JP2002097984A - Fuel quantity adjusting device of engine - Google Patents

Fuel quantity adjusting device of engine

Info

Publication number
JP2002097984A
JP2002097984A JP2000294082A JP2000294082A JP2002097984A JP 2002097984 A JP2002097984 A JP 2002097984A JP 2000294082 A JP2000294082 A JP 2000294082A JP 2000294082 A JP2000294082 A JP 2000294082A JP 2002097984 A JP2002097984 A JP 2002097984A
Authority
JP
Japan
Prior art keywords
engine
fuel supply
temperature
supply amount
map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000294082A
Other languages
Japanese (ja)
Inventor
Masanori Fujiwara
正徳 藤原
Yasuo Fujii
保生 藤井
Hajime Yama
一 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2000294082A priority Critical patent/JP2002097984A/en
Publication of JP2002097984A publication Critical patent/JP2002097984A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent feeding of a larger quantity of fuel than necessary, preventing generation of black smoke at the start of an engine by setting the minimum necessary quantity of initial fuel supply 4-2 adaptable for the environmental change or mechanical secular change of the engine. SOLUTION: When the engine is started, the quantity of initial fuel supply 4-1 is decided based on a temperature-fuel supply quantity map. When the start of the engine is not completed, the quantity of fuel supply is gradually increased (5). Then, when the start of the engine is completed, the temperature-fuel supply quantity map is modified. The new quantity of initial fuel supply 4-2 is made to be smaller than the quantity of fuel supply 6 at the completion of the start of the engine by a prescribed value under the previous condition of temperature of the start of the engine. At the next start of the engine, the quantity of initial fuel supply 4-2 is decided based on the modified temperature-fuel supply quantity map.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エンジンの燃料調
量装置に関する。
The present invention relates to a fuel metering device for an engine.

【0002】[0002]

【従来の技術】従来、エンジンの燃料供給装置として、
エンジン温度に応じ、始動時の燃料供給量を調節するも
のがある。この種の装置では、エンジン温度以外の環境
変化やエンジンの機械的経年変化があった場合でも、確
実な始動を行わせるため、始動時の燃料供給量は、大き
めに設定されている。
2. Description of the Related Art Conventionally, as a fuel supply device for an engine,
Some fuel supply amounts are adjusted at the time of starting according to the engine temperature. In this type of apparatus, the amount of fuel supplied at the time of starting is set to be relatively large in order to perform a reliable start even when there is an environmental change other than the engine temperature or a mechanical aging of the engine.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、始
動時の燃料供給量が大きめに設定されているため、始動
時には必要以上の燃料が供給される場合が多く、黒煙が
発生しやすい。
In the above prior art, since the fuel supply amount at the time of starting is set to be relatively large, more fuel than necessary is supplied at the time of starting, and black smoke is easily generated.

【0004】本発明の課題は、上記問題点を解決できる
エンジンの燃料供給装置を提供することにある。
An object of the present invention is to provide an engine fuel supply device which can solve the above problems.

【0005】[0005]

【課題を解決するための手段】(請求項1の発明)図1に
示すように、温度センサ(1)と始動完了検出手段(2)と
コントローラ(3)とを備え、
As shown in FIG. 1, a temperature sensor (1), a start completion detecting means (2) and a controller (3) are provided.

