JP2002097535A - Hydrogen absorbing alloy - Google Patents

Hydrogen absorbing alloy

Info

Publication number
JP2002097535A
JP2002097535A JP2000282131A JP2000282131A JP2002097535A JP 2002097535 A JP2002097535 A JP 2002097535A JP 2000282131 A JP2000282131 A JP 2000282131A JP 2000282131 A JP2000282131 A JP 2000282131A JP 2002097535 A JP2002097535 A JP 2002097535A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
alloy
temperature
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000282131A
Other languages
Japanese (ja)
Other versions
JP3752987B2 (en
Inventor
Takuji Nakahata
拓治 中畑
Hisashi Maeda
尚志 前田
Mitsuharu Yonemura
光治 米村
Naokatsu Terashita
尚克 寺下
Seiji Takahashi
誠司 高橋
Kouji Sasai
興士 笹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Nippon Steel Corp
Original Assignee
Japan Metals and Chemical Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd, Sumitomo Metal Industries Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP2000282131A priority Critical patent/JP3752987B2/en
Publication of JP2002097535A publication Critical patent/JP2002097535A/en
Application granted granted Critical
Publication of JP3752987B2 publication Critical patent/JP3752987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a cheap and light hydrogen absorbing alloy with a high, effective hydrogen-absorbing capacity V of 0.6 mass% or more, which absorbs and desorbs hydrogen promptly, and does not deteriorate even by repetitive uses. SOLUTION: The hydrogen absorbing alloy with an effective hydrogen absorbing quantity of 0.6 mass% or more comprises having a composition expressed by the following general formula (1) or (2), and enabling the alloy to absorb hydrogen under a condition at 0-50 deg.C and at a hydrogen pressure of 0.5-1.1 MPa, and to release hydrogen under a condition between 60 deg.C and a boiling point of water and at a hydrogen pressure of 0.01-0.3 MPa; Ca1-xMgxNiz (1) wherein, 0.60<=x<=0.85; and 1.8<=z<=2.2 Ca1-xMgx(Ni1-yMy)z (2) wherein, M is at least one kind of elements selected from a subgroup consisting of Al, Si, P, Cr, Mn, Fe, Co, Cu, and Zn; 0.60<=x<=0.85; 0<=y<=0.2; and 1.8<=z<=2.2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素貯蔵手段とし
て水素燃料電池、水素貯蔵容器等に、或いは熱−化学エ
ネルギー変換手段としてヒートポンプや蓄熱器等の用途
に使用するのに適した水素吸蔵合金に関する。
The present invention relates to a hydrogen storage alloy suitable for use in a hydrogen fuel cell, a hydrogen storage container or the like as a hydrogen storage means, or as a heat pump or a heat storage device as a thermo-chemical energy conversion means. About.

【0002】[0002]

【従来の技術】水素を燃料として負極に供給し、正極に
供給した酸素と反応させて電気を取り出す水素燃料電池
は、化石燃料を使用する発電器とは異なり、運転中にC
2 、NOx 、SOx 等を発生しないクリーンなエネル
ギー源であり、またエネルギー変換効率が高いことか
ら、小規模地域発電用および家庭発電用の発電システム
や、電気自動車用の電池として、現在開発が進められて
いる。
2. Description of the Related Art A hydrogen fuel cell, which supplies hydrogen as a fuel to a negative electrode and reacts with oxygen supplied to a positive electrode to take out electricity, unlike a generator using fossil fuel, is different from a generator using fossil fuel during operation.
Since it is a clean energy source that does not generate O 2 , NO x , SO x, etc., and has high energy conversion efficiency, it is currently used as a power generation system for small-scale local power generation and home power generation, and as a battery for electric vehicles. Development is underway.

【0003】この水素燃料電池においては、水素吸蔵合
金を水素貯蔵手段として利用することができる。即ち、
燃料の水素ガスを水素吸蔵合金に貯蔵しておき、この合
金から水素ガスを少しずつ放出させて負極に供給するの
である。この場合、水素吸蔵合金への水素の補給は、外
部から供給した水素を合金に吸蔵させてもよく、或いは
夜間の余剰電力など外部からの電気を燃料電池に供給
し、燃料電池で発生した水素を水素吸蔵合金に吸蔵させ
ることも可能である。
In this hydrogen fuel cell, a hydrogen storage alloy can be used as hydrogen storage means. That is,
The hydrogen gas of the fuel is stored in a hydrogen storage alloy, and the hydrogen gas is released little by little from the alloy and supplied to the negative electrode. In this case, the supply of hydrogen to the hydrogen storage alloy may be performed by storing hydrogen supplied from the outside into the alloy, or supplying external electricity such as surplus electric power at night to the fuel cell to generate hydrogen generated by the fuel cell. Can be stored in the hydrogen storage alloy.

【0004】また、水素吸蔵合金は、水素を吸蔵する時
の水素化反応が発熱反応であり、水素を放出する時の分
解反応が吸熱反応である。水素の吸蔵・放出反応が熱の
吸収・放出を伴う可逆反応であるという性質により、水
素吸蔵合金は熱−化学エネルギー変換機能を持つ。この
機能を利用して、水素吸蔵合金を蓄熱や化学ヒートポン
プに応用することも試みられている。
[0004] In the hydrogen storage alloy, the hydrogenation reaction when storing hydrogen is an exothermic reaction, and the decomposition reaction when releasing hydrogen is an endothermic reaction. Due to the property that the hydrogen storage / release reaction is a reversible reaction involving heat absorption / release, the hydrogen storage alloy has a heat-chemical energy conversion function. Using this function, it has been attempted to apply the hydrogen storage alloy to heat storage and chemical heat pumps.

【0005】例えば、燃料電池と同様にクリーンなエネ
ルギー源である太陽熱 (例、ソーラー集熱器の温水) や
清掃工場等の廃熱 (例、廃温水) の蓄熱と熱輸送に水素
吸蔵合金を利用することができる。即ち、水素を吸蔵し
た合金に熱を供給すると、合金からの水素の放出に熱が
利用され、熱は化学エネルギーとして水素吸蔵合金に保
存される。次に、放出した水素を合金と反応させれば合
金が発熱するので、その熱を適当な用途 (例、温室の加
温) に利用する。
[0005] For example, a hydrogen storage alloy is used for heat storage and heat transport of solar heat (eg, hot water of a solar collector) and waste heat (eg, waste hot water) of a cleaning plant as a clean energy source like a fuel cell. Can be used. That is, when heat is supplied to the alloy storing hydrogen, the heat is used to release hydrogen from the alloy, and the heat is stored as chemical energy in the hydrogen storage alloy. Next, when the released hydrogen reacts with the alloy, the alloy generates heat. The heat is used for an appropriate application (eg, heating a greenhouse).

【0006】水素吸蔵合金を応用したヒートポンプで
は、まず水素を吸蔵した合金をある温度に加熱し水素を
放出させる。次に放出した水素をその温度の平衡解離圧
以上に加圧してから再度合金に水素を吸蔵させると、そ
の温度より高い温度が得られる。これを利用して、熱を
低温側から高温側に汲み上げることができる。
In a heat pump to which a hydrogen storage alloy is applied, first, an alloy storing hydrogen is heated to a certain temperature to release hydrogen. Next, when the released hydrogen is pressurized to a temperature equal to or higher than the equilibrium dissociation pressure at that temperature and then hydrogen is occluded again in the alloy, a temperature higher than that temperature is obtained. By utilizing this, heat can be pumped from the low temperature side to the high temperature side.

