on the ground member 3 at the potential GND, and the object surface 2
Although the measuring head 2 which is opposed to the distance a is supported by the sensor support 11, in the case of the present invention, the sensor support 1
1 includes a flange 2b of the measuring head 2 and the surface 1a to be measured.
The guide groove 12 is formed to guide in a direction substantially perpendicular to the guide groove 12.

【0020】つまり、ガイド溝12の上下には測定ヘッ
ド2のフランジ2bを受ける上下ストッパ面13U,1
3Dが形成され、同測定ヘッド2の上面とセンサ支持体
11の対向面との間には測定ヘッド2をガイド溝12に
沿って往復動させる変位アクチュエータ14が介装さ
れ、同変位アクチュエータ14により測定ヘッド2を既
知の所定距離Δdだけギャップdに変化が与えられる。
用いる変位アクチュエータ14としては、例えばピエゾ
圧電素子(PZT)、電磁ソレノイドなどの移動手段を
用いることができるが、同往復動のためには、精密送り
手段などの手動による移動手段を採用することもでき
る。
That is, upper and lower stopper surfaces 13U, 1 which receive the flange 2b of the measuring head 2 are provided above and below the guide groove 12.
3D is formed, and a displacement actuator 14 for reciprocating the measurement head 2 along the guide groove 12 is interposed between the upper surface of the measurement head 2 and the opposing surface of the sensor support 11, and the displacement actuator 14 The gap is changed in the measuring head 2 by a known predetermined distance Δd.
As the displacement actuator 14 to be used, for example, a moving means such as a piezoelectric element (PZT) or an electromagnetic solenoid can be used. For the reciprocation, a manual moving means such as a precision feed means may be used. it can.

【0021】そして、本発明の場合、第1検出電極e1
と第2検出電極e2 からの信号は、従来と同様に、交流
ブリッジ、差動手段、振幅抽出手段を含む処理回路5に
供給され、同処理回路5で電圧振幅信号が抽出されるけ
れども、抽出電圧振幅信号はCPUなどで供給される演
算手段15に出力される。この演算手段15はデータバ
スを介して測定ヘッド2の移動前後の電圧振幅信号を一
時的に記憶できる記憶手段16に接続され、演算手段1
5に読み出された移動前後の測定ヘッド2の電圧振幅信
号が所定のアルゴリズムで変換処理され、線形化手段1
0で線形処理されることになる。
In the case of the present invention, the first detection electrode e 1
And the signal from the second detection electrode e 2 is supplied to a processing circuit 5 including an AC bridge, a differential means, and an amplitude extracting means, and a voltage amplitude signal is extracted by the processing circuit 5, as in the prior art. The extracted voltage amplitude signal is output to arithmetic means 15 supplied by a CPU or the like. The calculating means 15 is connected via a data bus to a storing means 16 capable of temporarily storing a voltage amplitude signal before and after the movement of the measuring head 2, and the calculating means 1
5, the voltage amplitude signal of the measuring head 2 before and after the movement read and converted is converted by a predetermined algorithm,
Linear processing is performed at 0.

【0022】次に、演算手段15での処理を具体的に説
明すると、図8は図4についての説明で述べた浮遊容量
W を異なる3通りの値に変化させたときの測定振幅情
報S4 −ギャップdの特性曲線を示す。同図から理解さ
れるように、被測定体1の電気的状態(浮遊容量CW
値)により、測定振幅情報S4 とギャップdとの関係は
異なる特性となることがわかる。
Next, the processing in the calculating means 15 will be described in detail. FIG. 8 shows the measured amplitude information S when the stray capacitance C W described in the description of FIG. 4 is changed to three different values. The characteristic curve of 4 -gap d is shown. As understood from the figure, the electrical state of the object to be measured 1 (the value of the stray capacitance C W), the relationship between the measured amplitude information S 4 and the gap d is understood to be a different characteristics.