【0006】温度センサ(1)は、冷却水温度、エンジン
オイル温度、冷却排風温度、エンジン機壁温度、エンジ
ン周囲温度のいずれかに基づいて、エンジン温度を検出
し、始動完了検出手段(2)はエンジンの始動完了を検出
し、コントローラ(3)は、エンジンの始動が開始された
際、図2(B)に示すように、温度−燃料供給量マップに
基づいて、図2に示す初期燃料供給量(4−1)を決定
し、エンジンの始動が完了しない場合には、図2(C)に
示すように、燃料供給量を徐々に増加(5)させ、エンジ
ンの始動が完了すると、図2(B)に示すように、温度−
燃料供給量マップを修正し、先の始動開始温度条件下で
は、新たな初期燃料供給量(4−2)が、始動完了時の燃
料供給量(6)よりも所定量だけ少なくなるようにし、次
のエンジン始動時には、修正された温度−燃料供給量マ
ップに基づいて、初期燃料供給量(4−2)を決定するこ
とを特徴とするエンジンの燃料調量装置。
The temperature sensor (1) detects an engine temperature based on one of a cooling water temperature, an engine oil temperature, a cooling exhaust air temperature, an engine wall temperature, and an engine ambient temperature, and a start completion detecting means (2). ) Detects the completion of the start of the engine, and when the start of the engine is started, the controller (3) determines the initial state shown in FIG. 2 based on the temperature-fuel supply map as shown in FIG. When the fuel supply amount (4-1) is determined and the engine start is not completed, the fuel supply amount is gradually increased (5) as shown in FIG. , As shown in FIG.
The fuel supply amount map is corrected so that the new initial fuel supply amount (4-2) is smaller by a predetermined amount than the fuel supply amount (6) at the time of the start completion under the previous start start temperature condition, An engine fuel metering device for determining an initial fuel supply amount (4-2) based on a corrected temperature-fuel supply amount map at the time of the next engine start.

【0007】(請求項2の発明)請求項1に記載したエン
ジンの燃料調量装置において、図1に示すように、大気
圧センサ(7)を備え、コントローラ(3)は、大気圧に基
づいて温度−燃料供給量マップを修正し、大気圧が減少
している場合には、図2に示す初期燃料供給量(4−2)
を減量側にずらし、大気圧が増加している場合には、初
期燃料供給量(4−2)を増量側にずらすことを特徴とす
るエンジンの燃料供給装置。
(Invention of claim 2) The fuel metering device for an engine according to claim 1 is provided with an atmospheric pressure sensor (7) as shown in FIG. 1, and a controller (3) based on the atmospheric pressure. The temperature-fuel supply map is corrected by the following procedure. If the atmospheric pressure is decreasing, the initial fuel supply amount (4-2) shown in FIG.
A fuel supply device for an engine, wherein, when the atmospheric pressure is increasing, the initial fuel supply amount (4-2) is shifted to an increasing side.

【0008】[0008]

【発明の作用及び効果】(請求項1の発明)請求項1の
発明は、次の作用効果を奏する。図2(B)に示すよう
に、始動完了時の燃料供給量(6)に基づいて、温度−燃
料供給量マップを修正し、先の始動開始温度条件下で
は、新たな初期燃料供給量(4−2)が、始動完了時の燃
料供給量(6)よりも所定量だけ少なくなるようにし、次
のエンジン始動時には、修正された温度−燃料供給量マ
ップに基づいて、初期燃料供給量(4−2)を決定するた
め、環境変化やエンジンの機械的経年変化があった場合
でも、その変化に適合する必要最低限の初期燃料供給量
(4−2)が設定される。このため、始動時には必要以上
の燃料が供給されることがなく、黒煙の発生を抑制する
ことができる。また、初期燃料供給量(4−1)では始動
が完了しない場合には、燃料供給量を徐々に増加(5)さ
せるため、エンジン始動に失敗することはない。
Operation and Effect of the Invention (Invention of claim 1) The invention of claim 1 has the following operation and effects. As shown in FIG. 2 (B), the temperature-fuel supply map is corrected based on the fuel supply amount (6) at the time of the start completion, and a new initial fuel supply amount ( 4-2) is reduced by a predetermined amount from the fuel supply amount (6) at the completion of the start, and at the next engine start, based on the corrected temperature-fuel supply amount map, the initial fuel supply amount ( In order to determine 4-2), even if there is an environmental change or a mechanical aging change of the engine, the minimum necessary initial fuel supply to adapt to the change
(4-2) is set. Therefore, unnecessary fuel is not supplied at the time of starting, and the generation of black smoke can be suppressed. If the starting is not completed with the initial fuel supply amount (4-1), the fuel supply amount is gradually increased (5), so that the engine start does not fail.