【0007】以上に説明したような用途では、水素吸蔵
合金は、下記(a) 式に示す気固相反応によって水素を可
逆的に吸蔵・放出する。 (a) 2M+xH2 ⇔2MHX (M:水素吸蔵合金、右方
向への反応が発熱反応) 即ち、平衡状態より水素圧力を高め、および/または温
度を下げると、(a) 式の可逆反応が右方向に進み、合金
の水素化が起こり、合金に水素が吸蔵される。逆に、水
素圧力を低くし、および/または温度を上げると、水素
化物が分解して水素が解離する左方向に反応が進行し、
合金から水素が放出される。
In the applications described above, the hydrogen storage alloy reversibly stores and releases hydrogen by a gas-solid reaction shown in the following equation (a). (a) 2M + xH 2 ⇔2MH X (M: hydrogen storage alloy, reaction to the right direction is an exothermic reaction) That is, if the hydrogen pressure is increased and / or the temperature is lowered from the equilibrium state, the reversible reaction of the equation (a) occurs. Proceeding to the right, hydrogenation of the alloy occurs and hydrogen is stored in the alloy. Conversely, when the hydrogen pressure is lowered and / or the temperature is raised, the reaction proceeds to the left where hydrides decompose and hydrogen dissociates,
Hydrogen is released from the alloy.

【0008】この可逆反応は、ニッケル−水素電池で負
極として使用される水素吸蔵電極における下記(b) 式に
示す電気化学的な可逆反応とは別の反応である。 (b) M+H2O+e-⇔OH- +MH 従って、クリーンエネルギーの利用拡大のために、水素
吸蔵合金を前述したような用途に使用するには、既に実
用化されているニッケル−水素電池用の水素吸蔵合金と
は異なる、気固相での水素化・水素解離反応に適した水
素吸蔵合金の開発が必要となる。
This reversible reaction is a different reaction from the electrochemical reversible reaction represented by the following formula (b) in a hydrogen storage electrode used as a negative electrode in a nickel-hydrogen battery. (b) M + H 2 O + e ⇔OH + MH Therefore, in order to use the hydrogen storage alloy for the above-mentioned applications in order to expand the use of clean energy, it is necessary to use hydrogen for nickel-hydrogen batteries which has already been put to practical use. It is necessary to develop a hydrogen storage alloy that is different from the storage alloy and is suitable for hydrogenation and hydrogen dissociation reactions in the gaseous solid phase.

【0009】[0009]

【発明が解決しようとする課題】上記(a) 式の反応を利
用する水素貯蔵用の水素吸蔵合金における一般的な反応
条件は、低温/高圧で吸蔵し、高温/低圧で放出するも
のであった。水素吸蔵合金の実用化が近づいた最近にな
って、常温、即ち、20℃前後という従来より高い温度
と、高圧ガス取締法の対象外である約1MPa という従来
より低い水素ガス圧力で水素化反応をさせて、水素を吸
蔵させることが試みられるようになった。この場合、水
素を放出させる時の脱水素反応の条件は、加熱源が一般
に温水であることから、温度は100 ℃以下であり、水素
圧力は大気圧、即ち、約0.1MPaとすることが有利であ
る。このような条件下で多量の水素を吸放出する水素吸
蔵合金は、水素燃料電池等の水素貯蔵用や、(廃)温水
を利用した蓄熱、ヒートポンプ等の用途にとって極めて
有用である。
The general reaction conditions of a hydrogen storage alloy for hydrogen storage utilizing the reaction of the above-mentioned formula (a) are to store at low temperature / high pressure and release at high temperature / low pressure. Was. Recently, the practical use of hydrogen storage alloys has been approached, and the hydrogenation reaction has been carried out at room temperature, that is, at a temperature higher than the conventional temperature of about 20 ° C, and at a hydrogen gas pressure of about 1 MPa, which is not subject to the High Pressure Gas Control Law. To attempt to occlude hydrogen. In this case, the conditions of the dehydrogenation reaction when releasing hydrogen are such that the temperature is 100 ° C. or less and the hydrogen pressure is atmospheric pressure, that is, about 0.1 MPa because the heating source is generally hot water. It is. A hydrogen storage alloy that absorbs and releases a large amount of hydrogen under such conditions is extremely useful for hydrogen storage such as a hydrogen fuel cell, heat storage using (waste) hot water, and a heat pump.

【0010】このような条件で水素を吸放出する水素吸
蔵合金に要求される水素吸放出特性について、図1に模
式的に示す。図1は、横軸に水素濃度 (質量%、以下同
じ)、縦軸に水素平衡解離圧 (Peq, MPa) をとった圧力
−組成等温線図 (P−C−T曲線)(以下、等温線図とい
う) である。この等温線図は、一定温度で水素圧力を変
化させながら平衡になる水素吸蔵量を測定することによ
り作製される。
FIG. 1 schematically shows the hydrogen absorption / desorption characteristics required for a hydrogen storage alloy that absorbs and releases hydrogen under such conditions. FIG. 1 is a pressure-composition isotherm diagram (P-C-T curve) (hereinafter, isothermal) in which the horizontal axis represents hydrogen concentration (% by mass, the same applies hereinafter) and the vertical axis represents hydrogen equilibrium dissociation pressure (Peq, MPa). This is called a diagram). This isotherm is created by measuring the amount of hydrogen storage that becomes equilibrium while changing the hydrogen pressure at a constant temperature.

【0011】図1に示すように、上記条件下で水素の吸
蔵と放出を行う場合の有効水素吸蔵量Vは、20℃、1MP
a での水素吸蔵量V1と、100 ℃、0.1MPaでの水素吸蔵
量V2との差として表すことができる。従って、有効水
素吸蔵量Vを大きくするには、V1がより大きく、V2
がより小さければよい。つまり、水素燃料電池をはじめ
とする水素貯蔵用や、蓄熱用、ヒートポンプ用といった
用途に使用する水素吸蔵合金には、20℃、1MPa での水
素吸蔵量V1が大きく、100 ℃、0.1MPaでの水素吸蔵量
V2が小さく、有効水素吸蔵量Vが可及的に大きいこと
が求められる。
As shown in FIG. 1, the effective hydrogen storage amount V when storing and releasing hydrogen under the above conditions is 20 ° C., 1MPa.
It can be expressed as a difference between the hydrogen storage amount V1 at a and the hydrogen storage amount V2 at 100 ° C. and 0.1 MPa. Therefore, to increase the effective hydrogen storage amount V, V1 is larger and V2 is larger.
Should be smaller. In other words, hydrogen storage alloys used for hydrogen storage such as hydrogen fuel cells, heat storage, and heat pumps have a large hydrogen storage capacity V1 at 20 ° C. and 1 MPa, and have a large hydrogen storage capacity V1 at 100 ° C. and 0.1 MPa. It is required that the hydrogen storage amount V2 is small and the effective hydrogen storage amount V is as large as possible.

【0012】また、水素吸蔵合金が軽量であることも望
ましい。これは、特に水素燃料電池を電気自動車に搭載
する場合に必要となる。さらに、また、水素貯蔵用や蓄
熱用といった用途では、水素吸蔵合金を大量に使用する
ことから、水素吸蔵合金の製造コストも重要であり、豊
富かつ安価な原料から製造できる水素吸蔵合金が求めら
れている。
It is also desirable that the hydrogen storage alloy be lightweight. This is necessary especially when a hydrogen fuel cell is mounted on an electric vehicle. In addition, in applications such as hydrogen storage and heat storage, large amounts of hydrogen storage alloy are used, so the production cost of hydrogen storage alloys is also important, and hydrogen storage alloys that can be manufactured from abundant and inexpensive raw materials are required. ing.