【0023】また、図9は、未知の初期ギャップ量dS
における測定振幅情報S4 (dS )と、その状態から本
実施例により既知のギャップ変化量Δdを加えてギャッ
プをdS +Δdとしたときにおける測定振幅情報S4
(dS +Δd)との関係を示し、取り得る値の範囲内に
おいて初期ギャップ量dS を変化させてプロットしたグ
ラフである。図9から理解されるように、3通りの曲線
はお互いに交わることはなく、つまり、振幅情報S4
(dS )と移動後の振幅情報S4 (dS +Δd)の2つ
の値から図9上にプロットされる点を通る特性曲線は、
必ず1本だけであることがわかる。このことは、振幅情
報S4 とギャップdの特性が不明の場合においても、こ
の2つの値を本実施例を用いて取得することにより、そ
の特性を同定することができる意味している。
FIG. 9 shows an unknown initial gap amount d S.
Is added to the measured amplitude information S 4 (d S ) and the gap variation Δd known from the state according to the present embodiment, and the measured amplitude information S 4 when the gap is d S + Δd.
6 is a graph showing a relationship with (d S + Δd) and plotting the initial gap amount d S within a range of possible values. As understood from FIG. 9, the three curves do not intersect each other, that is, the amplitude information S 4
The characteristic curve passing through the points plotted on FIG. 9 from the two values of (d S ) and the amplitude information S 4 (d S + Δd) after the movement is as follows:
It turns out that there is only one. This is, even when the characteristics of the amplitude information S 4 and the gap d is unknown, by obtaining the two values using the present embodiment, which means it is possible to identify its characteristics.

【0024】次に、振幅情報S4 (dS )及び移動後の
振幅情報S4 (dS +Δd)とを用いてギャップdを求
める具体的な手順を説明する。先の図5の等価回路から
測定される振幅情報S4 (dS )は次の式(12)のよ
うに表せる。
Next, a specific procedure for obtaining the gap d using the amplitude information S 4 (d S ) and the moved amplitude information S 4 (d S + Δd) will be described. The amplitude information S 4 (d S ) measured from the equivalent circuit shown in FIG. 5 can be expressed by the following equation (12).

【数11】 ・・・式(12)[Equation 11] ... Equation (12)

【0025】同様に、測定される移動後の振幅情報S4
(dS +Δd)は次の式(13)で表せる。
Similarly, the measured amplitude information S 4 after the movement is obtained.
(D S + Δd) can be expressed by the following equation (13).

【数12】 ・・・式(13)ただし、Cα,Cβ,Cγはブリッジ
を構成するコンデンサの既知静電容量であり、真空の誘
電率をε0 ,電極と被測定体1との間に介在する物質
(通常は空気)の比誘電率をεγとする。また、このと
きの、第1検出電極e1 の面積をA1 、第2検出電極e
2 の面積をA2 とし、第1検出電極e1 と第2検出電極
2の間に生じる浮遊容量をCS で表す。なお、V0
交流ブリッジ7に印加する交流電圧の振幅である。
(Equation 12) (Equation (13)) where C α , C β , and C γ are known capacitances of the capacitors constituting the bridge, the dielectric constant of vacuum is ε 0 , and the intervening between the electrode and the DUT 1 the dielectric constant of the material (usually air) to the epsilon gamma. At this time, the area of the first detection electrode e 1 is A 1 , and the second detection electrode e 1
The second area and A 2, represents a stray capacitance between the first detection electrode e 1 and the second detection electrode e 2 in C S. V 0 is the amplitude of the AC voltage applied to the AC bridge 7.

【0026】上の式(12)及び式(13)の未知数
は”CW ”と”dS ”の二つであり、左辺の振幅情報S
4 (dS )と移動後の振幅情報S4 (dS +Δd)は本
発明の静電容量式ギャップセンサで実際に測定された値
である。よって、次式に示すように、式(12)及び式
(13)より”dS ”を消去すれば、”CW ”は測定値
4 (dS )とS4 (dS +Δd)によって導かれる関
数Gとして求められる。
The unknowns in the above equations (12) and (13) are two, “C W ” and “d S ”, and the amplitude information S
4 (d S ) and the moved amplitude information S 4 (d S + Δd) are values actually measured by the capacitance type gap sensor of the present invention. Therefore, as shown in the following equation, if “d S ” is eliminated from Equations (12) and (13), “C W ” is determined by the measured values S 4 (d S ) and S 4 (d S + Δd). It is obtained as a derived function G.