【0009】(請求項2の発明)請求項2の発明は、請
求項1の発明の作用効果に加え、次の作用効果を奏す
る。大気圧が減少し、空気が薄くなっている場合には、
初期燃料供給量(4−2)を減量側にずらし、また、その
逆の場合には、初期燃料供給量(4−2)を増量側にずら
すため、空気量に応じた適正な燃料供給量を設定するこ
とができ、大気圧の変化による黒煙の発生や始動の失敗
を防止することができる。
(Invention of claim 2) The invention of claim 2 has the following effect in addition to the effect of the invention of claim 1. If the atmospheric pressure decreases and the air becomes thinner,
In order to shift the initial fuel supply amount (4-2) to the decreasing side and vice versa, to shift the initial fuel supply amount (4-2) to the increasing side, an appropriate fuel supply amount according to the air amount is required. Can be set, and generation of black smoke and failure in starting due to a change in atmospheric pressure can be prevented.

【0010】[0010]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。図1から図3は本発明の実施形態を説明
する図で、この実施形態では、ディーゼルエンジンの燃
料調量装置を用いる。
Embodiments of the present invention will be described with reference to the drawings. 1 to 3 are views for explaining an embodiment of the present invention. In this embodiment, a fuel metering device for a diesel engine is used.

【0011】この装置の概要は、次の通りである。この
装置は、燃料噴射ポンプ(8)とメカニカルガバナ(9)と
電子ガバナ(10)とを備えている。燃料噴射ポンプ(8)
は、ボッシュの列型ポンプであり、燃料増減方向にスラ
イドする燃料調量ラック(11)を備えている。燃料調量
ラック(11)は、メカ入力部(12)と電子入力部(13)
とを備えている。燃料調量ラック(11)は、付勢手段
(15)で燃料増量側に付勢されている。
The outline of this device is as follows. This device includes a fuel injection pump (8), a mechanical governor (9), and an electronic governor (10). Fuel injection pump (8)
Is a Bosch row-type pump, which is provided with a fuel metering rack (11) that slides in the fuel increase / decrease direction. The fuel metering rack (11) includes a mechanical input unit (12) and an electronic input unit (13).
And The fuel metering rack (11) is provided with an urging means.
In (15), the fuel is urged toward the fuel increasing side.

【0012】メカニカルガバナ(9)の構成は、次の通り
である。メカニカルガバナ(9)は、調速操作レバー(1
4)とガバナスプリング(16)とガバナレバー(17)と
ガバナ力発生手段(18)とを備えている。調速操作レバ
ー(14)には、ガバナスプリング(16)を介してガバナ
レバー(17)を連動連結してある。ガバナ力発生手段
(18)は、エンジン回転数に比例する速度で回転するフ
ライウェイトであり、ガバナレバー(17)に臨ませてい
る。ガバナレバー(17)の揺動端部には、メカ出力部
(19)を設け、これを燃料調量ラック(11)のメカ入力
部(12)にその燃料増量側から臨ませている。このメカ
ニカルガバナ(9)では、付勢手段(15)の付勢力で燃料
調量ラック(11)のメカ入力部(12)をメカ出力部(1
9)で受け止め、ガバナスプリング力(20)とガバナ力
(21)との不釣合い力で、ガバナレバー(17)を揺動さ
せ、燃料調量ラック(11)を調量する。
The structure of the mechanical governor (9) is as follows. The mechanical governor (9) has a speed control lever (1
4), a governor spring (16), a governor lever (17), and a governor force generating means (18). A governor lever (17) is interlocked to the speed control lever (14) via a governor spring (16). Governor force generating means
(18) is a flyweight that rotates at a speed proportional to the engine speed, and faces the governor lever (17). A mechanical output section is provided at the swinging end of the governor lever (17).
(19) is provided, which faces the mechanical input section (12) of the fuel metering rack (11) from the fuel increasing side. In the mechanical governor (9), the mechanical input unit (12) of the fuel metering rack (11) is connected to the mechanical output unit (1) by the urging force of the urging means (15).
9), governor spring force (20) and governor force
The governor lever (17) is swung by the unbalance force with (21), and the fuel metering rack (11) is metered.