【0013】代表的な実用水素吸蔵合金であるMmNi5
合金は、非常に平坦なプラトーを有し、前記条件での有
効水素吸蔵量Vは約1質量%である。しかし、この合金
は、Mm (希土類金属の混合物であるミッシュメタル) と
Niといういずれも比較的高価な成分からなる合金であ
り、コスト的に不利である。
A typical practical hydrogen storage alloy, the MmNi 5 series alloy, has a very flat plateau, and the effective hydrogen storage amount V under the above conditions is about 1% by mass. However, this alloy is known as Mm (Misch metal, a mixture of rare earth metals)
Ni is an alloy composed of relatively expensive components, which is disadvantageous in terms of cost.

【0014】軽量で安価なMgを用いた水素吸蔵合金であ
るMg2Ni 合金は、前記条件でV1は3.6 質量%と非常に
大きいが、V2もまた約3.6 質量%であるので、この条
件下での水素の放出は不可能である。
In a Mg 2 Ni alloy which is a lightweight and inexpensive hydrogen storage alloy using Mg, V1 is very large at 3.6% by mass under the above conditions, but V2 is also about 3.6% by mass. Release of hydrogen in the atmosphere is not possible.

【0015】Mg2Ni 合金の水素吸放出圧力の向上による
V2の低減については、元素置換による水素吸放出圧力
の向上、非晶質化、ナノメートルスケール化による水素
吸放出圧力の向上等がこれまでに報告されているが、前
記条件で使用が可能となるような報告はない。
The reduction of V2 by increasing the hydrogen absorption / desorption pressure of the Mg 2 Ni alloy includes the enhancement of the hydrogen absorption / desorption pressure by elemental substitution, and the improvement of the hydrogen absorption / desorption pressure by amorphousization and nanometer scale. However, there is no report that can be used under the above conditions.

【0016】V2の小さいMg系水素吸蔵合金として、A
29 合金 (A:希土類元素、B:Mg等のアルカリ土
類元素、C:Ni他の遷移金属元素) が、100 ℃以下の温
度で最大1.8 質量%の水素を放出することが特開平11−
217643号公報に開示されている。しかし、この合金は高
価な希土類元素を必須とする。
As a Mg-based hydrogen storage alloy having a small V2, A
B 2 C 9 alloy (A: rare earth element, B: alkaline earth element such as Mg, C: Ni and other transition metal elements) emits up to 1.8% by mass of hydrogen at a temperature of 100 ° C or less. Kaihei 11-
It is disclosed in Japanese Patent No. 217643. However, this alloy requires an expensive rare earth element.

【0017】Mgと同様に安価かつ軽量なCaをMgに加えた
合金であるCa0.5Mg0.5Ni2 が、Mat.Res. Bull., Vol. 1
5 (1980) 275-283 に報告されている。この合金のV1
は約1.7 質量%で、MmNi5 より大きいが、水素吸放出圧
力が低く、V2は約1.3 質量%の大きさになるので、有
効水素吸蔵量Vは0.4 質量%程度にすぎない。
Ca 0.5 Mg 0.5 Ni 2 , which is an alloy obtained by adding Ca, which is inexpensive and lightweight to Mg, as in Mg, is disclosed in Mat. Res. Bull., Vol.
5 (1980) 275-283. V1 of this alloy
Is about 1.7 wt%, greater than MmNi 5 is hydrogen absorption and desorption pressures low, V2 is since the size of about 1.3 wt%, the effective hydrogen storage quantity V is only about 0.4 mass%.

【0018】Journal of Alloys and Compounds 284 (1
999) 145-154には、水素放出圧力の高いMg−Ca系合金と
してCaMg2Ni9合金が報告されている。この合金は、MmNi
5 系合金と同様に、非常にプラトーが平坦で、V2は0.
1 質量%以下である。しかし、逆に水素吸放出圧力が高
すぎるため、十分に水素を吸収させるためには温度を0
℃付近まで下げなければならない。
[0018] Journal of Alloys and Compounds 284 (1
999) 145-154 reports a CaMg 2 Ni 9 alloy as an Mg—Ca alloy having a high hydrogen release pressure. This alloy is MmNi
Like the 5 series alloy, the plateau is very flat and V2 is 0.
1% by mass or less. However, on the contrary, since the hydrogen absorption / desorption pressure is too high, the temperature must be set to 0 to absorb hydrogen sufficiently.
It must be lowered to around ℃.

【0019】特開平11−264041号公報には、Ca1-a Mga
(Ni1-x Mx ) Z (0<a <0.5 、0 <X ≦0.8 、2<Z<
4.5)の30℃での有効水素吸蔵量が開示されている。この
公報における有効水素吸蔵量は30℃の一定温度のもので
あり、本発明における有効水素吸蔵量Vとは異なるもの
である。この公報には100 ℃近辺での等温線図が示され
ていないのでV2を推測することができない。従って、
前記条件での有効水素吸蔵量Vは不明であり、この合金
が前記条件で水素の吸放出を行う用途に有用であること
は示唆されていない。
Japanese Patent Application Laid-Open No. 11-264401 discloses Ca 1-a Mg a
(Ni 1-x M x ) Z (0 <a <0.5, 0 <X ≦ 0.8, 2 <Z <
The effective hydrogen storage amount at 30 ° C. in 4.5) is disclosed. The effective hydrogen storage amount in this publication is a constant temperature of 30 ° C., which is different from the effective hydrogen storage amount V in the present invention. Since this publication does not show an isotherm around 100 ° C., V2 cannot be estimated. Therefore,
The effective hydrogen storage amount V under the above-mentioned conditions is unknown, and it is not suggested that this alloy is useful for applications of absorbing and releasing hydrogen under the above-mentioned conditions.

【0020】このように、常温〜100 ℃の温度および大
気圧〜1.0MPaの範囲での有効水素吸蔵量Vが、大きく、
且つ速やかに水素を吸放出することができ、安価な原料
から得られる水素吸蔵合金は、未だに開発されていな
い。
As described above, the effective hydrogen storage amount V in the range from room temperature to 100 ° C. and the atmospheric pressure to 1.0 MPa is large.
Further, a hydrogen storage alloy which can rapidly absorb and release hydrogen and is obtained from an inexpensive raw material has not yet been developed.

【0021】本発明は、上記範囲での有効水素吸蔵量V
が0.6 質量%以上と大きく、速やかに水素を吸放出し、
安価で軽量かつ、繰り返し使用しても劣化しない水素吸
蔵合金を提供することを課題とする。
According to the present invention, the effective hydrogen storage amount V in the above range is
Is as large as 0.6% by mass or more, quickly absorbs and releases hydrogen,
It is an object to provide a hydrogen storage alloy which is inexpensive, lightweight, and does not deteriorate even when used repeatedly.

【0022】[0022]

【課題を解決するための手段】本発明によれば、上記課
題が (1) 下記一般式(1) で表される組成を有する、温度0〜
50℃、水素圧力0.5 〜1.1MPaの条件下で水素を吸蔵さ
せ、温度60℃〜水の沸点、水素圧力0.01〜0.3MPaの条件
下で水素を放出させることができる、有効水素吸蔵量が
0.6 質量%以上の水素吸蔵合金。
According to the present invention, according to the present invention, the above-mentioned object is achieved by (1) having a composition represented by the following general formula (1),
It can absorb hydrogen under the condition of 50 ° C and hydrogen pressure 0.5-1.1MPa, release hydrogen under the condition of temperature 60 ° C-boiling point of water and hydrogen pressure 0.01-0.3MPa.
0.6% by mass or more hydrogen storage alloy.