【数13】 ・・・式(14)(Equation 13) ... Expression (14)

【0027】以上の結果から、本実施例のガイド機構を
用いることにより計測される移動前後の振幅情報S4
(dS )及び振幅情報S4 (dS +Δd)を式(14)
に代入すれば、”dS ”を同定しなくてもS4 (dS
及びS4 (dS +Δd)によって導かれる関数として”
W ”を求めることができる。よって、ギャップdの測
定を行う際に得られる測定振幅情報をS4 (d)とすれ
ば、S4 (d)は先の式(12)で”dS ”を”d”と
することにより、次式のようにS4 (dS )及びS4
(dS +Δd)とギャップdの関数としてのS4を求め
ることができる。
From the above results, the amplitude information S 4 before and after the movement measured by using the guide mechanism of the present embodiment.
(D s ) and amplitude information S 4 (d s + Δd) are given by equation (14).
Is substituted into S 4 (d S ) without identifying “d S ”.
And S 4 (d S + Δd) as a function
"Can be obtained. Thus, if the measurement amplitude information obtained during the measurement of the gap d S 4 and (d), S 4 (d ) in the previous equation (12)" C W d S "To" d ", S 4 (d S ) and S 4
S 4 as a function of (d S + Δd) and gap d can be determined.

【数14】 ・・・式(15)[Equation 14] ... Equation (15)

【0028】即ち、式(15)から理解されるように、
4 (dS )及びS4 (dS +Δd)と、別途測定で得
たその他のパラメータを用いて、ギャップdを振幅情報
4の関数として次式のように導くことができる。
That is, as understood from the equation (15),
Using S 4 (d S ) and S 4 (d S + Δd) and other parameters obtained separately, the gap d can be derived as a function of the amplitude information S 4 as follows.

【数15】 ・・・式(16) ここで、関数Fは”S4 ”をリニアライズする関係を表
す。
(Equation 15) Expression (16) Here, the function F represents a relationship for linearizing “S 4 ”.

【0029】このように、測定状態にある被測定体1に
対し2ヶの測定した振幅情報S4 (dS )及び移動後の
振幅情報S4 (dS +Δd)とを予め求めておけば、ギ
ャップdはこのときの測定値S4 を用いると式(16)
のように求められるので、被測定体1の電気的状態によ
らず正確なギャップ測定を行える。
As described above, if two pieces of measured amplitude information S 4 (d S ) and moved amplitude information S 4 (d S + Δd) are obtained for the DUT 1 in the measurement state in advance. , the gap d is the use of measurements S 4 at this time equation (16)
Thus, accurate gap measurement can be performed regardless of the electrical state of the DUT 1.

【0030】[0030]

【発明の効果】以上の説明から明らかなように、本発明
によれば、被測定体1の電気的状態によらず、正確なギ
ャップの測定を行える効果がある。
As is apparent from the above description, according to the present invention, there is an effect that the gap can be measured accurately regardless of the electrical state of the DUT 1.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の静電容量式ギャップセンサの要部拡大図
及び信号処理回路図である。
FIG. 1 is an enlarged view of a main part of a conventional capacitance type gap sensor and a signal processing circuit diagram.

【図2】同静電容量式ギャップセンサの交流ブリッジの
等価回路図である。
FIG. 2 is an equivalent circuit diagram of an AC bridge of the capacitance type gap sensor.

【図3】同静電容量式ギャップセンサの信号S1 〜S5
とギャップdとの関係を示した特性曲線図である。
FIG. 3 shows signals S 1 to S 5 of the capacitance type gap sensor.
FIG. 4 is a characteristic curve diagram showing a relationship between the distance d and a gap d.

【図4】浮遊容量がある場合の同静電容量式ギャップセ
ンサの説明図である。
FIG. 4 is an explanatory diagram of the same capacitance type gap sensor when there is a stray capacitance.

【図5】浮遊容量がある場合の同静電容量式ギャップセ
ンサの図2対応等価回路図である。
FIG. 5 is an equivalent circuit diagram corresponding to FIG. 2 of the same capacitance type gap sensor when there is a stray capacitance.

【図6】浮遊容量がある場合の図3相当グラフである。FIG. 6 is a graph corresponding to FIG. 3 when there is a stray capacitance.

【図7】本発明による静電容量式ギャップセンサの要部
拡大図及び信号処理回路図である。
FIG. 7 is an enlarged view of a main part and a signal processing circuit diagram of the capacitance type gap sensor according to the present invention.

【図8】CW が変化した場合の同静電容量式ギャップセ
ンサの信号S4 −ギャップd線図である。
FIG. 8 is a signal S 4 -gap diagram of the same capacitance type gap sensor when C W changes.

【図9】ギャップdS を変化させたときのS4 (dS
△d)−S4 (dS )模式図である。
[9] S 4 when changing the gap d S (d S +
△ d) a -S 4 (d S) schematic.