【0013】電子ガバナ(10)の構成は、次の通りであ
る。電子ガバナ(10)は、設定回転数検出センサ(22)
と回転数センサ(25)とコントローラ(3)とアクチュエ
ータ(23)とを備えている。設定回転数検出センサ(2
2)は、調速操作レバー(14)の速度設定位置を検出
し、コントローラ(3)に目標回転数検出信号を発信す
る。回転数センサ(2)は、実回転数を検出し、コントロ
ーラ(3)に実回転数検出信号を発信する。コントローラ
(3)は、目標回転数と実回転数とを比較演算し、アクチ
ュエータ(23)の出力を制御する。アクチュエータ(2
3)は、リニアソレノイドであり、その出力軸端部が電
子出力部(24)となっている。この電子出力部(24)
は、燃料調量ラック(11)の電子入力部(13)にその燃
料増量側から臨んでいる。この電子ガバナ(10)では、
付勢手段(15)の付勢力で燃料調量ラック(11)の電子
入力部(13)を電子出力部(24)で受け止め、アクチュ
エータ(23)の作動で、燃料調量ラック(11)を調量す
る。
The configuration of the electronic governor (10) is as follows. The electronic governor (10) is a set rotation speed detection sensor (22)
And a rotation speed sensor (25), a controller (3), and an actuator (23). Set rotation speed detection sensor (2
2) Detects the speed setting position of the speed control lever (14) and sends a target rotation speed detection signal to the controller (3). The rotation speed sensor (2) detects the actual rotation speed and transmits an actual rotation speed detection signal to the controller (3). controller
(3) compares the target rotation speed with the actual rotation speed and controls the output of the actuator (23). Actuator (2
3) is a linear solenoid whose output shaft end is an electronic output section (24). This electronic output unit (24)
Faces the electronic input unit (13) of the fuel metering rack (11) from the fuel increasing side. In this electronic governor (10),
The electronic input unit (13) of the fuel metering rack (11) is received by the electronic output unit (24) by the urging force of the urging means (15), and the fuel metering rack (11) is operated by the operation of the actuator (23). Measure.

【0014】電子ガバナ(10)の制御特性とメカニカル
ガバナ(9)の調量特性は、次の通りである。図3に電子
ガバナとメカニカルガバナの特性線図を示す。横軸は回
転数、縦軸は調量位置を示す。メカニカルガバナ(10)
によるメカ調量特性線図(33)は実線で、電子ガバナ
(3)による電子制御特性線図(34)は鎖線で示す。メカ
調量特性線図(33)は、水平な上限調量線(33a)と傾
斜する全負荷調量線(33b)とを備え、上限調量線(3
3a)の高回転側端部から全負荷調量線(33b)が高回
転側に向けて下り傾斜している。電子制御特性線図(3
4)は、垂直で、その上端は、メカ調量特性線図(33)
の上限調量線(33a)の高速側端部まで延びている。
The control characteristics of the electronic governor (10) and the metering characteristics of the mechanical governor (9) are as follows. FIG. 3 shows a characteristic diagram of the electronic governor and the mechanical governor. The horizontal axis indicates the rotation speed, and the vertical axis indicates the metering position. Mechanical governor (10)
(33) is a solid line, and the electronic governor
The electronic control characteristic diagram (34) according to (3) is indicated by a chain line. The mechanical metering characteristic diagram (33) includes a horizontal upper limit metering line (33a) and a sloping full load metering line (33b).
The full load metering line (33b) slopes downward from the high rotation side end of 3a) toward the high rotation side. Electronic control characteristic diagram (3
4) is vertical, and the upper end is a mechanical metering characteristic diagram (33)
Of the upper limit metering line (33a).