【0023】Ca1-xMgxNiZ ・・・・・(1) 上記式中、 0.60≦ x ≦0.85、 1.8 ≦ z ≦2.2 (2) 下記一般式(2) で表される組成を有する、温度0〜
50℃、水素圧力0.5 〜1.1MPaの条件下で水素を吸蔵さ
せ、温度60℃〜水の沸点、水素圧力0.01〜0.3MPaの条件
下で水素を放出させることができる、有効水素吸蔵量が
0.6 質量%以上の水素吸蔵合金。
Ca 1-x Mg x Ni Z (1) In the above formula, 0.60 ≦ x ≦ 0.85, 1.8 ≦ z ≦ 2.2 (2) having a composition represented by the following general formula (2) , Temperature 0
It can absorb hydrogen under the condition of 50 ° C and hydrogen pressure 0.5-1.1MPa, release hydrogen under the condition of temperature 60 ° C-boiling point of water and hydrogen pressure 0.01-0.3MPa.
0.6% by mass or more hydrogen storage alloy.

【0024】Ca1-xMgx(Ni1-yMy)z ・・・・・(2) 上記式中、MはAl、Si、P、Cr、Mn、Fe、Co、Cuおよび
Znから成る群から選んだ少なくとも1種の元素であり、 0.60≦ x ≦0.85、 0 ≦ y ≦0.2 、 1.8 ≦ z ≦2.2 により解決される。
Ca 1-x Mg x (Ni 1-y M y ) z (2) In the above formula, M is Al, Si, P, Cr, Mn, Fe, Co, Cu and
At least one element selected from the group consisting of Zn, which is solved by 0.60 ≦ x ≦ 0.85, 0 ≦ y ≦ 0.2, 1.8 ≦ z ≦ 2.2.

【0025】なお、上記有効水素吸蔵量0.6 質量%以上
というのは、20℃、1.1MPaと100 ℃、0.1MPaの条件下で
測定したときの水素吸蔵量の差を言う。
The above-mentioned effective hydrogen storage amount of 0.6% by mass or more refers to the difference between the hydrogen storage amounts when measured under the conditions of 20 ° C., 1.1 MPa and 100 ° C., 0.1 MPa.

【0026】[0026]

【発明の実施の形態】本発明者らは、軽量性と低価格性
を考慮して、CaとMgに着目した。種々のCa−Mg系合金の
V1、V2を測定した結果、CaNi2 のCaサイトをMgに置
換した場合、水素吸放出圧力を調整し、V1、V2を制
御できることを見出した。また、NiサイトをAl、Si、
P、Cr、Mn、Fe、Co、Cu、Znから選ばれる少なくとも1
つ以上の元素に置換してもよいことも見出した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have focused on Ca and Mg in consideration of lightness and low cost. As a result of measuring V1 and V2 of various Ca—Mg alloys, it was found that when the Ca site of CaNi 2 was replaced with Mg, the hydrogen absorption / desorption pressure could be adjusted to control V1 and V2. In addition, Ni site is Al, Si,
At least one selected from P, Cr, Mn, Fe, Co, Cu, Zn
It has been found that one or more elements may be substituted.

【0027】本発明の水素吸蔵合金は、温度0〜50℃、
水素圧力 0.5〜1.1MPaの条件下で水素を吸蔵させ、温度
60℃〜水の沸点、水素圧力0.01〜0.3MPaの条件下で水素
を放出させるための水素吸蔵合金、即ち、 (廃) 温水を
加熱源とする水素燃料電池等の水素貯蔵手段や蓄熱、ヒ
ートポンプ等の熱−化学エネルギー変換手段として用い
る水素吸蔵合金、として有用である。
The hydrogen storage alloy of the present invention has a temperature of 0 to 50 ° C.
At a hydrogen pressure of 0.5 to 1.1 MPa, hydrogen is absorbed and the temperature is
A hydrogen storage alloy for releasing hydrogen under the conditions of 60 ° C. to boiling point of water and a hydrogen pressure of 0.01 to 0.3 MPa, that is, hydrogen storage means such as a hydrogen fuel cell using (waste) hot water as a heat source, heat storage, and a heat pump. It is useful as a hydrogen storage alloy used as a thermal-chemical energy conversion means.

【0028】上記(1) 式で示される組成を持つ本発明の
水素吸蔵合金では、CaサイトおよびMgサイトとNiサイト
の比 (Z) は、CaNi2 での比の2に対して若干の増減が
許容され、 1.8≦Z≦2.2 となる。Zが1.8 未満では、
水素を放出しづらいCaMg2 が第2相として析出し、V2
が増加する。Zが2.2 より大きくなると、V1が減少す
る。
In the hydrogen storage alloy of the present invention having the composition represented by the above formula (1), the ratio (Z) of the Ca site and the Mg site to the Ni site slightly increases or decreases with respect to the ratio of 2 in CaNi 2. Is allowed, and 1.8 ≦ Z ≦ 2.2. If Z is less than 1.8,
CaMg 2 which is hard to release hydrogen precipitates as a second phase, and V2
Increase. As Z becomes greater than 2.2, V1 decreases.

【0029】本発明の水素吸蔵合金におけるCaサイトの
Mg置換率 (X) は好ましくは、0.60≦X≦0.85である。
Xが0.60より小さいと、図2に示す100 ℃での等温線図
のカーブの平坦部が、図2のX=0.50の曲線に示すよう
に小さくなり、V2が著しく大きくなるため、有効水素
吸蔵量Vが低下する。また、Xが0.60未満では繰り返し
の水素吸蔵放出による合金の劣化が著しく、Xを0.60以
上とすることでこれを改善できる。CaNi 2 はCaの原子半
径が0.197nm 、Niが0.125nm と差が大きく、Caに大きな
圧縮応力が働くため不安定な合金である。原子半径0.16
0nm のMgをCaに置換することで圧縮応力が緩和され、X
=0.60以上でその効果が顕著になるためと推測される。
Xの値が0.60以上になると、図2のX=0.65の曲線に示
すように、100 ℃での等温線図のカーブの平坦が大きく
なり、V2が低下するので、有効水素吸蔵量Vが大きく
なる。
The Ca site in the hydrogen storage alloy of the present invention
The Mg substitution rate (X) is preferably 0.60 ≦ X ≦ 0.85.
If X is less than 0.60, the isotherm at 100 ° C shown in FIG.
As shown in the curve of FIG.
And V2 becomes extremely large, so effective hydrogen
The storage amount V decreases. If X is less than 0.60, repeat
The alloy deteriorates significantly due to hydrogen absorption and release of X, and X is 0.60 or less.
The above can improve this. CaNi TwoIs the half atom of Ca
The diameter is 0.197 nm, Ni is 0.125 nm, and the difference is large.
It is an unstable alloy due to compressive stress. Atomic radius 0.16
By substituting Mg of 0 nm for Ca, the compressive stress is relaxed and X
It is presumed that the effect becomes remarkable at 0.60 or more.
When the value of X is 0.60 or more, the curve shown in FIG.
The flatness of the curve of the isotherm at 100 ° C
V2 decreases, so that the effective hydrogen storage amount V increases.
Become.

【0030】Xの上限値は0.85以下であることが望まし
い。Xが0.85より大きくなると主相がC15型ラーベス相
から水素を吸蔵しづらいC36型ラーベス相に変化してし
まい、図3に示すようにV1が減少してしまうからであ
る。
It is desirable that the upper limit value of X is 0.85 or less. If X is larger than 0.85, the main phase changes from the C15-type Laves phase to the C36-type Laves phase, which is less likely to absorb hydrogen, and V1 decreases as shown in FIG.