【符号の説明】[Explanation of symbols]

S 浮遊容量 d ギャップ e1 第1検出電極 e2 第2検出電極 e3 ガード電極 1 被測定体 1a 被測定面 2 測定ヘッド 2a 対物面 2b フランジ 3 グラウンド部材 4 測定物支持体 5 処理回路 7 交流ブリッジ 8 差動手段 9 振幅抽出手段 10 線形化手段 11 センサ支持体 12 ガイド溝 13U,13D 上下ストッパ面 14 変位アクチュエータ 15 演算手段 16 記憶手段 CS floating capacitance d gap e 1 first detection electrode e 2 second detection electrode e 3 guard electrode 1 object to be measured 1a object to be measured 2 measuring head 2a object surface 2b flange 3 ground member 4 object to be measured 5 processing circuit 7 AC bridge 8 Differential means 9 Amplitude extraction means 10 Linearization means 11 Sensor support 12 Guide groove 13U, 13D Upper and lower stopper surface 14 Displacement actuator 15 Calculation means 16 Storage means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 導電性の被測定面に対して離間対向され
る略平行な対物面に設けられて前記被測定面との間に静
電容量を形成する第1検出電極と、同第1検出電極に対
し絶縁された状態で同心的に位置されかつ被測定面との
間に静電容量を形成する第2検出電極とを備え、前記被
測定面と前記対物面との間のギャップに応じて変化する
前記第1、第2検出電極と前記被測定面との間の合成容
量に対応した測定振幅情報を検知する静電容量式ギャッ
プセンサにおいて、 被測定面の測定に際して、前記被測定面に対して略直角
な方向に前記対物面を所定距離だけ往復動させ、この往
復変位の前後で得られる第1、第2検出電極の二つの出
力の値を記憶し、この二つの記憶値を用いた変換アルゴ
リズムにより前記測定振幅情報から前記ギャップに対応
した出力値を求めることを特徴とする静電容量式ギャッ
プセンサの信号処理方法。
A first detection electrode provided on a substantially parallel object surface which is spaced apart from and opposed to a conductive measurement surface to form a capacitance between the first measurement electrode and the measurement surface; A second detection electrode that is concentrically positioned in a state insulated from the detection electrode and forms a capacitance between the measurement surface and the measurement surface, and a gap between the measurement surface and the object surface is provided. A capacitance type gap sensor that detects measurement amplitude information corresponding to a combined capacitance between the first and second detection electrodes and the surface to be measured, the gap being changed in response to the measurement; The objective surface is reciprocated a predetermined distance in a direction substantially perpendicular to the surface, and two output values of the first and second detection electrodes obtained before and after the reciprocal displacement are stored, and the two stored values are stored. From the measured amplitude information to the gap by a conversion algorithm using Capacitive gap signal processing method of a sensor and obtains the the output value.
【請求項2】 導電性の被測定面に対して離間対向され
る略平行な対物面に設けられて前記被測定面との間に静
電容量を形成する第1検出電極と、同第1検出電極に対
し絶縁された状態で同心的に位置されかつ被測定面との
間に静電容量を形成する第2検出電極とを備え、前記被
測定面と前記対物面との間のギャップに応じて変化する
前記第1、第2検出電極と前記被測定面との間の合成容
量に対応した測定振幅情報を検知する静電容量式ギャッ
プセンサにおいて、 被測定面の測定に際して、前記被測定面に対して略直角
な方向に前記対物面を所定距離だけ往復動させる移動手
段と、この往復変位の前後で得られる第1、第2検出電
極の二つの出力の値を記憶する記憶手段と、これらの二
つの記憶値を用いた変換アルゴリズムにより前記測定振
幅情報から前記ギャップに対応した出力値を求める演算
手段を備えることを特徴とする静電容量式ギャップセン
サ。
2. A first detection electrode provided on a substantially parallel objective surface spaced apart from and opposed to a conductive measurement surface to form a capacitance between the first detection electrode and the first measurement electrode. A second detection electrode that is concentrically positioned in a state insulated from the detection electrode and forms a capacitance between the measurement surface and the measurement surface, and a gap between the measurement surface and the object surface is provided. A capacitance type gap sensor that detects measurement amplitude information corresponding to a combined capacitance between the first and second detection electrodes and the surface to be measured, the gap being changed in response to the measurement; Moving means for reciprocating the object plane by a predetermined distance in a direction substantially perpendicular to the plane; storage means for storing two output values of the first and second detection electrodes obtained before and after the reciprocal displacement; , Said measurement by a conversion algorithm using these two stored values Capacitive gap sensor, characterized in that the width information comprises calculating means for calculating an output value corresponding to the gap.
【請求項3】 前記移動手段は、変位距離が予め機械的
に定められているガイド機構と、前記対物面を同ガイド
機構に沿って移動させるピエゾ圧電素子、電磁ソレノイ
ド等の変位アクチュエータあるいは手動手段とを備える
ことを特徴とする請求項2記載の静電容量式ギャップセ
ンサ。
3. The moving means includes a guide mechanism having a mechanically predetermined displacement distance, a displacement actuator such as a piezoelectric element, an electromagnetic solenoid, or a manual means for moving the objective surface along the guide mechanism. The capacitance type gap sensor according to claim 2, comprising:
JP2000291408A 2000-09-26 2000-09-26 Capacitance type gap sensor Pending JP2002098504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000291408A JP2002098504A (en) 2000-09-26 2000-09-26 Capacitance type gap sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000291408A JP2002098504A (en) 2000-09-26 2000-09-26 Capacitance type gap sensor