【0015】上記特性に基づく電子ガバナ(10)とメカ
ニカルガバナ(9)の機能は、次の通りである。電子ガバ
ナ(10)による電子制御運転中は、電子制御特性線図
(34)に沿った制御が行われ、電子出力部(24)で電子
入力部(13)を受け止めることにより、メカ出力部(1
9)をメカ入力部(12)から離間させ、メカニカルガバ
ナ(9)が燃料調量ラック(11)に作用しないようにし
て、電子ガバナ(10)で回転数を一定値に維持する。負
荷が全負荷を超えると、上限調量線(33a)に沿った調
量が行われ、メカ出力部(19)でメカ入力部(12)を受
け止めることにより、電子制御運転での燃料噴射量の上
限を規定するとともに、電子出力部(24)を電子入力部
(13)から離間させ、電子ガバナ(10)が燃料調量ラッ
ク(11)に作用しないようにして、メカニカルガバナ
(9)によるメカ調量運転により、燃料増量を制限する。
The functions of the electronic governor (10) and the mechanical governor (9) based on the above characteristics are as follows. During the electronic control operation by the electronic governor (10), the electronic control characteristic diagram
The control according to (34) is performed, and the electronic output unit (24) receives the electronic input unit (13), whereby the mechanical output unit (1) is received.
9) is separated from the mechanical input unit (12) so that the mechanical governor (9) does not act on the fuel metering rack (11), and the electronic governor (10) maintains the rotation speed at a constant value. When the load exceeds the full load, the metering is performed along the upper limit metering line (33a), and the mechanical output unit (19) receives the mechanical input unit (12), thereby controlling the fuel injection amount in the electronic control operation. And the electronic output section (24) is connected to the electronic input section.
(13) so that the electronic governor (10) does not act on the fuel metering rack (11).
The amount of fuel increase is restricted by the mechanical metering operation according to (9).

【0016】電子ガバナ(10)は、次の制御機能も備え
ている。すなわち、電子ガバナ(10)は、温度センサ
(1)と始動完了検出手段(2)と大気圧センサ(7)とを備
えている。温度センサ(1)は、エンジン冷却水温度に基
づいてエンジン温度を検出する。エンジン温度の検出
は、エンジンオイル温度、冷却排風温度、エンジン機壁
温度、エンジン周囲温度のいずれかに基づいて行っても
よい。始動完了検出手段(2)には、回転数センサ(25)
をそのまま使用する。コントローラ(3)は、エンジン始
動時に、図2(A)に示す処理を行う。ステップS1で
は、セルスタータがONされたか否かを判断する。判断
が肯定の場合、ステップS2に進む。ステップS2で
は、冷却水温度を読込む。ステップS2の後は、ステッ
プS3に進む。ステップS3では、図2(B)に示すよう
に、冷却水温度−燃料噴射量マップに基づいて、図2
(B)に示す初期燃料噴射量(4−1)を決定し、アクチュ
エータ(23)により、燃料調量ラック(11)の調量位置
を設定する。冷却水温度−燃料噴射量マップは、図2
(B)に実線で示すマップ曲線(26)の通り、冷却水温度
が上昇するにつれて、燃料噴射量が減少するように設定
されている。なお、図3中の符号(35)は、エンジン始
動時のメカ調量特性線図、(36)は、エンジン始動時の
電子制御特性線図である。ステップS3の後は、ステッ
プS4に進む。
The electronic governor (10) also has the following control functions. That is, the electronic governor (10) is a temperature sensor.
(1), start completion detecting means (2) and atmospheric pressure sensor (7). The temperature sensor (1) detects an engine temperature based on an engine coolant temperature. The detection of the engine temperature may be performed based on one of the engine oil temperature, the cooling exhaust air temperature, the engine machine wall temperature, and the engine ambient temperature. The start completion detecting means (2) includes a rotational speed sensor (25).
Use as is. The controller (3) performs the processing shown in FIG. In step S1, it is determined whether or not the cell starter has been turned ON. If the determination is affirmative, the process proceeds to step S2. In step S2, the cooling water temperature is read. After step S2, the process proceeds to step S3. In step S3, as shown in FIG. 2B, based on the coolant temperature-fuel injection amount map,
The initial fuel injection amount (4-1) shown in (B) is determined, and the adjustment position of the fuel adjustment rack (11) is set by the actuator (23). The cooling water temperature-fuel injection amount map is shown in FIG.
As shown in a map curve (26) indicated by a solid line in (B), the fuel injection amount is set to decrease as the cooling water temperature increases. Reference numeral (35) in FIG. 3 is a mechanical adjustment characteristic diagram when the engine is started, and (36) is an electronic control characteristic diagram when the engine is started. After step S3, the process proceeds to step S4.