【0031】本水素吸蔵合金におけるNiサイトの他金属
Mによる置換率 (Y) の好ましい範囲は、0 ≦Y≦0.2
である。ここでMは、Al、Si、P、Cr、Mn、Fe、Co、C
u、Znのうち1つ以上の元素を表す。Yが0.2 より大き
いと、水素化されづらい第2相が生成し、V2が増加し
て有効水素吸蔵量Vが著しく低下するからである。
The preferred range of the substitution rate (Y) of the Ni site in the present hydrogen storage alloy by another metal M is 0 ≦ Y ≦ 0.2.
It is. Where M is Al, Si, P, Cr, Mn, Fe, Co, C
represents one or more elements of u and Zn. If Y is larger than 0.2, a second phase that is difficult to be hydrogenated is generated, V2 increases, and the effective hydrogen storage amount V decreases significantly.

【0032】本発明の水素吸蔵合金の製造は、原料粉末
を圧縮成型し、不活性雰囲気中で焼結する焼結法、原料
を高周波加熱、アーク加熱等により溶解して凝固させる
溶解法のいずれによっても可能である。
The hydrogen absorbing alloy of the present invention can be produced by any of a sintering method in which raw material powder is compacted and sintered in an inert atmosphere, and a melting method in which the raw material is melted and solidified by high-frequency heating, arc heating, or the like. Is also possible.

【0033】合金化を行う処理温度としては、焼結法の
場合600 ℃〜1250℃、溶解法の場合には1250℃以上の温
度が好ましい。また原料としてはCa、Mg、Ni等の純金属
に加えてCaMg2 、CaNi2 、MgNi2 等の母合金を使用する
ことも可能であり、その形状は焼結法の場合には粉末が
好ましいが、溶解法の場合は粉末以外にインゴットも使
用可能である。
The alloying treatment temperature is preferably 600 ° C. to 1250 ° C. for the sintering method and 1250 ° C. or more for the melting method. In addition, as a raw material, in addition to pure metals such as Ca, Mg, and Ni, CaMg 2 , CaNi 2 , and a mother alloy such as MgNi 2 can also be used, and in the case of a sintering method, a powder is preferable. However, in the case of the dissolution method, ingots other than powder can be used.

【0034】なお、有効水素吸蔵量0.6 質量%以上とい
うのは、この値以下では実用化が難しいからである。本
発明の水素吸蔵合金は、温度0〜50℃、水素圧力 0.5〜
1.1MPaの条件下で水素を吸蔵させ、温度60℃〜水の沸
点、水素圧力0.01〜0.3MPaの条件下で水素を放出させる
のに有用である。
The reason why the effective hydrogen storage amount is 0.6% by mass or more is that practical use is difficult if the effective hydrogen storage amount is 0.6% by mass or less. The hydrogen storage alloy of the present invention has a temperature of 0 to 50 ° C and a hydrogen pressure of 0.5 to
It is useful for absorbing hydrogen under the conditions of 1.1 MPa and releasing hydrogen under the conditions of a temperature of 60 ° C. to the boiling point of water and a hydrogen pressure of 0.01 to 0.3 MPa.

【0035】水素吸蔵時の温度は0〜50℃であるので、
多くの地域では加熱または冷却を必要とせずに常温で合
金に水素を吸蔵させることができる。水素吸蔵時の水素
ガス圧力は1.1MPa以下であるので、高圧ガス取締法の範
囲外であり、比較的安全かつ簡便に水素ガスを取り扱う
ことができる。水素吸蔵時の水素ガス圧力の下限は水素
放出時の圧力より高ければよいが、水素吸蔵量を考慮し
て0.5MPa以上とする。
Since the temperature during hydrogen storage is 0 to 50 ° C.,
In many areas, alloys can store hydrogen at room temperature without the need for heating or cooling. Since the hydrogen gas pressure at the time of storing hydrogen is 1.1 MPa or less, it is out of the range of the High Pressure Gas Control Law, and hydrogen gas can be handled relatively safely and easily. The lower limit of the hydrogen gas pressure during hydrogen storage may be higher than the pressure during hydrogen release, but is set to 0.5 MPa or more in consideration of the hydrogen storage amount.

【0036】水素放出時の温度は、ソーラー集熱器の温
水や廃温水を熱源として利用できる温度が好ましいの
で、上限は水の沸点とする。下限は60℃以上が好まし
い。これは、温度が低すぎると、水素の放出量が少なく
なるからである。水素放出時の水素ガス圧力は、吸蔵時
の圧力より低ければ良いが、0.01MPa 以上、0.3MPa以下
の範囲がよい。高すぎると水素放出量が少なく、低すぎ
ると減圧に手間がかかりすぎる。放出圧力は、0.1MPa付
近の大気圧とすれば、加圧や減圧が不要で簡便であるこ
とから好ましい。
Since the temperature at the time of releasing hydrogen is preferably a temperature at which hot water or waste hot water of a solar collector can be used as a heat source, the upper limit is the boiling point of water. The lower limit is preferably 60 ° C. or higher. This is because if the temperature is too low, the amount of released hydrogen decreases. The hydrogen gas pressure at the time of releasing hydrogen may be lower than the pressure at the time of occlusion, but is preferably in the range of 0.01 MPa or more and 0.3 MPa or less. If it is too high, the amount of released hydrogen is small, and if it is too low, it takes too much time to reduce the pressure. The discharge pressure is preferably set to an atmospheric pressure around 0.1 MPa, since pressurization and decompression are unnecessary and simple.

【0037】本発明の水素吸蔵合金は、水素燃料電池に
おいて、燃料である水素ガスの貯蔵手段として使用する
のに適している。この場合、例えば、次のようにして水
素吸蔵合金を使用することができる。
The hydrogen storage alloy of the present invention is suitable for use as a means for storing hydrogen gas as a fuel in a hydrogen fuel cell. In this case, for example, a hydrogen storage alloy can be used as follows.

【0038】燃料電池の運転前に、常温で水素吸蔵合金
に 0.5〜1.1MPaの加圧水素ガスを常温で供給して、合金
に水素ガスを常温で吸蔵させる。燃料電池を運転する際
には、温水を熱源として水素吸蔵合金を60〜100 ℃に加
熱し、水素ガス圧力を大気圧に下げると、水素ガスが放
出されるので、それを燃料電池の負極に一定流量で供給
する。この水素ガスは、正極に供給された酸素含有ガス
(通常は空気) 中の酸素と反応して発電し、水になる。
Before the operation of the fuel cell, a pressurized hydrogen gas of 0.5 to 1.1 MPa is supplied to the hydrogen-absorbing alloy at room temperature at room temperature, so that the alloy stores hydrogen gas at room temperature. When operating the fuel cell, the hydrogen storage alloy is heated to 60 to 100 ° C using hot water as a heat source, and when the hydrogen gas pressure is reduced to atmospheric pressure, hydrogen gas is released. Supply at a constant flow rate. This hydrogen gas is the oxygen-containing gas supplied to the positive electrode.
It reacts with oxygen in the air (usually air) to generate electricity and turn into water.

【0039】水素ガスの放出が終了したら、水素吸蔵合
金の温度を常温に下げ、上記の加圧水素ガスを再び供給
して、水素ガスを合金に吸蔵させる。水素吸蔵合金から
なる水素貯蔵容器を複数設置しておき、交互に使用する
ことで、水素燃料電池を連続運転することができる。
When the release of the hydrogen gas is completed, the temperature of the hydrogen storage alloy is lowered to room temperature, and the above-described pressurized hydrogen gas is supplied again to store the hydrogen gas in the alloy. By installing a plurality of hydrogen storage containers made of a hydrogen storage alloy and using them alternately, the hydrogen fuel cell can be operated continuously.