Publications (1)

Publication Number Publication Date
JP2002098504A true JP2002098504A (en) 2002-04-05

Family

ID=18774482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000291408A Pending JP2002098504A (en) 2000-09-26 2000-09-26 Capacitance type gap sensor

Country Status (1)

Country Link
JP (1) JP2002098504A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046080A (en) * 2006-08-21 2008-02-28 Fujikura Ltd Capacitance sensor
JP2013195068A (en) * 2012-03-15 2013-09-30 Nidec Copal Electronics Corp Capacitive sensor, measuring device, and measuring method
CN112639388A (en) * 2018-11-15 2021-04-09 欧姆龙株式会社 Proximity sensor unit and distance observation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046080A (en) * 2006-08-21 2008-02-28 Fujikura Ltd Capacitance sensor
JP2013195068A (en) * 2012-03-15 2013-09-30 Nidec Copal Electronics Corp Capacitive sensor, measuring device, and measuring method
CN112639388A (en) * 2018-11-15 2021-04-09 欧姆龙株式会社 Proximity sensor unit and distance observation device
EP3835714A4 (en) * 2018-11-15 2022-05-04 OMRON Corporation Proximity sensor unit and distance observation device
US11656102B2 (en) 2018-11-15 2023-05-23 Omron Corporation Proximity sensor unit and distance calculation device

Similar Documents

Publication Publication Date Title
US4086528A (en) Capacitive transducers
CN204495495U (en) A kind of three-dimensional force capacitance type touch sensor unit
RU2104478C1 (en) Method of contactless dynamic measurement of displacement of grounded conductive body
CN105917204B (en) Capacitive pressure measuring unit at least one temperature sensor
TWI531793B (en) Process to determine the sensitivity of a sensor and a sensor, in particular magnetic field sensor
JPH09280806A (en) Electrostatic capacitance type displacement meter
JPH0618460A (en) Method of measuring electric resistance of test material in noncontact manner
WO2014101943A1 (en) Driver circuit for capacitive gap sensor
JP4488400B2 (en) Impedance detection circuit
JP5295047B2 (en) Method for measuring dielectric constant using scanning probe microscope
JP2019028012A (en) Circuit for measuring complex permittivity, device for measuring complex permittivity, and method for measuring complex permittivity
JP2002098504A (en) Capacitance type gap sensor
KR100341966B1 (en) Impedance-to-voltage converter and converting method
US9335151B2 (en) Film measurement
JP3815771B2 (en) Capacitance type gap sensor and signal detection method thereof
JP4873689B2 (en) Surface potential meter and surface potential measurement method
JPS6182104A (en) Electrostatic capacity type range finder
Amir et al. Design of differential cylindrical capacitive displacement sensor
JP7076728B2 (en) Capacitive sensor
US8493078B2 (en) Sensor for capacitive detection of a mechanical deflection
JP5295066B2 (en) Dielectric constant measurement method and scanning nonlinear dielectric microscope
JPS58155302A (en) Electrostatic capacity type displacement gage
CN115655082A (en) Distance sensor of piezoelectric crystal
JPS6367502A (en) Temperature correcting method for electrostatic capacity type stroke sensor
JPH04501914A (en) Volumetric sensor for liquid or gaseous media