【0017】ステップS4では、エンジン始動完了か否
かを判断する。具体的には、エンジン回転数が所定の始
動完了回転数に到達したか否かにより判断する。判断が
否定の場合、図2(C)、図3に示すように、ステップS
5で燃料噴射量を徐々に増加(5)させ、ステップS4に
戻る。そして、エンジン回転数が始動完了回転数に到達
するまで、このサイクルを繰り返す。エンジン回転数が
始動完了回転数に到達すると、ステップS4での判断が
肯定され、ステップS6に進む。ステップS6では、始
動完了時の燃料噴射量等の諸条件から、温度−燃料噴射
量マップを修正する。具体的には、図2(B)に鎖線で示
す修正マップ曲線(26a)の通り、先の始動開始温度条
件下、及びこの始動開始温度を含む所定温度幅の始動開
始温度条件下では、新たな初期燃料供給量(4−2)が、
始動完了時の燃料供給量(6)よりも所定量だけ少なくな
るようにする。これにより、次のエンジン始動時には、
修正された冷却水温度−燃料供給量マップに基づいて、
初期燃料供給量(4−2)が決定される。また、大気圧セ
ンサ(7)は、エンジンの使用される場所の大気圧を検出
し、コントローラ(3)は、大気圧が減少している場合に
は、初期燃料供給量(4−2)を減量側にずらし、大気圧
が増加している場合には、初期燃料供給量(4−2)を増
量側にずらす。
In step S4, it is determined whether the engine has been started. Specifically, the determination is made based on whether or not the engine speed has reached a predetermined start completion speed. If the determination is negative, as shown in FIG. 2 (C) and FIG.
At 5, the fuel injection amount is gradually increased (5), and the process returns to step S4. This cycle is repeated until the engine speed reaches the start completion speed. When the engine speed reaches the start completion speed, the determination in step S4 is affirmed, and the process proceeds to step S6. In step S6, the temperature-fuel injection amount map is corrected based on various conditions such as the fuel injection amount at the completion of the start. Specifically, as shown in the modified map curve (26a) shown by the dashed line in FIG. 2B, under the above-mentioned start start temperature condition and under the start start temperature condition of a predetermined temperature range including this start start temperature, a new Initial fuel supply (4-2)
The fuel supply amount is reduced by a predetermined amount from the fuel supply amount (6) when the start is completed. As a result, at the next engine start,
Based on the modified coolant temperature-fuel supply map,
The initial fuel supply amount (4-2) is determined. The atmospheric pressure sensor (7) detects the atmospheric pressure of the place where the engine is used, and the controller (3) determines the initial fuel supply amount (4-2) when the atmospheric pressure is decreasing. If the atmospheric pressure is increasing by shifting to the decreasing side, the initial fuel supply amount (4-2) is shifted to the increasing side.

【0018】上記実施形態では、ディーゼルエンジンへ
の適用例を示したが、この発明は、火花点火式エンジン
にも適用することができる。
In the above embodiment, an example of application to a diesel engine has been described, but the present invention can also be applied to a spark ignition type engine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係るディーゼルエンジンの
燃料調量装置の模式図である。
FIG. 1 is a schematic diagram of a fuel metering device for a diesel engine according to an embodiment of the present invention.

【図2】図1の装置の機能を説明する図で、図2(A)は
コントローラの始動制御の処理を示すフローチャート、
図2(B)は冷却水温度と燃料噴射量との関係を示す線
図、図2(C)は燃料噴射量の経時変化を示す線図であ
る。
FIG. 2 is a view for explaining the function of the apparatus shown in FIG. 1; FIG.
FIG. 2B is a graph showing the relationship between the cooling water temperature and the fuel injection amount, and FIG. 2C is a graph showing the change over time in the fuel injection amount.