【0040】水素燃料電池の種類は、燃料として水素を
使用するものであれば特に制限されない。現在開発中の
アルカリ型、固体高分子電解質型、リン酸型、溶融炭酸
塩型、固体電解質型等のいずれにも適用できる。中でも
好ましいのは、常温で運転可能で、酸素供給源として空
気を使用できる固体高分子電解質型燃料電池である。固
体高分子型燃料電池は、100 ℃以下で作動するコンパク
トな電池とすることができ、小規模地域発電や家庭用発
電システムとして実用化の動きがあり、また自動車用電
源として使用する試みもある。
The type of hydrogen fuel cell is not particularly limited as long as it uses hydrogen as fuel. It can be applied to any of alkali type, solid polymer electrolyte type, phosphoric acid type, molten carbonate type, solid electrolyte type, etc. which are currently under development. Among them, a solid polymer electrolyte fuel cell which can be operated at room temperature and can use air as an oxygen supply source is preferable. The polymer electrolyte fuel cell can be a compact battery that operates at 100 ° C or lower, and has been put into practical use as a small-scale regional power generation system or a home power generation system. .

【0041】本発明の水素吸蔵合金は、熱−化学エネル
ギー変換手段として、蓄熱やヒートポンプに利用するこ
ともできる。この場合も、水素の吸蔵時および放出時の
温度および水素ガス圧力の条件は、上記と同様でよい。
The hydrogen storage alloy of the present invention can be used for heat storage or heat pump as a means for converting heat to chemical energy. Also in this case, the conditions of the temperature and the hydrogen gas pressure at the time of storing and releasing hydrogen may be the same as those described above.

【0042】本発明の水素吸蔵合金は、前述した条件で
水素の吸蔵と放出を行った場合に、0.6 質量%以上とい
う大きな有効水素吸蔵量を与えるので、所定量の水素を
貯蔵するのに必要な水素吸蔵合金の量を低減させること
ができ、装置を小型化することができる。また、水素の
吸蔵と放出もすばやく起こる。さらに、CaとMgを多く含
むため軽量で、低コストの合金であるので、大量使用に
適している。
The hydrogen storage alloy of the present invention gives a large effective hydrogen storage amount of 0.6% by mass or more when hydrogen is stored and released under the above-described conditions, so that it is necessary to store a predetermined amount of hydrogen. The amount of the hydrogen storage alloy can be reduced, and the device can be downsized. In addition, absorption and release of hydrogen occur quickly. Furthermore, since it is a lightweight and low-cost alloy because it contains a large amount of Ca and Mg, it is suitable for mass use.

【0043】[0043]

【実施例】Ca、Mg、Ni、ならびに場合によりAlもしくは
Crを原料として、次に述べるように、焼結法または溶解
法により水素吸蔵合金の試料を作製した。使用原料はい
ずれも純度99質量%以上の市販品であった。焼結法と溶
解法のいずれも、作業はすべてアルゴン雰囲気中で実施
した。
EXAMPLE Ca, Mg, Ni and optionally Al or
Using Cr as a raw material, a sample of a hydrogen storage alloy was prepared by a sintering method or a melting method as described below. The raw materials used were all commercial products having a purity of 99% by mass or more. In both the sintering method and the melting method, all operations were performed in an argon atmosphere.

【0044】焼結法による水素吸蔵合金試料の作製 原料を所定組成となるように秤量配合し、乳鉢で粉砕し
て、粒径100 μm以下の混合粉末を得た。この混合粉末
を、9.8MPaの荷重の油圧プレスを用いて、直径10 mm ×
厚さ5mmのペレット状に成形し、圧粉体とした。得られ
た圧粉体を、電気抵抗炉を用いて900 ℃で2時間加熱し
て焼結させ、合金化した。得られた焼結体を、粒径100
μm以下の粉末になるまで乳鉢で粉砕した。
Raw materials for preparing a hydrogen storage alloy sample by a sintering method were weighed and blended so as to have a predetermined composition, and pulverized in a mortar to obtain a mixed powder having a particle size of 100 μm or less. Using a hydraulic press with a load of 9.8 MPa, the mixed powder was 10 mm in diameter ×
It was formed into a pellet having a thickness of 5 mm to obtain a green compact. The obtained green compact was heated at 900 ° C. for 2 hours using an electric resistance furnace, sintered and alloyed. The obtained sintered body is treated with a particle size of 100.
The powder was crushed in a mortar until the powder became not more than μm.

【0045】この粉末を用いて、成形、焼結、粉砕の工
程をもう一度繰り返して、粉末状の水素吸蔵合金の試料
を得た。各組成の粉末を湿式化学分析して、試料中の各
元素の比率を求めた結果、焼結中に揮発した元素はな
く、所望の合金組成となっていることを確認した。
Using this powder, the steps of molding, sintering and pulverization were repeated once again to obtain a powdery hydrogen storage alloy sample. The powder of each composition was subjected to wet chemical analysis to determine the ratio of each element in the sample. As a result, it was confirmed that there were no elements volatilized during sintering, and the desired alloy composition was obtained.

【0046】溶解法による水素吸蔵合金試料の作製 原料を所定の組成となるように秤量配合し、真空高周波
溶解炉にて各試料を約数kgずつ溶解し、平板状の水冷鋳
型に厚さ約1〜2cmとなるように鋳込んで溶解試料を作
製した。作製した合金試料の粉末を湿式で化学分析し、
試料中の各元素の比率を求めた。その後、本合金試料を
数cm角程度の大きさに粉砕したものを、アルゴン気流中
にて800 ℃で10時間保持する熱処理を行った。この試料
についても、溶解および熱処理中に揮発した元素はな
く、所望の合金組成になっていた。
The raw materials for preparing the hydrogen storage alloy sample by the melting method were weighed and blended so as to have a predetermined composition, each sample was melted in a vacuum high-frequency melting furnace by about several kg, and the thickness was reduced into a flat water-cooled mold. A molten sample was prepared by casting to a thickness of 1 to 2 cm. Chemical analysis of the prepared alloy sample powder by wet method,
The ratio of each element in the sample was determined. Thereafter, the alloy sample was pulverized to a size of about several cm square, and subjected to a heat treatment at 800 ° C. for 10 hours in an argon stream. Also in this sample, there was no element volatilized during melting and heat treatment, and the desired alloy composition was obtained.

【0047】こうして作製した水素吸蔵合金の組成と作
製法を表1に示す。表1に示した各水素吸蔵合金の試料
の組織をX線回折により調べた結果、CaサイトのMg置換
率の値が0.85以下での場合、組織はC15ラーベス構造を
主相とすることが判明した。一方、Xが0.85より大きい
場合は組織はC36ラーベス相を主相とすることがわかっ
た。
Table 1 shows the composition of the hydrogen storage alloy thus produced and the production method. The structure of each hydrogen storage alloy sample shown in Table 1 was examined by X-ray diffraction. As a result, it was found that the structure had a C15 Laves structure as the main phase when the Mg substitution ratio of the Ca site was 0.85 or less. did. On the other hand, when X was larger than 0.85, the structure was found to have a C36 Laves phase as a main phase.

【0048】以上を確認した上で、ジーベルト方式の水
素吸蔵量測装置を用いて、表1に示す条件で水素吸蔵量
V1およびV2を測定して、有効水素吸蔵量V=V1 −
V2を求めた。これらのV1、V2、Vの値も表1に併
せて示す。
After confirming the above, the hydrogen storage amounts V1 and V2 were measured under the conditions shown in Table 1 using a Geebelt type hydrogen storage amount measuring device, and the effective hydrogen storage amount V = V1−
V2 was determined. The values of V1, V2, and V are also shown in Table 1.

【0049】[0049]

【表1】 表1から、合金の組成によって、V1およびV2の値は
さまざまに変化するが、V1−V2として算出される有
効水素吸蔵量Vは、水素吸蔵合金が本発明の範囲内の組
成を持つ場合に0.6 質量%以上と大きくなり、本発明の
水素吸蔵合金は実際に活用できる有効水素吸蔵量が大き
く、実用性が高いことがわかる。また、合金の製法が焼
結法と溶解法のいずれであっても、有効水素吸蔵量Vが
大きいという本発明の効果が得られた。
[Table 1] From Table 1, depending on the composition of the alloy, the values of V1 and V2 change variously, but the effective hydrogen storage amount V calculated as V1−V2 is determined when the hydrogen storage alloy has a composition within the range of the present invention. As a result, the hydrogen storage alloy of the present invention has a large effective hydrogen storage amount that can be actually used and has high practicality. In addition, the effect of the present invention that the effective hydrogen storage amount V was large was obtained regardless of whether the alloy was manufactured by the sintering method or the melting method.

【0050】実施例と比較例を対比するとわかるよう
に、Ca1-x Mgx (Ni1-yy) z のXが0.60未満である場
合、V2 が増加するために有効水素吸蔵量が低下してい
る。Xが0.85より大きい場合、主相が水素を吸蔵しづら
いC36ラーベス構造となるため、比較例15では本発明の
実施例8に比較しV1 が著しく減少し、有効水素吸蔵量
も小さくなっている。
As can be seen from a comparison between the example and the comparative example, when X of Ca 1-x Mg x (Ni 1-y M y ) z is less than 0.60, V 2 increases, so that the effective hydrogen storage amount decreases. Is declining. When X is larger than 0.85, the main phase has a C36 Laves structure which is hard to occlude hydrogen, and therefore, in Comparative Example 15, V1 is remarkably reduced and effective hydrogen storage amount is also reduced as compared with Example 8 of the present invention. .

【0051】また、Ca1-x Mgx (Ni1-yy ) z のYが本
発明の範囲外である比較例16、17は水素を吸蔵しづらい
第二相の割合が大きくなり、V1 が著しく減少した結
果、有効水素吸蔵量が小さくなった。
In Comparative Examples 16 and 17 in which Y of Ca 1-x Mg x (Ni 1-y M y ) z is out of the range of the present invention, the ratio of the second phase which is hard to absorb hydrogen is increased, As a result of the remarkable decrease in V1, the effective hydrogen storage amount was reduced.

【0052】Ca1-X Mgx (Ni1-yy ) z のZが本発明の
範囲より小さい比較例13は水素を放出しづらい副相CaMg
2 の割合が大きくなりV2 が増加して有効水素吸蔵量が
減少した。またYが本発明の範囲より大きい比較例14は
水素を吸蔵しづらいNi相の割合が大きくなりV1 が減少
して有効水素吸蔵量が減少した。
Comparative Example 13 in which Z of Ca 1-x Mg x (Ni 1-y M y ) z is smaller than the range of the present invention is a subphase CaMg in which hydrogen is hardly released.
2 increased, V2 increased, and the effective hydrogen storage amount decreased. In Comparative Example 14 where Y was larger than the range of the present invention, the ratio of the Ni phase, which was difficult to store hydrogen, increased, V1 decreased, and the effective hydrogen storage amount decreased.

【0053】[0053]

【発明の効果】本発明に係る水素吸蔵合金は、従来材に
比べて軽量かつ低価格であり、温水を加熱源とした場合
に使い勝手のよい、常温〜100 ℃、大気圧〜1.0MPaの範
囲での有効水素吸蔵量がこの従来材以上に大きいので、
実用に適した水素吸蔵合金である。従って、本発明の水
素吸蔵合金は、水素燃料電池の水素供給源である水素貯
蔵容器や、ヒートポンプ、蓄熱等の用途に有用である。
また、水素吸蔵時に冷媒が不要であり、水素放出時には
廃温水を利用できるので、環境問題に有利に対応でき
る。
The hydrogen storage alloy according to the present invention is lighter and less expensive than conventional materials, and is easy to use when hot water is used as a heating source, in the range of normal temperature to 100 ° C. and atmospheric pressure to 1.0 MPa. Since the effective hydrogen storage capacity at this point is greater than this conventional material,
It is a hydrogen storage alloy suitable for practical use. Therefore, the hydrogen storage alloy of the present invention is useful for applications such as a hydrogen storage container as a hydrogen supply source of a hydrogen fuel cell, a heat pump, and heat storage.
In addition, a refrigerant is not required at the time of storing hydrogen, and waste hot water can be used at the time of releasing hydrogen, so that it is possible to advantageously cope with environmental problems.

【図面の簡単な説明】[Brief description of the drawings]

【図1】有効水素吸蔵量Vの概念を示す圧力−組成等温
線図である。
FIG. 1 is a pressure-composition isotherm diagram showing a concept of an effective hydrogen storage amount V.

【図2】Ca1-x Mgx Ni2 の組成を有する水素吸蔵合金に
おいて、CaサイトのMg置換率Xが0.65および0.50である
場合の温度100 ℃での圧力−組成等温線図を示す。
FIG. 2 is a pressure-composition isotherm at a temperature of 100 ° C. when the Mg substitution ratio X of Ca sites is 0.65 and 0.50 in a hydrogen storage alloy having a composition of Ca 1-x Mg x Ni 2 .