【図3】図1の装置のメカ調量特性と電子制御特性を示
す線図である。
FIG. 3 is a diagram showing mechanical adjustment characteristics and electronic control characteristics of the apparatus of FIG. 1;

【符号の説明】[Explanation of symbols]

(1)…温度センサ、(2)…始動完了検出手段、(3)…コ
ントローラ、(4−1)…初期燃料供給量(初期燃料噴射
量)、(4−1)…新たな初期燃料供給量(新たな初期燃料
噴射量)、(5)…増加、(6)…始動完了時の燃料供給量
(始動完了時の燃料噴射量)、(7)…大気圧センサ。
(1) temperature sensor, (2) start completion detecting means, (3) controller, (4-1) initial fuel supply amount (initial fuel injection amount), (4-1) new initial fuel supply Amount (new initial fuel injection amount), (5) ... increase, (6) ... fuel supply amount at the completion of startup
(Fuel injection amount at the time of starting completion), (7) ... atmospheric pressure sensor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山 一 大阪府堺市築港新町3丁8番 株式会社ク ボタ堺臨海工場内 Fターム(参考) 3G301 HA02 JA00 JA24 KA01 LB14 MA11 MA16 NC02 NC08 ND25 ND30 NE01 NE03 NE06 PA09Z PC10Z PE01Z PE08Z  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yamaichi 3-8, Chikushinmachi, Sakai-shi, Osaka F-term in Kubota Sakai Coastal Plant (reference) 3G301 HA02 JA00 JA24 KA01 LB14 MA11 MA16 NC02 NC08 ND25 ND30 NE01 NE03 NE06 PA09Z PC10Z PE01Z PE08Z

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 温度センサ(1)と始動完了検出手段(2)
とコントローラ(3)とを備え、 温度センサ(1)は、冷却水温度、エンジンオイル温度、
冷却排風温度、エンジン機壁温度、エンジン周囲温度の
いずれかに基づいて、エンジン温度を検出し、始動完了
検出手段(2)はエンジンの始動完了を検出し、コントロ
ーラ(3)は、エンジンの始動が開始された際、温度−燃
料供給量マップに基づいて、初期燃料供給量(4−1)を
決定し、エンジンの始動が完了しない場合には、燃料供
給量を徐々に増加(5)させ、エンジンの始動が完了する
と、温度−燃料供給量マップを修正し、先の始動開始温
度条件下では、新たな初期燃料供給量(4−2)が、始動
完了時の燃料供給量(6)よりも所定量だけ少なくなるよ
うにし、次のエンジン始動時には、修正された温度−燃
料供給量マップに基づいて、初期燃料供給量(4−2)を
決定することを特徴とするエンジンの燃料調量装置。
1. A temperature sensor (1) and a start completion detecting means (2)
And a controller (3). The temperature sensor (1) includes a cooling water temperature, an engine oil temperature,
The engine temperature is detected based on one of the cooling exhaust air temperature, the engine wall temperature, and the engine ambient temperature, the start completion detecting means (2) detects the completion of the engine start, and the controller (3) controls the engine When the start is started, the initial fuel supply amount (4-1) is determined based on the temperature-fuel supply amount map, and if the start of the engine is not completed, the fuel supply amount is gradually increased (5). When the start of the engine is completed, the temperature-fuel supply map is corrected, and the new initial fuel supply (4-2) is changed to the fuel supply amount (6 ), And at the next engine start, the initial fuel supply amount (4-2) is determined based on the corrected temperature-fuel supply amount map. Metering device.
【請求項2】 請求項1に記載したエンジンの燃料調量
装置において、 大気圧センサ(7)を備え、コントローラ(3)は、大気圧
に基づいて温度−燃料供給量マップを修正し、大気圧が
減少している場合には、初期燃料供給量(4−2)を減量
側にずらし、大気圧が増加している場合には、初期燃料
供給量(4−2)を増量側にずらすことを特徴とするエン
ジンの燃料供給装置。
2. The fuel metering device for an engine according to claim 1, further comprising an atmospheric pressure sensor, wherein the controller corrects the temperature-fuel supply map based on the atmospheric pressure. When the atmospheric pressure is decreasing, the initial fuel supply amount (4-2) is shifted to the decreasing side, and when the atmospheric pressure is increasing, the initial fuel supplying amount (4-2) is shifted to the increasing side. A fuel supply device for an engine, comprising:
JP2000294082A 2000-09-27 2000-09-27 Fuel quantity adjusting device of engine Pending JP2002097984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000294082A JP2002097984A (en) 2000-09-27 2000-09-27 Fuel quantity adjusting device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000294082A JP2002097984A (en) 2000-09-27 2000-09-27 Fuel quantity adjusting device of engine

Publications (1)

Publication Number Publication Date
JP2002097984A true JP2002097984A (en) 2002-04-05

Family

ID=18776756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000294082A Pending JP2002097984A (en) 2000-09-27 2000-09-27 Fuel quantity adjusting device of engine

Country Status (1)

Country Link
JP (1) JP2002097984A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150965A (en) * 2006-12-14 2008-07-03 Hitachi Constr Mach Co Ltd Engine controller of construction machinery
JP2012202255A (en) * 2011-03-24 2012-10-22 Keihin Corp Engine control device
JP2016033357A (en) * 2014-07-31 2016-03-10 株式会社クボタ engine
JP2016033356A (en) * 2014-07-31 2016-03-10 株式会社クボタ engine
KR102085990B1 (en) * 2018-12-05 2020-03-06 현대오트론 주식회사 Apparatus and method for controlling fuel injection amount

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150965A (en) * 2006-12-14 2008-07-03 Hitachi Constr Mach Co Ltd Engine controller of construction machinery
JP2012202255A (en) * 2011-03-24 2012-10-22 Keihin Corp Engine control device
JP2016033357A (en) * 2014-07-31 2016-03-10 株式会社クボタ engine
JP2016033356A (en) * 2014-07-31 2016-03-10 株式会社クボタ engine
KR102085990B1 (en) * 2018-12-05 2020-03-06 현대오트론 주식회사 Apparatus and method for controlling fuel injection amount

Similar Documents

Publication Publication Date Title
JP4338900B2 (en) Method and apparatus for operating an internal combustion engine
US4377996A (en) Ignition timing control method and system
US5613474A (en) Control method for starting diesel engines
KR20030001282A (en) Method and device for controlling output quantity of a driving unit in a start phase
KR19980703277A (en) Method of detecting fuel injection addition amount at internal combustion engine restart
JP2002097984A (en) Fuel quantity adjusting device of engine
CN1323235C (en) Overspeed preventing control device for engine
JP2002070706A (en) Ignition timing control system of internal combustion engine
JP4460077B2 (en) Internal combustion engine control method and apparatus
US5915356A (en) Method for detecting position of fuel injection quantity adjusting member of fuel injection pump and apparatus for carrying out the method
JP3863362B2 (en) Control device for internal combustion engine
US5101787A (en) Ignition timing control apparatus for an engine
JPH0361644A (en) Correction of fuel injection quantity in warming
KR100333870B1 (en) fuel control valve and fuel control method in idle state of a diesel vehicle
JP3500047B2 (en) Gas engine control device
JP2529972B2 (en) Engine controller
KR100349846B1 (en) Method for correcting engine air flow learning value of vehicle
KR100337331B1 (en) Method for enhancing an engine idle stability of vehicle
KR100217074B1 (en) Method and device for control of engine by using compensation of engine friction loss
JPH0211730B2 (en)
KR100461398B1 (en) a correction method for a acceleration fuel quantity in vehicle
JP3220844B2 (en) Fuel injection timing control system for vehicle diesel engine
JP2001271658A (en) Electronic governor for diesel engine
KR100282912B1 (en) Fuel level correction device at start-up and its method
KR100290340B1 (en) Apparatus and method for controlling engine according to engine load in vehicle starting

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207