【図3】Ca1-x Mg x Ni2の組成を有する水素吸蔵合金に
おいて、CaサイトのMg置換率Xが0.90、および0.65であ
る場合の、温度20℃での圧力−組成等温線図を示す。
FIG. 3 is a pressure-composition isotherm diagram at a temperature of 20 ° C. in a hydrogen storage alloy having a composition of Ca 1-x Mg x Ni 2 when the Mg-substitution ratio X of Ca site is 0.90 and 0.65. Show.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 尚志 兵庫県尼崎市扶桑町1番8号 住友金属工 業株式会社エレクトロニクス技術研究所内 (72)発明者 米村 光治 兵庫県尼崎市扶桑町1番8号 住友金属工 業株式会社エレクトロニクス技術研究所内 (72)発明者 寺下 尚克 茨城県つくば市東光台5丁目9番6号 日 本重化学工業株式会社筑波研究所内 (72)発明者 高橋 誠司 茨城県つくば市東光台5丁目9番6号 日 本重化学工業株式会社筑波研究所内 (72)発明者 笹井 興士 茨城県つくば市東光台5丁目9番6号 日 本重化学工業株式会社筑波研究所内 Fターム(参考) 5H027 AA02 AA03 AA04 AA05 AA06 BA14  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Naoshi Maeda 1-8 Fuso-cho, Amagasaki-shi, Hyogo Sumitomo Metal Industries, Ltd. Inside Electronics Technology Research Laboratory (72) Inventor Kouji Yonemura 1-8 Fuso-cho, Amagasaki-shi, Hyogo No. Sumitomo Metal Industries, Ltd. Electronics Technology Research Laboratories (72) Inventor Takashi Terashita 5-9-6, Tokodai, Tsukuba City, Ibaraki Pref. Japan Heavy Industries, Ltd. Tsukuba Research Laboratories (72) Inventor Seiji Takahashi Tsukuba, Ibaraki Pref. 5-9-6 Tokodai, Tsukuba-shi, Japan Tsukuba Research Laboratories, Japan (72) Inventor Koji Sasai 5-9-6 Tokodai, Tsukuba-shi, Ibaraki Pref. Reference) 5H027 AA02 AA03 AA04 AA05 AA06 BA14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1) で表される組成を有し、
温度0〜50℃、水素圧力0.5 〜1.1MPaの条件下で水素を
吸蔵させ、温度60℃〜水の沸点、水素圧力0.01〜0.3MPa
の条件下で水素を放出させることができる、有効水素吸
蔵量0.6 質量%以上の水素吸蔵合金。 Ca1-xMgxNiz ・・・・・・(1) 上記式中、 0.60≦ x ≦0.85、 1.8 ≦ z ≦2.2
(1) having a composition represented by the following general formula (1),
Absorbs hydrogen under the conditions of temperature 0 to 50 ° C and hydrogen pressure 0.5 to 1.1MPa, temperature 60 ° C to boiling point of water, hydrogen pressure 0.01 to 0.3MPa.
A hydrogen storage alloy capable of releasing hydrogen under the following conditions and having an effective hydrogen storage amount of 0.6% by mass or more. Ca 1-x Mg x Ni z・ ・ ・ (1) In the above formula, 0.60 ≦ x ≦ 0.85, 1.8 ≦ z ≦ 2.2
【請求項2】 下記一般式(2) で表される組成を有す
る、温度0〜50℃、水素圧力0.5 〜1.1MPaの条件下で水
素を吸蔵させ、温度60℃〜水の沸点、水素圧力0.01〜0.
3MPaの条件下で水素を放出させることができる、有効水
素吸蔵量0.6 質量%以上の水素吸蔵合金。 Ca1-xMgx(Ni1-yMy)z ・・・・・(2) 上記式中、 MはAl、Si、P、Cr、Mn、Fe、Co、CuおよびZnから成る
群から選んだ少なくとも1種の元素であり、 0.60≦ x ≦0.85、 0 ≦ y ≦0.2 、 1.8 ≦ z ≦2.2
2. Absorbing hydrogen under the conditions of a temperature of 0 to 50 ° C. and a hydrogen pressure of 0.5 to 1.1 MPa having a composition represented by the following general formula (2), a temperature of 60 ° C. to a boiling point of water and a hydrogen pressure of 0.01-0.
A hydrogen storage alloy that can release hydrogen under 3MPa conditions and has an effective hydrogen storage amount of 0.6% by mass or more. Ca in 1-x Mg x (Ni 1 -y M y) z ····· (2) the above formula, M is Al, Si, P, Cr, Mn, Fe, Co, from the group consisting of Cu and Zn At least one selected element, 0.60 ≦ x ≦ 0.85, 0 ≦ y ≦ 0.2, 1.8 ≦ z ≦ 2.2
JP2000282131A 2000-09-18 2000-09-18 Hydrogen storage alloy Expired - Fee Related JP3752987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000282131A JP3752987B2 (en) 2000-09-18 2000-09-18 Hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000282131A JP3752987B2 (en) 2000-09-18 2000-09-18 Hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JP2002097535A true JP2002097535A (en) 2002-04-02
JP3752987B2 JP3752987B2 (en) 2006-03-08

Family

ID=18766692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000282131A Expired - Fee Related JP3752987B2 (en) 2000-09-18 2000-09-18 Hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP3752987B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105562A (en) * 2000-09-28 2002-04-10 Japan Metals & Chem Co Ltd Hydrogen storage alloy
WO2003072838A1 (en) * 2002-02-27 2003-09-04 Hera, Hydrogen Storage Systems Inc. Ca, Mg AND Ni CONTAINING ALLOYS, METHOD FOR PREPARING THE SAME AND USE THEREOF FOR GAS PHASE HYDROGEN STORAGE
US7811957B2 (en) 2002-06-25 2010-10-12 Alicja Zaluska Type of catalytic materials based on active metal-hydrogen-electronegative element complexes involving hydrogen transfer
JP2013199675A (en) * 2012-03-23 2013-10-03 Tokyo Gas Co Ltd Electrochemical device and power storage system
CN109930055A (en) * 2017-12-18 2019-06-25 宜兴市江华环保科技有限公司 A kind of mud scraper rake teeth material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105562A (en) * 2000-09-28 2002-04-10 Japan Metals & Chem Co Ltd Hydrogen storage alloy
WO2003072838A1 (en) * 2002-02-27 2003-09-04 Hera, Hydrogen Storage Systems Inc. Ca, Mg AND Ni CONTAINING ALLOYS, METHOD FOR PREPARING THE SAME AND USE THEREOF FOR GAS PHASE HYDROGEN STORAGE
US7811957B2 (en) 2002-06-25 2010-10-12 Alicja Zaluska Type of catalytic materials based on active metal-hydrogen-electronegative element complexes involving hydrogen transfer
JP2013199675A (en) * 2012-03-23 2013-10-03 Tokyo Gas Co Ltd Electrochemical device and power storage system
CN109930055A (en) * 2017-12-18 2019-06-25 宜兴市江华环保科技有限公司 A kind of mud scraper rake teeth material

Also Published As

Publication number Publication date
JP3752987B2 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
Sakintuna et al. Metal hydride materials for solid hydrogen storage: a review
US6193929B1 (en) High storage capacity alloys enabling a hydrogen-based ecosystem
JP4261566B2 (en) Hydrogen storage alloy, hydrogen separation membrane, hydrogen storage tank, and hydrogen storage / release method
Schwarz Hydrogen storage in magnesium-based alloys
Zhang et al. Formation mechanism, phase structure and electrochemical properties of the La–Mg–Ni-based multiphase alloys by powder sintering LaNi5 and LaMgNi4
Nagar et al. Recent developments in state-of-the-art hydrogen energy technologies–review of hydrogen storage materials
US6099811A (en) Self-heating metal-hydride hydrogen storage system
US6328821B1 (en) Modified magnesium based hydrogen storage alloys
Oelerich et al. Mg-based hydrogen storage materials with improved hydrogen sorption
Gkanas et al. Synthesis, characterisation and hydrogen sorption properties of mechanically alloyed Mg (Ni1-xMnx) 2
US6491866B1 (en) High storage capacity, fast kinetics, long cycle-life, hydrogen storage alloys
US6593017B1 (en) High capacity calcium lithium based hydrogen storage material and method of making the same
Srivastava et al. On the synthesis and characterization of some new AB5 type MmNi4. 3Al0. 3Mn0. 4, LaNi5-xSix (x= 0.1, 0.3, 0.5) and Mg− x wt% CFMmNi5− y wt% Si hydrogen storage materials
Jurczyk The progress of nanocrystalline hydride electrode materials
JP4716304B2 (en) Hydrogen storage alloy storage and release method, hydrogen storage alloy and fuel cell using the method
JP3752987B2 (en) Hydrogen storage alloy
US6726783B1 (en) High storage capacity alloys having excellent kinetics and a long cycle life
JP2001303160A (en) Hydrogen storage alloy
US4358432A (en) Material for hydrogen absorption and desorption
Nivedhitha et al. Advances in hydrogen storage with metal hydrides: Mechanisms, materials, and challenges
JPS626739B2 (en)
EP1404886B1 (en) Non-pyrophoric hydrogen storage alloy
KR101583297B1 (en) Hydrogen stroge alloy based on titanium-zirconium and production methods thereof
JP2003119529A (en) Hydrogen storage alloy
JP2004011003A (en) Hydrogen storage material and hydrogen storage vessel using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3752987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees